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ON RANDOM BINARY TREES*

GERALD G. BROWN AND BRUNO O. SHUBERT

Naval Postgraduate School

A widely used class of binary trees is studied in order to provide information useful in
evaluating algorithms based on this storage structure. A closed form counting formula for the
number of binary trees with n nodes and height k is developed and restated as a recursion
more useful computationally . A generating function for the number of nodes given height is
developed and used to find the asymptotic distribution of binary trees. An asymptotic
probab ility distribution for height given the number of nodes is derived based on equally likely
binary trees. This is compared with a similar result for general trees.

Random binary trees (those resulting from a binary tree sorting algorithm applied to
random strings of symbols) are counted in terms of the mapping of permutations of n symbols
to binary trees of height k. An explicit formula for this number is given with an equivalent
recursive definition for computational use. A generating function is derived for the number of
symbols given height. Lower and upper bounds on random binary tree height are developed
and shown to approach one another asymptot ically as a function of n, providing a limiting
expression for the expected height.

The random binary trees are examined further to provide expressions for the expectations of
the number of vacancies at each level, the distribution of vacancies over alI levels. the
comparisons required for insertion of a new random symbol, the fraction of nodes occupied at
a particular level. the number of leaves, the number of single vacancies at each level, and the
number of twin vacancies at each level. A random process is defined for the number of
symbols required to grow a tree exceeding any given height.

Finally. an appendix is given with sample tabulations and figures of the distributions.

1. Introduction. A binary tree is a finite set of nodes, either empty or containing
one node called a root, such that all other nodes are partitioned into disjoint sets which
are respectively called left and right subtrees of the root. The subtrees also satisfy the
definition of a binary tree. Thus, a binary tree is an unlabelled rooted arborescence
with successors of at most degree two distinguished only as left and right.

Figure 1.1 shows a binary tree with six nodes. The root node is shown at the top and
is connected by arcs to two immediate successor nodes which are the roots of its left
and right subtrees. Each node with no successors (for instance, the left subtree of the
root) is called a leaf. The level of a node indicates how deep it is within the tree. Thus
the root has level one, its immediate successor nodes have level two. and so forth down
the occupied portions of the subtrees. The height of a binary tree is the largest
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Fwt:RE 1.1. A binary tree with six nodes.
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occupied level, A full binary tree has no internal vacancies (unoccupied node posi
tions}.

Binary trees are frequently used as information storage structures on digital comput
ers. For instance, one of the most popular methods of randomly retrieving information
by a key, or symbol. is to store the key data in a binary tree. To search for a particular
symbol, we begin by looking at the root and proceed by applying the following rules
recursively:

(1) If the symbol matches the root symbol, the symbol is found.
(2) If the symbol is "less than" the root (according to some binary ordering relation)

continue the search by considering the left successor of the root as the new root (of the
left subtree).

(3) If the symbol is greater than the root. continue by searching the right subtree.
(4) If there is no root, the symbol is not in the binary tree.

We assume for simplicity that all symbols are distinct with respect to the ordering
relation. Otherwise, the ordering relation and search must be modified in an obvious
fashion. The construction of a binary tree for use by such a search scheme may be
performed by sequentially examining the key symbols to be inserted. This binary tree
sort is a one-pass ordering procedure which proceeds:

(I) If there is no root, insert the symbol as the root.
(2) If the symbol is less than the root symbol, continue by considering the left

subtree.
(3) If the symbol is greater than the root symbol, continue with the right subtree.
As an example, consider the six symbols ABCDEF and a lexicographical binary

ordering relation. Suppose that the particular permutation of symbols examined in
BDAFCE. The resulting binary tree is shown in Figure 1.2, and has structure identical
to the tree in Figure 1.1. Note that this same tree may have resulted from other
permutations of the same symbols, for instance BADCFE. Therefore, there is a
many-to-one mapping of key symbol permutations to corresponding binary trees.

The height of the binary tree in Figure 1.2 is four and thus the maximum number of
comparisons required to insert another symbol is four. Similarly, if this tree is used for
retrieving symbols, the maximum search length for a symbol in the tree is four , and for
a symbol not found the maximum is five.

A computer implementation of a binary tree storage structure requires that each
node be represented by its key symbol accompanied by sufficient additional informa
tion to identify and access the left and right subtrees. This is usually accomplished by
use of a dense array of node symbols each with left and right pointers, by node storage
via address calculation into an array space sufficient to store all possible binary trees
with a given number of nodes and some maximum height, or by some similar method.

In the following sections we study this widely used class of binary trees in order to
provide information useful in examining algorithms based on this storage structure. A
closed form counting formula for the number of binary trees with n nodes and height k
is developed and restated as a recursion more useful computationally. A generating
function for the number of nodes given height is developed and used to find the
asymptotic distribution of binary trees. An asymptotic probability distribution for
height given the number of nodes is derived based on equally likely binary trees. This
is compared with a similar result for general trees.
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Random binary trees (those resulting from the binary tre e sorting algorithm applied
to random strings of symbols) are counted in terms of the mapping of permutations llf
n symbols to binary trees of height k. An expl icit formula for this number is given with
an equivalent recursive definition for computational usc. A generating function is
derived for the number of symbols given height. Lower and upper bounds on random
binary tree height a rc developed and shown to approach one another asymptotically as
a function of n, providing a limiting expression for the expected height.

The random binary trees are examined further to provide expressions for the
expectations of the number of vacancies at each level, the distribution of vacancies
over all levels. the comparisons required for insertion of a new random symbol. the
fraction of nodes occupied at a particular level, the number of leave" . the number of
single vacancies at each level, and the number of twin vacancies at each level. A

random process is defined for the number of symbols required to grow a tree
exceeding any given height.

Finally. an appendix is given with sample tabulations and figures of the distribu
tions.

The distributional results yield a hypothesis test for randomness. Such tests are of
particular interest in areas such as computer science and cryptoanalysis, where
transformations which introduce nonrandomness must be efficiently screened to
identify the transformation groups associated with such behavior.

The class of random trees which we investigate is quite distinct from the widely
studied equally-likely trees common in the literature. We have never encountered an
application leading to this latter class of trees, and suspect that its popularity is
founded at least in part on the relative ease of analysis.

