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Abstract
In a distributed heterogeneous computing

environment, users’ tasks are allocated resources to
simultaneously satisfy, to varying degrees, the tasks’
different, and possibly conflicting, quality of service
(QoS) requirements. When the total demand placed on
system resources by the tasks, for a given interval of time,
exceeds the resources available, some tasks will receive
degraded service or no service at all. One part of a
measure to quantify the success of a resource
management system (RMS) in such a distributed
environment is the collective value of the tasks completed
during an interval of time, as perceived by the user,
application, or policy maker. The Flexible Integrated
System Capability (FISC) ratio introduced here is a
measure for quantifying this collective value. The FISC
ratio is a multi-dimensional measure, and may include
priorities, versions of a task or data, deadlines,
situational mode, security, application- and domain-
specific QoS, and dependencies. In addition to being used
for evaluating and comparing RMSs, the FISC ratio can
be incorporated as part of the objective function in a
system’s scheduling heuristics.

                                                       
This research is supported by the DARPA/ITO Quorum Program,

by the DARPA/ISO BADD Program and the Office of Naval Research
under ONR grant number N00014-97-1-0804, and by the DARPA/ITO
AICE Program under contract number DABT63-99-C-0010.

1. Introduction

In many distributed environments, the tasks that are
executing have different quality of service (QoS)
requirements. These different QoS requirements impose
different machine and resource requirements.
Furthermore, these tasks may require input data from a
variety of distributed sources. Mixed-machine
heterogeneous computing (HC) environments provide a
distributed suite of different types of machines, connected
by diverse types of networks, to meet the varied
computational and input requirements of such task
mixtures (e.g., [4, 8, 18]). The goals of a resource
management system (RMS) in an HC environment are to
assign communication, computation, and other resources
in an attempt to satisfy users’ requests, which may require
different types and levels of QoS. Due to limitations on
resource availability in certain situations, some tasks will
receive degraded service or none at all. A performance
measure is needed to quantify the collective value of the
tasks completed during an interval of time, as perceived
by the user, application, or policy maker. This measure
can be a part of a metric to assess the success of an RMS
(other parts may include execution time, ability to work
with different operating systems, and user interface). This
research describes attributes that can be combined to
derive such a performance measure, and provides a way
to combine them.



The Flexible Integrated System Capability (FISC)
ratio is introduced in this research. It is a multi-
dimensional performance measure, and may include
priorities, versions of a task or data, deadlines, situational
mode, security, application- and domain-specific QoS,
and task dependencies. This FISC performance measure
combines these attributes to determine the collective
value of the tasks completed during an interval of time on
a distributed computing system.

The FISC ratio can be used for the postmortem
analysis of a system to determine the best scheduling
heuristic for a given environment. It can also compare, via
experimentation or simulation, the effectiveness of
changing the resources available in a given distributed
system. Furthermore, the FISC ratio can be incorporated
as part of the objective function in a system’s scheduling
heuristics.

This research is part of three related DARPA
activities: the DARPA Quorum-sponsored Management
System for Heterogeneous Networks (MSHN) project
[10], the DARPA Battlefield Awareness and Data
Dissemination (BADD) program [22, 7], and the Agile
Information Control Environment (AICE) program [1].
The goal of the Quorum MSHN project is to design,
prototype, and refine a distributed RMS that leverages the
heterogeneity of resources and tasks to deliver the
requested QoS. In the Quorum environment, it is
sometimes the case that not all tasks requested can
achieve their most preferred QoS. Thus, there must be a
performance measure that can determine a collective
value of the set of tasks that were completed in a given
time interval by a particular resource management
strategy.

One aspect of the BADD and AICE programs
involves designing a scheduling system for forwarding
(staging) data items prior to their use as inputs to a local
application in a wide area network (WAN) distributed
computing environment. The BADD and AICE systems
are similar to the Quorum environment in that, in some
situations, not all data requests will be satisfied with their
most preferred QoS by their deadline. Thus, the goal of
the scheduler is to satisfy a set of requests in a way that
has the greatest collective perceived value.

