
An Overview of MSHN:
The Management System for Heterogeneous Networks

Debra A. Hensgen†, Taylor Kidd†, David St. John§, Matthew C. Schnaidt†, Howard Jay Siegel‡,
Tracy D. Braun‡, Muthucumaru Maheswaran¥, Shoukat Ali‡, Jong-Kook Kim‡, Cynthia Irvine†,
Tim Levin§, Richard F. Freundµ, Matt Kussowµ, Michael Godfreyµ, Alpay Duman†, Paul Carff†,

Shirley Kidd§, Viktor Prasanna¶, Prashanth Bhat¶, and Ammar Alhusaini¶

†Department of Computer Science
Naval Postgraduate School

Monterey, CA USA

µNOEMIX
San Diego, CA USA

¶Electrical and Computer Engineering
University of Southern California

Los Angeles, CA USA

§Anteon Corporation
Monterey, CA USA

Abstract

The Management System for Heterogeneous Networks
(MSHN) is a resource management system for use in
heterogeneous environments. This paper describes the
goals of MSHN, its architecture, and both completed and
ongoing research experiments. MSHN’s main goal is to
determine the best way to support the execution of many
different applications, each with its own quality of service
(QoS) requirements, in a distributed, heterogeneous
environment. MSHN’s architecture consists of seven
distributed, potentially replicated components that
communicate with one another using CORBA (Common
Object Request Broker Architecture). MSHN’s
experimental investigations include: (1) the accurate,
transparent determination of the end-to-end status of
resources; (2) the identification of optimization criteria
and how non-determinism and the granularity of models
affect the performance of various scheduling heuristics
that optimize those criteria; (3) the determination of how
security should be incorporated between components as
well as how to account for security as a QoS attribute; and
(4) the identification of problems inherent in application
and system characterization.

This research was supported, in part, by the DARPA/ITO Quorum
Program.

1. Introduction

The Management System for Heterogeneous Networks
(MSHN1) project seeks to determine an effective design
for a resource management system (RMS) that can deliver,
whenever possible, the required quality of service (QoS) to
individual processes that are contending for the same set
of distributed, heterogeneous resources. Factors
influencing QoS requirements include security, user
preferences for different versions of an application, and
deadlines. A set of QoS requirements, considered together
with resource availability, determine whether all
processes’ requirements can be met.

An RMS, also sometimes called a meta-computing
system, is similar to a distributed operating system in that
it views the set of machines that it manages as a single
virtual machine [51]. Also, like any distributed operating
system, it attempts to give the user a location-transparent
view of the virtual machine. Hence, as in the case of a
distributed operating system, an RMS provides users with
improved performance while the location of resources is
hidden. The set of users of a system, which consists of
both local and remote resources, that is managed by an
RMS should be able to attain a higher level of availability
and more fault tolerance than would be available from
their local system alone.

1 Pronounced, “mission”

‡School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN USA

¥Department of Computer Science
University of Manitoba

Winnipeg, Canada

An RMS differs from a distributed operating system in
that it does not micro-manage the resources of each
computer. Instead, each computer runs its native
operating system. Similarly, each router executes its own
protocol and each file server executes a native distributed
file system. The RMS is responsible for identifying the
large-grained resources, i.e., compute servers and data
repositories that should be used by each process, if there is
a choice. It may be responsible for issuing a command to
begin execution of the processes that comprise an
application. It may monitor the status of both the
resources in the system and the progress of the
applications for which it is responsible.

It is unclear whether every request to execute an
application that is submitted to any operating system on
any of the machines in the distributed system must be
controlled by the RMS. If all requests are controlled by
the RMS, then allocation policies that attempt to optimize
throughput for a set of well-understood applications will
perform better. However, sometimes users wish to
maintain control over which resources their application
will use.

There are many active, on-going research projects, in
addition to MSHN, in the area of resource management,
and there are many major research problems to be solved.
A problem that MSHN is not addressing is the best way
for such a system to interact with human users to obtain
their QoS preferences and requirements in the most user-
friendly way. Indeed, simply identifying the syntax and
semantics required to express all of the QoS preferences
and requirements is a difficult problem [13][17][37][55].
While MSHN does not address this problem, the designers
of MSHN expect to leverage results from research in this
area. They assume, for example, that a request to execute
an application is accompanied by a list of deadlines,
preferences for various versions of an application, security
requirements, and any restrictions on the variance of the
time at which a request should be completed.

Before leaving the general topic of RMSs, it is
imperative that we address the topic of “packaging.”
MSHN researchers do not see the fruits of the RMS
research as a large, monolithic piece of software that will
require its own separate installation and maintenance. The
best way to package the eventual outcomes of the RMS
projects may be to incorporate them into an infrastructure-
or middleware-level standard similar to the Common
Object Request Broker Architecture (CORBA), Domain
Name Services, or other such resource location services.
In this way, an RMS would not need to be separately
maintained and would be consolidated with the services
that distributed applications will most often use.
However, it is still worthwhile to separate research on
RMSs from research in all other aspects of distributed
object computation that will be needed in future versions

of such standards in order to first isolate, then solve some
of the difficult resource management problems.

1.1. Background

MSHN evolved in part from a scheduling framework
called SmartNet [19][29]. SmartNet’s goal was to be able
to wisely schedule sets of compute-intensive jobs, some of
which may require the execution of multiple processes,
onto members of a suite of heterogeneous computers.
SmartNet provides a sophisticated scheduling module that
had been successfully integrated with many RMSs and
distributed computing environments. Hence, users who
need to execute compute-intensive jobs and have access to
a shared, heterogeneous environment can achieve superior
performance, while continuing to work in an environment
to which they have grown accustomed [23]. Additionally,
for those users who do not already have one installed,
SmartNet provided a basic RMS that makes use of its
sophisticated scheduling capabilities. SmartNet’s major
research contributions include:

• The ability to predict the expected run-time of a job
on a machine using the concept of compute
characteristics and information collected from
previous executions of the job.

• The ability to leverage the heterogeneity inherent
in both a collection of jobs as well as in a
collection of computers.

SmartNet was used successfully by DoD and the
National Institutes of Health in scheduling their compute-
intensive jobs, and by NASA’s EOSDIS system in
determining whether their resources were adequate to
process data in the ways desired by their scientists.

SmartNet’s scheduling algorithms are tuned to attempt
to minimize the time at which the last job completes,
although the designers of SmartNet recognized that similar
algorithms may be useful in optimizing other criteria. Of
course, minimizing the time at which the last job, of a set
of jobs, completes is, in general, an NP-complete problem,
so SmartNet employs heuristics when it searches for a
near-optimal mapping of jobs to machines and job
execution schedule. Many of the heuristics that it uses are
well known and previously documented, however, they
had not previously been used in a practical heterogeneous
computing system [25]. It is likely that they were not
previously used in actual systems because system
designers had not tried to estimate average process run-
times and because it was not previously recognized that
exact run-times, though helpful, were not necessary
[2][3][28].

1.2. Overview of MSHN’s goals

MSHN differs from SmartNet in three major ways.
First, SmartNet was expected, from the beginning, to be a

system that would actually be used in production. For this
reason, much of the SmartNet developers’ time was spent
ensuring that SmartNet was at SEI Level 3. Despite this,
SmartNet was able to make significant research
contributions. MSHN is intended to be a research system,
facilitating experiments by the investigators to determine
how RMSs, that have somewhat broader goals than
SmartNet, can be built. MSHN’s research goals expanded
upon SmartNet’s in the following areas.
(i) MSHN needs to consider that the overhead of

jobs sharing resources, such as networks and file
servers, can have significant impact on mapping
and scheduling decisions.

(ii) MSHN must support adaptive applications
(defined below).

(iii) MSHN must deliver good QoS to many different
sets of simultaneous users, some of whom may
be executing interactive jobs; others, compute-
intensive jobs; and still others, real-time
requirements.

