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Abstract

A virtual machine monitor (VMM) allows multiple op-
erating systems to run concurrently on virtual machines
(VMs) on a single hardware platform. Each VM can
be treated as an independent operating system platform.
A secure VMM would enforce an overarching security
policy on its VMs.

The potential benefits of a secure VMM for PCs in-
clude: a more secure environment, familiar COTS op-
erating systems and applications, and enormous savings
resulting from the elimination of the need for separate
platforms when both high assurance policy enforcement,
and COTS software are required.

This paper addresses the problem of implementing se-
cure VMMs on the Intel Pentium architecture. The re-
quirements for various types of VMMs are reviewed. We
report an analysis of the virtualizability of all of the ap-
proximately 250 instructions of the Intel Pentium plat-
form and address its ability to support a VMM. Cur-
rent “virtualization” techniques for the Intel Pentium ar-
chitecture are examined and several security problems
are identified. An approach to providing a virtualizable
hardware base for a highly secure VMM is discussed.

1 Introduction

A virtual machine monitor (VMM) is software for a
computer system that creates efficient, isolated program-
ming environments that are “duplicates” which provide
users with the appearance of direct access to the real ma-
chine environment. These duplicates are referred to as
virtual machines. Goldberg [12] defines a virtual ma-
chine (VM) as: “a hardware-software duplicate of a real
existing computer system in which a statistically dom-
inant subset of the virtual processor’s instructions exe-
cute on the host processor in native mode”. A VMM

�The opinions in this paper are those of the authors and should not
be construed to reflect those of their employers.

manages the real resources of the computer system, ex-
porting them to virtual machines.

A VMM offers a number of benefits not found in con-
ventional multiprogramming systems.

1.1 VMM Benefits

First, virtual machine monitors normally allow a sys-
tem manager to configure the environmentin which a
VM will run. VM configurations can be different from
those of the real machine. For example, a real machine
might have 32MB of memory, but a virtual machine
might have only 8 MB. This would allow a developer
to test an application on a machine with only 8 MB of
memory without having to construct a hardware version
of that real machine.

Second, virtual machine monitors allow concurrent
execution of different operating systemson the same
hardware. Users can run any operating system and ap-
plications designed to run on the real processor archi-
tecture. Thus application development for different op-
erating systems is easier. A developer can easily test
applications on many operating systems simultaneously
while running on the same base platform.

Third, virtual machine monitors allow users to isolate
untrusted applications of unknown quality. For ex-
ample, a program downloaded from the Internet could
be tested in a VM. If the program contained a virus, the
virus would be isolated to that VM. A secure VMM will
ensure that other high integrity VMs and their applica-
tions and data are protected from corruption.

Fourth, virtual machine monitors can be used to up-
grade operating system software to a different version
without losing the ability to run the older “legacy” op-
erating system and its applications. The legacy software
can run in a virtual machine exactly as it did previously
on the real machine, while the new version of the oper-
ating system runs in a separate virtual machine.

Finally, VMMs can be used to construct system soft-
ware for scalable computersthat have anywhere from
10 to 100 processors. VMMs can facilitate the develop-



ment of functional and reliable system software for these
computers.

Using a VMM, an additional software layer can be in-
serted between the hardware and multiple operating sys-
tems. This VMM layer would allow multiple copies of
an operating system to run on the same scalable com-
puter. The VMM also allows these operating systems to
share resources with each other. This solution has most
of the features of an operating system custom-built for
a scalable machine, but with lower development costs
and reduced complexity. Disco, developed for the Stan-
ford FLASH shared-memory multi-processor [8] is an
example of this solution. It uses different commercial
operating systems to provide high-performance system
software.

1.2 VMM Characteristics and Layers

A VMM has three characteristics [28]. First, a VMM
provides an execution environment almost identical to
the original machine; any program executed on a VM
should run the same as it would on an unvirtualized ma-
chine. Exceptions to this rule result from differences in
system resource availability, timing dependencies, and
attached I/O devices. If resource availability, e.g. phys-
ical memory, is different, the program will perform dif-
ferently. Timing dependencies may lose their validity
because a VMM may intervene and execute a different
set of instructions when certain instructions are executed
by a VM. Finally, if the VM is not configured with all of
the peripheral devices required by the real machine, ap-
plication behavior will differ.

Second, a VMM must be in control of real system re-
sources. No program running on a VMM can access any
resource not explicitly allocated to it by the VMM. Also
the VMM can regain control of previously allocated re-
sources.

Efficiency is the third VMM characteristic. A large
percentage of the virtual processor’s instructions must be
executed by the machine’s real processor, without VMM
intervention. Instructions which cannot be executed di-
rectly by the real processor are interpreted by the VMM.
Some virtual machines exhibit the recursion property: it
is possible to run a VMM inside of a VM, producing a
new level of virtual machines. The real machine is nor-
mally called Level 0. A VMM running on Level 0 is said
to be Level 1, etc.

1.3 VMM Logical Modules

A VMM normally has three generic modules: dis-
patcher, allocator, and interpreter. A jump to the dis-
patcher is placed in every location to which the machine
traps. The dispatcher then decides which of its modules

to call when a trap occurs. The second type of module
is the allocator. If a VM tries to execute a privileged in-
struction that would change the resources of the VM’s
environment, the VM will trap to the VMM dispatcher.
The dispatcher will handle the trap by invoking the al-
locator that performs the requested resource allocation
according to VMM policy. A VMM has only one allo-
cator module, however, it accounts for most of the com-
plexity of the VMM. It decides which system resources
to provide to each VM, ensuring that two different VM’s
do not get the same resource. The final module type is
the interpreter. For each privileged instruction, the dis-
patcher will call an interpreter module to simulate the
effect of that instruction. This prevents VMs from see-
ing the actual state of the real hardware. Instead they see
only their virtual machine state.

1.4 Attractions of a Secure VMM

An isolated VM constrained by an overarching security
policy enforced by the underlying secure VMM is attrac-
tive. Also, VMM technology provides stronger isolation
of virtual machines than found in conventional multipro-
gramming environments [21]. Within a constrained VM,
legacy operating systems and applications are executed
unmodified and are easily upgraded and replaced even
within the context of rapidly evolving software product
lifecycles.

In the past, some virtual machine monitors, such as
the SDC KVM/370 [11, 9, 33, 10] and the DEC VAX
SVS [17], have been used to separate mandatory secu-
rity classes. A secure VMM for the Intel Pentium1 pro-
cessor architecture would be very desirable because a
single machine could be used to implement critical secu-
rity policies while also running popular Win32 operating
systems and applications.

Although the x86 processor family has been used as
the base for many highly secure systems [23, 27, 26, 25,
24], it has not been considered as a VMM base. Recent
increased interest in VMM technology suggests that a
popular hardware base for a new generation of VMMs
would be highly attractive. Before embarking on such a
venture, its feasibility must be carefully examined. This
paper presents an analysis to determine whether the Intel
Pentium architecture can support a highly secure VMM
without sacrificing user convenience.

1Throughout this paper, the term “Intel Pentium architecture” will
refer to the architecture of the following processors, which are all
trademarks of the Intel Corporation: Intel Pentium, Intel Pentium Pro,
Intel Pentium with MMX Technology, Intel Pentium II and Intel Pen-
tium III.



