
1

Abstract

We describe security for a virtual heterogeneous
machine (VHM). Our security architecture is based
upon separation of services into four distinct domains.
It is designed to take advantage of operating system
support for domains, where available. We have chosen
to use emerging public key technology as an interim
solution to provide domain separation. A prototype
demonstration of our architecture has been developed.

1. Introduction

Science, engineering and defense are witnessing the
emergence of a new approach to computation. It
depends not on single isolated centers of excellence for
high performance computing, but upon a network of
computers bound together by an overlying framework
that presents to users a powerful virtual heterogeneous
machine (VHM) intended to support high throughput
computing [19]. Applications may consist of a single
thread of execution, a set of sequential jobs, or may be
parallelized across several components of the
underlying system. Some applications may require a
variety of computational and storage resources ranging
from desktop PCs for the submission of jobs to
supercomputers for computationally intensive tasks.

Efforts are currently underway to define the VHMs
which will manage user tasks. A major research area
for these systems is the formulation of adaptive
scheduling techniques based on task and network
properties. Ultimately, the technologies emerging from
the creation of an advanced computational
infrastructure will be integrated into systems

This work was supported in part by the DARPA/ITO Quorum
Program.
The views expressed in this paper are those of the authors and
do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

supporting finance, industry, and individual users. In
all cases, security is a concern for these systems.

The diversity of the user population employing a
VHM implies that one security solution may not be
appropriate for all individuals or even for all tasks of
one particular individual. We are collaborating in a
research project to investigate the properties and
services of a VHM and are examining security
concerns and technologies in that context. This paper is
a report on the progress of that effort.

We will describe how notions of privilege and
system integrity can be incorporated into an
architecture intended to execute in a heterogeneous
computing environment. The remainder of the paper is
organized as follows. Section 2. outlines the objectives
and high level architecture of the VHM to which our
protection architecture is being applied. Section 3.
describes the security requirements for the system.
Section 4. describes the security architecture we have
developed for the VHM. Our prototype implementation
and its use of the Intel Common Data Security
Architecture, is discussed in section 5. Section 6. will
contrast our work with that of several other VHM
security efforts and will describe our future plans.
Section 7. provides a summary.

2. Management System for Heterogeneous
Networks

The intent of the Management System for
Heterogeneous Networks (MSHN, pronounced
"mission'") is to construct a virtual heterogeneous
machine designed to run as an application on a variety
of operating systems and hardware platforms [11]. It
will provide end-to-end support for applications in
distributed and heterogeneous, shared environments. In
addition to supporting compute-intensive jobs, MSHN
is intended to provide a responsive and flexible
execution environment for real-time, interactive, and
I/O-intensive tasks. When heterogeneous resources are

Security Architecture for a Virtual Heterogeneous Machine

Roger Wright
Computer Science Dept.

Naval Postgraduate School
Monterey, CA 93943

rewright@nps.navy.mil

David J. Shifflett
Rolands and Associates Corp.

500 Sloat Avenue
Monterey, CA 93940
dshifflett@gwdi.com

Cynthia E. Irvine
Computer Science Dept.

Naval Postgraduate School
Monterey, CA 93943

irvine@cs.nps.navy.mil

Proceedings of Fourteenth Computer Security Applications Conference,
Phoenix, AZ. pp. 167--77, December 1998.

2

simultaneously shared by several applications, each
with its own unique quality of service (QoS)
requirement, MSHN will be able to efficiently assign
resources to the applications so that they will attain
their requested QoS.

Each job is characterized by code and a dataset. An
instance of a job will be the code and a particular
dataset and is associated with a particular user. For
each job, MSHN will maintain historical data
describing the job'scompute characteristics. When a
new request to execute the job with a particular dataset
is issued, the scheduler will use the job's compute
characteristics as well as dynamic information about
network and resource loading. The scheduler will make
decisions regarding resource allocation to maximize
the QoS for a particular job. For example, suppose job
A has historically run in 10 minutes on resource X and
in 20 minutes on resource Y. When a request to
execute the job is issued the scheduler may decide to
wait five minutes so that the job can be run on system
X rather than schedule it immediately on system Y. In
an open environment, even when using the same
resource, consistent QoS for jobs may not be
guaranteed. Network congestion and load at the
compute resource can impact job performance.

Use of MSHN is optional. In theory, users could
attempt to decide where a job might best be executed,
however, several projects [14][5] have demonstrated
that a scheduling and job management service can
provide significant benefits, just as traditional
operating systems support applications through local
resource management services.