In SmartNet’s model, applications consist of three
distinct phases. In the first phase, which is short compared
to the second phase, they acquire data from a data
repository. In the second phase, they compute results
based upon the data that they obtained during the first
phase. In the third phase, which is again very short
compared to the second phase, they write the result back to
a possibly different repository. Because the first and third
phases are so short, SmartNet’s heuristics assume that
there is no contention for either the network or the data
repositories. However, they do account for the time
required to access the resources, assuming that each
application is the sole user of those resources. The model
of applications that MSHN is meant to manage is more
complex, permitting applications to transition through
many more phases of variable length, each requiring not
only sharing of compute resources, but also sharing of
network and data repository resources. We discuss briefly
in this paper, and elaborate elsewhere, both the problem of
modeling the application and that of accounting for lower
level policies that govern the sharing of resources. That is,
because MSHN does not assume that it has any control
over network routing, file server memory allocation, etc.,
it models, when necessary, the lower level operating
systems and protocols. By doing so, the assignment of
processes to resources will account for the sharing of those
resources in the correct way.

The second major difference between SmartNet and
MSHN’s research goals is that MSHN attempts to provide
support for adaptive and adaptation-aware applications.
By adaptive applications, we mean idempotent
applications that can exist in several different versions.
Different versions may have different values to a user due
to factors such as precision of computation or input data.
Additionally, different versions may have different

communication and computation needs. Or, one version
may execute on Windows NT while another version is an
executable for Linux. MSHN’s goal is to support adaptive
applications by being able to terminate one version of an
application if MSHN perceives that the currently
executing version will not meet the users’ QoS
expectations.2 In that case, MSHN would terminate the
executing version and start up another version from the
beginning (if there were sufficient resources to execute
that other version). The requirement that adaptive
applications be idempotent permits the application to be
safely restarted from the beginning without corrupting any
resource such as a database. Similarly, there may be times
when MSHN determines that delivery of a better QoS is
possible to a user by changing to a version that better
meets that user’s preferences.

An adaptation-aware application differs from an
adaptive application in two ways. First, when it is
terminated, the new version need not be restarted from the
beginning. Instead, a different version from the one that
terminated may be started, using information about a
previous state that was obtained from the execution of the
previous version. Second, an adaptation-aware application
may be able to adapt its resource usage during execution,
without restarting.

Finally, MSHN’s goals differ from SmartNet’s in that
MSHN seeks to determine how to meet multiple different
QoS requirements to multiple different applications
simultaneously. There are really two issues bound up in
this difference. First, a way to incorporate, dynamically,
the mixture of QoS requirements into a single measure
must be determined. Second, an assignment of
applications to resources must also be determined that
optimizes the identified measure. In resolving this second
issue, we can strongly leverage SmartNet’s emphasis on
the separation of optimization criteria and search
algorithms and the recognition that similar algorithms can
be used to search many different types of spaces for
optimal values. We elaborate on this below.

1.3. Related work

There are other research groups examining the issues
important to building an RMS, many within DARPA’s
Quorum project. Here, we look at some of the projects
related to MSHN. Some of these groups are engaged in
research complementary to MSHN’s goals. For the sake
of brevity, only a short synopsis of each project, as it
relates to MSHN, is presented.

DeSiDeRaTa. The University of Texas at Arlington
has a project called “DeSiDeRaTa: QoS Management
Tools for Dynamic, Scalable, Dependable, Real-Time

2 We note that a version of one application may be terminated because
MSHN detects that another user’s application will not meet its QoS
expectations. This phenomenon can occur due to priorities.

Systems.” DeSiDeRaTa is focusing on QoS specification,
QoS metrics, dynamic QoS management, and
benchmarking of specific computing environments, such
as the distributed Anti-Air-Warfare system at the Naval
Surface Warfare Center, Dahgren Division. A unique
concept that has come out of the DeSiDeRaTa project is
that of an application “path” [56].

Globus. Globus is a large, joint project from Argonne
National Laboratory and the University of Southern
California's Information Sciences Institute. Parts of the
Globus project are devoted toward resource management
issues. The Globus architecture depends on an advance or
immediate resource reservation protocol layer, for which a
standard does not yet exist [14][18].

RT-ARM. Honeywell is developing a “Real-Time
Adaptive Resource Management” system aimed primarily
at high-end, real-time military embedded systems such as
the Navy Surface Combatant Ship SC-21. Some of the
specific issues they are concentrating on include modeling
embedded systems and finding practical techniques for
predictable real-time performance [24].

EPIQ. The EPIQ project, from the University of
Illinois at Urbana-Champaign, is building an infrastructure
for providing guaranteed QoS features, upon which RMSs
may be built. part of their infrastructure involves building
their own runtime environment [35].

ERDoS. SRI International is running a project called
ERDoS (End to End Resource Management for
Distributed Systems) which is developing an architecture
for adaptive QoS-driven resource management. The
ERDoS project emphasizes a comprehensive definition of
QoS and the development of models that capture
information required for making resource management
decisions [46].

QUASAR. The QUASAR (QUAlity Specification and
Adaptive Resource management for distributed systems)
project, at the Oregon Graduate Institute of Science and
Technology, is investigating techniques for specifying and
utilizing QoS in adaptive, distributed systems. QUASAR
is concentrating on the translation of QoS specifications
from the application-level to the resource-management-
level, and its use in reservation-based resource
management, primarily in the multimedia domain [53].

ASSERT. The ASSERT System at the University of
Oregon, Eugene, is focusing on dynamic, distributed, real-
time environments. The core of the project estimates and
monitors the relevant QoS parameters of running
applications. ASSERT is not an RMS, nor an RMS
framework; rather, the ASSERT project is looking at a
specific issue of RMSs: QoS monitoring and estimation
[16].

QuO. The Quality Objects (QuO) project, from BBN
Systems Technologies, is attempting to add QoS
specification and delivery to CORBA. Rather than
provide absolute QoS guarantees, QuO seeks to combine

knowledge about resource and application conditions in
order to reserve enough end-to-end resources for
predictable execution of distributed applications [52].

MOL. The MOL (Metacomputing OnLine) project
from the Paderborn Center for Parallel Computing has as a
goal the utilization of multiple high performance systems
for solving problems too large for a single supercomputer.
The MOL approach does not assume absolute control of
resources under its management. The MOL project is
addressing several of the issues key to resource
management, including QoS specification [42].

1.4. Organization of the paper

In the next section of the paper we motivate and discuss
MSHN’s architecture. Even though SmartNet was
successful in achieving its functionality, rather than using
SmartNet’s architecture exactly, we based MSHN’s
architecture upon lessons learned from SmartNet, because
MSHN’s goals are substantially different. In particular,
we clearly delineated certain of SmartNet’s modules into
separate components. This delineation makes it easier to
experiment with different designs for each of the
components. In section 3, we then discuss many of the
research issues that the MSHN investigators are studying
and highlight some of the results. Additionally, this
section provides references to the numerous articles that
describe this research in more detail. We conclude by
summarizing the status of the MSHN project.

2. MSHN’s architecture

In this section, we first describe some of the concepts
that went into MSHN’s architectural design. This
description motivates the need for the various major
components and explains why they must be replicated to
varying degrees. The architectural design was driven by
the need to support the RMS research that we will discuss
in the next section and was aided by our previous
experience with SmartNet. We then present MSHN’s
current architecture in detail.

2.1. Motivation

We first motivate the need for each of the major
components of MSHN’s architecture, then discuss how
those components interact with one another.

We recall from the previous section that an RMS needs
to transparently locate the resources that should be used
when execution of an application is requested. Therefore,
it must be made aware of any request, by either a user or
an application, to start executing another application.
Many early RMSs required the user to explicitly log in to
the system to start a job. If an application was to be
started from within another application, e.g., through

fork and exec system calls, then the application that
makes the request would be required to be specially
designed to embed these requests within a function call to
an RMS library. This restriction required that applications
be specifically written or modified for a particular RMS.

The MSHN designers do not want to force a user to
explicitly log into an RMS, or to modify their existing
programs. Instead, MSHN transparently intercepts calls to
system libraries that would otherwise initiate execution of
a new process and diverts those calls to a MSHN Client
Library. After MSHN decides where the newly requested
application should execute, the MSHN Client Library uses
whatever mechanisms available at the resource site to
initiate execution of the remote process.