The mathematical tools brought to bear on this problem (especially regarding the
asymptotic behavior of sequences of functions) are not commonly used in the
operations research literature, but are recommended to those interested in distribu
tional as well as worst-case complexity arguments.

2. Number of binary trees of a given height, In this section we consider the
problem of finding the number of binary trees with n nodes and height k. Denote this
number by t(n,k), where nand k are positive integers. Since l{n ,k) = 0 unless

(2.1 )

we are only concerned with integers n = 1,2.... ; k = 1,2, . .. satisfying the inequal
ity (2.1).

An explicit formula for the numbers tin, k) can be obtained by the following simple
combinatorial argument. Consider the class of all binary trees with n nodes and height
k which have exactly mj nodes at the level j + 1, j = 1. ...• k - 1. Let n~ = I, + ~i'

where ~ and 'j are numbers of nodes which are left successors and right successors of
nodes at the level j. In other words. Ij is the numher of nodes at level j + I at the end
of left going arcs emanating from nodes at level j. These can be selected in ("':I, I) ways.
and the ' j nodes in ("" ; I) ways. Thus, the total number of way s to arrange the arcs
between nodes at levels j and j + 1 is given by

2: 2: (Yr1:~ ."I)(n),;I)· = (2~~1).
'i 4'O ~/ ;)o I . 1

~, + r, ~ m,

(2.2)

Since tno = 1 (the root) and m, + ... + In" = n -- 1 with mj /- 1 forj = 1. .. . . k we
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obtain from (2.2) the formula

t(n,k) = 2: ( 2 )( 2m
,) ... (2mk - 2 ) ,

m\ m2 mk - l
(2.3)

where the summation is over all integers mi , j = 1, ... , k satisfying

j = 1•... , k - 1, and m I + . . . + mk ... I = n - 1.

The formula is valid for n > 1 and k satisfying (2.1), for n = 1 we have trivially
[(1,1)= 1.

Although (2.3) is an explicit formula for the number t(n,k) it is not very convenient
for calculation. An alternate way is through a recurrence. Let

t(n,k) = T(n,k) - Tt n.k - 1), n :> 1, k > 1, (2.4)

where Tin , k) is the number of binary trees with n nodes and height not exceeding k. If
we define

T(n,O) = {~ if n = 0,
if n > 0,

(2.5)

and T(O, k) = 1 for k > 0, we obtain the recurrence relation

n

T(n + I,k + 1) = 2: T(},k)T(n - j,k),
j - O

(2.6)

(2.7)n;;" 0,

valid for n > 0 and k > O. This follows from the fact that the class of all binary trees
with n + 1 nodes and height not exceeding k + 1 can be partitioned into n + 1
subclasses according to the number of nodes j in the left subtree of root. Since the
heights of both the left and right subtrees must not exceed k the number of trees in the
jth class is the product T(j, k) T(n - j, k), and (2.6) follows.

Note that with the convention (2.5) the recurrence (2.6) yields automatically T(n, k)
= °for n > 2k

- 1. and that for 0 <; n <; k, Tin, k) is just the number of binary trees
with n nodes. It is well known (see Knuth [8J) that the latter are Catalan numbers

C - I (2n)
n-n+1 n'

so that

T(n,k) = c; for 0<;; n <;; k, (2.8)

From the recurrence (2.6) one easily obtains the sequence enumerators defined by

ik(X) = 2: T(n,k)x n
,

n>O
k > O. (2.9)

Since the right-hand side of (2.6) is the Cauchy product, we have immediately

L Tin + I,k + l)x n =R(x) ,
n;'O

from which in view of (2.5) we obtain

i k+ I ( x) = I + xif (x] , k ;;,. 0, )

with foe x) = 1.
(2.10)

~\,ltc that f;.;(x) is a polynomial in x. hence if x is regarded as a complex variable fk'
k = O. 1. . .. . ' is a sequence of entire functions.
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We now show that this sequence converges unif orml y in a circular region of the
complex plane. specifically that as k -» oo

uniformly for
1

- : <' I where""' l ~ ·~ · .~ Vl\".'-=. ~
(2.11 )

(2.12)() ~ I ( '1n ) n I - 'II =-4~-wZ=L.J--I - z = '1 - .
"~O n + n s :

To see this, note that with C; as in (2.7) we have Tin, k) .:: enfor all k which together
with (2.8) yields

w(z) - fdz) = zl< 2: (en - T(n.k))z"· ' ~.
n >k

so that for 1=1(;1

Jw(z) - fdz)1 (; 2: e" lzl" ~ L: C,,4 ' ".
n >k " .. J.

which is a tail of the expansion w(! ) = 2.
This result will now be used to develop an asymptotic distribution of the numbers

ttn , k) as k ~ 00. In doing this. we follow the method of Renyi and Szekeres used in [9]
for a similar problem.

From (2.4) we have for k ;;:;. 1, t(O,k) = 0,

2: l(n.k)z"= fd z) - 1k .I(Z).
n ;;"O

which are entire functions for every k ;;:;. 1. Hence by the Cauchy formula

( k)
= _I ¢ 1A(Z) - fA .-l(=) d

I n, 2' 1 Z,
711 Z n +

(2.13)

(2.14)

where we take the circle Izi = ~ as the contour of integration. To estimate the integral
we use Laplace's method by first showing that as k ~ 00 the only significant contribu
tion of the integrand is in the vicinity of positive real axis.

For z = tei4' the function w(z) defined by (2.12) becomes

(2.15)

Its modulus 211 - ~l - e i
¢ I is a decreasing function of lepl on 0 (; 1et>1 < 71 with

maximum 2 at <P = 0 and minimum 2(";2 - I ) at Iq,!= 71.

Now use (2.10) to write

fk+l(z) - w(z) = z[A(z) - w(z)][fdZ) + w(Z)J (2.16)

and choose an arbitrary 0 < E < 2/3. By (2.11) there exists K( such that

k > K(~ IA(z) - w(z)1 < E for all e (2.17)

whence using (2.16)

Ifk+ l(z) - w(z)1< E(2IwOe j4')1+ E)

<4Ej l - b - ejtj> I(I+ E.)
. 21w( ke'9)1.