The performance measure described in this research
is used to evaluate, for a given interval of time, the total
value of tasks completed in the MSHN project and the
total value of data received in the BADD and AICE
programs. In this sense, the set of completed tasks for the
MSHN project is equivalent to the set of satisfied data
item requests for the BADD and AICE programs. A major
difference between MSHN and BADD/AICE is that in
MSHN tasks are assigned to resources by the RMS. In the
BADD/AICE project, task assignments are given and

fixed a priori, but the movement of data to the tasks must
be scheduled. Throughout the rest of this paper, task will
be used to represent a user’s process execution in the
Quorum MSHN context, and a user’s request for a data
item in the BADD/AICE context. While this research is
motivated by military applications, the FISC ratio can be
adapted for other environments, such as industrial intra-
nets, government agency intra-nets (e.g., NASA), and
computational grids [9].

The next section provides a brief overview of some
of the literature related to this work. In Section 3, several
examples of individual QoS requirements are presented.
These requirements may be considered when formulating
the performance measure to be used in building and
assessing RMSs. Section 4 shows how all the example
QoS attributes can be combined into a single measure.
This section also presents a baseline for that measure and
discusses a generalized form of the performance measure.
An example of how this measure would be instantiated in
a military C4I (command, control, communications,
computers and intelligence) environment is provided in
Section 5. The last section presents a brief summary of
this research.

2. Related Work

The FISC performance measure discussed here
embodies parameters that are considered important in
scheduling tasks and communications on a distributed
computing system. There is much literature on scheduling
and mapping of tasks, messages, and data items; in this
section, some of the literature is described.

An optimistic priority-based concurrency control
protocol that schedules active transactions with firm-
deadline in real-time database systems is described in
[12]. This protocol combines forward and backward
validation processes to control more effectively
concurrent transactions with different priorities. The
protocol is designed such that deadlines of higher priority
transactions have a greater probability of being met than
those of lower priority transactions. While this is also the
case for MSHN and BADD/AICE, the research presented
here includes other attributes that are important in
evaluating the overall value of the tasks completed.

In [17], priority is used for the mapping, adjustment,
and dropping of messages. The priority of a task is
adjusted by the length of time it was blocked by a higher
priority message and tardy messages that already missed
their deadlines are dropped. This Least-Laxity-First
priority mapping gives an improved missed deadline ratio,
which is the rate of messages missing their deadlines. In
[17], priority and deadline is used as measures of
performance but the research effort does not consider



other QoS attributes used in heterogeneous distributed
networks.

An algorithm that allows transmission of messages
belonging to several classes of situational mode is
presented in [20]. The algorithm takes into account the
actual priority of a message in a given class. This
algorithm rejects packets with deadlines shorter than a
minimum acceptance deadline defined for a particular
class. There can be more than one simple deadline. This
and other important QoS attributes are discussed in detail.

Data staging, an important data management problem
for a distributed heterogeneous networking environment,
is discussed in [28]. This was done under the assumption
that each requested data item is associated with a specific
deadline and priority. The research presented here
generalizes part of the objective function used in [28] to
include more types of deadlines and other QoS attributes.

From the works mentioned, parameters such as task
priority and deadline appear to be important attributes for
making scheduling decisions regarding tasks, messages,
or data items. A measure of the overall value is needed
that can be used in an objective function to compare and
analyze the algorithms, protocols, and heuristics while
incorporating all the QoS parameters used. The works
mentioned above consider only a few of the QoS
parameters that are being used in a distributed system.
Other parameters, e.g., accuracy, precision, and security,
that are QoS requirements and part of the users’ requests,
must be included in the performance analysis. These and
other QoS parameters that affect the overall value of
requests satisfied are discussed in this research.

The research on a performance measure presented
here builds on and extends a body of earlier work in this
field. Some examples are mentioned here.

