
Irvine, Security for Automated Information Systems

Page 1

Security Issues for Automated Information Systems

Cynthia E. Irvine
Naval Postgraduate School Center for INFOSEC Studies and Research

Department of Computer Science, Naval Postgraduate School, Monterey, CA 93943
Abstract

The growing interconnectivity of computer systems has dramatically increased the risk of
exposure or corruption of information through the exploitation of system security vulnerabilities.
Many aspects of organizational operations and of the national infrastructure depend upon the
correct operation of computers and networks. Security is a fundamental requirement for the
health of the public enterprise, but it is often ignored. This essay will review fundamental
concepts of computer security. Some of the costs and benefits of investment in security will be
discussed. The notion of organizational information policy, mechanisms for its enforcement, and
the value of assurance will be presented.

I. Introduction

Over the past two decades, the landscape for information processing has changed dramatically.
Once computers were monoliths, managed by a small and elite cadre of professionals inculcated
with the art of programming and systems management. Starting in the 1980s populism hit the
world of computing as workstations and personal computers proliferated. Now embedded
computers are ubiquitous and are found in everything from cars to toasters. Computers are
connected within small organizations through local area networks (LANS) and in geographically
distributed enterprises through metropolitan area networks and wide area networks (WANS). A
growing number of large and small organizations require connection to the Internet both for
internal and external business. Active software, such as Java, ActiveX, and others, is becoming
common for internal and external work. Instead of presenting static homepages, information
servers will permit the on-the-fly creation of customized information searches and displays for
customers and business associates. Through these new interfaces, users will download
executable information providing services ranging from office productivity support to
entertainment. With increased mobility for computers, identifiers once used to associate a system
with a user and location are vulnerable. Every computer in the world may be potentially
connected to every other computer in the world.

While expanding possibilities for obtaining information and participating in global
collaborations, new Internet technologies will further exacerbate organizational computer
security problems. Concerns include the protection of information assets as well as the assurance
to customers and collaborators that systems are safe to access. Increasingly, large portions of
organizational budgets are being allocated for computer and network security.

Smith and Bailey (1998) predict a dramatic increase in litigation associated with computer
security in the years following 2000. The legal profession will have sharpened its teeth on the
relatively simple Y2K problem, which merely involves the correct computation of dates in
computer systems, and will move on to the richer field of computer-related risks and security
gaps described by Neumann (1995).

Irvine, Security for Automated Information Systems

Page 2

Today, software and systems are created with disclaimers telling the public to use these
technologies at their own risk. This state of denial cannot exist indefinitely. Litigation is
inevitable. Within cyberspace disputes will arise regarding the ownership of information,
protection of information from theft and trespass, and liability from system or software
malfunction. Security measures will be subject to legal scrutiny. For computer systems to be
operated within a litigious context, organizations will be required to articulate corporate
information policies so that computer system implementations are consistent with organizational
rules and directives. In addition, accountability mechanisms for automated systems will be
required so disputes can be resolved. Computer security involves the design, implementation,
and operation of computers so that they will not permit the unauthorized disclosure or
modification of information. Often included under the rubric of computer security is the
subjective notion of availability, i.e., providing some guarantee that when computing resources
are needed they will be present. Gligor (1983) argues that there is no mechanism or model that is
able to provide necessary and sufficient solutions to this problem. Computer owners should keep
this in mind when making legally binding promises regarding availability.

It is also important to carefully distinguish between software safety (Levenson 1995) and
computer security. Safety provides assurance that a computer program does what its owners
intend it to do. In contrast, security mechanisms are intended to insure that information contained
within a computer, whether correct or not, is accessible only to those individuals authorized to
use it. Of course, since we would like the security mechanisms to work correctly, computer
security engineers use many of the concepts of safety and software engineering to design and
construct secure systems (Denning 1982, Gasser 1988; Pfleeger 1996; Summers 1997).

Computer and network security can be divided into three synergistic areas: security within
computers, security for communications between computers, and secure management of systems.
There is considerable overlap between these disciplines. All of the factors that affect system
security must be in place in order to achieve a secure operational system (National Computer
Security Center 1994). When a system is assessed for its ability to operate securely, all elements
should be considered. The weakest component of the overall security posture is likely to be the
avenue for attack. This essay will focus on technical aspects of security in computers and will
touch upon emerging concerns and costs associated with computer security. First, we must
understand the computer security problem.

II. Computer Misuse: Threats and Vulnerabilities

Misuse of computers can include theft of machine cycles, unauthorized use of peripherals,
modification of critical data, or capture of sensitive or proprietary information. Computer misuse
results from the existence of one or more system vulnerabilities that can be exploited by a threat,
where a threat is an active entity that exploits a vulnerability to gain unauthorized access to
system resources.

Brinkley and Schell (1995a) describe several forms of computer abuse. All result in the
unauthorized modification or disclosure of information.

