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Abstract

Some of the most promising work in the area of
enforcing secure information flow in programs is
based on static analyses of source code. However,
as yet, these efforts have not had much impact in
practice. We present a new approach to analyz-
ing programs statically for secrecy and integrity
flow violations. The analysis is characterized as a
form of type inference in a secure flow type sys-
tem. The type system provides a uniform frame-
work for traditional type checking of programs and
information flow control. Type-correct programs
have principal types that characterize how they
can be called securely. Applications of the type
system include flow analysis of legacy code as well
as code written in newly-emerging Web languages

like Java(tm).
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1 Introduction
Secure information flow within systems having

multiple sensitivity levels has long been a widely-
recognized problem. The classical problem is that
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of a multilevel subject, one with a range of security
classes, executing code that either accidentally or
maliciously leaks or corrupts sensitive data. Leak-
ing such data is a violation of secrecy while its
corruption is a violation of integrity [5, 10]. Early
work in the area was motivated by the need to
securely handle information classified at different
levels within the government, the military in par-
ticular. But the problem is now also apparent
within the context of Internet programming and
newly-emerging Web programming languages like

Java [14].

With Java, programs, called Java applets(tm),
can be downloaded from the Internet and executed
with user privileges by a Java-compatible Web
browser like HotJava(tm) or Netscape Navigator
2.0. There are obvious secrecy and integrity prob-
lems here. For instance a downloaded applet may
attempt to make the contents of a user’s private
files, such as mailfolders or log files, public by mail-
ing them to remote sites. Currently, users have
the option, as in HotJava, to forbid downloaded
code from accessing any local files. This is called
the Applet Host mode. In fact, this is the only
“security mode” available in the Netscape Naviga-
tor beta release. But such steps will undoubtedly
prove to be too impractical. Useful applets, like
mail and other transaction tools, will need access
to private files in order to perform their tasks.

This is where the static analysis of code for se-
cure information flow can provide a finer level of
security in terms of secrecy as well as integrity.
For instance, it can allow access to private files



yet guarantee that their contents are not stored
in public places. We begin by examining some of
these analyses in the next section. Unfortunately,
they have had little impact in practice. In Sec-
tion 3, we propose an alternative form of static
analysis based on a powerful, yet very practical,
notion called type inference.

2 Information Flow Control
Strategies

Secure information flow within systems was stud-
ied years ago by Bell and LaPadula [4, 3]. This was
followed by the work of Denning who presented a
lattice model of secure information flow certifica-
tion and gave an algorithm for analyzing programs
for secure implicit and explicit flows [6, 7, 8]. Den-
ning provided an informal treatment of the sound-
ness of secure flow certification. A more formal
treatment of its soundness was given by Mizuno
and Schmidt [12], which is discussed in [15].

Andrews and Reitman [1], in a related effort,
proposed extending a traditional axiomatic logic
for program correctness with secure flow certifica-
tion. Their emphasis was on a formal specifica-
tion of certification in a programming logic. They
did not consider any practical algorithms for their
extended logic, nor was soundness of the logic ad-
dressed. These are major drawbacks of their work.

The more recent work of Banatre, Bryce, and Le
Métayer [2] is based on statically detecting flow vi-
olations from an accessibility graph constructed for
a program. These graphs record information flows
among variables at certain program points. This
work and secure flow certification are discussed in
more detail in the next two sections.

2.1 Denning’s Secure Flow Certifi-

cation

In the lattice model of secure flow certification,
a flow policy 1s represented by a poset < S, —>
where S is a set of security classes and — is a
partial order, called the flow relation, specifying
permissible flows between classes. Every variable

z is assigned a security class denoted by z and it
i1s assumed that z is stafic and can be determined
from class declarations given in a program. If z
and y are variables and there is a flow of informa-
tion from z to y then it is a permissible flow iff
z—y.