The ERDoS project [5] describes an objective
function for optimizing the effectiveness of its QoS
scheduling mechanisms in meeting clients’ needs.  This
function reflects the benefit received by the user and a
weight assigned to each user application. An approach
where requested QoS is taken into account when
scheduling computational resources in a network is
presented in [19]. The model proposed a benefit function
that uses application deadlines and application priorities
as metrics in maximizing the total benefit for the
applications. Multiple versions of a task in addition to
priorities and deadlines in the objective function are
described in [14]. The FISC performance measure
presented in this paper serves a purpose similar to the
ones in [5, 19, 14]. However, the research presented here
provides a more detailed description of a measure using
more parameters, so that it can be used to find the
performance of an effective schedule in the Quorum
MSHN and BADD/AICE environments. Furthermore, the

QoS input specification for ERDoS [24] accounts for only
two specific security parameters (confidentiality and
integrity), whereas the security component of the
performance measure in this research can describe an
arbitrarily complex set of security features.

The FISC ratio is similar to the utility function
described in [31] in that both measure the system value.
The utility function in [31] calculates the system value by
summing the value of resources allocated and resources
reserved depending on the duration of a job, the deadline
of a job, and the price of allocated time slots. The FISC
ratio uses a conceptually similar calculation, but
formulates it differently and includes priorities and other
QoS measures to calculate the collective value of task
completed.

A security policy that allows a percentage of packets
authenticated to vary with network load is described in
[25]. This type of policy can be accommodated with the
variant components included in the FISC security vector
(see Subsection 3.5). While the FISC security vector
contains a set of Boolean security policy statements, it
does not specify a general-purpose language for these
statements.  Related work on network security policy
specification languages can be found in [2, 3], and works
in progress [6, 23]. A framework for quantifying the
strength of a set of security mechanisms is described in
[30], where high-level static security properties can be
decomposed hierarchically.  However, in [30] the
approach cannot accommodate the measurement of how
well an executed task meets the security requirements of
its environment. Nor does [30] account for variant
security policies or mechanisms.

The FISC ratio measures the effectiveness of a
schedule in terms of tasks completed and percentage of
their requirements satisfied. In [26], other types of
attributes for evaluating different QoS and RMS services
in distributed real-time systems are investigated. Some
examples include survivability (fault-tolerance), openness
(open architecture), and testability (easily testable and
verifiable). These are outside the scope of the FISC
performance measure, which focuses on the collective
worth of the completed tasks.

3. Example QoS Attributes

3.1. Overview

Examples of attributes that need to be considered in
the FISC performance measure will be described in this
section. The attributes discussed include user-based and
application-based priority levels, user preferences for
different versions of a task, deadlines, security, other
application- and domain-specific QoS attributes, and task



dependencies. The attributes used in any given situation
must have interpretations that are meaningful to the users,
policy makers, and the RMS. A method of determining
the weightings, worths, functions, and factors are
described in this section.

3.2. Priorities

Policy makers determine the number of priority
levels and assign some semantic meaning to each priority
level, such that each level qualitatively reflects the
relative importance (e.g., high, medium, and low). The
policy makers may be the commanders in a military
environment or executives in a corporation. Policy makers
may assign different users, or classes of users, restricted
ranges of priority levels that can be assigned to their
tasks. Alternatively, a task itself could have an immutable
priority level assigned to it by the policy makers. Each
priority level will then be given a weight that can be
calculated by a priority weight function, which is pre-
determined by policy makers, described later in this
section.

Priority levels with relative, quantitative weightings
should be incorporated in scheduling systems so that a
task with a higher importance will have a higher
probability of meeting its QoS requirements. Application
users and system builders often assign an arbitrary
numbering scheme to priority levels that does not
meaningfully quantify the relative importance of one
priority level to another. Such a scheme, therefore, cannot
be used alone in the measure. A more meaningful weight
must instead be assigned to each priority level so that the
relative importance can be reflected in the performance
measure.