< 12EIl _.J! - e i4' 1 since jwOej¢)1 >~. (2.18)
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Iterating (2.16) we thus find that
m

IJK....m(z) - w(z)1 < (12€ll - b - e'" I)
for all m = 1,2, . .. and all q>, i.e., that

uniformly in <p.
Since for sufficiently small 1<>1 we have

II - J1 - e i<? I' 1 - t~

we can choose for instance a sequence q>k = (In2k / k)2 for which as k ~ 00

f . k 2

~up JI-v1- e'<? I ,e-1n k

191 ;- 9k

and thus conclude that for 1<1>1 ) q>k

k( ~ei<l» = w( ~e'¢) + o( e-n'k)

as k~ 00 .

If we now substitute (2.23) into (2.14) we have with z =1ei9

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

l(n.k) = i: f<7JA(tei¢)- fk-I( ~ei¢) ]e - in9dq>

= .£ r [fk( ! eio/» - fk-'( ! ei'i»] eino/> dcp + 4no(e -ln
2
k), (2.24)

271' JI4>j«ln2k / k)2 4 4

as k~ oc .
To estimate the remaining integral we first set <I> = 0 and call

(2.25)

The recurrence (2.10) yields

from which by substitution Yk = 2 - ak we obtain the recurrence

(2.26)

Yo = 1. (2.27)

Thus Yk is the kth iterate of the function h(x) == x - i x 2
, and iterates of such

functions can be handled by standard methods (see, e.g., de Bruijn [4, §8.7 or Exercise
8.11D. We obtain the asymptotic expansion

Y == ~ _ 41n k + s: + 0 ( In
2
k ) or

k k k 2 ' k 2 k3
(2.28)

as k .~ :x; where c is a constant.
To obtain the expansion for Icpl < (In2k/ k)2 we use the method of variable coeffi-



4';1

(2.3])

cients on (2.28). See Szekeres [12]. Put

!k( ~e i9) = 2 - -kl gl(~k) + In~ g2(~k) - S, gJ(~k) + ... (higher order terms).
k- k:

(2.29)

where ~l = itPk '2 .

For tP fixed we then have ~k+ I = ~k + ~,Jk so that upon substitution and using the
expansion

g I ( ~ + 1- ~) = gJ(~) + t g;(~) + .. . .

g2(~ + it) = g2(~) + t g;(~) + .. '.

I I I =1 __1 +.1-- ...
k + I = k I + k -1 k k 2 k 3 •

I = _1 I = _I -1.- + . . . and In(k + 1) = Ink + t-... ,
(k + 1)2 k2 (I + k -I)2 k2 k3

'

we obtain after collecting terms

!k+l( ~ei</» = 2 - 1- gl(~) l~~ g2(~) + ;2 [gl(~) - ~g;(r) - Cg3(~) ]

- In~ [2g2(~) - g2(~)] + . . . . (2.30)
k

On the other hand from (2.10) fk+ IUei'l» = I + ~ ei</>flO ei.p). whence using (2.29) and
e'" = e1E1k)2 = 1+ (Uki + ... , we have

fk+ 10ei
ol» = 2 - t gl(~) + l~~ g2(~) + ~2 [ ~ g~(~) + ~2 - Cg3(~) ]

InkIt t- k3 2" gl(lii)g2("') + ....

Comparing terms of (2.30) and (2.31) we obtain

with initial conditions g.(O) = g2(0) = 4 from (2.28). These equations have a solution

gl(~) = 2~cottt g2(~) = e(sinHf
2
,

which, when substituted back into (2.29), gives

fk(te i
4» = 2 - f ~cotH + I~~ e(sinH) - 2+ O(k -,2),

~ 2

where e = iepk2
• 1ct> 1<( In~k ). (2.32)
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and setting ~k-l = ~ - Uk, ~ = ~k' so that ~/.: _,/(k - 1) = ~jk, and using the expan
sions

I 1) 1 1 ( 1 )-2cot - (~ - - ~ = cot - ~ + - ~ sin - ~
2 . k 2 2k 2

e 1 ( . 1 )2= -cot-~ sm-~ + ...
4k2 2 2 '

1In(k - 1) = Ink - k + .. " and

(
1 ( 1)) - 2 ( 1)-- 2 1 1 )sin 2" ~ - k ~ = sin 2" ~ ( 1 + k ~ cot 2" ~ + . .. ,

we obtain

J~Uei9) - Jk-I( keic?) = ~2 e(sin!~) -2 _ l~~ ecot!~(sin!~)-2

e 1 )-2 e 1 ( 1 ) -2+ -J(sin2"g - -3 coti~ sinig +.O(k- 3
) .

k . 4k

However, for e = i9k", 191 < (ln2k j ki, we have

gcotH= O(ln2k), IsinHI-2~0 as k~oo ,

so that we can write

{.(le i</» _ c. ( le i¢) = _1 L + O( In
4k).

Jk 4 Jk 1 4 k2 ' 2 I t k 3. sm 2 li

(2.33)

The same expression can also be obtained by again substituting (2.32) into the
recurrence (2.10). If we now insert (2.33) into the integral in (2.24) and use the
substitution e = itPk". (2.24) becomes

t(n.k) = 4
n

. 1- (~e-ne/k1d~+ 4nO( In
8k). (2.34)

27TI k 4 Jr sin2 g k 5

where the path of integration r as determined from the condition 1</11 < (ln2kj ki is
(see Figure 2.2):

~ = '1"( -I + i)

~ = '1"( 1+ i)

for - _1_ln2k < 'I" <; 0
Ii '

",\
\ A,

FIGl'RE 2.2
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The integrand is a meromorphic function with poles at

51

~m = Lnm , m = ± I, ±2 .". , . (2.35)

and corresponding residues

r(~m) = 4[3(21rml - 2 -4; (2'1Tmr~ ]e - · lI(:!",m , .' I k ·' .
k~

(2.36)

11 > 0,

Before applying the residue theorem. we have to close the path of integration, for
instance by the arc (see Figure 2.2) A : ~=Pke - j9, pk=ln2k. -'IT/4 ,,;.(J <:'1T /4.
Deforming the arc in the neighborhood of the real axis so that it passes approximately
in between the two consecutive poles we have from [sin zf = sin2x + sinh~r

IsinHI" 2 < 1+ 1/.

along the arc for large enough k. Hence

r~ e -ne/k~ d~ <(1 + 11)Pt ('rr /2e - Cnlk1
)( pi sin 8 ) dO

JA sm2H Jo

as k -H:IJ. (2.37)

Finally. applying the residue theorem to the integral over the contour r + A and using
(2.34), (2.36) and (2.37) we have the asymptotic expansion

t(n,k)=4n + l 1.. 2: [2.!!...(2'1Tm)4-3(2'1Tm)2]e ·n(2 ".m)~ /k:
k 4 m>1 k 2

.