Every programming construct has a certification
rule. Some rules certify ezplicit flows while others
certify implicit flows. For example, an assignment
statement y := x is certified iff x — y, that is, the
flow of information from the security class of z to
that of y is prescribed by the flow relation. This
is an example of certifying an explicit flow. The
rules for conditional constructs, such as if state-
ments and while loops certify implicit flows. For
example, the conditional statement

if 2 =0 then y := 0 else z := 0

is certified iff x — y and z — 2.

If the poset < S,—> is a lattice, so that for
any pair of classes there are unique upper and
lower bound classes, then a simple attribute gram-
mar can be given to certify programs. It con-
sists only of synthesized attributes which are se-
curity classes computed using least upper bound
(@) and greatest lower bound (®) operators [8].
For instance, the certification condition for the if
statement above would become the single condi-
tion z — y ® z.

2.1.1 Limitations of Certification

One drawback of Denning’s flow certification is
that 1t requires security classes of variables to be
known at certification time. So it is unsuitable for
analyzing legacy code unless the code is prepro-
cessed to include appropriate security class decla-
rations for all program objects.

Another, perhaps more serious practical draw-
back, is its treatment of procedures. Procedure
calls, in flow certification, have the form

call g(aq,...,am; b1,...,bn)
where the actual input parameters are ay,...,am
and the actual output parameters are by,...,b,.
If procedure ¢ has formal input parame-

ters x1,...,%,; and formal output parameters



Y1,...,Yn, then the security of the call requires
that three conditions be verified:

(a) q is secure,
(b) a; — x; fori=1,...,m, and
(¢) ﬂﬁﬁforjzl,...,n.

Conditions (b) and (e) certify flow into and out
of the procedure respectively. Notice that ¢ can
output results of a higher class than the inputs.
For example, suppose S consists of security classes
L (low) and H (high), with L — H, and consider

procedure copy(in z : int L, out y: int H)
yi==z
end

Procedure copy copies its input z, declared with
security class L, to its output y of class H.

We can imagine erasing the class declarations
from the procedure so that it could be called to
copy from H to H or from L to L, giving us a form
of polymorphism with respect to classes. To certify
calls of procedures that are generic with respect to
security classes, Denning proposes replacing con-
ditions (b) and (¢) by the single condition

() a1®-- Ctm =01 ©---Bbn
under the assumptions that

1. procedure ¢’s output parameters are derived
solely from the input parameters and informa-
tion in a least class,

2. any local variables of ¢ are erased upon return,
and

3. q does not write into any nonlocal objects.

Notice that (b'), unlike (b) and (¢), does not men-
tion the formal parameters of ¢, only the actual
parameters of a call. Thus different calls to ¢ can
induce different instances of (b'), so polymorphism
is achieved but at a very high cost. Assumptions
1-3 are too restrictive in practice. Useful proce-
dures like a monitor for controlling access to a
shared buffer are prohibited. Also compilers nor-
mally make no attempt to erase the value of a local

variable on the stack. Besides, these assumptions
still have to be verified before (§') can be used
which is clearly outside the realm of certification.

Mizuno proposed a more flexible strategy for
certifying recursive procedures in the style of Den-
ning [11]. Tt involves generating flow constraints
for a program by computing the least fixed point
of a set of symbolic flow equations. The equations
are constructed according to Denning’s certifica-
tion rules. The strategy, though, is limited to pro-
cedures whose arguments are passed by value or
by result.

2.2 Banatre et al’s Information

Flow Detection

Banatre, Bryce, and Le Métayer give a compile-
time algorithm for detecting information flow in
sequential programs whereby variables need not be
annotated with security classes [2]. What makes
their work appealing is that the algorithm is de-
rived, through a sequence of steps, from an initial
axiomatic, information-flow logic. The result is
an inference system whose rules are used to trans-
form information flow graphs, called accessibility
graphs. The result of applying these transforma-
tions to an initial graph for a given program is
a final accessibility graph indicating whether the
contents of one variable at some point in the pro-
gram can flow into an instance of a variable at
some other point. The drawback here is that the
number of vertices in the final accessibility graph is
at least linear in the size of the program’s abstract
syntax tree. This means that final graphs are ex-
tremely sensitive to program size as we shall see in
Section 3.1. Thus they are unsuitable as specifica-
tions of the secure flow properties of programs.