1.5 Paper Organization

The rest of this paper is organized as follows: Sec-
tion 2 discusses the three different types of VMMs and
their hardware requirements. Section 3 is an analysis of
the Intel Pentium architecture with respect to the VMM
hardware requirements described in Section 2. Section
4 asks if a VMM designed for the Intel Pentium archi-
tecture can be secure. Finally, Section 5 presents our
conclusions and future research.

2 VMM Requirements

This section discusses each type of VMM including the
Type I VMM, Type II VMM, and Hybrid VMM. It will
also cover the architectural features required for the suc-
cessful implementation for each VMM type.

2.1 Virtual Machine Monitors Types

An operating system consists of instructions to be exe-
cuted on a hardware processor. When an operating sys-
tem is virtualized, some portion, ranging from none to
all, of the instructions may be executed by underlying
software. The amount of software and hardware exe-
cution of processor instructions determines if one has a
complete software interpreter machine (CSIM), hybrid
VM (HVM), VMM, or a real machine. Each of these
different types of machines provides a normal machine
environment, meaning that processor instructions can be
executed on them, viz. a VMM can host an operating
system. However, they differ in the way that the ma-
chine environment actually executes the processor in-
structions. A real machine uses only direct execution:
the processor executes every instruction of the program
directly. A CSIM uses only software interpretation: a
software program emulates every processor instruction.
There has been a recent resurgence of interest in CSIM
architectures [3, 18]. A VMM requires that a “statis-
tically dominant subset” of the virtual processor’s in-
structions be executed on the real processor [12]. Per-
formance will be effected by the size of the subset.

VMMs primarily use direct execution, with occasional
traps to software. As a result, the performance of VMMs
is better than CSIMs and HVMs. An HVM is a VMM
that uses software interpretation on all privileged in-
structions. HVMs are possible on a larger class of sys-
tems than VMMs. The definition of a VMM does not
specify how the VMM gains control of the machine to
interpret instructions that cannot be directly executed on
the processor. As a result, there are two different types
of VMMs that can create a virtual machine environment.
These types are referred as Type I and Type II [12]. A

Type I VMM runs on a bare machine. It is an operat-
ing system with virtualization mechanisms. It performs
the scheduling and allocation of the system’s resources.
A Type II VMM runs as an application. The operating
system that controls the real hardware of the machine is
called the “host OS.” The host OS does not need or use
any part of the virtualization environment. Every OS
that is run in the Type II virtual environment is called a
“guest OS.” In a Type II VMM, the host operating sys-
tem provides resource allocation and a standard execu-
tion environment to each guest OS.

2.2 Execution of Privileged Instructions

When executing in a virtual machine, some processor
instructions can not be executed directly on the proces-
sor. These instructions would interfere with the state of
the underlying VMM or host OS and are called sensitive
instructions. The key to implementing a VMM is to pre-
vent the direct execution of sensitive instructions. Some
sensitive instructions in the Intel Pentium architecture
are privileged, meaning that if they are not executed at
most privileged hardware domain, they will cause a gen-
eral protection exception. Normally, a VMM is executed
in privileged mode and a VM is run in user mode; when
privileged instructions are executed in a VM, they cause
a trap to the VMM. If all sensitive instructions of a pro-
cessor are privileged, the processor is considered to be
“virtualizable:” then, when executed in user mode, all
sensitive instructions will trap to the VMM. After trap-
ping, the VMM will execute code to emulate the proper
behavior of the privileged instruction for the virtual ma-
chine. However, if sensitive, non-privileged instructions
exist, it may be necessary for the VMM to examine all
instructions before execution to force a trap to the VMM
when a sensitive, non-privileged instruction is encoun-
tered.

The most severe performance penalty occurs when run-
ning a complete software interpreter machine (CSIM) on
the same hardware. A CSIM emulates every instruction
of the real processor. It does not meet Goldberg’s defini-
tion [12] of a virtual machine because it does not execute
any of the instructions directly on the real processor.

The following sections summarize Goldberg’s analy-
sis of processor requirements for the types of VMMs he
identified.

2.3 Type I VMM

A Type I VMM runs directly on the machine hardware.
It is an operating system or kernel that has mechanisms
to support virtual machines. It must perform scheduling
and resource allocation for all virtual machines in the
system and requires drivers for hardware peripherals.



To support a Type I VMM, a processor must meet three
virtualization requirements:

Requirement 1 The method of executing non-
privileged instructions must be roughly equivalent in
both privileged and user mode. For example, a processor
cannot use an additional bit in an instruction word or in
the address portion of an instruction when in privileged
mode.

Requirement 2There must be a method such as a pro-
tection system or an address translation system to protect
the real system and any other VMs from the active VM.

Requirement 3There must be a way to automatically
signal the VMM when a VM attempts to execute a sen-
sitive instruction. It must also be possible for the VMM
to simulate the effect of the instruction.

Sensitive instructions include:
Requirement 3A Instructions that attempt to change

or reference the mode of the VM or the state of the ma-
chine.

Requirement 3BInstructions that read or change sen-
sitive registers and/or memory locations such as a clock
register and interrupt registers.

Requirement 3C Instructions that reference the stor-
age protection system, memory system, or address re-
location system. This class includes instructions that
would allow the VM to access any location not in its
virtual memory.

Requirement 3DAll I/O instructions.

2.4 Type II VMM

A Type II VMM runs as an application on a host oper-
ating system and relies on the host OS for memory man-
agement, processor scheduling, resource allocation, and
hardware drivers. It provides only virtualization support
services. To support a Type II virtual machine a pro-
cessor must meet all of the hardware requirements for
the Type I VMM listed above. In addition, the following
software requirements must be met by the host operating
system of the Type II VMM:

Weaker Requirement 3AThe host OS cannot do any-
thing to invalidate the requirement that the method of
executing non-privileged instructions must be roughly
equivalent in both privileged and user mode.

Requirement 2 Primitives must be available in the
host OS to protect the VMM and other VMs from the
active virtual machine. Examples include a protection
primitive, address translation primitive, or a sub-process
primitive.

When the virtual machine traps because it has at-
tempted to execute a sensitive instruction, the host OS
must direct the signal to the VMM. Therefore, the host
OS needs a primitive to perform this action. The host
OS also needs a mechanism to allow a VMM to run the

virtual machine as a sub-process. The VMM must be
able to simulate sensitive instructions.

A highly secure Type II VMM will require a highly
secure host OS because it will depend upon the host OS.
Flaws in the host OS would undermine the security of
the Type II VMM.

2.5 Hybrid VMM

Often, if a processor does not meet the Type I or Type
II VMM requirements, it can still implement a hybrid
virtual machine monitor (HVM). A hybrid VMM has all
of the advantages of normal VMMs and avoids the per-
formance penalties of a CSIM. It is functionally equiva-
lent to the real machine. However, an HVM and a VMM
differ in that an HVM interprets every privileged instruc-
tion in software, whereas a VMM may directly execute
some privileged instructions. An HVM treats the privi-
leged mode of hardware as a pure software construct. In
both a VMM and an HVM, all non-privileged instruc-
tions execute directly on the processor.

An HVM has less strict hardware requirements than
a VMM in tow ways. First, the HVM does not have to
directly execute non-sensitive privileged instructions be-
cause they are all emulated in software. Second, because
of the emulation, the HVM need not provide additional
mapping of the the most privileged processor mode into
another processor privilege level. However, increased
interpretative execution usually lowers the performance
of an HVM relative to a VMM.