These early resource management system
demonstrations lacked the ability to address quality of
service requirements in a highly distributed and
dynamic heterogeneous environment. MSHN will
address these issues. It will monitor the load on a large
pool of resources and will advise jobs as to the best
strategy for achieving QoS objectives for a particular
run. It is anticipated that, despite the extra processing
required for MSHN to provide monitoring and
advisory services, the performance advantages will
outweigh the slight computational tax imposed by the
VHM. User involvement in the scheduling and
execution of jobs might be streamlined through the use
of a special MSHN shell that would hide MSHN
processing.

2.1 MSHN VHM
The proposed MSHN VHM [15] consists of five

major components, as depicted in Figure 1: a user
client, three MSHN core services, and a client on each
computational server. (The Audit Server will be

discussed in a subsequent section.) An assumption of
the MSHN architecture is that the physical machines
running MSHN components are not necessarily
dedicated to MSHN processing. Thus, jobs on a
computational server may be divided into two
categories: those taking advantage of the services
provided by MSHN and those that do not.

Client libraries will "wrap" user jobs at the
application origination points and at the compute
resources. These libraries are intended to provide the
services of the MSHN VHM transparently: legacy
application code will require no modification to be
executed in the MSHN environment. Adaptive
applications will benefit from environmental
information that may be signalled to them through the
MSHN services.

The Resource Requirements Database is used to
store initial estimates of per job requirements and to
maintain a record of the resources that have historically
been consumed by a particular job. This may include
the level of service requested by the users as well as
priorities for particular classes of applications. As
experiential data are accumulated, the resource
requirements for the execution of future instances of
the job are adjusted.

The Resource Status Server is the most dynamic of
those maintained by MSHN. Here information
regarding the resource consumption by all currently
executing jobs on the VHM is maintained. In addition,
client library monitors associated with the network and
computational resources provide up-to-date
information regarding the availability of resources on
the VHM.

The Scheduling Server maintains a set of algorithms
used to produce advisory schedules for jobs. If the
Resource Status Server flags a job as being bogged
down, a request may be issued to the scheduler to seek
a better scheduling strategy for the task. That strategy
may include task checkpointing and relocation [16].

A MSHN project goal is to provide support not only
for traditional static applications, but to enhance the
performance characteristics of dynamic and adaptive
applications. This is particularly the case in
environments where the load on resources is not
predictable, but perhaps best characterized
probabilistically. Consider, for example, an adaptive
application in which a user asks for time-critical
processing that will return high precision and high
fidelity results. As the application is executed, MSHN
will use the client libraries associated with all jobs on
the VHM to monitor the resources of the VHM,
quantifying and accounting for uncertainty throughout
the distributed processing mechanism. Intermediate
reports on job status and resource usage are transmitted

3

by the client libraries to the Resource Status Server.
Should available resources be insufficient to achieve
the original time, precision and fidelity objectives, the
MSHN Scheduler will trigger a notification to the
client library of the affected application. In the case of
an adaptive application, the application can adapt to the
changed environment, thus satisfying modified, and
realistically achievable QoS objectives. Special client
libraries could provide adaptivity services to legacy
applications. Upon completion of the task, results are
returned to the user, while a summary of resource
usage by the job is recorded in the Resource
Requirements Database.

MSHN jobs consist of both code and the data set to
be processed by that code. The need to define the job
both in terms of its code and data set, or at least a
characterization of the data set, arises from quality of
service objectives for each job. Consider for example,
code that will compute Fast Fourier Transforms (FFTs)
on seismic data. Clearly the granularity and duration of
the data will affect the amount of processing required.

Hence, despite the fact that the code applied to both a
short event and a long one is the same, the jobs differ
in terms of the computational resources they will
consume. As noted above, a variety of QoS
requirements may also be associated with a job. Of
course, a group of security requirements may also be
bound to an instance of a job as a result of the
particular code or data involved. A detailed discussion
of application security requirements will be given in
the next section.

3. Security Requirements

The MSHN security mechanisms are intended for
an environment in which users elect to use MSHN
services to enhance the quality of service they receive
on their jobs. Users request advisory schedules from
MSHN core services. When the schedule is returned,
jobs are submitted to compute resources under user
control and executed in the context of user accounts.
Dynamic and summary job status information is
reported to MSHN core services via client libraries
which "wrap" the user's unaltered job. During job

Audit
Server

Resource
Requirements

Database

query/
response

job

Compute
Resource

Job
Origination

job execution
submission

Resource
Status
Server

Scheduling
Server

application

client libraries

MSHN core

update

or
Client

User Client

scheduling
request

update

query/
response

AuditAudit
Audit

Audit

Audit

Key

Figure 1. MSHN Architecture

4

execution, the MSHN scheduler may send revised
scheduling information to the client libraries. Under
certain conditions, a job may be moved to a different
compute resource. If the job is adaptive, information
relayed by the MSHN scheduler permits the job to
modify its runtime characteristics in order to achieve
desired quality of service goals.