Human Error. Mistakes are unavoidable but may open a window of opportunity in which an
attacker can exploit an error-caused vulnerability. The attacker will have to wait until the

Irvine, Security for Automated Information Systems

Page 3

vulnerability appears, so the probabilistic nature of vulnerabilities resulting from human error
may render them less attractive than more deterministic approaches. A combination of user
training, appropriate user interfaces, and security controls can help minimize user errors.

User Abuse of Authority. Here an authorized user misuses permissions, "cooking" financial
records or other information. Intricate schemes may be developed involving several
accomplices. Security controls can restrict privileges and provide an automated audit of the
activities of authorized users.

There is, an even darker side to insider activities (Winkler 1997; Denning 1999). If an individual
with access to sensitive or proprietary information is compromised by an adversary, then the
information to which that individual has access is vulnerable. Treason, whether to the state or a
business, can be deterred by background checks and various technical mechanisms and
procedures; however, if the traitor both has access to a particular piece of sensitive information
and is willing to steal it at any cost--an information kamikaze--then, although subsequent capture
may be guaranteed, complete protection against compromise cannot be provided. An insider can
memorize the information and sell it on a street corner.

Direct Probing. This form of abuse involves the use of permitted functions in unintended ways.
Stories of careless or inadequate system administration abound. Systems installed with default or
no passwords are unfortunately common. The assumption that the computer systems will be
operated in a benign environment renders them vulnerable to probing attacks, sometimes from
across distant networks (Stoll 1989, Denning 1990). The general scenario is one in which one or
more hackers issue inappropriate commands to the target system in order to gain control over
selected system assets. Both careless administration and the inability to impose fine grained
security controls, i.e., management of permissions on a per user basis rather than on broad
groupings of users, create an environment that invites direct probing.

Probing with Malicious Software. As in the previous case, the computer is probed in ways that
are permitted, but not intended. However, in this instance a well-intentioned user of the target
system becomes an unknowing accomplice. This is accomplished using Trojan Horse software,
i.e. software that provides some "normal" function that serves as a cover for its clandestine,
malicious function. The unsuspecting user executes the "normal" function and, in the
background, the clandestine function executes with the user's current permissions, all within the
context of the user's authorized activities. Such software can consume machine resources, copy
or modify sensitive information. Thompson (1984) described a particularly insidious Trojan
Horse that replicated itself, but could only be found by inspecting the executable code for the
Unix operating system and its compiler. If auditing is turned on, the victim may be blamed for
espionage or sabotage, yet the victim had no idea that the Trojan Horse was hidden within the
"normal" software. Clearly, issues of accountability are muddied when Trojan Horses can
execute behind the scenes.

There are many breeds of Trojan Horses: viruses, worms, and logic bombs. Hoffman (1990) and
Denning (1990) provide many examples of malicious software that are Trojan Horses

Direct Penetration. This form of misuse involves the exploitation of a flaw in the system's
security mechanisms. Here administration of the system may be perfect, but an error in design or

Irvine, Security for Automated Information Systems

Page 4

implementation makes the system vulnerable to attack through exploitation of that flaw. In the
late 1960s and early 1970s tiger teams exploited software and hardware flaws, successfully
conducting many system penetrations (Anderson 1972). System programmers would attempt to
patch flaws found by the tiger teams, but these activities invariably resulted in the creation of
new flaws. The result was a game of "penetrate and patch" that was always won by the
penetrators who only had to find one exploitable flaw, while the system owners needed to find
and repair all flaws. The Multics vulnerability analysis (Karger and Schell 1974) and Landwehr
et al.'s (1994) software flaw taxonomy provide background material illustrating the enormity of
the problem.

Subversion of Security Mechanism. This is the insertion by an adversary of an artifice within the
system that will provide a toehold for subsequent system exploitation. In a now classic analysis,
Myers (1980) describes the many ways that a system can be subverted throughout its lifecycle.

Once an artifice is inserted, it can be virtually impossible for system security personnel (or even
system designers) to locate. A common artifice is a trapdoor that permits an adversary
undetected access to the computer system. Other artifices may activate as a result of triggering
events to cause system malfunction, information corruption or exfiltration. Modern commercial
operating systems consist of tens of millions of lines of code and provide ample hiding places for
subversive code. In fact, many vendors willingly permit their system developers to put artifices
into commercial products. Many operating systems and applications are already known to
contain large unexpected code modules that have been nicknamed "Easter Eggs" (Nagy-Farkas
1998). One of the most amazing is an entire flight simulator hidden within a popular spread sheet
program.

III. An Alternative

The examples of computer misuse and the experience of the penetrators and tiger teams leads us
to conclude that an approach to security that involves construction of a system and subsequent
repair of numerous security flaws will not lead to confidence in information protection. Instead, a
more systematic approach to secure system design and development is needed. A notion that has
been subjected to scrutiny and continues to be found valid is that of a reference validation
mechanism that enforces the access of active system entities, which we can loosely think of as
processes or programs in execution, to passive system resources (objects) based upon
authorizations. The Reference Monitor Concept (Anderson 1972) is an abstract notion that
articulates the ideal characteristics of a reference validation mechanism:
ß It is tamperproof.