The relative importance (weighting) of priority levels
may vary depending upon the situational mode. For
example, there may be military modes of peace and war.
In the peace mode, it might be just as important to
complete ten low priority level tasks as to complete one
high priority level task. However, in the war mode, one
high priority level task might be more important than
1000 medium priority level tasks. This dependency can be
indicated in the performance measure by expressing the
weight of all priority levels as a function of the situational
mode.

It is assumed that the FISC ratio is being used to
compute the value of a subset of tasks successfully
completed, during some time interval, from a set of t tasks
that have been requested. Let the priority level (e.g., high,
medium, low) of task j (0 ≤  j < t) be pj, and let m be the
situational mode. The priority weight function π (pj, m)
calculates the weight of pj given m. The weight assigned
to a priority level may be considered to be the maximum

value of completing the corresponding task, if all of the
task’s specified QoS requirements are completely
satisfied.

3.3. Versions

 A task may exist in different versions, each with its
own resource requirements. Because available resources
will vary dynamically, it may not be possible to complete
the most desired version of a task. For example, a user
requesting a map application may most desire a 24-bit
color, three-dimensional topographical map. However, if
this cannot be given to the user due to limited resources,
the user would rather have a black and white, two-
dimensional map than nothing at all. When a user’s first
choice of a task version cannot be completed, a method
for choosing an alternative version is needed. Having
multiple versions of a task is related to the precision and
accuracy parameters discussed in [24], in the sense that
each version of a task may have different accuracy and
precision.

For each version of a given task, in a given
situational mode, a worth (preference) relative to the other
versions will be indicated by the application developer,
the user, and/or the policy makers. In the above example,
the black and white version may only be worth 75% of
the color version to the user.  When selecting a version of
a task to execute, an RMS’s scheduling algorithms must
consider this worth and the task’s resource requirements
as well as the availability of these resources. For example,
one version may not be viable because its bandwidth
requirement is too high.

worth normalized worth
Task    version 0 1 2 0 1 2

0 1 1 8 .125 .125 1
1 25 35 40 .625 .875 1
2 .2 .3 .5 .4 .6 1
3 .1 .2 .7 .143 .286 1

Table 1: Worths and normalized worths that indicate
preference for each version of a task.

The worths assigned to different versions of a task
must be normalized so that there is a consistent scheme
for evaluating worths across tasks and versions. For
example, assume that all factors except version worths are
equal across a set of tasks. The user can specify any
number for the worth of a version as shown in Table 1.
Therefore without a normalization procedure, a version
with the smallest worth of a certain task can always be



chosen for processing ahead of other tasks for no logical
reason. For example, the version 0 of task 1 that is the
version with the lowest worth of task 1 would be chosen
over the version 2 of task 0 that is the version with the
highest worth for task 0. In extreme cases, worths that are
not normalized could make the priority irrelevant
depending on how priorities and worths of version
interact.

To avoid this type of anomalous behavior, worths are
normalized as follows. Assume there are Ij number of
versions for each task j. Let vij be the i-th (0 ≤  i < Ij)
version of task j. Let wij(m) be the worth the user assigns
to i-th version of task j given m, the situational mode.
Example wij(m) values are provided in Table 1. One
approach to the normalization problem is to divide each
indicated worth of a task version by the largest worth for
that task, resulting in the normalized worth as shown in
Table 1. The normalized worth (ηij) of wij(m) is then given
by

ηij = wij(m) /    max     waj(m).                 (1)
          0 ≤  a < Ij

As shown in Table 1, all worths for all versions of
each task are normalized by the version with the largest
worth. Therefore, the version with the largest worth of
each task will have a normalized worth of 1 and the rest
of the versions will have normalized worths that are
relative to the version with the largest worth. This is the
reason why the indicated worths for each task need not
sum to one.