The environments for which MSHN is designed contain
many different types of computers, each possibly
executing a different version of an operating system.
Rather than requiring the Client Library, which is linked
with every MSHN application, to contain a substantial
amount of code that is specific to each of these computers,
we chose to make use of a MSHN Daemon. Whenever a
computer is added to a system, a MSHN Daemon is started
on that computer. When a Client Library needs to start a
process on a remote machine, it simply contacts the
MSHN Daemon on that machine and requests that the
Daemon start the process on the Client Library’s behalf.
Of course, the general mechanism that we use in the
Daemon is not new, and is therefore not a research issue.

When a remote process needs to communicate with the
initiating process, it contacts the Client Library, which
passes the information on to the initiating process, just as
though the remote process were started locally. Being
able to transparently provide this service to applications,
whether or not they are command interpreters, requires
that the Client Library intercept, and at least pre-process if
not divert, other system library calls in addition to the
previously mentioned exec call. For example, all of the
socket calls and all calls to open, close, read, and write
files must be intercepted and replaced or at least pre- and
post-processed.

The MSHN project required a mechanism for
intercepting these calls without requiring source
modification. We initially turned to the Condor project for
help with this problem [36]. Condor is a project at the
University of Wisconsin that performs transparent
migration of processes in a Unix environment. To
perform this migration, Condor also had to intercept these
calls to system libraries. Using techniques similar to those
used by Condor, we were able to intercept these calls
without requiring source code modification.3 The
mechanism is described in detail elsewhere [44].

3 These techniques, however, require that the object code files be linked
with the MSHN Client Library, therefore they require object code files.
However, another tool, the Executable Editing Library (EEL) which

In addition to providing a mechanism for transparently
executing remote processes, the Client Library is in a
unique position to passively determine the status of
resources, because it is assumed to be linked with any
application executing in an environment managed by
MSHN. That is, the MSHN Client Library can pre- and
post-process system calls, because it is intercepting all
such calls made to the operating system, which are
executed when a process needs to use a hardware resource.
In so doing, it can determine the low level, end-to-end
QoS that an application is receiving from a particular
resource. We will discuss this functionality of the Client
Library further in the next section.

When the MSHN Client Library intercepts a call to
execute a new process, it must have some way of
determining which resources that new process should use,
i.e., which computer should primarily be responsible for
executing the new process.4 Rather than requiring that
decision to be made independently by each Client Library
that is linked with each application, we chose to have the
Client Library first check the request against a list of
applications managed by MSHN. If the requested
application is not on that list, the MSHN Client Library
simply passes the requested application directly to the
local operating system. If the requested application is on
that list, it instead passes the request to the MSHN
Scheduling Advisor. It is the Scheduling Advisor’s job to
determine which set of resources the newly requested
process should use.

The MSHN Scheduling Advisor is itself a complex
package, associated with many different research issues
which we discuss more fully in the next section. Among
the primary research issues are: (i) what criteria should be
optimized in the choice of resources? (ii) Because
optimizing the criteria is likely to be an NP-complete
problem, if n is too large, which heuristic should be used
to search for an optimum resource assignment? (iii) With
what granularity must the Scheduling Advisor model both
the policies and protocols associated with allocation of the
lower level resources and what granularity of model
should it use to define the resource requirements of a
process?

For the Scheduling Advisor to determine a good
assignment of resources for a process, it must know both
which resources and how much of each resource would be
required for a process to execute and meet its QoS
requirements and preferences. Therefore, to assist the
Scheduling Advisor in making its decision as to the

evolved from the University of Wisconsin’s Paradyn project could be
used to link an executable with the MSHN Client Library, instead [32].
4 In modern systems, the choice of computer that is responsible for
executing a process often carries with it, implicitly, a choice of file
servers and other distributed resources such as networks. Therefore,
when we say that MSHN chooses a computer to be responsible for
executing a process, the choice of other resources external to that
computer may be implicit in that assignment.

assignment of resources, we designed both the MSHN
Resource Requirements Database and the MSHN
Resource Status Server.

The Resource Status Server is a quickly changing
repository that maintains information concerning the
current availability of resources. Information is stored in
the Resource Status Server as a result of updates from both
the MSHN Client Library and the MSHN Scheduling
Advisor. The Client Library can update the Resource
Status Server as to the currently perceived status of
resources, which takes into account resource loads due to
processes other than those managed by MSHN. The
Scheduling Advisor can provide expected future resource
status based upon the resources that it expects will be used
by the applications that it assigns. Additionally, the
Resource Status Server can statistically process its historic
knowledge to make predictions of resource status even
further in the future.

As compared to the Resource Status Server, the
information maintained by the MSHN Resource
Requirements Database changes much more slowly. The
Resource Requirements Database is responsible for
maintaining information about the resources that are
required to execute a particular application. Although the
initial MSHN prototype only implements a single source
for the information stored in this database (statistically
analyzed historical information), we envision that many
other on-going research projects will also serve as sources
for this information.

MSHN’s current source for the information that is
maintained by the Resource Requirements Database
comes from data collected by the MSHN Client Library
when the application was previously executed. Although
patterned after SmartNet in this way, and leveraging the
concept of compute characteristics that SmartNet
pioneered, MSHN does not collect the same information
as SmartNet collects. SmartNet’s information is coarse-
grained; that is, it maintains only the total amount of wall-
clock time that is required to execute a program from
beginning to end for each particular machine. This
measure is sufficient for SmartNet’s needs due to the
requirements of its intended applications (three phases)
and the expected environment (each job has exclusive
access to the resources that it is using). However, in
MSHN, resources are shared and applications have more
phases, so maintaining only this coarse grain information
is insufficient. Therefore, the Resource Requirements
Database has the ability to maintain very fine grain
information collected by the MSHN Client Library.
Eventually it is hoped that the Resource Requirements
Database can also be populated with information from
smart compilers and possibly advice from application
writers.

Applications, of course, are needed to test any system.
Unfortunately, executables for many different platforms

would be needed to test MSHN’s ability to manage them
in a distributed, heterogeneous environment. Producing
such actual applications would require tremendous effort
to obtain the source code for numerous applications, some
of which may be classified or proprietary, port the source
code to the different platforms, and compile and link them.
We decided that this effort was better spent on our
research system itself, so we looked for another viable
solution. One solution that we considered was to use
benchmarks, because many of them have already been
ported to many different platforms. However, we wanted
to make sure that our system could manage a wide variety
of applications. We finally settled on writing a general-
purpose application emulator whose parameters could be
specified to cause it to imitate a wide variety of
applications. We discuss the problem of deciding how
best to construct such an emulator under the research
topics in the next section.

The Client Library, which is linked with each executing
MSHN application, informs the Resource Status Server
about the current perceived status of the resources that the
applications are using. The Scheduling Advisor informs
the Resource Status Server only about the load that it
expects the processes, which it has scheduled, to place on
certain resources. However, neither class of information
indicates the condition of resources that no MSHN
application is currently using or is planning on using.
Therefore, we use a MSHN Application Emulator linked
with the Client Library to obtain information about the
condition of such resources.

Scheduling
Advisor

Resource
Requirements

Database

Resource Status
Server

Client Library

Application
(or emulator)

Update
Query/
Response

Call
 Back

Update

Query/
Response

Query/
Response

Call
 Back

daemon

Call
 Back

request
start

start

Figure 1 MSHN’s conceptual architecture.