ß It is always invoked to check access requests.

ß It is small enough to be subjected to analysis and tests the completeness of which can be

assured, thus providing confidence in its correct enforcement of policy.

The objective of the secure system designer is to use the Reference Monitor Concept as an ideal
to which actual system implementations strive. The degree of success in realizing the objectives

Irvine, Security for Automated Information Systems

Page 5

of the Reference Monitor Concept becomes a measure of confidence in a systems ability to
enforce organizational security policy.

There are several stages in the development of a secure system (Gasser 1988). First, the
organization's security policy for people's access to information must be articulated and
translated to a computing context. Second, a system must be constructed to enforce the security
policy. To address the threats of direct penetration and subversion, system builders will need to
provide some level of confidence that security mechanisms actually enforce the policy and that
the system developers have limited the possibility of of flaws and artifices. Third, the system
must be maintained and managed so that the possibility of accidents or subversion is minimized
and personnel understand how to use the system properly.

IV. Security Policy

Articulation of a security policy reflecting the way an organization actually treats its information
is essential to computer security. Only when the policy has been clearly expressed can the
technical staff design and implement systems to enforce it.

Understanding organizational policy is not easy. Sometimes it is unwritten, but more often than
not the documented policy lies at the bottom of a desk drawer untouched since its formulation.
Policies should be stable (policies that permit frequent changes in permissions to access to
information will be described later), but they may gradually evolve. For example, when a startup
business is small, access to personnel and accounting records may be authorized for the single
administrator. Two years later, when the business has hundreds of employees, different
departments may manage personnel and accounting and access restrictions between departments
are probably appropriate.

Stern (1991) notes that organizations must state security policy objectives, an organizational
security policy, and an automated security policy. These move from high level statements to
specific rules and restrictions pertaining to automated systems.

A few of the more obvious questions to be answered when attempting to articulate security
policy include: What information is to be protected? Who is to be allowed access to a particular
item or set of information and what will the user be permitted to do to it? What rules or
regulations will be invoked to decide who has access to specific information? Does the policy
that has been described on paper actually reflect what the organization is really doing (or should
be doing)? If an organization does not engage in secure information management in the physical
world, then it is unlikely that a translation of these practices to cyberspace will result in any
improvement. Sometimes management will state requirements for its computer systems that are
not part of the organization's business practice. For example, suppose high-level policy states
that no information is to be exchanged between the human resources and the public affairs
departments. Also suppose that actual practice involves regular movement of information
between the two departments. Then a new computer security policy prohibiting this flow of
information within automated systems will either be ignored and useless, or it will render daily
operations cumbersome and infeasible. A review of security policy may offer an opportunity to
effect some improvements in the way business is conducted, but the computer should not be
viewed as a panacea for ingrained, sloppy information management practice.

Irvine, Security for Automated Information Systems

Page 6

There are two fundamentally different types of security policies and the mechanisms for their
enforcement differ: non-discretionary and discretionary.

Non-discretionary security policies are global and persistent policies relating the access by
individuals to information. Information is organized into broad equivalence classes, such as
SECRET and UNCLASSIFIED or PROPRIETARY and PUBLIC. The intent of mandatory
policies is to describe the permitted information flows between these classes.

As an example, consider an organization that has partitioned its information for into two
integrity-related closed-user-groups: Trustworthy and Pond-Scum. The integrity attributes of
information are maintained throughout the organization and do not vary by time of day or day of
the week. In the paper world, specific users are given authorization to view and modify
information. Only those who are highly trusted are able to change Trustworthy documents. Since
these trusted users exercise judgement, they can be relied upon not to enter information of Pond-
Scum integrity into Trustworthy documents. Similarly, within a computer a trustworthy
authorization level can be assigned to an active entity permitting it access to certain trustworthy
documents. Unfortunately, software does not possess judgement and could even be a Trojan
Horse containing malicious code intent upon corruption of Trustworthy documents. Thus, in a
technical expression of the policy, trustworthy processes are not permitted to read Pond-Scum
(Biba 1977). The Trustworthy processes can, of course, read information of even higher integrity
and they can "improve" Pond-Scum by writing Trustworthy information into the Pond-Scum
domain. In addition Pond-Scum entities can always improve themselves by reading from
Trustworthy objects and modifying Pond-Scum information accordingly. Our rules will also
confine trustworthy processes to read and execute only trustworthy code. So if code certification
and authentication methods were available, trustworthy code could be identified.