+ 4nO(e -lnlk) + 4"0( l~:k ) + 4"0 ( l~:k). (2.38)

From here we can get the distribution of heights of binary trees with n nodes or
equivalently the probability that a randomly selected binary tree has height k if all
binary trees with n nodes are considered equally likely.

Calling this quantity p,,(k) we have

t(n ,k)
p,,(k) = C •

n
(2.39)

where C; = ~ kt(n, k) is the Catalan number (2.1). Using the asymptotic expansion (7]

C" = 4nj n 3/ 2[.; + 0(4"n -5 12) we obtain for large k and n,

where f3 = n ] k 2• Note that if k < n, which is the case of interest. the dominant O-term
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is the last one. Thus. if for some arbitrarily small 8 > 0

n3/ 8+ 5 .;; k :;;;; n,

then as n -" 00

(2.41)

To verify that (2.42) is indeed a probability distribution note that as n -" 00

where the limits of summation and integration are given by (2.41). Making a substitu

tion k = yln/ {j we have as n~ 00

But

fo OO3/31/ 2e - ( 2-:rm l'Pd/3 = 2{j3/2e - (2ITm) ,P[ + (2r;;m)2Loc 2/33/ 2e - <21Tm)"Pd/3,

and we are left with

by the substitution fJ.2 = (2'lFmi/3. If we denote 5;ln as the random variable with
distribution Pn(k) and call the asymptotic distribution function

F(x) = lim p( ~n :;;;; x)
n .....'X) 2 r=

'in
(2.43) ·

we obtain by integrating the right-hand side of (2.42) over 0 :;;;; k :;;;; 2xln by the same
method as above

ee
F(x) = 4X- 3'ij" 5/ 2 2: m2e - ( 'l7m / x )1.

m-l
(2.44)

It can easily be seen from (2.43) that for x == Oe{n), F(x)~O and thus the
asymptotic distribution (2.42) or equivalently (2.43), (2.44) is valid for all k in the
range (2.1) as n-) 00 (see Appendix, Figure A.I). This is identical with the distribution
function obtained by Renyi and Szekeres (see [9, p. 506]) for the height of general (as
opposed to binary) trees. Only the normalizing factor in (3.43) differs by a constant.
namely Ii. More precisely. if ~~ is the height of a general tree with n nodes (i.e., with
no restriction on the number of successors of a node) then for large n

(2.45)

a somewhat surprising result.

3. Binary trees generated by random permutations. As described in the introduc
tion the tree insertion algorithm defines a map which assigns to every permutation
7T(l, ...• n) a binary tree with n nodes. If all permutations of integers 1, . .. , n are
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considered equally likely the resulting trees are referred to as random. Thus. every
numerical quantity defined on a binary tree becomes a random variable,

Let Jr-/1 be the height of a random binary tree with n nodes. i.e.. generated by
random permutations of the first n integers. Clearly . the probability

P(c1{~ <, k) = -\-B(n.k).
n.

(3.1 )

where B( n, k) is the number of permutations 71"(1, .. . , n) mapped into trees with
height not exceeding k (see Appendix, Table A.2).

In order to obtain an explicit expression for (3.1) we first need a suitable indexing
system for the nodes. A natural way to do this is to consider first a full binary tree and
label its nodes by the sequence of positive integers starting from the root and labelling
in each subsequent level from left to right (see Figure. 3.1).

Thus nodes at levelj.j= 1,2, ... , from left to right have labels

2.i - 1 + m, m = 0, . .. ,2) -1. (3.2)

Note that the left and right successors of a node labelled x have labels 2x and 2x + 1.
respectively. left successors always have even labels. right successors have odd labels
(the root being an exception).

Next consider a fixed binary tree with n nodes and for every label x of the form
(3.2) define

d(x} = {~ + d(2x) + d(2x + 1)
if there is no node with label x,
if there is a node with label x.

(3.3)

Note that d(x) is simply the number of nodes in a subtree with root at x, in particular
del) = nand d(x) = 1 if and only if the node labelled x has no successor. i.e.. is a leaf,

LEMMA. There is a one-to-one correspondence between binary trees with n nodes and
height not exceeding k and the set Dt n, k) of vectors (dO), d(2) . . . . • d(2 k

- I) .....ith
nonnegative integral components satisfying the conditions:

(1) d(1) = n.
(2) for all j = 1, . . . , k

2)-1.,;; X c 2j - 1==>0.,;; d(x) < 2k ' -j + 1 - I,

(3) d(2x) + d(2x + I) > O==> d(x) = 1 + d(2x) + d(2x + 1).