MSHN’s conceptual architecture is shown in Figure 1.
As can be seen in the figure, every application running
with MSHN makes use of the MSHN Client Library that
intercepts the application’s operating system calls. When
the Client Library intercepts a request to execute a new
application, and that application requires that the MSHN
Scheduling Advisor be consulted to determine the
resources that the application should use, the Client

Library invokes a scheduling request on the Scheduling
Advisor. The Scheduling Advisor queries both the
Resource Requirements Database and the Resource Status
Server. It uses information that it receives from them,
along with an appropriate search heuristic, to determine
where the newly requested process should execute. After
determining which resources should host the new process,
the Scheduling Advisor returns the decision to the Client
Library, which, in turn, requests execution of that process
through the appropriate MSHN Daemon. The MSHN
Daemon invokes the application on its machine. As a
process executes, the Client Library updates both the
Resource Status Server and the Resource Requirements
Database with the current status of the resources and the
requirements of the process. Meanwhile, the Scheduling
Advisor establishes callbacks with both the Resource
Requirements Database and the Resource Status Server.
Using callbacks, the Scheduling Advisor is notified in the
event that either the status of the resources has
significantly changed, or the actual resource requirements
are substantially different from what was initially returned
from the Resource Requirements Database. In either case,
if it no longer appears that the assigned resources can
deliver the required QoS, the application must be adapted
or terminated. Upon receipt of a callback, the Scheduling
Advisor might require that several of the applications
adapt so that more of them can receive their requested or
desired QoS.

Operating System 1

Machine 1

application

daemon emulator

RRD

Operating System 3

Machine 3

application

daemon emulator

Operating System 2

Machine 2

application

daemon emulator

RSS

Scheduling Advisor
Operating System 4

Machine 4

application

daemon

M
id

dl
ew

ar
e

emulator

application

application

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Figure 2 Physical instantiation of the MSHN
architecture.

Although all MSHN components could run on the same
machine, they can also be distributed and replicated across
many different computers using tools such as ISIS, Horus
and Ensemble [7][50][49]. Results from control theory
will also be useful here in ensuring that the process of
replicating and merging components is stable and does not
result in oscillation. Additionally, results from control
theory must be incorporated into the replicated Scheduling
Advisor itself to ensure that modifications requested of

adaptive and adaptation-aware applications do not become
unstable. MSHN components might even replicate as
needed [20][21]. Figure 2 illustrates a simple
instantiation of the MSHN system.

In addition to the components discussed above, we
found it convenient to add a MSHN Visualizer that
enabled us to examine, for both functional and
performance debugging purposes, the current states of the
various MSHN components. The MSHN Visualizer
captures all significant events within and between the core
MSHN components for real-time and post-mortem
analysis.

Security within the MSHN architecture has been
considered. Policies of interest are:

• Component authentication. This includes
authentication of MSHN core components to each
other; authentication of resource-based clients to
the MSHN core; and authentication of applications
to selected MSHN components.

• Hierarchical least privilege. Within the MSHN
context, the core components are the most
privileged, while user applications are the least
privileged.

• Communications integrity and confidentiality.
Communications are protected from unauthorized
modification and disclosure.

• Access control. Access to MSHN core databases
and to job histories may be mediated.

The security architecture creates keyed domains,
supporting least privilege, authentication, confidentiality
and integrity by using the Common Data Security
Architecture facilities for security services and key
management5 [57][58].

2.2.1. The current MSHN architecture. A high level
description of the current MSHN architecture is presented.
For a more detailed description, we refer the reader to
other publications [43]. High-level diagrams are presented
for each MSHN component, with arrows indicating the
direction of communication or action. In addition to these
diagrams, a short description of each component’s
functions is given. In the description of the MSHN
architecture, we represent MSHN components and
external components as Unified Modeling Language
(UML) actors [8]. The symbols used for this
representation are shown in Figure 3. The core MSHN
components include the Scheduling Advisor (SA), the
Client Library (CL), the Resource Status Server (RSS), the
Resource Requirements Database (RRD), the Daemon (D)
and the Application Emulator (AE).

5As in any RMS, assurance of MSHN's security properties is built on and
limited by the effectiveness of the security environment provided by the
underlying operating system(s) and hardware base(s).

SA Scheduling Advisor A Application

CL Client Library AE
Application
emulator

RSS
Resource Status Server AM

MSHN-aware
application

RRD Resource Requirements
Database R Resource

VIS VisualizerDaemonD

Figure 3 Symbols representing actors in the
MSHN architecture.

Scheduling Advisor (SA) functionality. The primary
responsibility of the SA is to determine the best
assignment of resources to a set of applications, based on
the optimization of a global measure, which we describe in
the next section. The SA depends on the RRD and the
RSS in order to identify an operating point that optimizes
the global measure. It responds to resource assignment
requests from the CL. When appropriate, the SA requests
application adaptations via the CL. The SA is also
responsible for establishing callback criteria (thresholds)
with the RSS and RRD. All MSHN components update
the MSHN Visualizer with all significant display and post-
mortem analysis events.

SA

CL
RSS

RRD VIS

Client Library (CL) functionality. The CL is linked
with both adaptive and adaptation-aware applications. It
provides a transparent interface to all of the other MSHN
components. The CL intercepts system calls to collect
resource usage and status information, which is forwarded
to the RRD and the RSS. The CL also intercepts calls that
initiate new processes (such as exec()) and consults the
SA for the best place to start that process. It requests
(possibly remote) daemons to execute applications based
on the SA’s advice. The CL invokes adaptation on
adaptation-aware applications when notified by the SA via
callbacks. One such invocation is the special case of
setting emulator parameters.

R

VIS

CL

SA

A
AE

AM

RSS

RRD

D

Resource Status Server (RSS) functionality. The role
of the RSS is to maintain a repository of the three types of
information about the resources available to MSHN:
relatively static (long-term), moderately dynamic
(medium-term), and highly dynamic (long-term)
information. The RSS is updated with current data via the
CL or through a system administrator. The RSS responds
to SA requests with estimates of currently available
resources. The SA sets up callbacks with the RSS based
on resource availability thresholds and CL update
frequency requirements.

RSS

CL

SA

VIS

Resource Requirements Database (RRD)
functionality. The RRD is a repository of information
pertaining to the resource usage of applications. The RRD
provides this information to the SA. Callbacks to the SA
are based on either the occurrence of a threshold violation
or update frequency requirements. It is updated by the
CL.

CL

SA

RRD

VIS

Daemon (D) functionality. The MSHN Daemon
executes on all compute resources available for use by the
SA. Its sole purpose is to start applications as requested
by the CL. It therefore has the capability and
responsibility of initiating the default application emulator
at start-up to determine resource status information.

D

VISA

AE

AM CL

Application Emulator (AE) functionality. The AE
emulates a running application by stressing particular
resources in the same way as the real application does.
The AE serves two purposes: The first is to run simulated
applications (that statistically leave the same resource
usage footprint of the real applications) without the
overhead and uncertainty of actually installing,
maintaining, and running that particular application. The
second is to be a monitor, in the absence of any other
MSHN-scheduled applications. That is, it can determine
the status of resources that are not being otherwise used by
MSHN-scheduled applications, and therefore not being
monitored by an existing CL. The Daemon starts one
instance of the AE, by default, at startup. Other instances
may be started at any other time through a command
interpreter or other application.

CLAED

3. MSHN Research Issues

In this section of the paper, we describe some of the
major issues being investigated by the MSHN team
members. We also briefly summarize some of the results
to date. Of course, there is not sufficient space to
completely describe all of the issues and results in detail,
so the reader is also referred to relevant papers on each
topic. We have attempted to associate the issues with the
component of the MSHN architecture that they most
strongly affect. However, certainly many issues that affect
the Scheduling Advisor also affect the Resource Status
Server and Resource Requirements Database.
Additionally, this work is non-orthogonal to research
being done by many investigators outside of the MSHN
team who are examining such issues as how QoS
requirements are derived from smart compilers and how
they can be best expressed.

3.1. Scheduling Advisor research issues

In this section we discuss some issues that most
strongly affect the Scheduling Advisor. First, we examine
how to quantify the needs of all of the processes that
require resource allocation by the Scheduling Advisor.

Then, we consider the ramifications of not precisely
knowing the resource requirements, and consequently, the
exact future status of all of the resources. Finally, we
discuss the class of heuristics that have thus far been
implemented in MSHN and why there is a need for a
variety of heuristics.