Another approach to the normalization would be to
divide each version’s worth by the total sum of the
version worths of the task. This would not guarantee
equal value for the most preferred version of each task.
Furthermore, this approach would allow a greedy person
to obtain a higher value for his/her preference for the
version with the largest worth. For example, consider task
0 and task 1 in Table 1. If this alternative approach is
used, the normalized worth for task 0 would be .1, .1, and
.8, while for task 1 it would be .25, .35, and .4. This
means that, even if task 0 and task 1 have the same
priority, the largest worth version of task 0 is worth more
than the largest worth version of task 1, which should not
be the case. In extreme cases, priorities may be irrelevant
depending on how priorities and worth of versions
interact.

3.4. Deadlines

Many tasks in typical heterogeneous computing
environments have deadlines associated with them.
Frequently, due to limited resources and the multiplicity

of tasks sharing these resources, not every task can be
completed by its deadline. Three types of deadlines will
be considered for the i-th version of task j: earliest (eij

d),
soft (sij

d), and firm (fij
d). These three deadlines are

illustrated by example in Figure 1. The deadline attribute
discussed here is related to the timeliness parameter in
[24].

The earliest deadline (eij
d) is the time when the

system is ready to complete a task, based upon, for
example, the availability of the required input data.
Therefore, if a task completes before the earliest deadline
the task has 0 value.

The soft deadline (sij
d) is the time by which a task

must complete to be of full value to the user [27]. If a task
is completed between the earliest deadline and the soft
deadline, then the task will have its maximum value.

A task that is completed after its firm deadline (fij
d)

will have 0 value, because the task will be of no use after
that deadline [15, 27]. For example, if a task that shows a
map of an area completes after a mission is finished, then
it will have no value. If a task completes between its soft
and firm deadline, then it will have some fraction of its
maximum possible value. For each task, the fraction of
total value for each point between the soft and firm
deadlines, and the time between the soft and the firm
deadlines, may be a function of the situational mode. For
example, during war mode, the soft and firm deadlines
may be identical.

Figure 1: The deadline coefficient graph (non-increasing)
shows the variation in the value of a task with
various deadlines.

Let τij be the time that the i-th version of task j
actually completes. The deadline function δij(τij, m)
assigns a fraction of the maximum value of the i-th
version of task j based on m, τij, eij

d, sij
d, and fij

d, where 0
≤  δij(τij, m) ≤  1. If no version of a task is completed,
δij(τij, m) = 0 for all versions of the task. The deadlines
may be the same for all versions of a certain task.
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3.5. Security

User and task security requirements are met by
“security services.” Overall network security can be
viewed as a multi-dimensional space of security services.
This multi-dimensional space can be represented with a
vector (S) of security components, where the functional
requirement for each component is specified by a Boolean
statement for each given situational mode. Both resources
and tasks may have multiple security components [11].

 The instantiation of a network task either meets, or
does not meet, each component’s requirement. For
example, consider the i-th version of task j. Let Rij be an
ordered set of resources utilized by vij and let Sij be a sub-
vector of vector S. A component c in S is in Sij if and only
if c depends on vij or on an element of Rij, and is denoted
Sij.c. Let Zij be 1 if the instantiated Boolean value of all c
in Sij is true and 0 otherwise. Zij corresponds to the
required security attributes. This means that if minimum
security requirements are not met, then no benefit is
accrued from executing vij.

Additionally, some security components of a task can
be variant in that they allow a range of behavior with
respect to a requirement (e.g., length of cryptography key
may vary between 40 and 256). For variant components,
the user may request a particular value or permit a choice
from a component’s defined range. The RMS must select
a specific value within the user’s range while considering
resource availability, for the completed task to have a
non-zero value. The measure will give only partial credit
for a task completed with less than the most secure value
in the defined range. Thus, additional benefit is accrued if
increased security is selected within the range.