The hardware requirements for an HVM result in the
following changes to the original Type I VMM require-
ments. First, Requirement 1, which states that the
method of executing non-privileged instructions must be
roughly equivalent in both privileged and user mode,
is eliminated. Second, Requirement 3A, which states
that if an instruction attempts to change or reference the
mode of the VM or the state of the machine, there must
be a way to simulate the instruction, is weakened.

3 Pentium Architecture and VMMs

Goldberg [12] identified the key architectural features
of third generation hardware pertinent to virtual ma-
chines:

� two processor modes of operation,

� a method for non-privileged programs to call privi-
leged system routines,

� a memory relocation or protection mechanism such
as segmentation or paging, and



� asynchronous interrupts to allow the I/O system to
communicate with the CPU.

All of these still apply to the Intel Pentium architecture.
It has four modes of operation, known as rings, or cur-
rent privilege level (CPL), 0 through 3. Ring 0, the most
privileged, is occupied by operating systems. Applica-
tion programs execute in Ring 3, the least privileged.
The Pentium also has a method to control transfer of
program execution between privilege levels so that non-
privileged tasks can call privileged system routines: the
call gate. The Pentium also uses both paging and seg-
mentation to implement its protection mechanisms. Fi-
nally, the Pentium uses both interrupts and exceptions to
allow the I/O system to communicate with the CPU. The
architecture has 16 predefined interrupts and exceptions
and 224 user-defined, or maskable, interrupts.

Despite these features, the ability of the Pentium archi-
tecture to support virtualization is likely to be serendipi-
tous as the processor was not explicitly designed to sup-
port virtualization. This section reports an analysis of
the virtualizability of the Pentium against the hardware
requirements described in Section 2. Every documented
instruction for the Intel Pentium 2 was analyzed for its
ability to support virtualization [30].

Any instruction in the processor’s instruction set that
violates rule 1, 2, 3 (3A, 3B, 3C, or 3D) will preclude
the processor from running a Type I or Type II VMM.
Additionally, any instruction that violates rule 2, 3A in
its weaker form, 3B, 3C, or 3D prevents the processor
from running an HVM. By combining these two state-
ments, one can see that any instruction that violates rule
2, 3A in its weaker form, 3B, 3C, or 3D makes the pro-
cessor non-virtualizable.

With respect to the VMM hardware requirements listed
above, Intel meets all three of the main requirements for
virtualization.

Requirement 1: The method of executing non-
privileged instructions must be roughly equivalent in
both privileged and user mode. Intel meets this re-
quirement because the method for executing privileged
and non-privileged instructions is the same. The only
difference between the two types of instructions in the
Intel architecture is that privileged instructions cause a
general protection exception if the CPL is not equal to 0.

Requirement 2:There must be a method such as a pro-
tection system or an address translation system to pro-
tect the real system and any other VMs from the active
VM. Intel uses both segmentation and paging to imple-
ment its protection mechanism. Segmentation provides
a mechanism to divide the linear address space into indi-
vidually protected address spaces (segments). Segments

2The analysis was based on available documentation as of 22 June
1999 and involved approximately 250 instructions.

have a descriptor privilege level (DPL) ranging from
0 to 3 that specifies the privilege level of the segment.
The DPL is used to control access to the segment. Us-
ing DPLs, the processor can enforce boundaries between
segments to control whether one program can read from
or write into another program’s segments.

Requirement 3:There must be a way to automatically
signal the VMM when a VM attempts to execute a sen-
sitive instruction. It must also be possible for the VMM
to simulate the effect of the instruction. The Intel ar-
chitecture uses interrupts and traps to redirect program
execution and allow interrupt and exception handlers to
execute when a privileged instruction is executed by an
unprivileged task. However, the Pentium instruction set
contains sensitive, unprivileged instructions. The pro-
cessor will execute unprivileged, sensitive instructions
without generating an interrupt or exception. Thus, a
VMM will never have the opportunity to simulate the
effect of the instruction.

After examining each member of the Pentium instruc-
tion set, it was found that seventeen instructions violate
Requirement 3. All seventeen instructions violate either
part B or part C of Requirement 3 and make the Intel
processor non-virtualizable. To construct a truly virtu-
alizable Pentium chip one must focus on these instruc-
tions. They are discussed in more detail below.

3.1 Sensitive Register Instructions

Several Intel instructions break hardware virtualization
Requirement 3B. The rule states that instructions are
sensitive if they read or change sensitive registers and/or
memory locations such as a clock register and interrupt
registers.

3.1.1 SGDT, SIDT, and SLDT Instructions

The SGDT, SIDT, and SLDT instructions violate this
rule in a similar way. In protected mode, all memory
accesses pass through either the global descriptor table
(GDT) or local descriptor table (LDT). The GDT and
LDT contain segment descriptors that provide the base
address, access rights, type, length, and usage informa-
tion for each segment. The interrupt descriptor table
(IDT) is similar to the GDT and LDT, but it holds gate
descriptors that provide access to interrupt and exception
handlers. The GDTR, LDTR, and IDTR all contain the
linear addresses and sizes of their respective tables.

All three of these instructions (SGDT, SIDT, SLDT)
store a special register value into some location. The
SGDT instruction stores the contents of the GDTR in a
6-byte memory location. The SLDT instruction stores
the segment selector from the LDTR in a 16 or 32-bit
general-purpose register or memory location. The SIDT



Table 1: Important CR0 Machine Status Word Bits
Bit Flag Name Description

0 PE - Protection Enable Enable Protected Mode when set and real mode when clear
1 MP - Monitor Coprocessor Controls the interaction of the WAIT or FWAIT instruction with the TS

flag.
2 EM - Emulation If clear, processor has an internal or external floating point unit
3 TS - Task Switched Allows delayed saving of the floating point unit context on a task switch

until the unit is accessed by the new task.
4 ET - Extension Type For 386 and 468 processors, indicates whether an Intel 387 DX math co-

processor is present (hard-coded to 1 on>Pentium processors).
5 NE - Numeric Error Enables internal or PC-style mechanism for FPU error reporting.

instruction stores the contents of the IDTR in a 6-byte
memory location. These instructions are normally only
used by operating systems but are not privileged in the
Intel architecture. Since the Intel processor only has one
LDTR, IDTR, and GDTR, a problem arises when multi-
ple operating systems try to use the same registers. Al-
though these instructions do not protect the sensitive reg-
isters from reading by unprivileged software, the proces-
sor allows partial protection for these registers by only
allowing tasks at CPL 0 to load the registers. This means
that if a VM tries to write to one of these registers, a trap
will be generated. The trap allows a VMM to produce
the expected result for the VM. However, if an OS in a
VM uses SGDT, SLDT, or SIDT to reference the con-
tents of the IDTR, LDTR, or GDTR, the register con-
tents that are applicable to the host OS or Type I VMM
will be given. This could cause a problem if an operating
system of a virtual machine (VMOS) tries to use these
values for its own operations: it might see the state of a
different VMOS executing within a VM running on the
same VMM. Therefore, a Type I VMM or Type II VMM
must provide each VM with its own virtual set of IDTR,
LDTR, and GDTR registers.

3.1.2 SMSW Instruction

The SMSW instruction stores the machine status word
(bits 0 through 15 of control register 0) into a general-
purpose register or memory location. Bits 6 through 15
of CR0 are reserved bits that are not supposed to be mod-
ified. Bits 0 through 5, however, contain system flags
that control the operating mode and state of the proces-
sor and are described in Table 1.