This sketch of MSHN activity shows that the VHM
depends upon communication between distributed
hosts: those providing MSHN core services and those
executing client libraries on behalf of users. In the
remainder of this section we will present our approach
to providing for the integrity of MSHN core
components and client services within the networked
environment. In addition, we will describe how the
MSHN core supports security requirements such as
integrity and confidentiality for the jobs it manages.

3.1 General Constraints and Assumptions
Certain MSHN design goals affect several choices

regarding the security architecture. These are:
• Use of MSHN is optional. An advisory schedule

obtained from the MSHN Scheduler is optional. A
user may still choose to execute a job using MSHN
clients at compute resources, but the compute
resources selected by the user may not correspond
to those suggested by the MSHN Scheduler.

• MSHN will not require modification of existing
applications.

• MSHN will not require modification to the
underlying operating system of any system it uses.
This includes MSHN user clients, servers hosting
MSHN core components, and MSHN services on
compute resources.

• No MSHN component will have arbitrary control
over any host. By this we mean that execution of
MSHN will not require supervisory or, in Unix
terminology, "root" privilege.

• It is assumed that users do not wish to subvert their
own jobs with bogus run-time parameters, which
would also result in corruption of the Resource
Requirements Database. (Users can, of course,
always elect to execute their jobs without the
benefit of MSHN services.)

• User jobs are not required to reside permanently at
compute resources. Code and data can either be
bundled and sent to compute resources with the
request for execution. Eventually, the MSHN client
libraries are envisioned to be capabile of fetching
code and data for a job from appropriate
repositories.
Assumptions applicable to the security architecture

are:

• A user will not attempt to corrupt his own jobs. If a
user is concerned that his jobs will be corrupted by
other jobs he may be executing on a compute
resource, then the best remedy is to establish a
separate principle for the execution of jobs managed
by MSHN. The underlying operating system,
through its mechanisms for the separation of user
processes is expected to support this objective.

• Users will be required to log in when accessing
compute resources, thus execution on resources will
be by a principle representing the user rather than
the MSHN core.

• For each user, MSHN will maintain a list of
compute resources for which the user is authorized.

• MSHN will rely upon the existence of a public key
infrastructure (PKI). The security architecture
depends upon the existence and integrity of standard
directory services such as X.500 or LDAP and the
provision of standardized certificates such as those
defined by X.509 v3. All elements of the MSHN
architecture must have facilities to support
certificate-based public key technology. Support for
symmetric key cryptography is also required in
most applications of public key cryptography.

• It is assumed that the MSHN client libraries do not
contain malicious code.

• Compute resources will be known to the MSHN
core. The list of resources will be administratively
updated.

3.2 Policy
The security policy we wish to enforce for the

MSHN components is as follows.
• Only authorized elements of the MSHN core

services, such as the MSHN Scheduler, can query
the Resource Status Server and the Resource
Requirements Database for job status information.
(Authentication and Access Control)

• Communications between the elements of the
MSHN core services should be protected from
unauthorized modification and disclosure.
(Communications Integrity and Confidentiality)

• Status and summary information provided by client
libraries to the Resource Status Server and Resource
Requirements Database should be identifiable to the
granularity of a particular run of a user job. This
will prevent bogus updates to MSHN databases by
malicious jobs outside of MSHN’s purview. It will
also permit the identification of rogue jobs which
may have been corrupted and are misbehaving.
(Authentication, Access Control and Denial of
Service)

• Status and summary information provided by client

5

libraries to the MSHN core databases should be
protected from unauthorized modification and
disclosure while in transit. (Communications
Integrity and Confidentiality)

• Dynamic scheduling advice provided by the MSHN
Scheduler to client libraries supporting jobs at
compute resources should be identifiable on a per
job basis. It is not sufficient for the client library to
know that scheduling information has, in fact, come
from the MSHN Scheduler. In addition, the client
library must be able to ascertain that the scheduling
information is intended for the particular job being
supported by the client library. (Authentication)

• Dynamic scheduling advice provided by the MSHN
Scheduler to client libraries supporting jobs at
compute resources should be protected from
unauthorized modification and disclosure while in
transit. (Communications Integrity and
Confidentiality)

• Information maintained in MSHN core databases
should be available only to authorized users. Some
earlier resource management systems [14] had no
notion of access control. The emphasis in these
efforts was on scheduling and performance, not
security, so everyone was privileged and had access
to all job status information.
A mechanism must be implemented to limit access
to job status information. It is expected that there
may be tension between limiting access to this
information and providing statistically significant
accumulations of runs to improve scheduling
decisions.