3.1.1. Optimization criteria. Optimal resource
allocation always involves attempting to solve an
optimization problem, which is usually NP-complete.
SmartNet’s primary optimization criterion was to
minimize the time at which an application completes,
assuming that all of the applications were of a particular
form. Later versions of SmartNet also accounted for
priorities. MSHN maximizes a weighted sum of values
that represents the benefits and costs of delivering the
required and desired QoS (including security, priorities,
and preferences for versions), within the specified
deadlines, if any. We now discuss the effect of each of
these attributes on the optimization criteria.

• MSHN’s consideration of security as an
optimization criterion allows the trade-off of
security with other QoS constraints when there are
insufficient resources to complete all requests.
This is done in a fashion similar to other recent
projects [45]. MSHN associates a cost to security
levels that varies, depending upon which resources
are being used to obtain a given level of security
(for more details on security viewed as a QoS
parameter, see section 3.2).

• MSHN attempts to account for both preferences for
various versions and priorities. That is, when it is
impossible to deliver all of the most preferred
information within the specified deadlines due to
insufficient resources, MSHN’s optimization
criteria are designed to favor delivering the most
preferred version to the highest priority
applications.

• In MSHN’s optimization criteria, deadlines can be
simple or complex. That is, sometimes a user will
be satisfied if a result is received before a specific
time. Other times, a user would like to associate a
more general benefit function, which would
indicate that information might have different
values based upon when it is received.

Further information about MSHN’s optimization
criteria can be found elsewhere [22][30].

In addition to a cost function that is optimized,
optimization problems usually have a set of constraints
that must be met in order for a solution to be viable. The
constraints of a resource allocation optimization problem
are that the resources allocated to meet the needs of the
processes must be less than or equal to the available
resources at any point in time. The actual inequalities
required not only depend upon the QoS constraints, but

also upon the sharing policies used by the local operating
systems and network protocols, and upon the granularity
with which both those policies and resource usage should
be known (see Granularity Issues in Section 3.2).

3.1.2. Inexact knowledge of job resource usage. Even
if it is possible to find a perfect solution to the
optimization problem that is posed by instantiating the
constraints and optimization criteria to the current
situation, the expected resource usage of any given
application is often only an estimate. In real-time systems,
the worst case estimate is often used to assign resources to
processes; however, many other systems use the mean
expected resource usage. Our recent analysis has revealed
that using the mean will cause the actual run-time to be
generally underestimated and that a better assignment can
be made if both the mean and distribution of the expected
resource usage is accounted for, when appropriate [28].

This leads to another question concerning whether the
extra complexity involved in using a sophisticated
heuristic will yield a better schedule than using a simple
heuristic if the actual variance of run-times is large, and
scheduling is done using the mean, or both the mean and
the distribution. Our recent results in this area have shown
that, in many cases, complex heuristics can determine
schedules that, when executed, sometimes perform much
better than the schedules derived from very simple
heuristics, even when the variance is large. However,
sometimes very simple heuristics perform just as well as
the more complex ones. The difference in quality of the
schedules produced by the various heuristics was found to
be closely correlated with the type of heterogeneity in a
system. For example, when both the machine and
application heterogeneity is very low, a simple heuristic
performs just as well as more complex ones. Several
papers have described our results concerning this research
[2][3][10][40].

3.1.3. Performance of search algorithms. SmartNet’s
organization leveraged the idea of independence of search
algorithms and optimization criteria. That is, most
heuristics for searching the space of mappings can be
modified to search for solutions to different optimizations
within the same space. For example, Dantzig’s Simplex
Method is useful with all problems whose optimization
criteria and constraint inequalities can be stated using only
linear combinations of the variables. Sometimes, many
different heuristics will work, but, depending upon the
characteristics of a given problem, certain heuristics may
be preferable to others. For example, the MSHN team has
obtained extensive results identifying the regions of
heterogeneity where certain heuristics perform better than
others for maximizing throughput by minimizing the time
at which the last application, of a set of applications,
should complete [2][3][10][40]. Re-targeting of these

heuristics to other optimization criteria is currently
underway.

Additionally, MSHN team members have performed
extensive research into accounting for dependencies
between applications or processes that make up a single
application [40][47][48][54]. This includes promising
results from investigating data dependencies and mapping
of iterative applications [1][4][5][6][11].

3.2. Resource Status Server and Resource
Requirements Database research issues

Part of the MSHN team’s investigation has been aimed
at determining what information should be stored in the
Resource Requirements Database and maintained by the
Resource Status Server. First, a taxonomy for the types of
information that could be stored there was required. We
discuss this taxonomy below. We also discuss the impact
that viewing security as a QoS has on these two MSHN
components. Finally, one of the most important issues in
designing effective RMSs is determining the level of
granularity of information that must be maintained
concerning the status of resources and the requirements of
applications. We now discuss each of these issues in
somewhat more detail and refer the interested reader to
relevant publications.

3.2.1. A taxonomy. The MSHN team has formulated a
three-part taxonomy for classifying systems. The three
different components include methods for describing the
applications, the computing environment, and the mapping
strategy that is used. Some of the relevant characteristics
that need to be instantiated concerning each application
include
(i) Its size, that is the number of tasks or sub-tasks

associated with it.
(ii) Whether the sub-tasks are independent of one

another or, if they are dependent, the types of
dependencies.

(iii) The I/O distributions of the application and the
sources of the I/O, i.e., whether it performs all
input in the beginning and all output at the end or
whether one or the other is performed
continually throughout the lifetime of the
processes and whether the input data is obtained
through interacting with a person or some other
source that has highly variable response times.

(iv) The deadlines and other QoS requirements,
including security, if any, associated with the
applications and/or the subtasks that comprise
the application.

Similarly, the computing environments and mapping
strategies have numerous, hierarchically characterizable,
attributes that are more fully documented in other
publications [9].

3.2.2. Security as a quality of service. Security in the
context of QoS is a current research area [34][45]. The
security capabilities of resources and security
requirements of applications must influence the
assignment of applications to resources. We can obtain
information concerning the user security requirements
from the Resource Requirements Database and
information concerning the security capabilities of the
resource from the Resource Status Server. For example, if
the output of an application must be encrypted using a
particular algorithm, with a key size chosen within a
particular range, then that requirement must be stored in
the Resource Requirements Database along with the
amount of data that must be encrypted. Also, the
Resource Status Server must know whether each particular
computing resource is capable of performing the required
cryptographic algorithm and the cost, in terms of run-time
per byte, for example, of encrypting the data. Members of
the MSHN team have developed an initial framework,
which they are currently refining, for characterizing the
overall security attributes of a network and for
determining a cost and benefit value for providing
required and preferred security to an application
[26][27][33][34].

3.2.3. Granularity issues. Another very important
question that concerns both the Resource Requirements
Database and the Resource Status Server has to do with
how much detail should be maintained concerning the
status of resources and the requirements of applications.
Obviously, while a very accurate, detailed set of
information might prove quite useful to the scheduling
algorithms, it would be at the least very expensive and
difficult to collect if not expensive to process within the
algorithm itself.

The MSHN team has obtained initial estimates for the
overhead of capturing system calls to determine the cost of
collecting various granularities of such information [44].
Members of the team are currently using this technique to
record fine-grained information for a program that
analyzes air tasking orders and will report both the
information concerning the resources that were used, as
well as the overhead involved in collecting the resource
usage information [41].

In addition to the cost associated with collecting fine-
grained information concerning applications’ use of
resources, there is the question of how much information
is sufficient. Current experiments of the MSHN team
focus on determining whether fairly simple models can be
used to predict the relative performance of
application/resource assignments. To perform realistic
experiments, the team has built an initial application
emulator (see below) and is actually executing it with
different parameters on different systems, using all

possible configurations to compare the actual received
QoS to the predicted QoS. Thus far we have determined
that the Resource Status Server must, directly or
indirectly, contain information concerning whether native
threads are supported by the operating system. If this
information is not maintained, the scheduling algorithm,
which must choose between two platforms that are
identical except for the operating system version that they
execute, may assign a process which could be handled
better by one platform to the other. Similarly, the
Resource Requirements Database must indicate whether or
not the application is multi-threaded and the number and
nature of threads that it uses. Information concerning
these results can be found in other publications [12].