The desire to provide adaptable security motivates
the inclusion of variant security components in the system
[16]. Thus, security affects the performance measure
when components are variant. For example, assume the
percentage of authenticated packets can range between
50% and 90% in increments of 10%. The increment
quantizes the range. Let [Sij.c] be the number of quanta in
Sij.c (in the above case this is five) and gij.c be the fraction
of c in Sij satisfied. If a task achieves the third quantum
(70%), then gij.c is 3/[Sij.c] = 3/5 = 0.6. Suppose n is the
number of security components in Sij. To quantify the
effectiveness of the RMS in providing variant security, let
Aij be the sum of all gij.c divided by n as shown in
Equation 2.

Aij = (∑ gij.c)/n                                                    (2)

The above is just one possible way to combine the
values of these security components. For example, the
gij.c values in Aij equation can have relative weightings for
given m. Thus, if the military situation changes from
peace to war, encryption rate would be considered
relatively more important and might be given a high
relative weighting.

The overall security factor is defined as: σij = Aij ×
Zij, where 0 ≤  σij ≤  1. It indicates how the value of a
task may be degraded due to lack of its most desirable
security services.

3.6. Other Application- & Domain-Specific QoS

There is a multi-dimensional space of application-
and domain-specific QoS attributes (e.g., jitter level,
frame rate, bit error rate) that can also be represented by a
vector. There will be zero or more such components per
task or data set. These components can be specified in the
same way that security was represented. The FISC ratio
will use αij to denote such QoS components, analogous to
the security factor σij [13].

3.7. Dependencies

There are many possible types of inter-task
dependencies, e.g., for the MSHN environment, consider
a task whose only function is to generate data for other
tasks (descendants). There may be an inter-related set of
such tasks. If there is a descendant along a path of tasks
that does more than just generate data for a subsequent
task and if this descendant completes its execution, then
the tasks that did nothing more than generate data for this
particular task will have value, otherwise they will not.
This is because the end user that submitted a task for
completion will acknowledge the task to be finished only
when the actual results can be determined. If there is no
descendant task that produces a result important to a user,
all predecessors are worthless to the user.

The first task in a path that does more than generate
data for a subsequent task will be known as a required
associate of all of its predecessors. This is one way of
determining the value of ascendants that only generate
data for subsequent tasks. The variable ρij will be used to
represent whether a required associate of a given task
completes.  That is, if at least one required associate of a
given task completes, then ρij = 1, otherwise ρij = 0. For
the BADD/AICE environment, a similar definition of
required associates can be established based on the set of
data requested by a given application.

c ∈  Sij



4. Performance Measure

4.1. FISC Ratio

The question of what it means to “provide good QoS”
to a mixture of applications in a distributed system is
considered in this section.  In general, it is a difficult
problem to determine whether a distributed system has
delivered good service to a mixture of applications with
different priorities, receiving different degraded level of
QoS etc. A meaningful way to combine the QoS attributes
previously discussed is motivated and proposed in this
section.

First, consider a set of tasks, possibly with different
priorities and different deadlines, where the firm and soft
deadlines are identical.  Assume also that each task only
has a single version. Therefore, the initiators of a task
need not specify a preference for a version.  It is obvious
that a system with sufficient resources will complete all
tasks by their deadlines. However, if resources are
insufficient and tasks cannot complete by their deadlines,
then the RMS will complete the tasks with the higher
priorities by their deadline. Such an RMS maximizes

t - 1

∑π(pj, m) × δj(τ j, m),                                         (3)

j = 0

where δj(τj, m) is 1 if the task is completed by its deadline
and 0 otherwise. Even when the deadline is more general,
as described in Subsection 3.4, it is easy to see that the
same criterion should be maximized.

Now consider the same situation, except with tasks
having multiple versions.  Again, if there are sufficient
resources to complete the most preferred versions of each
task, then an RMS will allocate resources and initiate
those most preferred versions.  However, if resources are
insufficient for completing the most preferred versions of
all tasks, the RMS must consider using less preferred
versions for some tasks. Typically, this will result in a
reduction of both the value of completing the task and the
amount of the resource consumed. Thus, for the resources
available the RMS should maximize

t - 1

∑π(pj, m) × [  max     δij(τij, m) ×  ηij)].           (4)

j = 0   0 ≤  i < Ii

If only one version of a task is completed, δij for all other
versions would be 0. Therefore, the max function would
be used to indicate whether a version of a task is
completed within its deadline.