Although this instruction only stores the machine sta-
tus word, it is sensitive and unprivileged. Consider the
following scenario: A VMOS is running in real mode
within the virtual environment created by a VMM run-
ning in protected mode. If the VMOS checked the MSW
to see if it was in real mode, it would incorrectly see
that the PE bit is set. This means that the machine is in

protected mode. If the VMOS halts or shuts down if in
protected mode, it will not be able to run successfully.

This instruction is only provided for backwards com-
patibility with the Intel 286 processor [16]. Programs
written for the Intel 386 processor and later are sup-
posed to use the MOV instruction to load and store con-
trol registers, which are privileged instructions. There-
fore, SMSW could be removed and only systems requir-
ing backward compatibility with the Intel 286 processor
would be affected. Application software written for the
Intel 286 and 8086 processors should be unaffected be-
cause the SMSW instruction is a system instruction that
should not be used by application software.

3.1.3 PUSHF and POPF Instructions

The PUSHF and POPF instructions reverse each
other’s operation. The PUSHF instruction pushes the
lower 16 bits of the EFLAGS register onto the stack and
decrements the stack pointer by 2. The POPF instruction
pops a word from the top of the stack, increments the
stack pointer by 2, and stores the value in the lower 16
bits of the EFLAGS register. The PUSHFD and POPFD
instructions are the 32-bit counter-parts of the POPF and
PUSHF instructions. Pushing the EFLAGS register onto
the stack allows the contents of the EFLAGS register to
be examined. Much like the lower 16 bits of the CR0
register, the EFLAGS register contains flags that control
the operating mode and state of the processor. There-
fore, the PUSHF/PUSHFD instructions prevent the Intel
processor from being virtualizable in the same way that
the SMSW instruction prevents virtualization. In virtual-
8086 mode, the IOPL must equal 3 to use the PUSHF
instructions. Of the 32 flags in the EFLAGS register,
fourteen are reserved and six are arithmetic flags. Table
2 describes the bits of concern.

The POPF instruction allows values in the EFLAGS
register to be changed. Its varies based on the proces-
sor’s current operating mode. In real-mode, or when op-
erating at CPL 0, all non-reserved flags in the EFLAGS



Table 2: Important EFLAGS Register Bits
Bit Flag Name Description

8 TF - Trap Set to enable single-step mode for debugging.
9 IF - Interrupt Enable Controls processor response to maskable interrupt requests.
10 DF - Direction If set, string instructions process addresses from high to low.

12-13 IOPL - I/O Privilege Level I/O privilege level of the currently running task.
14 NT - Nested Task Set when the current task is linked to the previous task.
16 RF - Resume Controls processor response to debug exceptions.
17 VM - Virtual-8086 Mode Enables Virtual-8086 mode when set.
18 AC - Alignment Check Enables alignment checking of memory references.
19 VIF - Virtual Interrupt Virtual image of the IF flag.
20 VIP - Virtual Interrupt Pending Indicates whether or not an interrupt is pending.
21 ID - Identification If a program can set or clear this instruction, the CPUID instruc-

tion is supported.

register can be modified except the VM, VIP, and VIF
flags. In virtual-8086 mode, the IOPL must equal 3 to
use the POPF instructions. The IOPL allows an OS to
set the privilege level needed to perform I/O. In virtual-
8086 mode, the VM, RF, IOPL, VIP, and VIF flags are
unaffected by the POPF instruction. In protected mode,
there are several conditions based on privilege levels.
First, if the CPL is greater than 0 and less than or equal
to the IOPL, all flags can be modified except IOPL,
VIP, VIF, and VM. The interrupt flag is altered when
the CPL is at least as privileged as the IOPL. Finally, if
a POPF/POPFD instruction is executed without enough
privilege, an exception is not generated. However, the
bits of the EFLAGS register are not changed.

The POPF/POPFD instructions also prevent processor
virtualization because they allow modification of certain
bits in the EFLAGS register that control the operating
mode and state of the processor.

3.2 Protection System References

Many Intel instructions violate Requirement 3C: In-
structions are sensitive if they reference the storage pro-
tection system, memory or address relocation system.

3.2.1 LAR, LSL, VERR, VERW

Four instructions violate the rule in a similar man-
ner: LAR, LSL, VERR, and VERW. The LAR instruc-
tion loads access rights from a segment descriptor into
a general purpose register. The LSL instruction loads
the unscrambled segment limit from the segment de-
scriptor into a general-purpose register. The VERR and
VERW instructions verify whether a code or data seg-
ment is readable or writable from the current privilege
level. The problem with all four of these instructions
is that they all perform the following check during their

execution: (CPL ! DPL) OR (RPL ! DPL). This con-
ditional checks to ensure that the current privilege level
(located in bits 0 and 1 of the CS register and the SS reg-
ister) and the requested privilege level (bits 0 and 1 of
any segment selector) are both greater than the descrip-
tor privilege level (the privilege level of a segment). This
is a problem because a VM normally does not execute at
the highest privilege (i.e., CPL = 0). It is normally exe-
cuted at the user or application level (CPL = 3) so that
all privileged instructions will cause traps that can be
handled by the VMM. However, most operating systems
assume that they are operating at the highest privilege
level and that they can access any segment descriptor.
Therefore, if a VMOS running at CPL = 3 uses any of
the four instructions listed above to examine a segment
descriptor with a DPL< 3, it is likely that the instruction
will not execute properly.

3.2.2 POP Instruction

The reason that the POP instruction prevents virtual-
ization is very similar to that mentioned in the previous
paragraph. The POP instruction loads a value from the
top of the stack to a general-purpose register, memory
location, or segment register. However, the POP instruc-
tion cannot be used to load the CS register since it con-
tains the CPL. A value that is loaded into a segment reg-
ister must be a valid segment selector. The reason that
POP prevents virtualization is because it depends on the
value of the CPL. If the SS register is being loaded and
the segment selector’s RPL and the segment descriptor’s
DPL are not equal to the CPL, a general protection ex-
ception is raised. Additionally, if the DS, ES, FS, or GS
register is being loaded, the segment being pointed to is
a nonconforming code segment or data, and the RPL and
CPL are greater than the DPL, a general protection ex-
ception is raised. As in the previous case, if a VM’s CPL



is 3, these privilege level checks could cause unexpected
results for a VMOS that assumes it is in CPL 0.

3.2.3 PUSH Instruction

The PUSH instruction also prevents virtualization be-
cause it references the protection system. The PUSH in-
struction allows a general-purpose register, memory lo-
cation, an immediate value, or a segment register to be
pushed onto the stack. This cannot be allowed because
bits 0 and 1 of the CS and SS register contain the CPL
of the current executing task. The following scenario
demonstrates why these instructions could cause prob-
lems for virtualization. A process that thinks it is run-
ning in CPL 0 pushes the CS register to the stack. It then
examines the contents of the CS register on the stack to
check its CPL. Upon finding that its CPL is not 0, the
process may halt.

3.2.4 CALL, JMP, INT n, and RET

The CALL instruction saves procedure linking infor-
mation to the stack and branches to the procedure given
in its destination operand. There are four types of proce-
dure calls: near calls, far calls to the same privilege level,
far calls to a different privilege level, and task switches.
Near calls and far calls to the same privilege level are not
a problem for virtualization. Task switches and far calls
to different privilege levels are problems because they
involve the CPL, DPL, and RPL. If a far call is executed
to a different privilege level, the code segment for the
procedure being accessed has to be accessed through a
call gate. A task uses a different stack for every privilege
level. Therefore, when a far call is made to another priv-
ilege level, the processor switches to a stack correspond-
ing to the new privilege level of the called procedure. A
task switch operates in a manner similar to a call gate.
The main difference is that the target operand of the call
instruction specifies the segment selector of a task gate
instead of a call gate. Both call gates and task gates have
many privilege level checks that compare the CPL and
RPL to DPLs. Since the VM normally operates at user
level (CPL 3), these checks will not work correctly when
a VMOS tries to access call gates or task gates at CPL 0.