• For each job, historical data on that job can be
restricted to a set of authorized users. At first
glance, this does not appear to be very hospitable.
Why should historical information be restricted
when it will help everyone run the job better?
Suppose there is a job used for battle planning and
that its execution statistics are stored in the
Resource Requirements Database. Also suppose
that an enemy wants to find out about this job. He
could pretend to be submitting a request to run the
battle planning job and would obtain from the
scheduler advice on where to position his run. Even
though he might not have a copy of the code and
data, the historical data could yield information
regarding the best systems to use for executing the
job, duration of the run, and other exploitable
information.
Thus, in the interest of encouraging use of MSHN, a
user can always request that MSHN provide a
schedule for his instance of the job. Whether that
schedule reflects historical information would
depend upon the user's access to the historical data

associated with other users' runs.

3.3 Accountability
Individual accountability is essential in any system

intended to securely process information on behalf of
users. Accountability permits liability to be established
in the case of violations of policy. If the objective is to
establish liability such that the perpetrator of an illicit
act can be punished, then accountability must be
sufficient to provide proof that the accused perpetrator
is at fault.

Since MSHN is running as an application on
operating systems that may or may not provide an
adequate foundation for our security objectives, we
must temper our accountability requirements.
Corruption of an underlying operating system lacking
penetration resistance could result in corruption of
MSHN accountability mechanisms. It would be
difficult to send someone to prison for violating
MSHN security policy and it would be difficult to
successfully litigate contractual agreements based upon
the chain of assurance and accountability evidence
provided by a VHM dependent on intrinsically weak
platforms. So accountability in MSHN can act as a
deterrent to abuse by relatively law abiding users, but it
will not stop the determined opponent.

Accountability in MSHN will depend upon the
identification and authentication of users, first at their
local clients and subsequently to the MSHN core
service and compute servers. Authentication and audit
will provide the mechanisms to tie the user's
identification to the system activities he has invoked
and create a record of those activities considered
security relevant.

Non-repudiation is described as a mechanism such
that the sender of a communication is unable to deny
that the message was sent and the receiver is unable to
deny its receipt. The audit mechanism can serve as a
trusted third party providing non-repudiation services
for MSHN users. Clearly, a third party beyond MSHN
is needed if non-repudiation services are required for
transactions between MSHN and its users.

3.4 Assurance
Security enforced for MSHN components does not

depend upon enforcement mechanisms built into
MSHN itself, but instead upon underlying policy
enforcement mechanisms that may be provided by
operating systems and perhaps high assurance
platforms. This is in concert with the philosophy [12]
that more privileged mechanisms are
• more likely to embody the fundamental notions of

the reference monitor concept [4] and

6

• more likely to have undergone scrutiny by qualified
and unbiased personnel able to assess the assurance
claims made about the mechanism.
The security architecture for the VHM will be

designed to take advantage of mechanisms provided by
more privileged underlying components. Our objective
is to provide the intermediate interfaces necessary so
that underlying medium to high assurance mechanisms
can be used to protect communications associated with
the VHM and user jobs as information is moved across
unprotected networks.

We wish to prevent unauthorized updates to critical
MSHN databases. Suppose that MSHN core
components execute on dedicated servers. Then the
likelihood of corruption of MSHN core databases by
malicious applications is substantially reduced as is the
possibility of exfiltraton of information by malicious
software. In such an environment, the use of session
keys provides a reliable mechanism to bind the
components into a virtual domain.

How does the notion of privilege work in MSHN?

Ideally, we would like to have each platform in the
VHM provide a minimum of four protection domains:
one for the user's application, one for MSHN client
resource libraries and services, and one for MSHN
protection services. Layered beneath these three
domains would be more privileged domains associated
with the underlying OS and its libraries. We envision
certain essential public key technologies located in
highly privileged domains. These include the key
distribution centers and the certificate authorities.

4. MSHN Security Architecture

MSHN security is based upon the establishment of
the following domains:

1. MSHN Core Domain
2. Client Library Domain
3. Application Domain

Each domain will authenticate itself to other
domains using certificate-based technology. The basis
for believing the certificates is the integrity provided at