Similarly, the RMS must consider any reductions in
value of a task’s completion that is a result of not
receiving all required and desired security, and other
application- and domain-specific QoS requirements.
Furthermore, any dependencies must be obeyed for a
task’s completion to have any value. One way to
accomplish this is to multiply Equation 4 by ρij, σij, and
αij:

t - 1

∑π(pj, m)×[  max  [ηij ×ρij ×δij(τij, m)×σij ×αij]].    

j = 0 0 ≤  i < Ii

(5)

However, the measure shown above makes it difficult
to compare one RMS, operating within one distributed
system, to another RMS operating in a different
distributed system.  To allow this kind of comparison, the
equation

t - 1

∑π(pj, m)×[  max  [ηij ×ρij ×δij(τij, m)×σij ×αij]]

j = 0              0 ≤  i < Ii

baseline
(6)

normalizes the collective value of the completed tasks by
the results from some baseline, which depends on the
tasks and underlying distributed system. This will be
discussed further in Subsection 4.2.

Recall the goal of the FISC measure is to determine
the performance of a schedule (mapping) for tasks in an
oversubscribed distributed system by calculating the
collective value of the tasks completed. This measure can
also be used as a critical part of an objective function of a
scheduling heuristic. Components in addition to the FISC
measure may be useful in the determining of the objective
function. For example, in [29] the objective function that
is used includes expected time between when the data
request will be satisfied and its deadline (i.e., urgency).

4.2. Baseline

This section provides a baseline for the FISC ratio.
The purpose of the baseline in the FISC ratio is to
determine how an RMS performs compared to another
RMS in a given environment. If the RMS cannot perform
much better than this baseline, then a naive algorithm for
resource assignment would perform almost as well as the
RMS. The baseline builds upon and extends the example
given by [29].  The algorithm used to compute the



baseline uses the concept of perfect completion. A task is
said to achieve perfect completion if there exists available
resources, to which it can be assigned, that would allow it
to complete with ηij = δij = σij = αij = 100% and ρ = 1.

A simple algorithm, which assumes knowledge of the
expected resources needed by a task to complete, can be
used to obtain a baseline. For the results of the obtained
baseline to be reproducible within a certain tolerance, an
ordering of the tasks is needed.

The algorithm is shown in Figure 2 and it proceeds as
follows. First, it assigns an ordering to the tasks according
to their priorities, deadlines, and expected execution times
where the above criteria are considered in the
aforementioned order. For the tasks with the same priority
level, the deadline would be used as a tiebreaker. If tasks
have same priority level and deadline, the expected
execution time would serve as a tiebreaker. Only if tasks
have the same priority, deadline, and expected execution
time would the ordering be random. Alternatively,
additional characteristics of the task could be used for
finer ordering. In other problem domains, other
parameters could be more appropriate for ordering the
tasks. After the ordering, the algorithm determines
whether the first task (according to the ordering) can be
expected to achieve perfect completion using the
available resources. If so, it computes the expected
availability of resources after that task has completed,
under the assumption that the task uses the first such
available resources. It also adds the weighted priority of
this task to the baseline, which was initialized to 0.  If a
task cannot achieve perfect completion, nothing is added
to the baseline and the task is not considered again.  The
same process is repeated for each task, considering them
according to the ordering.

order tasks by priority, deadline, and expected
execution time
if all are equal, order is random

if task can get ηij  = δij = αij = σij = 100%
and ρij = 1

schedule
add π(pj, m)
update status of resources

else
no value added
no resources consumed

Figure 2: Baseline algorithm.