3.3. Application Emulator research issues

The MSHN team is designing and implementing an
application emulator for two different reasons. One reason
is that it is needed within the MSHN architecture to
monitor the end-to-end status of the resources. The other
reason is to be able to easily construct a very large suite of
application emulators that place loads on resources in the
same way that the actual applications would. When used
in conjunction with resource usage measurements from
linking actual applications to MSHN’s Client Library, the
MSHN Application Emulator can be used to emulate the
execution of the actual applications without requiring the
applications to actually be ported to many different
platforms. The obvious advantage of using such an
application emulator, rather than porting the applications
themselves, is to enable the MSHN researchers to test their
architecture more quickly under many different situations.

To meet the first purpose of the MSHN Application
Emulator, we first had to define the meaning of loading
resources for various resources. Percentages cannot be
used, as they are not transferable between either
computing platforms or network media. Rather, each
category of resource was identified and units that can be
most easily translated between different platforms, such as
FLOPS and bytes/sec, were chosen to quantify resource
use. Also recognized at this stage was the need to have
both multi-threaded and non-multi-threaded application
emulator capability. Finally, not only can a single
application be comprised of multiple threads, but it can
also be comprised of multiple heavy-weight processes.

When designing the Application Emulator to meet both
of its requirements, we recognized that distributions
reflecting communication and computation alone were
insufficient; conditional probabilities were required. That
is, many times the purpose of one process sending a
message to another process is so that the receiving process
will perform work on behalf of the sending process.
Therefore, we designed our most general emulator to also
have the capability of sending work-bearing messages.

To this end, we have completed an initial
implementation of an application emulator that we have
used for our granularity research and are testing the more
general application emulator. Documentation concerning
both of these application emulators can be found
elsewhere [12] [15].

3.4. Client Library research issues

The research issues having to do with the Client
Library component involve both mechanism and policy.
The mechanism issues have to do with how to
transparently link the Client Library with applications.
Previous research in the areas of process migration and
tools for debugging parallel and distributed programs
provide us with easy solutions, as mentioned earlier.
Therefore, the only issue that remains is how best to
transparently determine the end-to-end availability of
resources. First, simply determining that the Client
Library could perform this functionality better than
providing the functionality external to the applications
themselves is an important contribution. However,
determining the average end-to-end availability of a
network resource is not a trivial problem. The MSHN
team’s initial progress in this area has already been
detailed elsewhere [30][31][44].

4. Summary and future work

In this paper we summarized the purpose of a resource
management system (RMS) in general and the research
goals of one particular experimental RMS, the
Management System for Heterogeneous Networks
(MSHN). Motivation was provided for all of the major
components of MSHN, and the architecture that contains
those components was explained. Some of the research
questions that the MSHN researchers are seeking answers
to were described. References were provided that enable
the reader to better understand MSHN, and to learn more
about the MSHN experiments. There are many other
interesting RMS research projects in progress today, but
space permitted us to survey only a few of them. In
addition to continuing the on-going experiments described
in the paper, future MSHN investigation will focus on (i)
reaching a better understanding of the level of granularity
obtainable from applications and the level required to
perform sufficiently good resource assignment; (ii) more
detailed characterization of security costing and metrics;
and (iii) determining the best search algorithms to use for
the MSHN optimization criteria under various conditions.

Acknowledgments – The authors thank Shushanna St.
John and LCDR Wayne Porter for their comments.

References

[1] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A
unified resource scheduling framework for heterogeneous
computing environments,” Proc. 8th IEEE Heterogeneous
Computing Workshop, April 1999.

[2] R. Armstrong, Investigation of Effect of Different Run-Time
Distributions on SmartNet Performance, Thesis,
Department of Computer Science, Naval Postgraduate
School, Monterey, CA, Sept. 1997.

[3] R. Armstrong, D. Hensgen, and T. Kidd, “The relative
performance of various mapping algorithms is independent
of sizable variances in run-time predictions,” Proc. 7th IEEE
Heterogeneous Computing Workshop, March 1998, pp. 79-
87.

[4] P. B. Bhat, V. K. Prasanna, and C.S. Raghavendra,
“Adaptive communication algorithms for distributed
heterogeneous systems,” Proc. IEEE Intl. Symp. High
Performance Distributed Computing, July 1998, pp. 310-
321.

[5] P. B. Bhat, V. K. Prasanna, and C.S. Raghavendra, “Block-
cyclic redistribution over heterogeneous networks,” Proc.
ISCA Intl. Conf. Parallel and Distributed Computing
Systems, Sept. 1998, pp. 242-249.

[6] P. B. Bhat, V. K. Prasanna, and C.S. Raghavendra,
“Efficient collective communication in distributed
heterogeneous systems,” Proc. IEEE Intl. Conf. Distributed
Computing Systems, 1999, to appear.

[7] K. Birman, “Replication and fault-tolerance in the ISIS
system,” 10th ACM Symposium on Operating Systems
Principles, Dec. 1985, pp. 79-86.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, Reading,
MA, 1999.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
and B. Yao, “A taxonomy for describing matching and
scheduling heuristics for mixed-machine heterogeneous
computing systems,” Proc. IEEE Workshop on Advances in
Parallel and Distributed Systems, October 1998, pp. 330-
335 (included in the proceedings of the 7th IEEE
Symposium on Reliable Distributed Systems, 1998).

[10] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
B. Yao, D. Hensgen, and R. F. Freund, “A comparison
study of static mapping heuristics for a class of meta-tasks
on heterogeneous computing systems,” Proc. 8th IEEE
Heterogeneous Computing Workshop, April 1999, to
appear.

[11] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, “A
method for the on-line use of off-line derived remappings of
iterative automatic target recognition tasks onto a particular
class of heterogeneous parallel platforms,” The Journal of
Supercomputing, Vol. 12, No. 4, Oct. 1998, pp. 387-406.

[12] P. Carff, Granularity, Thesis, Department of Computer
Science, Naval Postgraduate School, Monterey, CA, March
1999.

[13] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng, P. Steenkiste,
E. Takahashi, and H. Zhang, “Darwin: Resource
Management for Value-Added Customizable Network

Service,” Proc. 6th IEEE International Conference on
Network Protocols, October 1998, pp. 177-188.

[14] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis, S.
Martin, W. Smith, and S. Tuecke, “A resource management
architecture for metacomputing systems,” Proc. Workshop
on Job Scheduling Strategies for Parallel Processing, 1998,
pp. 62-82.

[15] T. Drake, A Load Emulator Toolkit and Analysis of HiPer-D
Resource Requirements, Thesis, Department of Computer
Science, Naval Postgraduate School, Monterey, CA, June
1999.

[16] S. Fickas, and M. S. Feather, “Requirements Monitoring in
Dynamic Environments,” Proc. 2nd IEEE Intl. Symposium
on Requirements Engineerings, March 1995, pp. 140-147.

[17] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed Computations,”
Proc. 6th IEEE Symp. on High-Performance Distributed
Computing, 1997, pp. 365-375.

[18] I. Foster, and C. Kesselman, “The Globus project: a status
report, “ Proc. 7th IEEE Heterogreneous Computing
Workshop, 1998, pp. 4-18.

[19] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.
Halderman, D. Hensgen, E. Kieth, T. Kidd, M. Kussow, J.
D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel,
“Scheduling resources in multi-user, heterogeneous,
computing environments with SmartNet,” Proc. 7th IEEE
Heterogeneous Computing Workshop, March 1998, pp. 184-
199.

[20] D. Hensgen, Squads: Server Groups that Dynamically
Adapt to Improve Performance, Ph. D. Dissertation,
Department of Computer Science, University of Kentucky,
1989.

[21] D. Hensgen, and R. Finkel, “Dynamic server squads in
Yackos,” Proc. Workshop on Experiences with Building
Distributed and Multiprocessor Systems, Oct. 1989, pp. 73-
90.