The discussion above on LAR, LSL, VERR, and
VERW provides a specific example of how running a
CPL 0 operating system as a CPL 3 task could cause a
problem. The JMP instruction is similar to the CALL in-
struction in both the way that it executes and the reasons
it prevents virtualization. The main difference between
the CALL and the JMP instruction is that the JMP in-
struction transfers program control to another location
in the instruction stream and does not record return in-
formation.

The INT instruction is also similar to the CALL in-
struction. The INT n instruction performs a call to the
interrupt or exception handler specified by n. INT n does
the same thing as a far call made using the CALL in-
struction except that it pushes the EFLAGS register onto
the stack before pushing the return address. The INT
instruction references the protection system many times
during its execution.

The RET instruction has the opposite effect of the
CALL instruction. It transfers program control to a re-
turn address that is placed on the stack (normally by a
CALL instruction). The RET instruction can be used
for three different types of returns: near, far, and inter-
privilege-level returns. Much like the CALL instruction,
the inter-privilege-level far return examines the privilege
levels and access rights of the code and stack segments
that are being returned to determine if the operation
should be allowed. The DS, ES, FS, and GS segment
registers are cleared by the RET instruction if they refer
to segments that cannot be accessed by the new privilege
level. Therefore, RET prevents virtualization because
having a CPL of 3 (the VM’s privilege level) could cause
the DS, ES, FS, and GS registers to not be cleared when
they should be. The IRET/IRETD instruction is similar
to the RET instruction. The main difference is it returns
control from an exception, interrupt handler, or nested
task. It prevents virtualization in the same way that the
RET instruction does.

3.2.5 STR Instruction

Another instruction that references the protection sys-
tem is the STR instruction. The STR instruction stores
the segment selector from the task register into a general-
purpose register or memory location. The segment se-
lector that is stored with this instruction points to the
task state segment of the currently executing task. This
instruction prevents virtualization because it allows a
task to examine its requested privilege level (RPL). Ev-
ery segment selector contains an index into the GDT or
LDT, a table indicator, and an RPL. The RPL is rep-
resented by bits 0 and 1 of the segment selector. The
RPL is an override privilege level that is checked (along
with the CPL) to determine if a task can access a seg-
ment. The RPL is used to ensure that privileged code
cannot access a segment on behalf of an application un-
less the application also has the privilege to access the
segment. This is a problem because a VM does not ex-
ecute at the highest CPL or RPL (RPL = 0), but at RPL
= 3. However, most operating systems assume that they
are operating at the highest privilege level and that they
can access any segment descriptor. Therefore, if a VM
running at a CPL and RPL of 3 uses STR to store the
contents of the task register and then examines the infor-



mation, it will find that it is not running at the privilege
level at which it expects to run.

3.2.6 MOVE Instruction

Two variants of the MOVE instruction prevent Intel
processor virtualization. These are the two MOV in-
structions that load and store control registers. The
MOV opcode that stores segment registers allows all six
of the segment registers to be stored to either a general-
purpose register or to a memory location. This is a prob-
lem because the CS and SS registers both contain the
CPL in bits 0 and 1. Thus, a task could store the CS or
SS in a general-purpose register and examine the con-
tents of that register to find that it is not operating at the
expected privilege level. The MOV opcode that loads
segment registers does offer some protection because it
does not allow the CS register to be loaded at all. How-
ever, if the task tries to load the SS register, several priv-
ilege checks occur that become a problem when the VM
is not operating at the privilege level at which a VMOS
is expecting–typically 0.

The analysis of Section 3 shows that the Intel proces-
sor is not virtualizable according to Goldberg’s hardware
rules.

4 Pentium-Based “VMM” Security

This section will examine several security issues for a
VMM designed for the Intel Pentium architecture. We
begin with a brief review of previous secure VMMs.
Second, use of Intel processors for highly secure sys-
tems is discussed. Third, ways to provide virtual ma-
chine monitors on unmodified Intel platforms are exam-
ined to gain insight into the challenges faced in a virtual
machine monitor effort. Next we discuss the security im-
pact of using unmodified Intel platforms for VMMs. Fi-
nally, a better approach to creating a highly secure VMM
on the Intel architecture is covered.

4.1 Are Secure VMMs Possible?

An early discussion of VMMs and security argued that
the isolation provided by a combined VMM/OS pro-
vided better software security than a conventional multi-
programming operating system. It was also suggested
that the redundant security mechanisms found in the
VMM and the OS executing in one of its virtual ma-
chines enhanced security [21]. Penetration experiments
indicated that redundant weak implementations are in-
sufficient to secure a system [5, 11].

KVM/370 was an early secure Type I VMM [11, 33, 9].
Called a “security retrofit,” two approaches to the work

were examined: (1) “hardening” of the existing VM/370
control program (CP) to repair identified penetration
vulnerabilities and (2) a redesign of the VM/370 CP
to place all security-relevant functionality within a for-
mally verified security kernel based upon the reference
monitor concept [4]. (Note that the first approach was
abandoned because flaw remediation did not provide a
guarantee of the absence of yet undetected, exploitable
security flaws.) The redesigned system consisted of four
domains:

1. A minimized security kernel and verified trusted
processes executing in supervisor state.

2. Semi-trusted processes executing in real problem
state. These processes managed some global data,
were audited, had access only to virtual addresses.

3. Non-kernel control programs (NKCPs) that exe-
cuted the non-security relevant bulk of the VM/370
control program in real problem state. Each NKCP
executed at a single security level and had access
only to virtual addresses.

4. User VMs executing in real problem state under the
control of a NKCP, with the same security level as
the NKCP.

A security kernel is defined as hardware and software
that implements the reference monitor concept [4]. A
reference monitor enforces authorized access relation-
ships between the subjects and objects within a system.
It imposes three design requirements on its implementa-
tions:

1. The mechanism must be tamperproof.

2. The mechanism must always be invoked.

3. The mechanism must be small enough to be to sub-
ject to analysis and tests to ensure completeness.

The VAX Security Kernel[17] was a highly secure
Type I VMM. The system’s hardware, microcode, and
software were designed to meet TCSEC Class A1 assur-
ance and security requirements [22]. The project also
maintained standard VMS and Ultrix-32 interfaces to
run COTS operating systems and applications in virtual
machines.

The VAX VMM security kernel allowed multiple vir-
tual machines to run concurrently on a single VAX sys-
tem. It could support a large number of simultaneous
users and provided isolation and controlled sharing of
sensitive data.

The VAX processor, much like the Intel Pentium pro-
cessor, contained several sensitive, unprivileged instruc-
tions. It also had four rings. The security kernel design-
ers modified the VAX processor microcode to make it



virtualizable. The four instructions that prevented vir-
tualization on the VAX processor were: CHM, REI,
MOVPSL, and PROBE [13]. The CHM instruction
switches to a mode of equal or increased privilege. The
REI instruction switches to a mode of equal or decreased
privilege. The MOVPSL instruction is used to read the
Processor Status Longword (similar to the machine sta-
tus word in the Intel architecture). The PROBE instruc-
tion is used to determine the accessibility of a page of
memory. These four instructions read or write one of
the following pieces of sensitive data: the current exe-
cution mode, the previous execution mode, the modify
bit of a page table entry, and the protection bit of a page
table entry.