Similar policies can be constructed for confidentiality. The most familiar is the military
classification system with TOP SECRET/SECRET/CONFIDENTIAL/UNCLASSIFIED labels.
Equally useful labels can be applied in the commercial setting by changing the names to
PROPRIETARY/COMPANY SENSITIVE/PUBLIC (Lipner 1982). For confidentiality, the
read/write situation is turned upside-down (Bell and LaPadula 1973). Entities having low secrecy
labels cannot read information with high secrecy labels, but high secrecy entities can read low
secrecy information. Trojan Horses are thwarted by barring active entities at high secrecy levels
from writing to objects at lower secrecy levels; however, it is permissible for low secrecy entities
to write to high secrecy objects. In all cases, both active and passive entities are assigned
immutable labels that are compared when accesses are attempted.

A mandatory security policy can often be recognized by the degree of damage violation of the
policy would cause the organization and the punishments associated with policy violation. Policy
violations that would result in the financial ruin of the organization and imprisonment or
dismissal of personnel are likely to be mandatory. Less severe punishments are meted out for
violations of the second general type of policies: discretionary policies.

Discretionary policies are neither global nor persistent. Access to information can be granted or
denied by an individual or a process acting on behalf of an individual. This ability to change
access rights “on the fly” makes discretionary mechanisms very flexible, but also vulnerable to
attacks by Trojan Horses. Malicious software can act in a manner dramatically opposed to the

Irvine, Security for Automated Information Systems

Page 7

user's intent.

A real example illustrates this point. Today web sites provide active code modules, or applets,
that are automatically downloaded to the user’s web browser and executed by browser-enabled
software packages. A group of hackers constructed a web site that contained executable content.
When victims accessed the site, not only did the executables provide them with the expected
service, but, behind the scenes, a Trojan Horse with the potential to change permissions installed
an artifice in each victims’ financial package. When the financial system was activated, funds
were transferred from the victims’ bank accounts to that of the hackers. Although the victims
may have had discretionary controls on their financial programs and files, the Trojan Horse was
executing with the victim's authorizations. So, the Trojan Horse was able to manipulate the
access controls and insert its artifice. Had mandatory integrity controls been in place, the
malicious software (Pond-Scum) could have been contained. With the victim's active entity for
web browsing running with Pond-Scum integrity, the Trojan Horse would not have be able to
write to Trustworthy.

An examination of organizational risk with respect to policy enforcement in an information
system will permit management to understand how measures can be taken to improve the overall
security posture. Jelen (1998) provides insights into understanding risk and assurance. Of course,
technical mechanisms must be accompanied by management strategies to insure that other
aspects of security complement those being put into place within the system.

Once the security policy has been articulated by management, a technical interpretation of policy
must be formulated. Technical policies relate the access of active entities to passive containers of
information such as files, directories, programs, pages, records, etc. Ultimately all use of a
computer system is the result of reading and writing to some form of memory. Memory has the
physical characteristics that information is recorded in some physical media in the form of zeros
and ones. When access to information is requested, there are only two fundamental access
requests: read and write. There is no notion of maybe in a computer: a yes or no answer must be
returned--either access is granted or denied. Equivocation can appear to be provided by elaborate
software systems built using read and write controls, but fundamentally, the choices are zero or
one, read or write, yes or no.

Careful analysis of security policy expressed in terms of a mathematical model can be beneficial.
First if the policy is inconsistent, the mathematical proof of the policy will fail. Thus the
expense of building a flawed system can be avoided. Second, the mathematical expression of
policy provides system developers with a starting point for mapping system design and
implementation to policy. This mapping provides assurance that the organization’s policy has
been correctly implemented. Variations of the Bell and LaPadula model (1973) have been
successfully applied to several commercial systems.

V. Secure System Construction

Once a formal or informal model has been developed, system designers apply an arsenal of
software engineering techniques to construct the hardware and software mechanisms that provide
trustworthy security policy enforcement (Gasser 1988; Brinkley and Schell 1995b). In their
seminal paper on system security, Saltzer and Schroeder (1975) identified design principles for

Irvine, Security for Automated Information Systems

Page 8

the construction of secure systems. We will start with these.

Psychological acceptability: The human interface provided by the system should be easy for
users to understand and use. Complex interfaces that do not match the user's mental image of
protection objectives are likely to be unsuccessful. Instead, protection should seem natural,
simple, and efficient, otherwise users will bypass them or avoid the system altogether.

A simple example of a psychological acceptability problem is that of user passwords. A
recommended password is eight characters long and consists of upper and lower case characters,
numbers, and punctuation characters. If each user is required to memorize several such
passwords, it is likely that the passwords will be manually recorded somewhere in the
individual's workspace. Thus corporate systems are vulnerable to break-in by anyone with access
to the office: repairmen, janitors, etc. A single sign-on for users would be preferable.

Another area where psychological acceptability plays a role is that of interfaces for discretionary
access control management. The Black Forest Group (1997) identified management of
discretionary access control mechanisms as a topic requiring considerable attention in the area of
user interfaces. Current interfaces are difficult to manage and understand. Easy to use interfaces
are required to encourage appropriate use of discretionary controls.