3 Secure Flow Typing

Type systems have been used to capture a variety
of different kinds of program analyses. A {ype sys-
tem 1s basically a set of inference rules with which
one infers various properties of programs. Secure
information flow is a program property, so we can
characterize it as a type correctness issue.



The secure flow type system overcomes the lim-
itations of flow certification mentioned above and
does not require calculation of least fixed points as
in Mizuno’s approach. It is a uniform framework
for traditional type checking in programming lan-
guages and secure flow enforcement. That is, the
issue of secure flows is no longer orthogonal to the
more traditional type correctness issue of whether
a program is well formed. Further, standard type
inference techniques can be used to automate se-
cure flow analysis in a way that makes it more
practical.

In the secure flow type system, security classes
are basic types, which we denote here by 7, and
the typing rules enforce secure information flow.
For example, consider the typing rule for an as-
signment statement z := e:

ybFx:Tace, yhe:T (1)
vyFz:=e:7 cmd

In order for the assignment to be well typed, it
must be that

e z is a variable of type 7 acc(eptor), meaning
z is capable of storing information at security
level 7, and

e expression e has type (security class) 7.

Information about z is provided by 7 which maps
identifiers to types. So, the rule states that in order
for the assignment z := e to be judged secure, z
must be a variable that stores information at the
same security level as e. If this i1s true, then the
rule allows us to ascribe type 7 cmd to the entire
assignment statement. In general, a statement has
type 7 cmd only if every variable assigned to in
the statement is capable of storing information at
security level 7 or higher. Note that Denning’s flow
certification would not be concerned with whether
z of x := e 1s a variable or a constant. But this is
not true of rule (1), which addresses the issue of
well formedness as well as secure flow.

Another novel aspect of the type system is its
use of subtyping. A flow policy < .S, —> naturally
corresponds to a subtype relation. If s; and sy are
members of S, or in other words are basic types,

such that s; — s9, then we say s; is a subtype of
S9, written s; C ss.

Notice that typing rule (1) requires z and e to
have the same security level. This might appear
too restrictive for the rule prevents an upward flow
from e to z, say for example, if  were high and e
low. This is where subtyping comes into play. It
allows us to coerce the type of e from low to high
to get agreement. A detailed formal treatment of
all typing rules and the subtyping logic is outside
the scope of this paper and can be found instead
in [15].

3.1 Polymorphism and Type Infer-

ence

A major advantage of the secure flow type system
is that it can be implemented using powerful type
inference techniques. A type inference algorithm
not only proves whether a procedure is typable, or
free of illegal flows, but it also produces a principal
type, which characterizes how the procedure can be
called securely.

A principal type usually comprises a set of sub-
type constraints among security classes, each of the
form 7 C 7. Subtype constraints may be generic
and involve type variables that range over all secu-
rity classes. These variables can be specialized in
many different ways, depending on the procedure’s
calling context. A context will require them to be
specialized in a certain way. As long as the spe-
cialization satisfies the constraints, the procedure
can be executed without causing any illegal flows.
So a procedure is effectively parameterized on the
security classes of its formal parameters. In this
sense, 1t 1s polymorphic.

For example, consider the procedure

procedure copy(in z : int, out y : int)
begin
yi==z
end
It has the inferred principal type
Ve, with a C 3. 3 proc(e, f acc)

where « and 3 are type variables such that « cor-
responds to the security class of x and 3 to the



security class of y. The principal type succintly
conveys how the procedure can be securely called.
Any call can be executed securely providing the
arguments of the call have security classes that,
when substituted for the bound variables @ and 3
of the type, satisfy the constraint a C 3. The call
itself will have type 8 ¢md. For instance, copy has
type L proc(L, L acc) and therefore can be called
to copy from low to low, with the call itself being
regarded as a low command of type L emd. It also
has type H proc(L, H acc), so it can be called to
copy from low to high. But it cannot be called to
copy from high to low because H ¢ L.