PROOF. Given a binary tree the numbers d(x) are uniquely defined by (3.3).
Property (1) is obvious, property (3) follows from (3.3) since nodes 2x and 2x + 1 are
successors of node x, hence if there is a node with labels either 2x or 2x + 1 there
must be one with label x. Property (2) is necessary since if it were violated then there
would be a subtree with root at levelj having at least » :': I nodes and the height of
the tree would then exceed k. Conversely, given a vector (d(1), . . . , d(2 k

- 1»
satisfying (l )-(3). construct first a complete binary tree of height k and then eliminate
all nodes with labels x such that d(x) = O. Properties (l )-(3) then guarantee that the
result is a binary tree with exactly n nodes. I

level 1

level 2

7 level 3

FIGllRE 3.1
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(3.4)

A vector (dO) , . . . . d(2k
- I» E D(n,k) can be used to compute the number of

permutations mapped into the tree corresponding to this vector. Consider a permuta
tion ... (1, .. .. n) = (sl' ' . " s,,) mapped into a binary tree with height not exceeding k
and look at the node into which a particular symbol, say s., is mapped. Let Xi be the
label of this node and let L(sJ and R(s;) be the ordered subsets of (SI' . .. , sn)' which
are mapped into the left and right subtrees of the node X;, By the very nature of the
mapping if the elements of L(sr) U R(s) are reshuffled the tree is not changed as long
as the order of elements 'within each subset L(Si) and R(sJ of L(s;) U R(s) is
preserved. But the numbers of elements in L(sJ and R(s) are d(2x;) and d(2x; + I)
respectively so that the number of permutations resulting from such a reshuffle is

[d(2xJ + d(2xi + I)]! [d(x;) - 1J!
= --'-----'---

d(2x,)!d(2x, + I)! d(2x,)!d(2xi + I)! '

using (3.3) and d(x,) >°(since s, is mapped into a node labelled xJ. Repeating this
argument for each node of the tree corresponding to (d(l), ... , d(2 k

- 1» gives the
total number of permutations

[d(x)-I]!

II d(2x)!d(2x + 1)! '

where the product is over all d(x) > 0, x = 1, .. .. 2k
- I - 1. From here using the

lemma and (3 .1) we obtain the formula

p ( .YI~ « k) = ~ 2: II [d \x) - t J! I
n'd P:D(n,k) d(2x).d(2x + I).

Note that if d' = (d '(l). ' . .. d'(2k
- I» is obtained from d = (d(l), . .. , d(2k

- 1» by

,
l

d'(x) = { ~(X)

the formula (3.4) takes on a simpler form

if d(x) > 0,

if d(x) = 0,
(3.5)

(
2" I )-1

P(,Ytn " k) = 2: II d'(x)
dE D(n.k) >;-1

(3.6)

Unfortunately, except in a few special cases, the set D(n, k) is quite complicated for
(3.6) to be useful for computation. Again a recurrence relation may be preferable.

Indeed, such a recurrence is quite easy to derive. Consider the left and right subtrees
of the root of a random binary tree with n nodes. If J is a random number of nodes in
the left subtree then we have

'u " t . ' 'IU ' "Li< ' \
.rc n+1 = + max{,'l J , ,7l n-·J t : (3.7)

Now J is simply the number of symbols in a random permutation 7T(l, .. , , n + I)
= (5[ • . • • ,sn+l)' which are less than Sl' Therefore, J is uniformly distributed over
{ O•.•. , n ~ . and ..~ J and .:W'n_J are conditionally independent given J. Consequently

P(.l/~+ 1 - I .:: k IJ = j) = PClti .; k)P(Jt'n_.1 « k),

from which by calling

F(n,k) = p( Y/~ < k) (3.8)
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and taking the expectation we obtain the recurrence

11 "!

Ft n + I. k + I) = _1_
1

2: F(j,k)F(1l -- j.k) :
n + .;~o I

valid for n : 0, k ';.-. 0 r
if we define F(O k) = .r I if k = o, I;

' . l 0 if k :> O. )
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(3.9)

Now (3.9) can be used to calculate the numbers F(n,k) for moderate values of k and n

(see Appendix, Tables A.2 and A.3, and [2)); however the memory requirements
increase rapidly.

It can also be used together with (3.10) for some special choice of nand k, For
instance for n close to 2k

- 1 we obtain

t
r.

It may be noted that (3.9) gives

F(n,k) = 1

F(n,k)=O

for 0 ~ n < k, and )

for n ~ 2k,as expected.
(3.10)

k .,l-- '
F(2k - l.k) = II (_._1_)- '.

)""1 2) - I

F(2 k
- 2,k) = (2k

- ])F(2k
- l,k),

F(2" - 3.k) = (2k
- 1)(21. ···\ - I)F(2k

- l,k).

k ~ 1,

i » r,

k >- 2,

(3.Ila)

(3.1Ib)

(3.llc)

and a few more. Note that (3.11a) is the probability of obtaining a full tree of height k .
However, these few terms are of minor interest.

Another possible approach is to use generating functions. Defining

00

Ik(X) = L: F(k,n)x n
,

n-O

we have immediately from (3.9) the relation

k;;. 0, (3.12)

Ik+I(X) = 1+LXlf(y)~y, lo(x) = 1. (3.13)

Note that A(x) are again polynomials, Ik(O) = 1, and that for all x E (0, IJ

Ik(x] <A+ 1( x) -) (1 - x) - I as k -) co.

It is hoped that (3.13) can be used to obtain an asymptotic distribution of the heights
. :W'n' However, we have not been successful in that respect to date.

I It has been suggested to us by A. Washburn that a lower bound on the expected
height E (:Yr'" } can be easily obtained froin (3.7). Taking expectation we have

E {£~+ I} = 1 + E {max(Yt'J ,:Yt'n-J) l
and conditioning upon J

E {max]£/ '£'''-J ) IJ = j} > max(E { .;Y('J }. E {K n '_j }).

Since J is uniformly distributed over {O, ...• n} this implies

(3.14)
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Hence if an' n = 0, I, , , .. is a sequence of numbers defined recursively by

1 n
an + I = I + --I 2: max] cr.}. Un-j)' cr.o = 0,

n + j ~ O

it is easily seen from (3.14) and (3.15) that

E I ,Jf"'n ] > an for all n = 0, 1, . ..

Note that an is a strictly increasing sequence so that

(3.16)

(3.17)

for n odd,

for n even. ..