To support compatibility with existing operating sys-
tems and applications, some of the microcode changes
included: defining a new VM mode bit, defining a new
register called VMPSL, defining a VM-emulation ex-
ception, as well as the four instructions described above.

Ring compression, implemented entirely in software,
was used to avoid certain processor modifications. The
protection between compressed layers is weakened;
however, this choice had little security impact since, al-
though the VMS operating system for the VAX used all
four rings, all three inner rings were in fact used for fully
trusted operating system software.

The VAX I/O hardware was difficult to virtualize be-
cause its I/O mechanisms read and write various control
and status registers in the I/O space of physical memory.
To overcome this difficulty, the VAX security kernel I/O
interface used a special, performance-optimized kernel
call mechanism. To use this mechanism, a virtual ma-
chine executed a Move To Privileged Register (MTPR)
instruction to a special kernel call register. The MTPR
instruction trapped the security kernel software that per-
formed the I/O. Untrusted device drivers were written
for each guest OS in order to run on the VMM.

The VAX security kernel applied mandatory and dis-
cretionary access controls to virtual machines. The ker-
nel assigned every virtual machine an access class con-
sisting of a secrecy class (based on the Bell and La-
Padula model [6]) and an integrity class (based on the
Biba model [7]). The kernel supported access control
lists on all objects including real devices, disk and tape
volumes, and security kernel volumes. The VMM se-
curity kernel differed from a typical secure operating
system because the subjects and objects are virtual ma-
chines and virtual disks, not files and processes, which
are implemented by each guest OS.

It is worth noting that timing channels in VMMs [33]
were addressed in the context of the VAX VMM work
[14]. Despite the challenge of timing channel mitiga-
tion, VMMs provide a solution to the problem of shar-
ing while running legacy or commercial code securely

with firewalling between the VMs managed by a highly
secure VMM kernel.

The VAX security effort lead to several conclusions:
(1) Every ring of a processor can be emulated, but this is
often not necessary. (2) Emulating a start I/O instruction
is simpler and cheaper than emulating memory-mapped
I/O. (3) Defining the VM as a particular processor or
family of processors makes the VM more portable than
if it were a reflection of the actual hardware. For exam-
ple, if a VM is defined to be a Pentium processor, the
VM will work on a Pentium II or Pentium III processor.
(4) VM performance suffers when sensitive instructions
are forced to trap to emulation software. (5) There are
alternatives to modifying the microcode support for ev-
ery privileged instruction to meet the needs of the VMM.
(6) If a VMM is a security kernel, dependencies between
the VMM and VMs must be scrutinized.

The Alpha architecture is designed to support virtual-
ization [2]. It is designed to contain no errors that would
allow protection mechanisms to be bypassed. Even
“UNPREDICTABLE” results or occurrences are con-
strained so that security and virtualization are supported.
The processor may hold or loose information as a re-
sult of “UNDEFINED” operations; however, these oper-
ations can only be triggered by privileged software. Priv-
ileged Architecture Library code (PALcode) provides
a non-microcoded interface for privileged instructions.
All privileged instructions must be implemented in PAL-
code and may be processor-model specific. The Alpha
architecture supports PALcode replacement, thus allow-
ing per-OS code to yield high performance. A VMM on
the Alpha would have PALcode for all supported oper-
ating systems.

Unlike the Alpha which explicitly forbids state data
from registers to be spread, most processors permit leak-
age of information from unpredictable results. The mul-
tiple address spaces of the Intel x86 architecture family
allows such leakage [35].

The observations in this section should be considered
in any attempt to design a secure Type I VMM for the
Intel Pentium architecture.

4.2 Pentium Security Support

Intel 80x86 processors provide support for well under-
stood requirements of secure systems [32]. These in-
clude call gates, segmentation, several hardware privi-
lege levels and privileged instructions [15]. The com-
bination of segmentation and rings are particularly
supportive of secure system design and implementa-
tion [34]. The processor family was the choice for
past and present trusted systems: the Boeing MLS
Lan (A1)3 [23], Gemini Trusted Network Processor

3TCSEC evaluation classes are given in parentheses.



(A1)[27], Verdix VSLAN (B2) [26], TIS Trusted Xenix
(B2)[25], and the XTS-300 (B3) [24].

4.3 Pentium Virtualization Techniques

Since the Intel Pentium architecture is not truly virtu-
alizable, current VMMs for the hardware base [36] must
use a bit of “trickery” to realize a VMM. Each method
must detect sensitive but unprivileged instructions be-
fore they are executed by a VM.

4.3.1 Pure Emulation

Pure emulation allows one system architecture to be
mapped into another system architecture. By modeling
a large part of the x86 instruction set in software, em-
ulation allows x86 operating systems and applications
to run on non-x86 platforms [19]. The disadvantage of
emulation is significant performance degradation; no in-
structions are ever executed directly on the hardware.
The performance degradation in Java compilers bears
witness to this observation. Advances in compiler tech-
nology can help, but without specialized machine sup-
port, performance will never achieve that of a Type I
VMM on a comparable hardware base. Advanced tech-
niques, such as dynamic translation, can improve perfor-
mance. Dynamic translation allows sequences of small,
x86 architecture code to be translated into native-CPU
code “on-the-fly.” Since the native code is cached or
even optimized, it can run significantly faster. This is
the approach used by Transmeta [18], which provides
pure emulation and is a complete software interpreter
machine (CSIM) [12]. The use of register shadowing
and soft memory may permit support of VMM tech-
nology. It is worth pointing out that in such systems,
the morphed code must be protected from tampering or
leakage of secrets. It is not clear whether such security
concerns are addressed in the current generation of bi-
nary translation systems.

4.3.2 OS/API Emulation

Applications normally communicate with an operating
system with a set of APIs. OS/API emulation [20] in-
volves intercepting and emulating the behavior of the
APIs using mechanisms in the underlying operating sys-
tem. The out-of-kernel OS emulation used for certain
Mach architectures [29] might be considered a variant
of this approach. This allows applications designed for
other x86 operating systems to be run. This strategy is
used in Wine which provides “an implementation of the
Windows 3.x and Win32 API on top of X and Unix”
[37]. Wine has a program loader that allows unmodified

Windows 3.1/95/NT binary files4 to run on Intel x86-
based Unix machines, such as Linux, FreeBSD, and So-
laris. It allows application binaries files to run natively
and achieves better performance than the pure emulation
technique described above. However, OS/API emulation
only works on members of the x86 OS family for which
the APIs have been emulated. Furthermore, OS/API em-
ulation is very complex. A VMM is less complicated
and requires fewer updates with each new release of the
OS.

4.3.3 Virtualization

A third technique is virtualization. Most hardware is
only designed to be driven by one device driver. The In-
tel Pentium CPU is not an exception to this rule. It is
designed to be configured and used by only one oper-
ating system. Features and instructions of the processor
designed for applications are generally not a problem for
virtualization and can be executed directly by the proces-
sor. A majority of a processor’s load comes from these
types of instructions. However, as discussed above, cer-
tain sensitive instructions are not privileged in the In-
tel architecture, making it difficult for a VMM to detect
when they are executed. A strategy for virtualizing the
Intel architecture would be as follows:

� Non-sensitive, unprivileged application instruc-
tions can be executed directly on the processor with
no VMM intervention.