[22] D. Hensgen, T. Kidd, H. J. Siegel, J. K. Kim, D. St. John, C.
Irvine, T. Levin, V. Prasanna, and R. Freund, A
performance measure for distributed heterogeneous
networks based on priorities, deadlines, versions, and
security, Technical Report, School of Electrical and
Computer Engineering, Purdue University, West Lafayette,
IN, Feb. 1999.

[23] D. Hensgen, L. Moore, T. Kidd, R. F. Freund, E. Keith, M.
Kussow, J. Lima, and M. Campbell, “Adding rescheduling
to and integrating Condor with SmartNet,” Proc. 4th IEEE
Heterogeneous Computing Workshop, April 1995, pp. 4-11.

[24] J. Huang, R. Jha, W. Heimerdinger, M. Muhammad, S.
Lauzac, B. Kannikeswaran, K. Schwan, W. Zhao and R.
Bettati, “RT-ARM: a real-time adaptive resource
management system for distributed mission-critical
applications”, Workshop on Middleware for Distributed
Real-Time Systems, 1997, pp. 179-186.

[25] O. Ibarra and Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” Journal of
the ACM, Vol. 24, No. 2, 1977, pp. 280-289.

[26] C. Irvine and T. Levin, A note on mapping user-oriented
security policies to complex mechanisms and services,
Technical Report, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, in progress.

[27] C. Irvine and T. Levin, Toward a taxonomy and costing
method for security metrics, Technical Report, Department
of Computer Science, Naval Postgraduate School,
Monterey, CA, in progress.

[28] T. Kidd and D. Hensgen, Why the Mean is Inadequate for
Making Scheduling Decisions, Technical Report,
Department of Computer Science, Naval Postgraduate
School, Monterey, CA, Jan. 1999.

[29] T. Kidd, D. Hensgen, R. Freund, and L. Moore, “SmartNet:
a scheduling framework for heterogeneous computing,”
Proc. 2nd Intl. Symposium on Parallel Architectures,
Algorithms, and Networks, June 1996, pp. 514-521.

[30] J. P. Kresho, Quality Network Load Information Improves
Performance of Adaptive Applications, Thesis, Department
of Computer Science, Naval Postgraduate School,
Monterey, CA, Sept. 1997.

[31] J. P. Kresho, D. Hensgen, T. Kidd, and G. Xie,
“Determining the accuracy required in resource load
prediction to successfully support application agility,”
Proc. 2nd IASTED Intl. Conf. European Parallel and
Distributed Systems, July 1998, pp. 244-254.

[32] J. Larus and E. Schnarr, “EEL: machine-independent
executable editing,” SIGPLAN PLDI 95, 1995, pp. 291-300.

[33] T. Levin and C. Irvine, An approach to characterizing
resource usage and user preferences in benefit functions,
Technical Report, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, in progress.

[34] T. Levin and C. Irvine, Quality of security service in a
resource management system benefit function, Technical
Report, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, in progress.

[35] J. W. S. Liu, K. Nahrstedt, D. Hull, S. Chen, and B. Li,
EPIQ QoS Characterization, Draft Version, July 1997,
http://epiq.cs.uiuc.edu/files/qos-970722.pdf .

[36] M. Livny, M. Litzkow, T. Tannenbaum, and J. Basney,
“Checkpoint and migration of UNIX processes in the
Condor distributed processing system,” Dr Dobbs Journal,
Feb. 1995, pp. 40-51.

[37] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken,
“Specifying and measuring quality of service in distributed
object systems,” Proc. 1st Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, April 1998, pp.
20-22.

[38] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems,”
Proc. 8th IEEE Heterogeneous Computing Workshop, April
1999, to appear.

[39] M. Maheswaran, T. D. Braun, and H. J. Siegel,
“Heterogeneous distributed computing,” Encyclopedia of
Electrical and Electronics Engineering, J. Webster, ed.,
John Wiley & Sons, New York, NY, to appear 1999.

[40] M. Maheswaran and H. J. Siegel, “A dynamic matching and
scheduling algorithm for heterogeneous computing
systems,” Proc. 7th IEEE Heterogeneous Computing
Workshop, Mar. 1998, pp. 57-69.

[41] N. W. Porter, Resource Requirement Analysis of GCCS
Modules and EADSim and Determination of Future
Adaptivity Requirements, Thesis, Department of Computer
Science, Naval Postgraduate School, Monterey, CA, June
1999.

[42] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D.
Laforenza, J. Simon, T. Römke, and F. Ramme, “The MOL
project: an open extensible metacomputer,” Proc. 6th IEEE
Heterogenous Computing Workshop, April 1997, pp. 17-
31.

[43] D. St. John, S. Kidd, D. Hensgen, T. Kidd, and M. Shing,
Experiences using semi-formal methods in MSHN,
Technical Report, Department of Computer Science, Naval
Postgraduate School, Monterey, CA, Feb. 1999.

[44] M. C. L. Schnaidt, Design, Implementation, and Testing of
MSHN’s Application resource Monitoring Library, Thesis,
Department of Computer Science, Naval Postgraduate
School, Monterey, CA, Dec.1998.

[45] P. Schneck and K. Schwan. "Dynamic authentication for
high-performance networked applications," Proc. 6th

IEEE/IFIP Intl. Workshop on Quality of Service, May 1998,
pp. 127-136.

[46] J. Sydir, B. Sabata, and S. Chatterjee, " QoS middleware for
the next-generation Internet," position paper, Proc.
NASA/NREN Quality of Service Workshop, Aug. 1998, pp.
25-27.

[47] M. Tan and H. J. Siegel, “A stochastic model for
heterogeneous computing and its application in data
relocation scheme development,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 9, No. 11, Nov.
1998, pp. 1088-1101.

[48] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li,
“Minimizing the application execution time through
scheduling of subtasks and communication traffic in a
heterogeneous computing system,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 8, No. 8, Aug. 1999,
pp. 857-871.

[49] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr, Building adaptive systems using Ensemble, Cornell
University Technical Report, TR97-1638, July 1997.

[50] R. van Renesse, K. Birman, and S. Maffeis, “Horus, a
flexible group communication system,” Communications of
the ACM, April 1996, pp. 76-83.

[51] R. van Renesse and A. S. Tanenbaum, “Distributed
operating systems,” ACM Computing Surveys, Vol. 17, No.
4, Dec. 1985, pp. 419-470.

[52] R. Vanegas, J. A. Zinky, J. P. Loyall, D. A. Karr, R. E.
Schantz, and D. E. Bakken. “QuO's runtime support for
quality of service in distributed objects,” Proc. IFIP Intl.
Conf. on Distributed Systems Platforms and Open
Distributed Processing , Sept. 1998, pp. 207-222.

[53] J. Walpole, C. Krasic, L. Liu, D. Maier, C. Pu, D.
McNamee, and D. Steere, "Quality of service semantics for
multimedia database systems," Proc. Data Semantics 8:
Semantic Issues in Multimedia Systems IFIP TC-2 Working
Conference, Jan. 1999, pp. 393-412.

[54] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a genetic-
algorithm-based approach,” Journal of Parallel and
Distributed Computing, Vol. 47, No. 1, Nov. 199, pp. 8-22.

[55] L. R. Welch, B. Ravindran, B. A. Shirazi, and C.
Bruggeman, Specification and modeling of dynamic,
distributed real-time systems, Technical Report Number
TR-CSE-98-003, Department of Computer Science and

Engineering, The University of Texas at Arlington,
Arlington, TX, Sept. 1998.

[56] L. R. Welch, B. Ravindran, B. A. Shirazi, and C.
Bruggeman, “DeSiDeRaTa: QoS Management Technology
for Dynamic, Scalable, Dependable, Real-time Systems,”
Proc. 15TH IFAC Workshop on Distribute Computer Control
Systems, Sept. 1998, pp. 7-12.

[57] R. E. Wright, Management System for Heterogeneous
Networks Security Services, Thesis, C4I Academic Group,
Naval Postgraduate School, Monterey, CA, June 1998.