Since clearly an = O(n) we have as n~ OC

an~ 1+ ~ 2: a; ,
n/2 <j .. n '

which upon approximating the sum by an integral yields

a(t)--I + 2 (I a(~y)dy.
)1/2

On the other hand, let Y be a random variable defined by

(3.18)

Then

nY= {J
n-J

if ;yt~ > '~n -J ,

if ,'Yt'J < ,Yrtl - J •

and by (3.7)

nY ~ max{J,n - J }, (3.19)

(3.20)

Now for large n, Y is uniformly distributed over (-}, 1). and since p,(n) = E t ,Jr'n I is an
increasing function of n we get from (3.20) by conditioning on Y and applying (3.19)
the asymptotic inequality

p,(n) < 1+ 2 r 1
p,(n.v)dy

)1/2
(3.21)

valid as n-o o». But this together with (3.17) and (3.18) indicates that we should have
in fact

p,( n)--a(n) as n~ cc (3.22) ..
where aCt) is a solution of (3.18). It is easily verified that (3.18) has a solution

Int
a(t) = l-ln2 +0'.

where 0' is an arbitrary constant. But as p,(n)~ oc the constant can simply be
disregarded and we have an asymptotic equivalence

Jl(n)~(1-ln2)-llnn = 3.158891nn

as n -~ oc (see Appendix. Tables A.2 and A.3).

(3.23)
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Since completion of this work . Robson [10] has shown that asymptotically 3.63
( p.(n)/lnn (4JI.

4. Further results for random binary trees. We now turn our attention to some
other quantities associated with random binary trees. In particular we wish to study
the process of growing the tree as the number of nodes increases. A convenient way to
visualize such a process is to consider a sequence Xl ' X2 ' . .. of independent random
variables with a common continuous distribution and take as our permutation the
ranks of Xl' . , . , X; for each n = 1,2, . .. . Clearly. for each fixed n all resulting
permutations are equally likely, and each new symbol, i.e., rank of XII + r- is uniformly
distributed over {I , ... , n + I }.

If for some n we have a random binary tree then a new symbol will be mapped into
a new node. This new node can appear in one of n + I possible locations in the current
tree. Following Knuth [7J we will refer to these locations as vacancies of the current
tree. They are depicted in Figure 4.1 as empty squares.

Let for n ;;;. 1, j ;;;. 2, V" j be the number of vacancies at level j at time n, i.e., in a
random binary tree with n nodes. Clearly VnJ = 0 for j > n + 1 and

V n,2 + V n,3 + ... + Vn,n+l = n + 1. (4.1)

Also, obviously V l ,2 = 2. Suppose now that at time n the vacancies have values
Vn,2' • • • • 0n,,,+ I' Since a new node is equally likely to fill any of the current n + 1
vacancies, the probability that it will fill a vacancy at levelj equals vn.;/(n + 1). But
then .

Vn+l.j = vnJ - 1,

Vn+ I J+ 1 = vn.j+1 + 2, while

for all i =f= j, i =f= j + 1.

n » 1,

Thus if we define a sequence of random poiynomials

Wn(X) = 2: Vn .jxj -I ,
j>2

we see that these polynomials form a Markov chain with transition probabilities

P(Wn+I(X) = wn(x) + xj-I(2x - 1)1 Wn(x) = w,,(x») == n
V
::1 I

n> 1, j = 2, .. , .n + I, and the initial state W1(x ) = 2x.

In particular we then have

n ;;;. 1.

FIGURE 4.1
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Consequently
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(4.2)

E { WPl(X) } = (I + 2x n- I )(1 + 2~'(~11 ) ... (I + 2x
2-1

)2x

I 1 n+l[ n] .=,2x(2x+l) .. . (2x+n-I)=,2: '-1 (2X)J-I,
n. n. 1'-2 J

where [~] are Stirling numbers of the first kind in Knuth's definition and notation [7].
Thus

. 2j
- 1 [ n ]E V · =-. ,t "J} n! J - 1 j = 2, ... , n + I, n » 1, (4.3)

gives us the expectation of the number of vacancies at various levels (see Appendix,
Table A.5). Other quantities of some interest may be obtained from here. For instance
the expected distribution of the number of vacancies over levels is immediate

j = 2, . . . , n + I; n » 1. (4.4)

Next let K; be the number of comparisons needed to insert a new (n + I)st symbol
into a binary tree by the algorithm described in the introduction. Then the probability

P(Kn = K) = E {P(Kn = K IWn(x»}

= { :n~+ll }= P,,(K + I), ,,= I, ... ,n, n;;' I,

since the numbers of comparisons is " if and only if the symbol fills a vacancy at level
" + 1. Recalling that the Stirling number [:1 is also the number of permutations of n
symbols with exactly K cycles we can write

where qn(K) is the probability that a random permutation of n symbols has" cycles.
(One wonders whether the number of comparisons can be related to the number of
cycles.) (See Appendix, Table A.7.)

With

II: = I, ... , n,

the generating function (by definiton of the Stirling number) is

n n
" P k I( IT 2x + " - IGn(x) = LJ (n = K)X = I

1(=1 ,,=1 ,,+

Hence kn is a convolution. k; = XI + . . . + Xn , where the -'<,,'s are independent
Bernoulli variates:

rI,
x = .

K i

)0,
L
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H(2) = ",2 __1_ + o( _I )
" 6 n + 1 n2 '

nIl 1
p." = E { k,, } = "~I PIC = 2( "2 + 3" + .. . + n + I)

=2(H"+1- 1),

with H" representing the Harmonic number [7]. (See also the Riemann Zeta function
in Abramowitz and Stegun [1].)

= 2(Hn + 1 - 1) - 4(H~~1 - 1) = 2Hn + , - 4H~~1 + 2.

Since asymptotically [6]

Hn=y+lnn+ 2
1n +0(:2)'

with y Euler's Constant, 0.5772 . . . , we obtain for the number of comparisons

p.,,-..2{y - 1+ In(n + I)} = 2ln(n + 1) - 0.8456 .. . ,

a;-..2{ y + 1 - 2t + In(n + I)} = 2 In(n + 1) - 3.4253 . . .

Since Ix,,1 < 1 and an~ 00, the central limit theorem applies, yielding

p( kn - Pon c x) ~ep(x) = _1_ fX e-y2/2dy .
an & -00

Also, by the Berry-Esseen Theorem (cf. Feller [5, p. 544J)

sup p( kn - Pon ) _ ep(x) <6 r~ ,
x 0" On

where
n n

r, = ~ Elx,. - p,l = ~ PlCq,,(p; + q;).
lC-1 Ie-I

Asymptotically,

r,,= -2( H~:'>1 - 1) + 4(H~~\ - 1) - 3(H~~1 - 1) + H,,+ 1- 1

",4 ",2
- - 45 + 4(0.20205 ... ) - T

= In(n + 1) - 4.714 ... ,

so that the bound

6!!!.. ....,o( 1 )
0; ~ln(n + 1) ,

+ Y+ in( n + I) + 1

which gives a fairly high rate of convergence to normality for the distribution of the
number of comparisons to insert a new symbol. The results given can be used to
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analyze a complete binary insertion sort algorithm operating on a random string of
symbols. Higher order expansions are also possible for describing this process.