� Sensitive, privileged instructions will be detected
when they trap after being executed in user mode.
The trap should be delivered to the VMM that will
emulate the expected behavior of the instruction in
software.

� Sensitive, unprivileged instructions must be de-
tected so that control can be transferred to the
VMM.

The hardest part of the virtualization strategy is han-
dling the seventeen problem instructions described in
Section 3. Lawton describes how this is accomplished
for FreeMWare[20].5 It analyzes instructions until one
of the following conditions is encountered:

1. A problem instruction.

2. A branch instruction.

4MS-DOS, Windows 3.1, Windowds 95, Windows 98, and Win-
dows NT 4.0 are all trademarks of the Microsoft Corporation. All
other tradmarks, including Red Hat Linux, Caldera OpenLinux, SuSE
Linux, FreeBSD, and Solaris are trademarks of their respective own-
ers.

5As of March 23, 2000, FreeMWare is called Plex86.



3. The address of an instruction sequence that has al-
ready been parsed.

If 1 or 2 is encountered, a breakpoint must be set at
the beginning of the problem or branch instruction. If 3
is encountered, execution continues normally since this
code has been analyzed already and necessary break-
points have been installed. The complexity of this ap-
proach may render a highly secure VMM unachievable.

Code is allowed to run natively on the processor until
it reaches a breakpoint. If the breakpoint occurred be-
cause of a problem instruction, its behavior is emulated
by the VMM. If the breakpoint occurred because of a
branch instruction, it is necessary to single step through
its execution and begin analyzing instructions again at
the branch target address. If the target address is not
computed and has already been analyzed and marked
as safe, then the branch instruction can also be marked
as safe and it can run natively on the processor on sub-
sequent accesses. Computed branch addresses require
special attention. These instructions must be dynami-
cally monitored to ensure that execution does not branch
to unanalyzed code. A table might be used to keep track
of the breakpoints.

Some instructions may write into memory, possibly
into the address of instructions that have already been
analyzed and marked as safe. The paging system is used
to prevent this by write protecting any page of memory
in the page tables that has already been analyzed and
marked as safe. All page entries that point to the phys-
ical page with analyzed code would have to be write
protected since multiple linear addresses can be mapped
to the same physical page. When a write-protect page
fault occurs, the VMM can unprotect the page and step
through the instructions. A breakpoint can be installed
before any problematic instructions. Finally, the page
should be write-protected again. Instructions that cross
page boundaries involve tow write-protected pages. Ta-
bles are used to track previously analyzed instructions.

Also pass-through I/O devices, timing issues, and vir-
tualizing descriptor loading must be addressed.

Pass-Through I/O Devices: It may be useful to al-
low a device driver in the guest OS to drive hardware for
a device that is not supported by the host OS. For ex-
ample, a Linux host OS will not support a Winmodem.
Pass-through devices allow a guest OS to communicate
with devices using a pass-through mechanism that han-
dles I/O reads and writes. Because control of the real
hardware is turned over to the VMOS, pass-through I/O
devices render security problematic.

Timing: A VMM must accurately emulate system
timers. Every time slice of native code execution is
bounded by an exception generated by the system timer
when the execution time slice is over. The exception
vectors to a routine defined in the VMM’s IDT for a

guest OS. A mechanism is needed that measures the time
between these exceptions to emulate an accurate timer.
On Intel Pentium processors, performance monitoring
could be used. The RDTSC, Read Time Stamp Counter,
instruction gives an accurate time stamp reading. The in-
struction is also executable in CPL 3, allowing efficient
use in user-level VMM code.

Virtualization of Descriptor Loading: For two rea-
sons a Pentium-based VMM must have its own set of
LDT, GDT, and IDT tables. First, it allows the segment
register mechanisms to work naturally. Second, it allows
the VMM to have its own set of exception handlers.

Since all privilege levels (0-3) in a VM are mapped into
CPL 3, the CPL is not sufficient when trying to load code
that is more privileged (i.e. numerically less) than CPL
3. CPL 3 code can load descriptors as expected as long
as the GDTR and LDTR registers point to the guest OS’s
descriptor tables. When running system code in CPL 3,
exceptions are generated when loading a descriptor with
that has CPL < 3. This does not occur when system
code is executed at CPL 0. To solve this problem, one
must trap and emulate instructions that load the segment
registers when running at CPL < 3. All instructions that
examine segment registers with PL < 3 must be virtual-
ized because they may look at the RPL field.

A private GDT and LDT for the virtualization of code
at CPL < 3 can also help solve this problem. Since,
the instructions that reference the GDTR and LDTR are
emulated, they can be loaded with values that point to
the private GDT and LDT. The private descriptor tables
would start out empty and generate exceptions when a
segment register loads. When this happens, a private de-
scriptor is generated that allows the next segment reg-
ister load to execute natively. Every time the GDTR
and LDTR are reloaded, the private descriptor tables are
cleared.

4.3.4 Other Virtualization Considerations

Disco is an implementation of a Type I VMM for the
Flash multi-processor [8]. It runs several different com-
mercial operating systems on virtual machines to pro-
vide high-performance system software. Some of the
key insights of the Disco implementation applicable to
virtualizing the Intel Pentium architecture are described
below.

Virtual CPUs: Multiple VMMs are multiplexed onto
a common physical processor by using virtual proces-
sors. A data structure is kept for each virtual CPU that
contains register contents, TLB contents, and other state
information of the virtual CPU when it is not running
on the real CPU. The VMM is responsible for managing
the virtual CPUs and ensures that the effects of traps are
handled properly by the executing virtual processor.



Virtual Physical Memory: To virtualize physical
memory, an extra level of address translation that
maintains VM physical-to-machine address mappings is
used. Virtual machines are given physical addresses that
start at address zero and continue to the size of the VM’s
memory. These physical addresses could be mapped
to machine addresses used by the Intel processor us-
ing the hardware-reloaded TLB of the Intel processor.
The VMM protects and manages the page table. When
the VMOS tries to insert a virtual-to-physical mapping
in the TLB, the VMM emulates this by translating the
physical address into the corresponding VM address and
inserting this into the TLB.

Virtual I/O Devices: The VMM must intercept de-
vice accesses from virtual machines and forward them
to physical devices. Instead of trying to use every de-
vice’s real device driver, one special device driver for
each type of device is used. Each device has a monitor
call that is used to pass all command arguments to the
VMM in a single trap. Many devices such as disks and
network interfaces require direct memory access (DMA)
to physical memory. Normally these device drivers use
parameters that include a DMA map. The VMM must
intercept these DMA requests and translate physical ad-
dresses into machine addresses.

We note that since the VMM must control devices, a
VMM for the Intel Pentium architecture must be provide
device drivers for each VMOS. Loadable drivers would
be particularly convenient.

Virtual Network Interface: So that VMs can commu-
nicate with each other, they use standard distributed pro-
tocols such as NFS. Disco manages a virtual subnet that
allows this communication. A copy-on-write strategy
for transferring data between VMs reduces the amount
of copying. Virtual devices use Ethernet addresses and
do not limit the maximum transfer unit of packets.