[58] R. E. Wright, D. J. Shifflett, and C. E. Irvine, “Security for a
virtual heterogeneous machine,” Proc. 14th Computer
Security Applications Conference, Dec. 1998, pp. 167-177.

Biographies

Debra Hensgen received her PhD in the area of Distributed
Operating Systems from the University of Kentucky. She is an
Associate Professor in the CS Department at The Naval
Postgraduate School. She has co-authored numerous papers
about the Concurra toolkit for automatically generating safe,
efficient concurrent code, the Graze parallel processing
performance debugger, the SAAM path information base, and the
SmartNet and MSHN Resource Management Systems.
Taylor Kidd obtained his PhD from the University of California
at San Diego in 1991. His interests include both theoretical and
applied distributed computing. He led the research component of
the SmartNet team at NRaD and instigated a number of
important advances to the SmartNet Scheduling Framework. He
is a co-PI for the DARPA-sponsored MSHN project and a co-
investigator on the DARPA-sponsored SAAM Project.
David St. John is the head of staff at the Heterogeneous
Network & Computing Laboratory, Naval Postgraduate School.
He has over six years experience in object-oriented software
development in the areas of distributed computing, process
control, sensor collection, and Internet transaction processing
systems. He is a member of IEEE and IEEE Computer Society.
He received a BSME with High Honors from the University of
Florida and an MSE from the University of California, Irvine.
Matt Schnaidt earned his professional engineering license while
serving as the Battalion Adjutant. He received an MS from the
Computer Science Department of the Naval Postgraduate School
in 1998. Currently, Major Schnaidt is working on the Battle
Management Command, Control and Communication component
of the National Missile Defense Program.
H. J. Siegel is a Professor in the School of Electrical and
Computer Engineering at Purdue University. He is an IEEE
Fellow and an ACM Fellow. He received two BS degrees from
MIT, and the MA, MSE, and PhD degrees from Princeton
University. He has coauthored over 250 technical papers, was a
Coeditor-in-Chief of the Journal of Parallel and Distributed
Computing, and was an editor of the IEEE Transactions on
Parallel and Distributed Systems.
Tracy D. Braun is a PhD student and Research Assistant at
Purdue University. He received his BSEE with Honors and High
Distinction from the University of Iowa in 1995. In 1997, he
received his MSEE from the School of Electrical and Computer
Engineering at Purdue. He is a member of IEEE, IEEE Computer
Society, and Eta Kappa Nu honorary society. His research
interests include parallel algorithms, heterogeneous computing,
computer security, and software design.

Muthucumaru Maheswaran is an Assistant Professor in the
Department of Computer Science at the University of Manitoba,
Canada. He received a BSc degree from the University of
Peradeniya, Sri Lanka and the MSEE and PhD degrees from
Purdue University. He received a Fulbright scholarship to pursue
his MSEE degree at Purdue University. His research interests
include computer architecture, distributed computing,
heterogeneous computing, and resource management systems for
metacomputing.
Shoukat Ali is an MSEE student at the School of Electrical and
Computer Engineering at Purdue University. His main research
topic is dynamic mapping of meta-tasks in heterogeneous
computing systems. He has held teaching positions at Aitchison
College and Keynesian Institute of Management and Sciences,
both in Lahore, Pakistan. Shoukat received his BS degree from
the University of Engineering and Technology, Lahore, Pakistan
in 1996. His research interests include computer architecture,
parallel computing, and heterogeneous computing.
Jong-Kook Kim is an MSEE student and Research Assistant in
the school of Electrical and Computer Engineering at Purdue
University, currently working on the DARPA/ISO sponsored
BADD program. He received his BSEE from Korea University,
Korea. He served in the ROK Army working with the US Army
on the Theater Automated Command and Control Information
Management System and received the US Army Commendation
Medal. His research interests include heterogeneous computing
and performance measures for distributed systems.
Cynthia E. Irvine is Director, Naval Postgraduate School Center
for INFOSEC Studies and Research and an Assistant Professor
of Computer Science at the Naval Postgraduate School. Dr.
Irvine holds a PhD from Case Western Reserve University. She
has over twelve years experience in computer security research
and development. Her current research centers on architectural
issues associated with applications for high assurance trusted
systems, security architectures combining popular commercial
and specialized multilevel components, and the design of
multilevel secure operating systems.
Timothy Levin is currently doing research at the Naval
Postgraduate School. He received a BS in Computer and
Information Science from the University of California at Santa
Cruz, 1981. His secure system work includes design of security
features, and formal verification and formal covert channel
analysis of an A1 operating system, and enterprise security
features for a commercial relational database system. He has
been certified by the NSA as a Vendor Security Analyst, for
participation in their Trusted Product Evaluation Program.
Richard Freund is a founder and CEO of NOEMIX, a San
Diego based startup to commercialize distributed computing
technology. Freund is also one of the early pioneers in the field
of distributed computing, in which he has written or co-authored
a number of papers. In addition he is a founder of the
Heterogeneous Computing Workshop, held each year in
conjunction with IPPS/SPDP. Freund won a Meritorious Civilian
Service Award during his career as a government scientist.
Matt Kussow, B.S.C.S., has 12 years of experience in software
development, research, design, process analysis, and project
management. Currently he holds the position of Vice President
of Product Development at Noemix. He has extensive
experience in designing and developing software for high
performance computing, parallel algorithms, network computing,
and database systems.

Michael Godfrey, B.S. C.I.S, UCSD Java Certified, has over 6
years of software research, design, and development experience
with high performance computing, secure world wide web,
health care, and data base systems for Science Applications
International Corporation (SAIC) and Noemix, Inc. He has
developed systems level applications on a variety of UNIX and
Win32 platforms.
Alpay Duman is a LTJG in the Turkish Navy. He graduated
from the Turkish Naval Academy with a BS in Operations
Research with honors. He received his MSCS degree in the area
of Systems Design and Architecture from the Naval Postgraduate
School. He is currently a systems engineer at Turkish Navy
Software Development Center working on a CORBA based
communication infrastructure for Command Control Systems.
Paul F. Carff, LT US Navy, is a Masters student in the
Computer Science Department at the Naval Postgraduate School,
working on the Management System for Heterogenous Systems
(MSHN). He received a BS in Engineering Physics from Santa
Clara University in 1991. Prior to coming to Naval Postgraduate
School, LT Carff served 3 years as a Nuclear Power Officer
aboard the USS Salt Lake City (SSN 716).
Shirley Kidd is one of the supporting staff at the Heterogeneous
Network & Computing Laboratory. She has 4 years of
experience in the aerospace industry and another 6 years at a
commercial marketing company during which she worked in
both industries as a programmer analyst. She has a BS in Applied
Mathematics from the University of California, San Diego.
Viktor K. Prasanna (V.K. Prasanna Kumar) is a Professor in
the Department of Electrical Engineering Systems, University of
Southern California, Los Angeles. He obtained his PhD in
Computer Science from Pennsylvania State University in 1983.
He has published and consulted for industries in parallel
computation, computer architecture, VLSI computations, and
high performance computing for signal and image processing,
and vision. He serves on the editorial boards of the Journal of
Parallel and Distributed Computing and IEEE Transactions on
Computers. He is the founding Chair of the IEEE Computer
Society Technical Committee on Parallel Processing, and a
Fellow of the IEEE.
Prashanth B. Bhat is a PhD candidate in Computer Engineering
at the University of Southern California, Los Angeles. He
received his B.Tech. degree in Computer Engineering from the
Karnataka Regional Engineering College, India, in 1992. He
received his ME degree in Computer Science and Engineering
from the Indian Institute of Science, Bangalore, in 1994. His
research interests include scheduling techniques for parallel and
distributed systems, High Performance Computing and parallel
computer architecture. During the summer of 1998, he was a
research intern at Hewlett-Packard laboratories, Palo Alto.
Ammar Alhusaini is a PhD student in the Electrical Engineering
Department at the University of Southern California. His main
research interest is task scheduling in heterogeneous
environments. He received an MS degree in computer
engineering from the University of Southern California in 1996.
He is a member of IEEE, IEEE Computer Society, and ACM.