Further, let Mn j be the number of nodes at level j in a random binary tree with n
nodes. Since clearly

j = I, . . . , n, with

'~n , 1 = 1, l~{n,n+ 1 = 0, n » 1, whence
(4.5), I n I)' " j • •u., = 2" r~/ 2" Vn,r+ l' or upon taking the expectation

. 1 n
E { M . \J = 2

j
- "[ n], J' = I, ' .. ,n, n;;;' 1.

I n.; n'~ . r
. r=)

(See Appendix, Table AA.)
Note that

E{_1 M }=.l~[n]
2j - 1 n,; n! r7:; r

is an expected fraction of nodes occupied at level j. It may be called an expected
relative thickness of the tree at levelj. Lookingagain at Figure 4.1 we see that we can
distinguish between two kinds of vacancies, those which are attached to a leaf (and
hence come in pairs) and those attached to an internal node of the tree, We will refer
to these two kinds as twin and single vacancies respectively.

Let for n ;;;, I,j > 2, V~Y be the number of single vacancies and V~J> the number of
twin vacancies at level} in a random binary tree with n nodes. Clearly

V CI ) - 01.2 - , V ( 2) - 2
1.2 - •

If at time n the values of these variables are

t,ll) t;(I ) and V12) v (2 )
~n ,2 ' •• • , n.n + I n.2 ' . .. ~ n.n + 1"

then filling a single vacancy at level} results in

VII) = v( I) - 1
n+ 1:1 n o} , Vr ~ - r(~+ 2

n+ 1,;+ I - ""n,} ,

with probability t1~Y/(1I + 1). while filling a twin vacancy at level} results in

Vf ll - , (1 ) + In+ I., - 1:n,; , V ( 2 . - V(2) + 2
n+I ,/+I- n,;+1 ,

with probability tl~~) / (11 + 1). The remaining vacancy numbers are not changed. If we
again introduce the random polynomials

we obtain for their expected values the equations

E i w( 1) (x)) = __n_ E ( W i 1)(X) 1 + _1_ E I W t 21(x ) \
I n+ I I n + 1 1 11 • J n + I t n I'

E ! W12) (x) l = -.1£. e ! Wi I~(x) -I + n - 1+ 2x E {' W(2)(x)t
l n+ I · J n + I I n J n + 1 n J'

n )- 1.
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Since

we obtain by substitution

E (W(I)I(X) "} = n - 1 E {W()l(X)}" .,' _1_ E r W (x)}
l n+ n + I n \ n + 1 I n'

from which by using (4.2) we have

n n-I
= 1 ~ (2x) j-I" 1 [r]

n(n+ 1) ~ " 4' (r-l)' J'-1 .J..,,2 r=J-I •

Thus,

. In-I
E{V(~)}= 2J

" " I [r]
/IJ n(n+ 1) r-t-I (r-l)! j-I '
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n > I. (4.6)

(4.7)

j = 2, .. . , n; n > 1, while the corresponding expression for twin vacancies is obtained
by subtracting (4.7) from (4.3) with (4.7) set equal to zero for j = n + I (see Appendix.
Table A.6).

We conclude this section by computing the expected number of leaves in a random
binary tree with n nodes. From the first equality in (4.6) the expected number of all
single vacancies equals

n-I n-I

E{W~I)(I)}= (~I) LrE{Wr ( I ) } = (I_I) Lr(r+I),
n n r'a:Inn r-I

since by (4.2) E {W/I(l)} = n + 1. The latter sum equals ten + 1) so that the expected
number of all twin vacancies is n + 1 - t(n + 1). The expected number of leaves is
clearly half the number of twin vacancies, that is ten + I). Thus, in a random binary
tree on the average about t of the nodes are leaves.

REMARK. Having in mind the process of growing random binary trees as described
above we can also look at a random process

No = 1, (4.8)

i.e., the time (= number of symbols) needed to grow a tree over the height k (see
Appendix, Table A.S). From (4.8) clearly P(Nk > n) = P(Hn ( k) = F(n, k) so that
gk(x) = 1 - (l - X)!k(X) is the ordinary probability generating function gk(X) =
~";>1 P(Nk = n)x" of the random variable Nk • Denoting

the mth factorial moment of Nk and using the fact that
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we obtain by 'applying Leibnitz formula to (3.13) the relation

jI(m + 2,k + 1)= _1_
1
~ (~++ 12)ji(j + 1,k)jI(m - j + I ,k).

m + j - O J

m > 0, k >O. In particular with m =a this becomes

E{ Nk + I(Nk + l-l) }=2(E( Nd)2, «».« or

Var {Nk+d =2(E {Nk })2+ E { Nk+d[l - E { Nk+dJ.

Unfortunately, it is the first moment E {Nk } , which is hard to obtain for large k (see
Appendix, Table A.7).

Since completion of this work, some related material has been published by Ruskey
[ II}.

5. Acknowledgment. We are deeply indebted to Professor Herbert Rutemiller for
his early contributions and encouragement, without which we would never have
continued our efforts.