Keys Description Key
Type Creator User Key

Life Purpose

Km MSHN Core
Session Key

S MSHN Core
Master

MSHN Core
Servers

per core
instance

• high speed transmission of message
traffic between core components

Kj Job Session
Key

S MSHN Core Client Library
of job

per task • identifies MSHN-relevant communica-
tions to MSHN Core

• transmit audit records
• authentication of per-job status infor-

mation to MSHN Core

Kc Client Library
Session Key

S MSHN Core Client Library
of Job

per task • per-task intra-client domain manage-
ment functions

Ka Application
Session Key

S MSHN Core Task Clients
on behalf of
application

per task • application-level task communications
• receive job execution results

Cpub/pri MSHN Core
Server Key

P KDC or user MSHN serv-
ers; one per
server

KDC
defined

• permits clients to authenticate com-
munications to MSHN servers

• core session key distribution
• digital signatures

Rpub/pri Computer
Resource
Client

P KDC or
server

administrator

used by all
MSHN com-
pute resources

KDC
defined

• receive job session key

Upub/pri User client key P KDC or user Client Library KDC
defined

• receive job session key
• user authentication

Table 1: Key Usage in the MSHN Security Architecture

7

the certificate authorities, hence the certificate
authorities are the most trusted components of our
VHM security architecture. User tasks will be
separated on a per-task basis using appropriate keys
supplied to each domain. Within MSHN, the highest
integrity domain, viz. the MSHN Core, will manage
the creation and allocation of session keys used by
lower integrity domains. Thus the client domains are
issued per-task keys when a job is scheduled and these
keys are used for dynamic task management and Core
database updates. In addition to being isolated on a per-
task basis, each domain is able to distinguish
communications from members at its integrity from
those of entities of greater or lesser integrity. The
MSHN domains are illustrated in Figure 2. Policy is
allocated to each of these domains and they are
organized hierarchically. This is in keeping with
notions of balanced assurance for distributed systems
[13].

4.1 MSHN Core Domain
The MSHN core domain contains the basic MSHN

core services: the Scheduling Server, the Resource
Status Server, and the Resource Requirements
Database. For the security architecture, we have added
an Audit Server. The correct function of these servers

is essential to insuring that jobs receive useful
scheduling advice; the corruption of either their data or
algorithms would render MSHN potentially useless or
even detrimental to job performance and quality of
service. Thus we assign to these system elements a
high integrity level.

The MSHN Scheduling Server will make
scheduling decisions based upon the conjunction of
authorization information and other scheduling
information. When a scheduling request is issued to
MSHN, the Scheduling server will first determine the
systems accessible by the user. This list of systems will
be input to the scheduling algorithms and an advisory
schedule will result. Thus for the same job and all other
factors being equal, two users could have different
schedules depending upon their access to compute
resources.

4.2 Client Library Domain
The client libraries will occupy a domain of

intermediate integrity. A copy of the client libraries
will be available to each user's job. Although users
might share the text of client libraries, viz, the client
library code, when executing on the same machine,
each instance will have separate data. Client libraries
will also be able to securely communicate with client

Application

Resour ce
Requirements

Database

Audit
Server

Resour ce
Status

Client
Libraries

Lowest
Integrity

High
Integrity

Intermediate
Integrity

Certificate
Authorities

Highest
Integrity

Key
Distrib ution

Scheduling
Server

OS
and

Networks

Security
Services

Km

Kj

Kc

Ka

Figure 2. MSHN Security Domain Architecture

8

libraries on other compute servers. This will permit
coordination of parallel processing or checkpointing
and movement of an application to a different compute
server.

4.3 Application Domain
This domain is intended for user jobs. Each

application will be distinct. Distributed, security-aware
applications may contain their own end-to-end
mechanisms or may use underlying security services.

A legacy application need not become "security
aware'' in order to be protected. When users request
scheduling and process management services of
MSHN, they may include protection services as part of
the QoS specification for their jobs. The scheduling
advisor will determine the best way to meet those
protection needs within the VHM accessible by the
user. Along with the scheduling recommendations
returned to the user, algorithms and keys held by the
underlying layers will be available to protect
communications for distributed applications. We note
that exposure of keys to applications is not intended:
either keys are cryptographically protected or
completely hidden by the underlying mechanism.

4.4 Mechanisms
Cryptographic mechanisms will be used to isolate

and protect the elements of the MSHN architecture in
"lightweight" domains. Table 1 describes the major
keys used in our design. Key types are for symmetric,
S, and public/private, P, cryptography. We intend to
support updates of session keys during job runs. The
frequency of these updates will be defined as part of
the quality of service for security. It is expected that, as
the public key infrastructure matures, key distribution
centers (KDCs) will issue public/private key pairs. In
the interim, individual systems may be required to act
as their own KDCs.

4.4.1 Core Keys. The MSHN core will be assigned its

own set of keys. Each MSHN core server will have a

public/private key pair, Cpub/pri. These key pairs will be

issued by a key distribution center (KDC) and can be

verified by a certificate authority (CA) for inter-compo-

nent authentication.

We believe that symmetric key cryptography
provides the most efficient technique for the frequent
communications that will be required between MSHN
core components. Core components associated with a
particular instance of MSHN share a MSHN-wide
session key,Km. This key permits the use of fast

symmetric algorithms for the efficient transmission of
core-relevant data.