4.3. Generalization

The previous subsection describes one instantiation
of the FISC ratio. It can be generalized such that the
numerator is any function of π(pj, m), ηij, ρij, δij(τij, m),
σij, and αij (or other factors), and each of these primary
factors can be any function of secondary factors (e.g.,
primary factor σij includes an average of gij.c secondary
factors in the security context described in Subsection
3.5). Let Pr  be a primary factor where there can be u
number of primary factors (0 ≤  r ≤  u −1) and se  be a
secondary factor where there can be vr number of
secondary factors (0 ≤  e ≤  vr −1). The generalization of
FISC ratio can be represented as

FISC  =  f( P0, P1, … , Pu−1 )/ baseline  and   (7)

Pr  =  fr( s0, s1, … , 1−rvs ),

where each se is a secondary factor for Pr. Linear or
nonlinear weightings of each factor, depending on the
importance of the factor considered in a given
environment, may be included in all the functions of
primary and secondary factors.

The baseline described is one method of normalizing
the numerator of the FISC ratio. Other methods for
normalizing could be incorporated to compare the
performance of different RMSs in a given environment.

5. Examples of FISC Ratio Use

As an example of how the FISC ratio might be
applied in practice, consider the following scenario. The
Joint Force Air Component Commander (JFACC) staff
are preparing an Air Tasking Order (ATO). As the ATO
develops, one tool available to the JFACC staff for its
evaluation is the Extended Air Defense Simulation
(EADSIM) system from US Army Space and Missile
Defense Command. EADSIM is a warfare modeling
application offering great flexibility in the areas modeled,
the capabilities of the platforms simulated, and the
method of simulation (deterministic or stochastic) [21].

EADSIM utilizes a wide range of computing
resources, depending on the features enabled. For
example, the stochastic mode may use approximately 20
times the computing resources as the deterministic mode
(based on the number of runs required to obtain a
statistically significant number of samples). Of course,
results obtained in stochastic mode are likely to be more
reliable.

The JFACC planners select two versions of
EADSIM, the stochastic mode and the deterministic



mode, and submit them, with different preferences, to
their RMS for execution. Because this information is
urgently needed for combat mission planning, the priority
of this request is seven on a scale of ten (ten being
highest). The deadline is firm, with the simulation results
required within an hour.  If received within an hour the
results will achieve some fraction of their maximum
worth. After that time, they receive 0 value. The
stochastic version is preferred because it will produce
higher confidence results, but the deterministic simulation
may also be useful. The stochastic version is assigned a
preference of eight, on a scale of ten, while the
deterministic version is assigned a preference of five.
Security level in this case is binary.  The information
must be sent over a secure link.  If it is, a version is
assigned a security value of 1, if not, it is assigned a
security value of 0. If only one of the two versions can be
completed, and these are the only ones to choose from,
then the stochastic version will be completed because it
will give a higher value than the deterministic version.
This is a simple case; usually other factors have to be
considered (e.g., expected execution time) when
scheduling tasks.

An RMS such as MSHN would evaluate the expected
resource requirements of each version as well as the
ability to complete each version based on the current
resource availability. Using this information, the RMS
could make a wise decision by maximizing an objective
function where the FISC ratio would be a major
component. While this example is from a military
environment, the FISC ratio can be adapted for other
environments as well.

6. Summary and Future Work

The FISC ratio provides a way to quantify the value
of the performance received by a set of applications in a
distributed system. Thus, it can be used to evaluate the
effectiveness of the mapping of a collection of requests to
resources done by a scheduler. In addition, it may be used
in a simulation mode to analyze the impact of proposed
changes to the distributed system. Therefore, the FISC
performance measure presented here will help the
distributed computing community in the implementation
of resource management systems and the analysis and
comparison of such systems. Furthermore, the FISC ratio
may be used as a critical part of a scheduling heuristic’s
objective function. A generalization of the ratio is also
discussed in this research. Additional issues that may be
considered in future research include weighting the
relative importance of the π, η, ρ, δ, σ, and α factors,
using a non-linear combination of task values to compute
the overall measure, and using of negative fractions in the

deadline function in case of catastrophic results from a
missed deadline could be incorporated.
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