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PRIMAL GOAL DECOMPOSITION*
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California 93943
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Nabisco Brands, Inc., East Hanover, New Jersey 07936

An optimization-based decision support system has been developed and used by NABISCO
to manage complex problems involving facility selection, equipment location and utilization,
and manufacture and distribution of products such as the familiar Ritz Crackers, Oreo Cookies,
Fig Newtons, etc. (all product names trademarks of NABISCO). A mixed-integer, multi-com-
modity model is presented for the problems at hand, and a new class of goal decompositions is
introduced to yield pure network subproblems for each commodity; the associated master
problems have several notable properties which contribute to the effectiveness of the algorithm.
Excellent quality solutions for problems with more than 40,000 variables (including several
hundred binary variables with fixed charges) and in excess of 20,000 constraints require only 0.6
megabytes region and less than one compute minute on a time-shared IBM 3033 computer;
average problems (with fewer binary variables) require only a second or two. The solution
method has more to recommend it than sheer efficiency: new insights are given for the funda-
mental convergence properties of formal decomposition techniques. Several applications of this
powerful interactive tool are discussed.

(PROGRAMMING—LARGE-SCALE SYSTEMS; PROGRAMMING—INTEGER, APPLI-
CATIONS; FACILITIES/EQUIPMENT PLANNING)

1. Introduction

The production/distribution system design problems considered here derive from
current operations of the Biscuit Division of Nabisco Brands, Inc. Nabisco bakeries
produce several hundred products for nationwide distribution (e.g., Ritz Crackers, Oreo
Cookies, Fig Newtons, etc.). Production takes place in batches, each of which involves a
relatively brief setup followed by a continuous run of product. The continuous produc-
tion run involves two key operations: baking, in which raw ingredients are fed contin-
uously into an oven, and secondary operations, such as sorting, packaging and labeling
finished products. Thus, primary facilities (i.e., ovens) and secondary facilities (e.g.,
packing lines) must be operated synchronously.

Scheduling and operation of bakeries is a complex managerial task. Each oven is
capable of producing many (but not all) products with varying efficiency. While baking
a particular product, each oven uses a designated secondary facility for that product as
determined by the physical layout of the bakery; the secondary facility may be shared
with other ovens in operation at that time. Production must be assigned to bakeries so
that total costs—manufacturing and transportation costs—are as low as possible.

Among the operational issues to be resolved are:

—Where should each product be produced?

—How much production of each product should be assigned to each primary
facility?

—From where should product be shipped to each customer?

Over time, new products are introduced and customer demand shifts for each prod-
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uct and geographic region. Eventually, it becomes necessary to build new plants (or
modify or close existing plants) and to introduce new facilities (or move or sell old
ones). The strategic issues include:

—Where shall plants be located?

—What kind of facilities are needed, how many are required, and where should they
be located?

We have endeavored to answer all these questions by developing a data base and
decision support system that utilizes a large embedded optimization model. User-
friendly interactive facilities provide rapid response to operational and strategic queries
by simple editing and control of the model monolith. Reasonable model resolution
entails approximately:

100-200 Products (product groups),

200-300 Facilities, including

80-100 primary facilities (ovens)
120-200 secondary facilities,

10-20 plants (bakeries), and

120-170 Customer zones.

Useful response time necessarily is very short. Consequently, a great deal of effort has
been invested in the optimization methods.

In the sections that follow, the details of the mathematical model are presented, a
new class of decompositions is introduced and applied, a mathematical justification for
the decomposition is presented, and some general insights are given for the relative
convergence properties of classical decomposition methods and the approach devel-
oped here. Finally, we give several examples of application of the decision support
system.

2. Mathematical Model

Our formulation uses the following notation:

1 is the index set of products;

J is the index set of facilities;

K is the index set of plants;

L is the index set of customers.

In addition to these primary index sets we require some additional derived index sets.
The set of facilities J is partitioned into primary (baking) facilities, .J;, and secondary
facilities, J,.

The set of activities is defined by the combination of locations and facility types:

A=JXK=; XK)U(, XK)=4,UA,.

The activities are restricted as to location, and 4 = 4, U /fz C A are the subsets of
allowable combinations.

The set of production elements is defined by the combination of products and pri-
mary activities:

P—_‘IXA]:IXJ]XK.