Least Privilege: No individual should be provided with greater access to information than
needed to do his or her job. With access limited to the information domain of the job at hand the
potential for widespread damage is limited. Auditing of activities within a particular domain
permits system owners to narrow the scope of potential misuse.

Least privilege is essential for circumscribing the effects of malicious software and Trojan
Horses. In our web site example, if the system allows users to enter a circumscribed Pond-Scum
domain prior to downloading and executing Pond-Scum material, then the effects of the
malicious software can be limited and the integrity of trustworthy domains can be protected from
corruption. When applied to confidentiality, least privilege can prevent malicious software from
reaching into other domains to grab information for exfiltration to hostile entities.

Fail-safe Defaults: Two approaches to granting permission to information may be taken. In the
first, everyone has access to the information unless explicitly denied. The second, and more
conservative, approach assumes that initially all access is denied and that permission is
subsequently granted. Lunt (1989) provides a detailed discussion of these concepts as they apply
to discretionary security policies. The notion of fail-safe defaults applies not only to files and
databases, but to entire systems. For example, the concept of trusted recovery implies that,
should a system crash, then, when operation is restored, security controls are in place and
unauthorized users do not suddenly have unexpected access to system resources.

Complete Mediation: Authorization must be checked for every access to every information
object. This notion clearly parallels the reference monitor concept. In a networked system, it
implies consideration of a system-wide view of authorization, delegation, and access control.
From the enterprise perspective, this view permits a chain of accountability to be established. It
also requires careful examination of users' authorizations during the course of a task. If
authorizations may change, then access rights should be changed as well. For example, if a user

Irvine, Security for Automated Information Systems

Page 9

is authorized to access trustworthy information and then wishes to change to the Pond-Scum
domain, then prior to changing user authorizations, all write access to trustworthy information
should be terminated.

Separation of Privilege: A protocol requiring satisfaction of two or more conditions prior to
certain actions provides a more robust security mechanism. For example, a rocket launching
system may require two or more persons to agree to its startup. Banking systems may require
authorization from both a teller and a supervisor prior to the execution of transactions over a
certain amount.

Economy of Mechanism: This principle is associated with the confidence one may have that a
protection mechanism correctly reflects policy in both its design and implementation. If the
security mechanism is large and spread throughout chunks of a huge system the majority of
which provides business functionality and has no relevance to protection, then it will be difficult,
if not impossible to locate all of the security relevant components. This will make analysis of the
security mechanism problematic. In addition, side-effects from non-security relevant components
could render the protection mechanism ineffective. Traditionally, it has been argued that security
mechanisms should be implemented in small, complete components at the lowest levels of
system hardware and software. Any components upon which the security mechanism depends
must have assurance of correctness and tamper resistance at least commensurate with that of the
security mechanism itself. Today, the complex mechanisms of application- and sockets-based
security share all of the vulnerabilities of the underlying system.

Least Common Mechanism: Physical and logical separation of mechanisms provide isolation of
users and their domains from those of others. Variables and resources shared among users can
become vehicles for information channels, including covert channels.

Covert channels (Lampson 1973) involve the manipulation of system resources in a manner
unintended by system designers to signal information from a sensitive domain to a less sensitive
one. For example, a process running at PROPRIETARY could consume all available disk space
so that when a PUBLIC process attempts to write to disk it will receive an error message. By
consuming and releasing disk space, the PROPRIETARY process can cause the PUBLIC
process to receive a sequence of success or error messages when it attempts to allocate disk
space. This sequence of messages can be used as a signal composed of zeros and ones to
smuggle information from PROPRIETARY to PUBLIC. Thus highly sensitive information such
as encryption keys could be leaked. Considerable effort to eliminate or limit the bandwidth of
covert channels is part of the development process of high assurance computer systems;
however, open research issues in the area of covert channels exist and they remain an area of
concern for systems containing very highly classified information. A problem with many
security models is their inability to address the problem of covert channels (McLean 1994).

Least common mechanism can also be applied in the context of granting privileges. Mechanisms
that permit users to assume privileged status in order to accomplish an ordinary function are,
from a security perspective, inferior to those that restrict privileges. The Unix operating system
(Ritchie and Thompson 1974) contains the infamous setuid mechanism that permits user's
privileges to be amplified to those of the system administrator for certain functions (Levin et al.
1989). Flaws in the design and implementation of such privleged modules allow users to break

Irvine, Security for Automated Information Systems

Page 10

out of the program and have unrestricted access to system resources.

Open Design: If the security of a system depends upon the secrecy of its design, this will be an
invitation for espionage on the part of adversaries. By submitting the security mechanism to
scrutiny by the scientific and engineering community its effectiveness can be assessed and
potential flaws identified in advance.