Appendix

TABLE A.I
Binary Trees with n Nodes and Height k , ten, k} (2.3)

No. of Height
Symbols n! 0 2 3 4 5 6 7 8 9 10

0 1 1
I 1 0 1
2 2 0 0 2
3 5 0 0 1 4
4 14 0 0 0 6 8
5 42 0 0 0 6 20 16
6 132 0 0 0 4 40 56 32
7 429 0 0 0 I 68 152 144 64
8 1430 0 0 0 0 94 376 480 352 128
9 4862 0 0 0 0 114 844 1440 1376 832 256

10 16796 0 0 0 0 116 1744 4056 4736 3712 1920 512

TABLEA.2
Partitions of Permutations of n Symbols into Binary Trees of Height k (Adapted from (3.9»

No. of Height
Symbols II! 0 2 3 4 5 6 7 8 9 10

0 I I
I I 0 1
2 2 0 0 2
3 6 0 0 2 4
4 24 0 0 0 16 8
5 120 0 0 0 40 64 16
6 720 0 0 0 80 400 208 32
7 5040 0 0 0 80 2240 2048· 608 64
8 40320 0 0 0 0 11360 18816 8352 1664 128
9 362880 0 0 0 0 55040 168768 104448 30016 4352 256

10 3628800 0 0 0 0 253440 1508032 I2775b8 479040 99200 11008 512
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FIGURE A.I. Normalized asymptotic distribution of binary tree height (2.42).

TABLEA.3
RandomBinary Tree Height(Adaptedfrom (3.9) and (3.23»

Height
No. of

Symbols Minimum Mean Variance

0 0 0.000 0.000
I 1 1.000 0.000
2 2 2.000 0.000
3 2 2.667 0.222
4 3 3.333 0.222
5 3 3.800 0.426
6 3 4.267 0.507
7 3 4.670 0.570
8 4 5.018 0.682
9 4 5.340 0.774

10 4 5.641 0.837
50 6 10.810 2.051

100 7 13.286 2.522
150 8 14.778 2.772
200 8 15.852 2.934
250 8 16.693 3.052
300 9 17.385 3.147

-n l'1.443In(n) -3.259In(n)

Ir indicates next higher integer.
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TABLE A.4

Expected Nodes by Level in Random Binary Trees (4.5)

Level
No. of

Symbols 2 3 4 5 6 7 8 9 10

0 0.0000
I 1.0000
2 1.0000 1.0000
3 1.0000 1.3333 0.6667
4 1.0000 1.5000 1.1667 003333
5 1.0000 1.6000 1.5333 0.7333 0.1333
6 1.0000 1.6667 I.SIII 1.1 222 0.3556 0.0444
7 1.0000 1.7143 2.0286 1.4794 0.6254 0.1397 0.0127
8 1.0000 1.7500 2.2036 1.8016 0.91 71 0.2786 0.0460 0.0032
9 1.0000 1.7778 2.3476 2.0911 1.2155 0.4514 0.1028 0.0131 0.0007

10 1.0000 1.8000 2.4684 203515 1.5122 0.6494 0.1828 0.0323 0.0032 0.0001

TABLEA.5

Expected Vacancies by Level in Random Binary Trees (4.3)
,

Level
No. of Total

Symbols Vacancies 2 3 4 5 6 7 8 9 10 II

0 I 1.0000
I 2 0.0000 2.0000
2 3 0.0000 1.0000 2.0000
3 4 0.0000 0.6667 2.0000 1.3333
4 5 0.0000 0.5000 1.8333 2.0000 0.6667
5 6 0.0000 0.4000 1.6667 203333 1.3333 0.2667
6 7 0.0000 0.3333 1.5222 2.5000 1.8889 0.6667 0.0889
7 8 0.0000 0.2857 1.4000 2.5778 2.3333 1.11 11 0.2667 0.0254
8 9 0.0000 0.2500 1.2964 2.6056 2.6861 1.5556 0.5111 0.0889 0.0063
9 10 0.0000 0.2222 1.2079 2.6041 2.9667 1.9796 0.8000 0.1926 0.0254 0.0014

10 11 0.0000 0.2000 1.1316 2.5853 3.1908 2.3750 1.11 59 003333 0.0614 0.0063 0.0003

TABLE A.6

Expected Single Vacancies by Level in Random Binary Trees (4.7)

Level
No. of

Symbols 2 3 4 5 6 7 s 9 10

0 1.0000
I 0.0000
2 0.0000 0.1667
3 0.0000 0.1111 0.11\1
4 0.0000 0.0750 0.1167 0.1000
5 0.0000 0.0533 0.1022 0.1467 0.1067
6 0.0000 0.0397 0.0862 0.1603 0.2032 0.1270
7 0.0000 0.0306 0.0724 0.1585 0.2680 0.2993 0.1633
8 0.0000 0.0243 0.0612 0.1501 003057 0.4643 0.4603 0.2222
9 0.0000 0.0198 0.0522 0.1394 0.3241 0.6019 0.8226 0.7309 0.3160

10 0.0000 0.0164 0.0449 0.1283 0.3299 0.7084 1.1967 1.4804 1.1895 0.4655
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TABLE A.7

Distribution of Comparisons for Insertion of Random Symb ol in Random Binary Tree
((4.4 ). Expected Fraction (If Varancies by Level in Random Bina~)' Trees with K = [(' I'el .- I)

---
Comp arisons. "
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No. of
Symbols 0 2 3 4 5 6 7 8 9 10

0 1.0000
I 0.0000 1.0000
2 0.0000 0,3333 0.0667
3 0.0000 0.1667 0.5000 0,3333
4 0.0000 0.1000 0,3667 0.4000 0.1333
5 0.0000 0.0667 0.2778 0.3889 0.2222 0.0444
6 0.0000 0.0476 0.2175 0.3571 0.2698 0.0952 0.0127
7 0.0000 0.0357 0.1750 0.3222 0.2917 0.1389 0.0333 0:0032
8 0.0000 0.0278 0.1440 0.2895 0.2985 0.1728 0.0568 0.0099 0.0007
9 0.0000 0.0222 0.1208 0.2604 0.2967 0.1980 0.0800 0.0193 0.0025 0.0001

10 0.0000 0.0182 0.1029 0.2350 0.2901 0.2159 0.1014 0.0303 0.0056 0.0006 0.0000

TABLEA.8

Number of Random Symb ols Needed to Grow a Binary Tree
of Height Exceeding k (4.8)

Height Nu mber of Symbols
k E1N. : a !lVk } Range

0 0 I
I 2 0 2
2 3.33 0.491 3-·4
3 5.13 0.995 4--8
4 7.53 1.861 5- 16
5 10.75 2.931 6-32
6 15.02 4.533 7- 64
7 20.67 6.680 8-128
8 28.13 9.557 9-256
9 37.92 13.512 10-512
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