The production elements are restricted as to primary activity, and P C P is the set of
allowable combinations. Each allowable production element is associated with a
unique secondary activity, as defined by the map M: P — A,. The map M induces a
partition of P according to the secondary activity used:

R, = {p € PIM(p) =a EA~2}
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The set of primary activities that produce a given product i € I is:
T, = (a; € )i X 4, € P).

The given data for the model are:
D;; demand for product i in customer zone /,
S« capacity for product i on facility j at plant k,
c;ix average unit cost of producing product i on facility j at plant k,
S unit cost of shipping product i from plant k to customer /,
G fixed portion of the annual possession and operating cost for facility j at plant k,
F,. fixed portion of the annual possession and operating cost for a plant at site &,
Y yield of product i on primary facility j at plant k,
U rate of utilization by product i of secondary facility j at plant k,
Ci, C‘jk minimum and maximum utilization of facility j at plant k,
N, N minimum and maximum number of facilities at plant k.
The variables of the model are:
X the amount of product i produced on facility j at plant k shipped to customer /,
i the amount of product i produced on facility j at plant £,
W a 0-1 assignment variable of facility j to plant &,
Z; a 0-1 close-open variable for plant k.

The problem is formulated as the following mixed integer linear program:

MINIMIZE 2 X,-jk,(cijk +ﬁk[) + 2 ijVij+ 2 Fka
Gked kek

Xs,W,Z (i,j,k)EP
leL
SUBJECT TO
z Xijk[=Dils 1619 IELs (2.1)
KET;
> Xj < Sy, (1, k) EP, (2.2)
IEL
CiWis 2 sil Vi < CaW, (., k)= a € A4,, (2.3)
G.j,keP
CiWie< 2 UgiSie < CcWik (j, k) = a, € 4, 24
(1, K)ER,,
NeZpy < > I’V,-kSNka, kEK, (2.5)
jer
2 Wi=1, JjEJ, (2.6)
kek
and the variable bounds
0 < Xyu, 2.7)
0< Sijk < S,'jk, (2.8)
Wfk = {O’ 1}3 (2.9)
Z, = {0, 1}. (2.10)

The constraints (2.1) ensure that all demand is met. The constraints (2.2) ensure that
products shipped are produced. The constraints (2.3) and (2.4) are multi-product ca-
pacity restrictions on the primary and secondary activities. The constraints (2.5) limit
the assignment of facilities to plants. The constraints (2.6) ensure that a facility is
assigned to only one plant.

A realistic prototypic problem has 150 products, 218 facilities, 10 plants and
127 customer zones. The number of production elements is 345 and thus there are
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345 X 127 = 43,815 X, variables. Adding the 345 s;; variables and the 10 Z, variables,
the problem has a total of 44,388 variables. There are 150 X 127 = 19,050 constraints of
type (2.1), 345 of type (2.2), 218 of type (2.3) and (2.4), 10 of type (2.5), and 218 of type
(2.6) yielding a total of 19,841 constraints.

3. Decomposition

Problems of dimension 19,841 X 44,388 can prove to be somewhat intractable when
approached in a direct manner. Examination shows, however, that separating the X,
variables by fixing s;x, Wy, and Z; in a primal decomposition breaks out disjoint
transportation problems by product and leaves a relatively modest master problem. At
the nth iteration, we have the following subproblems, one for each i € I

(ith subproblem at nth iteration)

MINIMIZE > Xiw(Cik + fid)
X UkeP

SUBJECT TO
> X = D, lEL, 3.1)
GhET:
> Xyt < Sl (jkEP, (3.2)
leL

and the variable bounds (2.7).
The supplies s7; in (3.2) for the nth iteration are obtained from a master problem.
The master problem at the #th iteration is given as follows, where I, is the best known
solution value for the entire problem through the nth iteration. Let v% be the dual
variables associated with the constraints (3.1) and u}; be the dual variables associated
with the constraints (3.2).