An example from history shows that a closed design is no guarantee of security. Prior to 1949
(Shannon 1949), cryptographic systems were based upon complex, but secret algorithms. During
World War II, careful analysis by the Allies combined with a failure on the part of the Germans
to recognize weaknesses in their secret cryptographic mechanisms resulted in a decisive
advantage for the Allied forces (Kahn 1996). Information theory (Shannon 1948) provides a
basis for analyzing cryptographic algorithms and, today, most are available for open review.
Today, the secrecy of communications depends upon a mathematical understanding of the
strength of the algorithms used, protection of the cryptographic keys, and systems designed so
that invocation of cryptographic mechanisms will not be bypassed or subverted.

In a commerce-driven world, the concept of open design runs counter to that of proprietary
systems differentiated from each other by various closely guarded software for features and
functions. But organizations obtaining security equipment and mechanisms need to validate
vendors' claims. Independent evaluations by unbiased parties are needed. In the absence of
independent evaluations, a vendor can claim that a security mechanism solves all problems,
while in fact, the mechanism may do little or might even diminish an organization's system
security. In addition, a rating scale is needed so that vendors know when they have done enough
to satisfy a specific set of standardized criteria. Using these, the functional mechanisms for
security policy enforcement and the assurance techniques applied during the system design and
development can be assessed. The latter provide confidence that the mechanisms meet Reference
Monitor Concept objectives. The Trusted Computer System Evaluation Criteria (National
Computer Security Center 1985) and the Common Criteria (National Institute of Standards and
Technology 1998) provide standards against which secure systems and subsystems can be
constructed and evaluated.

Although not principles for secure system design, Saltzer and Schroeder described two notions
which merit discussion.

The first is work factor. This is often applied in cryptography, where it might measure the
number of machine cycles necessary to mount a brute force attack against a cryptosystem. The
work factor may cause an adversary to seek a more subtle, but ultimately faster, cryptanalytic
attack on the system through the science of cryptanalysis (Schneier 1996). A secure system's
ability to control users' access to information and maintain logs for accountability is not based
upon secret keys, but rather upon sound engineering principles used to build a trustworthy
mechanism enforcing security policy.

The second is compromise recording. This is related to auditing, which records or detects when
information has been compromised, but fails to prevent it. Bonyun (1981) discusses issues
related to the creation of a coherent, traditional logging process where selected events are
recorded for subsequent analysis. In the last section of his paper, he introduces the notion of

Irvine, Security for Automated Information Systems

Page 11

active auditing, an idea that has evolved into the many intrusion detection systems currently
available today. Porras (1992), Lunt (1993) and Amoroso (1998) provide useful surveys of
intrusion detection techniques.

A mechanism for compromise recording will depend upon a system that provides protection for
its essential elements, e.g. the audit log and the logging mechanisms. An accountability
mechanism that lacks integrity may be worse than none. Compromise recording mechanisms
must have sufficient assurance to be admissible as evidence in litigation. As an example, suppose
that we have a authenticator mechanism (digital signatures and or cryptographic checksums) to
set an alarm when information is modified without authorization. Recalculation of the signature
or checksum is required to detect the change. Here we must have assurance of the correctness
and penetration resistance of the mechanisms used to protect the checksum computations, the
cryptographic keys, the rule-based system to flag any modifications, and the logs used to store
flagged events.

Authentication is a fundamental requirement for secure systems. There must be mechanisms in
place to permit users to be authenticated to systems so that a binding can be established between
a user's identity and the processes established to act on behalf of that user. This notion extends
from the desktop to those in client-server relationships that may be established during the user's
session. To avoid spoofing by malicious software, users need a "trusted path" to their systems so
that the systems can be authenticated to the user. Again, this notion extends to client-server
relationships. The trusted path may also be invoked during security-critical activities for which
clients and servers need to reauthenticate themselves. The Black Forest Group (1997) identified
reauthentication across network connections as an area requiring new research and development.

Creation of network connections should be based upon some mutual understanding of the
trustworthiness of the remote system. In a heterogeneous environment, some standard attributes
that can be used to characterize end-system security properties are needed. Frameworks for trust
relationships (Blaze et al. 1996) are in their infancy and will certainly require an infrastructure of
registration and verification authorities for system identifications and trust attributes. The
evolving public key infrastructure is likely to provide a context for these frameworks. Smith
(1997) Stallings (1998) and Kaufman et al. (1995) give useful surveys of cryptographic
techniques and protocols for networked and internetworked systems. Policies (DOD1985) that
constrain global interoperation of heterogeneous cryptographic and secure systems need to be
revisited. Vehicles to insure that cryptographic keys are recoverable for both operational and
legal purposes, while insure privacy for individuals and organizations, are needed.

VI. Cost of Security

Management must be sensitive to the total cost of ownership associated with security
mechanisms and procedures. Because many organizations do not want to reduce user confidence
by openly discussing security problems, there are few case studies and the true cost of system
insecurity and the cost of installing and maintaining security features are difficult to determine.
Acquisition and installation is only a portion of the cost of a security measure. Other costs
include:

User Training. If the mechanism is not transparent to users, they must be trained to use it and

Irvine, Security for Automated Information Systems

Page 12

management must make periodic checks to insure that users have integrated the mechanism into
their routine activities. Part of training will include helping users take responsibility for the
security of their systems and information.