Notice that in a call to copy, type variables «
and B can be specialized respectively to any se-
curity classes 7 and 7 as long as the subtype
constraint 73 C 7 1s satisfied. The constraint, in
Denning’s model, translates into 7 — 75, which
is precisely condition (b’). However, in the secure
flow type system, the constraint is inferred auto-
matically as a consequence of typing the assign-
ment y := z by rule (1). Denning’s approach to
polymorphism effectively limaits all typings of pro-
cedures to at most one subtype constraint. namely
the constraint corresponding to flow condition (b').
This greatly limits the kind of polymorphic proce-
dures one can write. In general, a procedure can
induce multiple subtype constraints, depending on
its definition.

It might appear that the number of subtype con-
straints in a principal type would grow too quickly,
in the size of the program, to be useful in prac-
tice. After all, there are programs in the context
of traditional subtyping that require the number of
constraints in their principal types to grow at least
linearly in program size [9]. Obviously, the utility
of a type inference algorithm that produces prin-
cipal types with this many constraints is severely
limited. However, our experience has been that
this kind of growth is not an issue for secure flow
typing in practice. An inferred principal type for
a program is typically much smaller than the pro-
gram itself due to type simplification [13]. Princi-
pal types are relatively insensitive to program size.

For instance, consider a new version of proce-
dure copy. The original version has an explicit
flow from z to y. Suppose we accomplish the same

x0 a0 b0

b2 <—— b4 —— b8

/ |

6 & b6/ b5 y8
ar a8 b7

Figure 1: Accessibility graph for new copy

effect through an implicit flow instead. This can
be achieved as follows:

procedure copy(in z : int, out y : int)
var a :=

var b :=0
begin
while ¢ > 0 do
a:=a—1;
b=b+1
od;
y:=b
end

The new version has the same inferred principal
type as the original version even though its defini-
tion is quite different.

Contrast this insensitivity with that of calculat-
ing an accessibility graph for the program as de-
scribed in [2]. The graph calculated for the original
version of copy has only the single edge (20, y1),
conveying there is a flow from z at entry point
po to y at point p;. These program points arise
from the procedure body expressed with explicit
program points, as in (p1,y := x); there is also a
distinguished point, pg, which represents the entry
point of the procedure.

Now compare this simple graph with the graph
in Figure 1, which is obtained from the new version
of copy. The new graph is constructed from copy
with explicit program points introduced as follows:



procedure copy(in z : int, out y : int)

var a

var b .= 0

(p1, (P2, a = =);

(p3, (pa, while a > 0 do
(p51 (p67 a =a— 1)’
(p7, b:=b+1)

)

od);
(ps, y =)

)

The constructed graph has grown in size propor-
tional to the number of program points (there are
now 9 such points). Notice that there is a path
from z0 to y8 confirming the implicit flow from z
at point pg to y at point ps in the program. How-
ever, the graph does not tell us how copy can be
called securely, only that there is a flow from z to
y. For these reasons, accessibility graphs are un-
suitable as user-level specifications of a procedure’s
information flow properties. Moreover, one can see
that the focus of this approach is on identifying
flows among instances of program variables. This
leads to other problems that do not arise with se-
cure flow typing. For example, pointers and alias-
ing of locations complicate graph construction, re-
quiring some form of pointer aliasing analysis.

As a final example, consider the library decryp-
tion procedure in Figure 2, taken from [2]. The
encrypted character array cipher is decrypted us-
ing key and stored in clear. We assume that the
decryption is done by D and that the cost of doing
the decryption is stored in variable charge.

The principal type inferred for decrypt is

V a’ﬁ’ I/’"}/
with # C v, 0 C a7 C f.
B proc(v,y arr,v arr, « var)

The type has three subtype constraints that gov-
ern how decrypt can be used securely. Any call of
the procedure can be executed securely provided
the arguments of the call have security classes that
satisfy all the constraints. The call itself will have
type 8 emd. For instance, the substitution

=L v=H, y=a=1

procedure decrypt(in key : int,
inout cipher, clear : array of char,

inout charge : int)
var 1 :=0
var un:t := unit rate constant
begin

charge := unit;
while cipher[i] > 0 do
if encrypted(cipher[i]) then
charge := charge + 2 x unit;
clear[i] :== D(cipher[i], key)
else
charge := charge + unit;
clear[i] := cipher][i]
fi;
=1+ 1
od

end

Figure 2: The library decryption procedure

satisfies the constraints, so decrypt can be called
as a procedure with type

L proc(H, L arr, H arr, L var)

and the call will have type L ¢md. The call cannot,
however, be typed as H cmd unless the argument
corresponding to charge is high.