A question that arose in our analysis was how to
handle replicas of MSHN core services. This might
occur in situations where the system is highly
distributed and replicas of one or more MSHN core
services are placed at strategic points in the network.
Since it is desirable that a client be able to send updates
to any one of the replicated servers of a particular type,
e.g., Resource Status Server, with a consistent result
across the entire system, the session keys of clients
could be available to all status servers. Alternatively,
dynamic key exchange algorithms could provide
protected communications between core components.

4.4.2 Client and Application Keys. The MSHN Core

will be responsible for issuing session keys for each job.

These keys will be protected enroute to the compute

resource using public key algorithms with Rpub/pri.

There will be three session keys associated with each

job: a Job Session Key, Kj, a Client Library Session Key,

Kc, and an Application Session Key, Ka.

The Job Session Key will be used by the compute
client to transmit status information back to the MSHN
Resource Status Server and to the Audit Server. It will
be used by the MSHN Scheduler to transmit advisory
information dynamically to the user client and the
compute client. For example, information regarding
dynamic job adaptation can be transmitted to the
compute client. A database tying user IDs to job IDs
and session keys will be distributed across relevant
MSHN core servers such as the Scheduling Server and
the Audit Server.

The Client Library Session Key will be used for
intra-domain management of clients associated with a
particular job both at the user's platform and at the
compute resources.

The Application Session Key is provided for the
benefit of the application. It represents the keys and
algorithms proposed by the MSHN core to meet the
protection requirements specified by the user for the
particular instance of the job run.

4.4.3 User Authentication. Individual users will have

public/private keys, Upub/pri. User's public keys will be

stored in certificates which are available to all elements

of the system through a directory service. The MSHN

Scheduler will be able to authenticate the user using

public key technology. The user will digitally sign mes-

sages using his private key and the scheduler will vali-

9

date the source of the signed message with the user's

certified public key.

5. Prototype Demonstration

 A prototype demonstration of the MSHN security
architecture has been implemented [20]. In keeping
with the emphasis on commercial-off-the-shelf PCs
embraced by the Navy's IT-21 initiative [7], our
demonstration is implemented on three Windows NT
Platforms. One platform served as the user interface
from which jobs were submitted. A second platform
hosted the MSHN Core database and scheduling
services, each executing as a separate process. The last
platform played the role of a compute resource.
(Clearly, in a complete implementation compute
resources might be high performance processors.)

For this demonstration we chose all certificates to
be homogeneous and selected X.509 v3 certificates [6]
for use throughout the VHM for authentication
mechanisms.

5.1 Security Layer
One of our principle concerns has been the

provision of security services within the context of a
well engineered, modular architecture. Toward this
end, we have defined a set of security services to be
provided to MSHN core components and clients. This
thin service layer allows us to achieve the support for
heterogeneous platforms sought by the project. Also, it
permits us to postpone API choices so that services
presented by several APIs can be used, such as CDSA
[3] and GSS-API [1]. Thus, a variety of security
implementations can be used and these will be
transparent to the VHM core, clients, and applications.

The security services layer consists of the following
interfaces exported to MSHN core services and client
libraries:

mshn_sl_init Initialize databases for MSHN
security layer and create any necessary security
contexts.

mshn_sl_create_cert Create a certificate with the
specified parameters

mshn_sl_get_cert Obtain a certificate for the
specified principle

mshn_sl_cert_verify Check that the specified
certificate is valid

mshn_sl_cert_revoked Determine if the specified
certificate has been revoked

mshn_sl_get_public_key Return the public key for
the principle associated with the specified certificate

mshn_sl_get_private_key Return the private key
for the specified subject. Note that, in the

implementation, the private key is not actually
returned, but a handle to the key is provided and this
handle is used as a parameter to encryption or
decryption functions. Thus the private key is never
exposed.

mshn_sl_put_audit Write a record to the audit file
or server

mshn_sl_encrypt Encrypt the specified data using
the specified key and algorithm

mshn_sl_decrypt Decrypt the specified data using
the specified key and algorithm

mshn_sl_sym_key_gen Create a key to be used
with symmetric encryption and decryption.

mshn_sl_asym_key_gen Create a public/private
key pair to be used with asymmetric encryption and
decryption. Only information about the private key is
exported, the key itself is not exposed.

mshn_sl_msg_digest Hash the specified buffers
and generate a message digest.

mshn_sl_sign Produce a signature for the specified
data in two steps: create a message digest and then
encrypt the message digest.

mshn_sl_sig_verify Verify a digital signature for a
specified data-signature pair.

5.2 Common Data Security Architecture
 The Intel Common Data Security Architecture

(CDSA) has been used as the basis for a proof of
concept demonstration of the MSHN core services.