Decreased System Performance. Many add-on security mechanisms take machine cycles from
productivity activities. The calculations for software encryption and digital signatures consume
both machine memory and time. These issues must be considered and sufficient resources
acquired to support both the security mechanisms and processing required for organizational
business.

Security Administration. System administrators must be trained to configure and manage security
mechanisms. Depending upon the security mechanisms chosen, network connections will have to
be scanned, password systems maintained, encryption keys and devices managed, firewall
configurations maintained, virus scanners updated, flawed systems patched, etc. The
administration of security controls can be quite time consuming and, if the computer system is a
large network, additional personnel may be required.

Audit and Intrusion Detection Administration. If audit logging or intrusion detection systems are
deployed, these will require configuration and maintenance. Rules and triggers will have to be
set as the security posture of the organization evolves. Audit logs must be reduced and analyzed.
Special skills are required to support these often time consuming activities.

Consultants. In organizations lacking sufficient in-house expertise, consultants may be needed to
conduct risk assessments, to devise network security architectures, and to assist in handling
security incidents or attacks. Both government supported and private Computer Emergency
Response Teams are available to help with incident handling.

VII. Conclusion

A million happy users may be oblivious to exploitable flaws in their systems. The absence of a
discovered security bug does not mean that a system is secure. Despite our understanding of the
principles of design and implementation of systems to meeting Reference Monitor objectives, it
is difficult to find commercial products attempting to achieve those goals. Instead system
designers must often resort to ad hoc solutions. These are intended to lower security risks by
creating layers of protection. Unfortunately, if each of these layers it is not truly trustworthy,
then it will not be too difficult for the layers to be penetrated and the systems overthrown.
Managers should be given confidence that their security policies will be enforced, but they must
play a role by carefully describing the policy and insuring that, once systems are in place, the
organization embraces the day-to-day challenges of administering and maintaining their secure
systems.

References
1. Amoroso EG. Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Traps, Trace

Back and Response. Intrusion.Net Books, 1998.
2. Anderson JP. Computer Security Technology Planning Study. ESD-TR-73-51, Air Force Electronic

Systems Division, Hanscom AFB, Bedford, MA, 1972. (Also available as Vol. I,DITCAD-758206.
Vol. II, DITCAD-772806)

Irvine, Security for Automated Information Systems

Page 13

3. Bell DE, LaPadula L. Secure Computer Systems: Mathematical Foundations and Model. M74-244,
MITRE Corp., Bedford, MA, 1973.

4. Biba KJ. Integrity Considerations for Secure Computer Systems. ESD-TR-76-372, MITRE Corp.,
Bedford, MA, 1977.

5. Black Forest Group, Top Level Security Issues For a Global System of Interconnected Computers.
http://www.penfield-gill.com/BFG/security-paper.html, 1997.

6. Blaze M, Feigenbaum J, Lacy J. Decentralized Trust Management, Proceedings of the 1996 IEEE
Symposium on Security and Privacy, Oakland, CA, May 1996, pp. 164--173.

7. Bonyun D. The Role of a Well Defined Auditing Process in the Enforcement of Privacy Policy and
Data Security. Proceedings of the 1981 IEEE Symposium on Security and Privacy, Oakland, CA,
April 1981, pp. 19--25.

8. Brinkley DL, Schell RR. What is There to Worry About? An Introduction to the Computer Security
Problem. In: Abrams, Jajodia, and Podell, ed. Information Security: An Integrated Collection of
Essays, Los Alamitos, CA: IEEE Computer Society Press, 1995, pp. 11--39.

9. Brinkley DL, Schell RR. Concepts and Terminology for Computer Security. In: Abrams, Jajodia, and
Podell, ed. Information Security: An Integrated Collection of Essays, Los Alamitos, CA: IEEE
Computer Society Press, 1995, pp. 40--97.

10. Denning DE. Cryptography and Data Security. Reading, MA: Addison-Wesley Publishing, 1982.
11. Denning DE. Information Warfare and Security. Reading, MA: Addison-Wesley Longman, 1999, pp

131--161.
12. Denning, PJ ed. Computers Under Attack: Intruders, Works and Viruses. New York: ACM Press,

1990.
13. DOD. DOD 2040-2, International Transfers of Technology, Goods, Services, and Munitions. January

17, 1984. ASD(ISP), through Ch. 1, July 5, 1985.
14. Gasser M. Building a Secure Computer System. New York: Van Nostrand Reinhold, 1988.
15. Gligor V. A Note on the Denial of Service Problem. Proceedings of the IEEE Symposium on Security

and Privacy, Oakland, CA, May 1983, pp 139--149.
16. Hoffman L ed. Rogue Programs: Viruses, Worms and Trojan Horses. New York: Van Nostrand

Reinhold, 1990.
17. Jelen GF Williams JR. A Practical Approach to Measuring Assurance. in Proceedings of Fourteenth

Computer Security Applications Conference, Phoenix, AZ, December, 1998, pp 333--343.
18. Kahn, The Codebreakers: The Comprehensive History of Secret Communications from Ancient

Times to the Internet. 2nd ed., New York, NY: Scribner, 1996.
19. Karger P, Schell RR. Multics Security Evaluation: Vulnerability Analysis. ESD-TR-74-193. Vol II.