Another very useful facet of type inference in
this setting is its ability to reveal suspicious code
through changes in principal types. For example,
if we change the expression

charge := charge + 2 x unit;
in procedure decrypt to the expression
charge .= charge + key + 2 x unit;

in an attempt to deduce the key from the output
charge, then the principal type of decrypt becomes

V a’ﬁ’ 6’ I/’P}/
with #C v,/ C a7 C 4,6 Cv,6C o
B proc(8,v arr,v arr, « var)

Notice the two additional subtype constraints § C
v and § C «. The former says that the security



level of the clear array must be at least that of the
input key. This constraint stems from the assign-
ment to clear involving a call to the decryption
procedure D with the key as an argument. It did
indeed arise for the original version of decrypt as
well, but it was eliminated through type simplifi-
cation; § was replaced by v, giving v C v which
was deleted. The latter constraint, on the other
hand, is new. It says that the security level of the
charge parameter must be at least that of the in-
put key. So now any procedure call with a high
key will no longer be well typed unless the charge
parameter is also high. Such a restriction would
likely be unacceptable, but the point here is that
type inference clearly reveals it.

4 Discussion

As Denning pointed out, the secure flow problem
for a typical programming language is undecidable
[8]. Consequently, any sound and recursive logic
for proving that programs have no secure flow vi-
olations 1s necessarily incomplete. This 1s a com-
mon tradeoff for the soundness and decidability of
a logical system. So like Denning’s certification,
the type system is incomplete. This means that
the type system may rule out some secure pro-
grams. Although more experience is needed, the
type system has been designed to reduce the num-
ber of false positives [15].

The utility of the type system rests on the
proper classification of information. Sometimes an
algorithm will produce sensitive data from inputs
that are not considered sensitive. Examples range
from functions that generate cryptographic keys
to signal processing algorithms designed to extract
target signatures from background noise. Perhaps
neither the inputs nor the arithmetic operations
used in these algorithms would, separately, be con-
sidered sensitive. But they may be used to calcu-
late sensitive data. The type system will not detect
that such data are actually sensitive. However, the
algorithm can be packaged as a procedure whose
type can be asserted to reflect the different secu-
rity levels of the inputs and outputs. Then the
type system can ensure that it 1s called securely.

We envision secure flow typing being used
within Web browsers, specifically, within Java-
compatible browsers. One approach being inves-
tigated is to incorporate it into the Class Loader
for Java applets. A Class Loader could perform
secure flow typing on applet bytecodes and sub-
sume the level of type checking currently done on
instructions of the virtual machine. Such typing
would ensure secrecy and integrity of downloaded
Java applets. In the case of integrity, for instance,
one can imagine financial centers serving applets
to users that perform, say, financial transactions.
Some applet may need to make an entry into a fi-
nancial audit trail and the integrity of the audit
trail must be assured. Secure flow typing could
be used to certify that an applet does not corrupt
the audit trail with low integrity information of a
transaction.

5 Summary

Approaches to the static analysis of code for se-
cure information flow have had little impact in
practice so far. This paper has described an al-
ternative static analysis that we have argued is an
improvement over these other approaches. Secure
flow analysis is characterized as a type inference
problem. Procedures that have no illegal flows are
given principal types that convey how they can be
called securely in different contexts. These types
can serve as specifications for the secure flow prop-
erties of programs. The role of secure flow typ-
ing in Web programming, like that encouraged by
Java, needs further investigation. However, it is
clear that such type inference can provide a finer
level of security for clients than is currently avail-
able in certain Web browsers.
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