(Master Problem)
MINIMIZE 3 GuWy+ 3 FiZ
Subject to:
2 Sijk = 2 DiIa ie I, (33)
(GLKET; leL
_jkI/V;'k = B % Stjk/)]yk = ]kVija (], k) =a EA‘la (2'3)
L.,
CiWie < ) _Z UjiiSijie < C-}kVij, Gk =a€E /iz, (2.4)
(1,),k)ERz
NiZi < 3 Wi < NiZy, k €K, (2.5)
jeJ
2 I/ij= 19 .] EJ, (2'6)
kek
sl_]k Sl]k, (isj, k) € ﬁs (3'4)
z ufjksijk + E ijW}k + 2 Fka < Ic + 2 U?]Dil— €, t<n, (3'5)
G.ikEP Jked keK eI

leL

and the variable bounds (2.8)-(2.10).

The constraints (3.3) are added to ensure sufficient supply for feasibility of the
subproblem at each iteration. The cuts (3.5) are developed in the next section. The
constraints (3.4) are the really novel feature of this formulation. They are a set of
production goals used to provide additional information in the allocation of the activity
capacity across the various products. The symbol £ indicates that each may be violated
at a small linear penalty cost. The penalty cost must be small enough to ensure that
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these “goals” will be sacrificed as needed to satisfy the other relatively stiffer con-
straints.

In this model the goals are obtained initially by solving the subproblems with
s% = S, the individual production capacities, while ignoring the multi-product capac-
ity restrictions (2.3), (2.4). Since these goals are obtained as a relaxation of the original
problem, this provides a lower bound on the value of the subproblems.

Typically the most desirable activities will be overutilized by the subproblems and
exceed their joint product capacities as specified in the constraints (2.3), (2.4). There-
fore the actual subproblem use (1. X;) is scaled down proportionally by product to
equal exactly the joint product capacities C-'jk. This is done after a heuristic has been
used to select a good initial configuration of assignments of facilities to plants. Each
unassigned facility is assigned to the compatible plant from which the subproblems
have drawn the highest total proportions of demands for products made there.

The use of decomposition goals profoundly influences the rate of convergence
achieved with decomposition.

Dual decomposition models with goals have been suggested by Ruefli (1971) as a
purely conceptual tool for interpretation of hierarchical organizational behavior. Sub-
sequently, Freeland (1976) discussed primal decomposition goal models in the
same vein.

4. Justification of the Decomposition
Given the mathematical program

MP min wy = w;y; + wa s
st.  Ay=A'yi+A*y,<r,
—y= 0, Y,ET,

which becomes a linear programming problem given fixed values for y,, the problem
may be solved sequentially as a function of y,:

LP(y;)  min wy, (+wy 1)
s.t. Ay, <r— 4% y,
N = 0.

Let F, be the set of primal feasible solutions y = (y1, y,) of MP. Let R()») be the set of
r(y,) = r — A%y, that yield a finite optimal solution to LP(,). Also let F,( ) be the set of
primal feasible solutions y,(3,) of LP(3») and v(),) be the optimal value of LP(y,).
Let v(),) = 0()2) + way,. Now (1, J») € F, yields a y such that r(3,) € R()») and
¥1 € F,(»,) and conversely, and therefore every feasible solution of MP yields a feasible
solution in the class of LP problems LP(},) and conversely. The optimal value of MP is
miny,eg(y,) U()2).

Let the dual of the relaxation of MP, deleting the restriction y, € I, and the dual of
LP(y,) be respectively

DP max  Xxr DP(3») max  x(r — A*») (+w2ys)
s.t. xA<w, s.t. xA' < w,
x=<0 x =<0,

b

with corresponding feasible solution sets F,; and F,()5).
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Let x(3,) be an optimal solution for DP(3») and then
v(y2) = 0(y2) + waya = X(¥2)r()2) + way2
= x(y)[r — Ay:] + w2
= x(y)r + [w2 — x(y) A

Now () as a function of () can be strongly characterized. The function 7(),) is a
continuous, convex, piecewise linear function. Using the results that a continuous
function of a continuous function is also continuous, and that the sum of convex
functions is convex, v(}») is also a continuous, convex, piecewise linear function.

If the convex function v(y;) were also continuously differentiable, we could apply the
classical result about convex functions that v(3,) = v(339) + Vo(y9)(3, — »9) to obtain a
linear lower bound function that would provide necessary conditions for v(3,) < v(39).
Although v(y,) does have discontinuities in its first derivatives, a linear lower bound
function is still easily obtainable. For any x € F,, y € F,, by the weak duality theorem
of linear programming,

xr<xr+ (w—xA)y=wy+x[r— Ay] < wy,
since
XEF;=x<0, (w—xA4)=0,

YEF,=y=0, (r—Ay)= 0.
Also,
(W — xA)y = [w; — xA"' Iy + [w2 — xA%]y,.