CDSA is intended to provide a basic security
infrastructure for use with personal computers. It is a
layered architecture and is intended to be modular,
portable and adaptable. It has currently been
implemented on Windows NT, a system of particular
interest to the U.S. Navy as a result of its IT-21
initiative. An implementation of CDSA by RSA
Security is underway and will provide the components
on Unix platforms. In the interim, we have
implemented a subset of the MSHN Security functions
on a Unix platform using SSLeay encryption
software[22] (a public implementation of SSL [9]).

CDSA consists of three primary layers:
• a set of system security services
• the Common Security Services Manager (CSSM)
• add-in security modules.

The add-in security modules are organized by the
CSSM so that service provider interfaces (SPIs) can be
defined for each module job manager.

Services are separated into four categories:
cryptographic services: An add-in cryptographic

service module can provide the following functions
• bulk encryption and decryption
• creation and verification of digital signatures

10

• cryptographic hash creation
• key generation
• random number generation
• encrypted storage of private keys. We note here that

ultimately the protection of keys, must depend upon
a system-based protection mechanism.
trust policy services: The intent of the trust policy

services is to provide access control over various
system activities. Certificates are presented to the trust
policy manager and access decisions are made
according to information contained in the certificate.

certificate services: For a PC, the certificate
services provide a self-contained certificate
management mechanism. This module provides
support to create new certificates, create certificate
revocation lists (CRLs), sign and/or verify certificates
and CRLs, import and export certificates created using
other formats, extract information such as public keys
from certificates, reinstate revoked certificates and
search CRLs. The flexibility of these services with
respect to certificate format makes them particularly
attractive during the current period of evolving
standards. For our current work, we have chosen the
X.509 v3 format.

data store services: These modules are intended to
provide secure and persistent storage for non-volatile
information such as certificates and CRLs. Clearly in a
system where assurance is of significant importance,
data store services would be relegated to an underlying
high assurance TCB and the access control
mechanisms of the TCB would be used to ensure that
only authorized users (or processes acting on behalf of
those users) had modify access to security-critical
databases.

6. Other Work and Future Plans

The Sigma project is addressing heterogeneity on
the enclave level with its exploration of Internet
Interoperability Protocol gateways to support Common
Object Request Broker Architecture (CORBA) [2]
interoperability [17]. This work is not directly
integrated into a VHM management system and
provides only a highly coarse level of access control
and enclave protection. However, this effort could be
viewed as complementary to ours as the MSHN
security mechanisms could be used in an environment
supporting Sigma controls.

Globus [8] is using a proxy-based system to permit
computation on behalf of users on remote resources.
The mechanism bears a remarkable similarity to
Kerberos [18] and currently suffers from several
scalability and trust domain drawbacks. Our approach
provides a more straight forward path toward

accountability.
 Legion [21] claims to permit users to define

policies at the granularity of objects. It is ad hoc with
respect to privilege in that privilege is minimized
everywhere -- no element of the system is responsible
for any element other than itself. In addition, Legion
does not provide for certificate authorities or key
distribution centers. Instead, Legion-specific unique
object identifiers are required globally to support key
management. It appears that instead of supporting
interoperability with respect to key management,
Legion is dictating a homogeneous approach.

6.1 Future Work
Quality of service and security can sometimes be

regarded as conflicting rather than complementary
goals [10]. During crises, it is likely that demands upon
a system may be significantly higher than during
normal operations. This may mean that tasks may be
required to adapt in order to provide a minimal level of
service. We plan to explore the possibility of providing
information to users and administrators regarding the
performance costs incurred by using security measures
commensurate with the sensitivity and reliability
associated with the task. Hence the security
requirements of different tasks can be met with
measures of differing "strengths." At this juncture, we
are not suggesting that security measures can be
relaxed for a job with an assigned sensitivity and
reliability.

Another area of future activity will be in the
development of an audit mechanism for the VHM. As
noted earlier, we plan to use a combination of audit and
digital signatures as the cornerstone of non-repudiation
services in our VHM.

Lacking a Unix implementation of CDSA, a Unix
version of our prototype was created using SSLeay. In
a fully layered architecture, SSL might depend upon
CDSA for security support.

7. Summary

This paper has described a security architecture
intended to support a virtual heterogeneous machine. A
consistent set of choices must be made to construct
data structures and mechanisms to use the underlying
environment effectively. We build assurance into the
system by relying on underlying mechanisms rather
than constructing our own.

Our architecture for the MSHN VHM consists of
four domains: the underlying operating sytsem, MSHN
Core Services, Client Services, and Application.
Domains start with their own identification and
authentication evidence provided by key distribution

11

centers and certificate authorities. When the VHM is
started, the Core Services establish their own
cryptologically defined domain. Client Services submit
job requests to the Core and are provided with session
keys which establish per-session domains that permit
communication between Clients and Core Services.
Using underlying services, Clients create domains on
behalf of Applications, to which they provide handles
to keys for application-level communications security.