Information Systems Technology Application Office Deputy for Command and Management
Systems Electronic Systems Division (AFSC), Hanscom AFB, MA, 01730, 1974.

20. Kaufman C, Perlman R, Speciner M. Network Security, Private Communication in a Public World.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

21. Lampson B. A Note on the Confinement Problem. Comm. A. C. M., 16(10): 613--615, 1973.
22. Landwehr CE, Bull AR, McDermott, JP Choi WS. A Taxonomy of Computer Program Security

Flaws. ACM Computing Surveys, 26: 211--254, 1994.
23. Levenson N. Safeware. Reading, MA: Addison Wesley, 1995.
24. Levin T, Padilla S, Irvine C. A Formal Model for UNIX SETUID. Proceedings of the 1989 IEEE

Symposium on Security and Privacy, Oakland, CA, May, 1989, pp 73--83.
25. Lipner S. Non-Discretionary Controls for Commercial Applications. Proceedings of the 1982 IEEE

Symposium on Security and Privacy, Oakland, CA, April 1982, pp 2--10.
26. Lunt TF. Access Control Policies: Some Unanswered Questions. Computers and Security, 8: 43--54,

1989.
27. Lunt TF. A Survey of Intrusion Detection Techniques. Computers and Security, 12: 405--418, 1993.
28. McLean J. Security Models. In: ed. John Marciniak J, ed. Encyclopedia of Software Engineering,

New York: Wiley Press, 1994.

Irvine, Security for Automated Information Systems

Page 14

29. Myers P. Subversion: The Neglected Aspect of Computer Security. Masters Thesis, U.S. Naval
Postgraduate School, Monterey, California, 1980.

30. Nagy-Farkas D. The Easter Egg Archive. http://www.eeggs.com/, December 7, 1998.
31. National Computer Security Center, Trusted Computer System Evaluation Criteria. DOD 5200.28-

STD, National Computer Security Center, 9800 Savage Road, Fort George G. Meade, MD 20755-
6000. 1985.

32. National Computer Security Center. Introduction to Certification and Accreditation. NCSC-TG-029,
National Computer Security Center, 9800 Savage Road, Fort George G. Meade, MD 20755-6000,
January, 1994,

33. National Institute of Standards and Technology, Common Criteria Version 2.0, CCIB-98-026,
http://csrc.nist.gov/cc/, May 1998.

34. Neumann PG. Computer Related Risks. New York: ACM Press, 1995.
35. Pfleeger CP. Security in Computing. 2nd ed. Englewood Cliffs, NJ: Prentice Hall, Inc., 1996.
36. Porras PA, STAT A State Transition Analysis Tool for Intrusion Detection, Masters thesis, University

of California, Santa Barbara, CA 1992.
37. Ritchie DM, Thompson K. The Unix Time-Sharing System. Comm. A. C. M., 17(7), pp 365--376,

1974.
38. Saltzer, JH Schroeder, MD. The Protection of Information in Computer Systems. Proceedings of the

IEEE, 63: 1278--1308, 1975.
39. Schneier B. Applied Cryptography. 2nd ed. New York, NY: John Wiley, 1996.
40. Shannon C. A Mathematical Theory of Communication, Bell System Tech. J., 27(4): 379--423, 623--

656, 1948.
41. Shannon C. Communication Theory of Secrecy Systems, Bell System Tech. J., 28(4): 656-715, 1948.
42. Smith FC, Bailey DJ. Wachet auf! Computer Security and the Millennium. Proceedings of Fourteenth

Computer Security Applications Conference, Phoenix, AZ, December 1998, pp 129--133.
43. Smith RE. Internet Cryptography. Reading, MA: Addison Wesley, 1997.
44. Stallings W. Cryptography and Network Security Principals and Practice. 2nd ed. Englewood Cliffs,

NJ: Prentice Hall, 1998.
45. Sterne D. On the Buzzword "Security Policy". Proceedings of the IEEE Symposium on Research in

Security and Privacy, Oakland, CA, May 1991, pp 219--230.
46. Stoll C. The Cuckoo's Egg. New York: Doubleday, 1989.
47. Summers R. Secure Computing. New York: McGraw Hill, 1997.
48. Thompson K. Reflections on Trusting Trust. Comm. A. C. M. 27: 761--763, 1984.
49. Winkler I. Corporate Espionage. Rocklin , CA: Prima Publishing, 1997.