4.4 Unmodified Pentiums: VMM Security
Concerns

To be a high-assurance secure computing system, se-
curity policies are correctly enforced, even under hostile
attack. Examples of such systems are at least TCSEC
Class B2 or an equivalent level in the Common Crite-
ria [1]. The systems’ protection mechanisms must be
structured and well-defined. When dealing with highly
sensitive information, labels are needed to order infor-
mation into equivalence classes. Also, for environments
where users are also categorized into equivalence classes
based on clearances or other ordering techniques, a very
effective protection mechanism is needed.

Current VMMs for the Intel architecture do not meet
these requirements although some vendors claim secu-
rity as a feature [31]. One claims that their product can

“isolate and protect each operating environment, and the
applications and data that are running in it” [36]. An-
other claim is that the system does “not make any as-
sumptions concerning the software that runs within the
virtual machine. Even a rogue application or operating
system is confined...” Given such claims, it is worth-
while to ask how well current VMMs can enforce the
VM isolation needed to support a mandatory security
policy. Note that this analysis is based on assumptions
regarding how virtualization is being accomplished. The
following sections describe some potential problems if
such systems were to be used to separate mandatory se-
curity levels.

4.4.1 Resource Sharing

A problem results from resource sharing between vir-
tual machines. If two virtual machines have access to a
floppy drive, information can flow from one VM to the
other. Files could be copied from one VM to the floppy,
thus giving the other VM access to the files.

4.4.2 Networking and File Sharing

A similar problem results from support of network-
ing and file sharing. Here two virtual machines at
different security levels could communicate informa-
tion. Exploitable mechanisms include Microsoft Net-
working, Samba, Novell Netware, Network File System,
and TCP/IP. For example, using TCP/IP, a VM could
FTP to either a host OS or guest Linux OS and trans-
fer files.

4.4.3 Virtual Disks

The ability to use virtual disks is also a problem. A
virtual disk is a single file that is created in the host OS
and used to encapsulate an entire guest disk, including
an operating system and its applications. Anyone with
access to this file in the host operating system could copy
all information in the virtual disk to external media. The
attacker could then install the virtual machine monitor
on his own system and open the copied virtual disk.

Another problem is that any host OS application with
read access to the file containing the virtual disk can ex-
amine the contents of virtual disk. For example, host OS
file utilities such as grep can be used to search for spe-
cific strings in the virtual file system. Our tests using a
Linux host OS and a Windows NT guest OS showed that
a sensitive string could be located by grep in seconds on
an approximately 300 MB virtual disk.

Both problems could be remedied by restricting access
to the virtual file. Yet, to achieve this with any measure
of assurance, a secure host OS is required.



4.4.4 Program Utilities

Tools for virtual machine interoperation may cause
problems. For example, after installing VMware-Tools
[36] in a guest OS, the cursor can move freely between
the host OS desk-top and those of the VMs. Another
feature is the ability to cut and paste between virtual ma-
chines using a feature similar to the Windows clipboard.
The potential security danger if virtual machines were
running at different mandatory security levels is obvi-
ous.

4.4.5 Host Operating System

For a Type II VMM, many security vulnerabilities
emerge due to the lack of assurance available in the un-
derlying host operating system. Flaws in host OS de-
sign and implementation will render the virtual machine
monitor and all virtual machines vulnerable.

4.4.6 Serial and Printer Ports

Implementation of serial and printer ports presents an-
other security problem. Before starting a virtual ma-
chine, a configuration of the guest OS must be loaded
or created. A configuration option for parallel and serial
ports is to have output of all parallel/serial ports go to
a file in the file system of host OS. Thus on the guest
OS, user attempts to print will result in output to a host
OS file. Users could easily transfer information so that
others could read the printer file in the host OS if its per-
missions were not managed carefully.

4.5 Intel-Based VMM for High Security

We conclude that current VMMs for the Intel archi-
tecture should not be used to enforce critical security
policies. Furthermore, it would be unwise to try to im-
plement a high assurance virtual machine monitor as a
Type II VMM hosted on a generic commercial operat-
ing system. Layering a highly secure VMM on top of an
operating system that does not meet reference monitor
criteria would not provide a high level of security.

Yet the Intel Pentium processor architecture has many
features that can be used to implement highly secure sys-
tems. How can these be applied?

A better approach would be to build a Type I VMM
as a microkernel. The secure microkernel could be very
small, making it easier for the VMM to meet the refer-
ence monitor verifiability requirement. The use of min-
imization, rigorous engineering, and code correspon-
dence contribute to ensuring that the implementation is
free of intentional as well as accidental flaws.

The Type I VMM would provide virtual environments
on the machine. It would intercept all attempts to handle

low-level hardware functions from the VMs and would
control all of the devices and system features of the CPU.
The microkernel could allow each VM to choose among
a specific set of virtual devices, which may or may not
map directly to the real devices installed on the system.

There are two advantages to using a Type I VMM to
separate mandatory security levels. First, a Type I VMM
can provide a high degree of isolation between VMs.
Second, existing popular commercial operating systems
for the processor and their applications can be run in
this highly secure environment without modification. A
VMM eliminates the need to port software to a special
secure platform and supports the functionality of current
application suites.

The biggest disadvantage to a Type I approach is that
device drivers must be written for every device. This is a
problem because of the wide variety of peripheral types
and models available. (Note that a less secure Type II
VMM avoids this problem by using existing drivers writ-
ten for the host OS.) This disadvantage can be overcome
when developing a secure solution by only supporting
certain types and manufacturers of devices. It is not out
of the ordinary for highly secure solutions to require spe-
cific types of hardware.

Before trying to implement a secure Type I VMM for
the Pentium, it might be advantageous to modify the
chip. Two alternative modifications could make virtual-
ization easier. First, all seventeen unprivileged, sensitive
instructions of the Intel architecture could be changed to
privileged instructions. All instructions would trap nat-
urally and the VMM could emulate the behavior of the
instruction. However, this solution may cause problems
in current operating systems because these seventeen in-
structions would now trap.

An alternative is to implement a trap on op-code in-
struction [12]. A new instruction is added that allows an
operating system to declare instructions that should be
treated as if they were privileged. This makes virtualiza-
tion easier without affecting current operating systems.

Other virtualization approaches require additional code
to force sensitive, unprivileged instructions to be han-
dled by VMM software. As a result, two security con-
cerns arise. First, the security kernel may not be consid-
ered minimal because of the extra virtualization code.
Second, virtualization of the unmodified processor re-
quires checking every instruction before it executes.
Such checking is likely to doom to failure creation of
a high assurance VMM.

5 Conclusions and Future Work

The feasibility of implementing a secure virtual ma-
chine monitor on the Intel Pentium has been explored.



VMM types and their hardware requirements were re-
viewed. Then, a detailed study of the virtualizability of
all 250 Pentium instructions was conducted to determine
if the processor could meet the hardware requirements of
any type of VMM. The analysis showed that seventeen
instructions did not meet virtualization requirements be-
cause they were sensitive and unprivileged.

After defining a strategy to “virtualize” the Pentium
architecture, an analysis was conducted to determine
whether a Pentium-based secure virtual machine moni-
tor is able to securely isolate classified from unclassified
virtual machines could be built. We conclude that cur-
rent VMM products for the Intel architecture should not
be used as a secure virtual machine monitor.

The Intel Pentium processor family already has many
features that support the implementation of highly se-
cure systems. Slight modifications to the processor
would significantly facilitate development of a highly se-
cure Type I VMM.

An effort is currently underway to examine the Intel
IA64 architecture to determine how its new relate to the
construction of secure systems and virtualization. The
possible use of virtualization techniques for processors
supporting fast binary translation is also being explored.
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