Future work will integrate quality of service
mechanisms into this architecture and explore the
creation of high assurance audit mechanisms.

Acknowledgements

We wish like to thank Timothy Levin for his critical
reading of the manuscript and helpful comments.

References

[1] Global Security Services Application Programming
Interface, RFC 2078.

[2] The Common Object Request Broker: Architecture
Specification, December 1993.

[3] Common Data Security Architecture Specification, Intel
Corporation, Santa Clara, CA release 1.2 edition
February 1998. http://developer.intel.com/ial/security/.

[4] Anderson, J.P., Computer Security Technology Planning
Study. Technical Report ESD-TR-73-51, Airforce
Electronic Systems Division, Hanscom AFB, Bedford,
MA, 1972. (Also available as Vol. I, DITCAD-758206,
Vol. II DITCAD-772806).

[5] Bricker, A., Litzkow, M.,l and Livny, M., Condor
Technical Summary, Technical Report CS-TR-92-1069,
Computer Science Department, University of Wisconsin,
Madison, WI, January 1992.

[6] CCITT. Recommendation X.509: The Directory -
Authentication Framework, 1989. also ISO/IEC 9594-8.

[7] Clemmins, A., IT-21: The path to Information
Superiority, CHIPS, July 1997.

[8] Foster, I., Karonis, N., Kellelman, C., Koenig, G., and
Tuecke, S., A Secure Communications Infrastructure for
High-Performance Distributed Computing, In
Proceedings 6th IEEE Symposium on Distributed
Computing, pages 125-136. IEEE Computer Society
Press, 1997.

[9] Freier, A., Karlton, P., and Kocher, P., The SSL Protocol,
Version 3.0, Netscape Communications, March 1996.
URL: http://home.netscape.com/eng/ssl3/index.html6.

[10]Greenberg, I., Lunt, T., Clark, R., and Wells D., Secure
Alpha: Security Policy and Policy Interpretation for a
Class B3 Multilevel Secure Real-Time Distributed
Operating System, Technical Report ELIN A003, SRI
International, Menlo Park, CA, April 1993.

[11]Hensgen, D., and Kidd, T., MSHN design documents.
note, February 1998.

[12]Irvine, C. E., Acheson, T.B., Thompson, M. F., Building
Trust into a Multilevel File System, In Proceedings 13th
Nation Computer Security Conference, pages 450-459,
Washington, DC, October 1990.

[13]Irvine, C.E., Schell, R. R., and Thompson, M.F., Using
TNI Concepts for the Near Term Use of High Assurance
Database Management Systems. In Proceedings Fourth
RADC Database Security Workshop, Little Compton, RI,
April 1991.

[14]Kidd, T., Hensgen, D., Freund, R., Moore, L., SmartNet:
A Scheduling Framework for Heterogeneous Computing,
In International Symposium On Parallel Architectures,
Algorithms, and Networks, Beijing, China, June 1996.

[15]Kresho, J.P., Quality Network Load Information
Improves Performance of Adaptive Applications, M.S.
thesis, Naval Postgraduate School, Monterey, CA
September 1997.

[16]Litzkow, M., Tannenbaum, T., Basney, J. and Livny,
M., Checkpoint and Migration of UNIX Processes in the
Condor Distributed Processing System, Technical Report
CS-TR-97-1346, Computer Science Department,
University of Wisconsin, Madison, WI, April 1997.

[17]Sebes, J. and Benzel, T. C. V, SIGMA: Security for
Distributed Object Interoperability Between Trusted and
Untrusted Systems, Technical draft paper, Trusted
Information Systems, Mountain View, CA 1996.

[18]Steiner, J., Neumann, B. and Schiller, J., Kerberos: An
authentication System for Open Network Systems,
Usenix Conference Proceedings, pages 191-202, 1998.

[19]Stevens, R., Woodward, P., DeFanti, T., and Catlett, C.,
From the I-Way to the National Technology Grid,
Comm. A.C.M., 40(11):51-60, 1997.

[20]Wright, R., Integrity Architecture and Security Services
Demonstration for Management System for
Heterogeneous Networks, M.S. Thesis, Naval
Postgraduate School., Monterey, CA, June 1998.

[21]Wulf, W., Wang, C., and Kienzle, D., A New Model of
Security for Distributed Systems, UVa CS Technical
Report CS-95-34, University of Virginia, Richmond, VA,
August 1995.

[22]Young, E. A., SSLeay, June 1997. ftp://ftp.psy.uq.oz.au/
pub/Crypto/SSL.