Restricting ourselves to x(¥,) € F,(y,), y € F, for a fixed value i, [w; — x(72)4']y, = 0,
and therefore,
(23 72) = x(7)r + [wy — x(7)A%]y,

= wy + x(P)[r — Ayl — [w; — x(7)4' Iy,
< wy + x(P)lr — Ayl < wy.

The linear lower bound function i(y5; 35) = x()r + [wy — x(32)4%]y, = v(»,) at
¥, = J, by direct comparison with the expression for v(y,). (This is an indirect conse-
quence of the complementary slackness requirement that [w, — x(7,)4'1y:(3%) = 0.)

The class of linear lower bound functions /(y,; j,) parameterized by y, can be
employed to generate a sequence {y3} such that v(y3) converges to the minimum of
v(3»). It is a necessary condition for an e improvement over the best known incumbent
value v(y%) that y4 satisfy the linear inequalities,

(Master Problem cuts)

3 v5) = x(Por + [wy — x(P)A i< v(y5) —¢  (<n.

(Inequalities (3.5) are an instance of this.)

When the master problem is infeasible v(y,) > v(»5) — € and v(»%) is an e-optimal
value, since any y, such that v(y,) < v(3$) — e would satisfy {(y,; ¥5) < v(3,) < v(p5) — ¢
and be a feasible solution.

THEOREM. Assume v()») is bounded below. Any sequence {v(y5)} generated from y%
that satisfies the master problem will terminate in a finite number of steps at an e-opti-
mal value.

PROOF. Suppose the sequence does not terminate in a finite number of steps and
yield an e-optimal value. Each y3 generates an x( )5) which is a basic optimal solution of
DP(y,). There are only a finite number of bases 7(k) for DP()»,) since 7(k) is not a
function of y,. Every x()%) satisfies 7(k)x(y5) = w, for some k, and since w; is also
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independent of y, there are only a finite number of x(3,). Therefore let s be the first
index such that x(y3) = x(y%) for ¢ < 5. Then

v(y2) = (y3; ¥3) = (5 o) < v(y9) — ¢
and v(y%) becomes the new incumbent. Since ¢ is strictly positive v(}),) will violate its
lower bound in a finite number of steps. Q.E.D.

An analogous development is given for dual decomposition and hybrid approaches
by Graves and Van Roy (1979).

Although any choice of yj satisfying the master problem will ensure finite conver-
gence, the rate of convergence is another matter. A two-dimensional representation of
v(),) as a piecewise linear convex function provides insight into the convergence pro-
cess. (See Figure 1.)

The convexity of v(),) implies that the slopes of the linear lower bound functions
I(y,; ¥») are small in the vicinity of the optimum and monotonically increase with y;,.
The rate of change of [(y,; J,) is very sharp when remote from the optimum, and when
|y — y%7!] is not strongly bounded an interminable oscillation can (and does) occur
between the wings. Any strong minimization of the /(3,; y5) such as the customary
decomposition technique (Benders 1962):

(Customary Master Problem)

min v
s.t. (y25¥5) <,

seems to force this type of oscillation and exhibit very weak convergence; the cuts
introduced here are much less prone to this unruly behavior, and admit a rich diversity
of coercion via the objective function. Any heuristic that will yield a good starting r(3/°)
should be very beneficial. (Note r(y°) = r — A%y, = ¥ can be solved for y, as a goal
program.) The piecewise linearity shows that /(y,; ) = v(»3) in a sufficiently small

”(yz)

v(y3) -
v(yz)—e |

FIGURE 1. Graph of v(3») and y; ) for y, € R.
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neighborhood of y4 (until a basis change). In general since /(3 ; y3) is determined by the
dual variables x(y3), which are the derivatives of v(y,) with respect to r()»), it is a good
approximation to v()»,) only in a small neighborhood of y3. To ensure stable
and virtually monotonic convergence it is usually necessary to impose local bounds
[¥2 — y37!| < b on each step of the process. Computational experimentation has
strongly confirmed these theoretical insights.

The view of decomposition as the minimization of a nonlinear function presented
here is closely related to what has become known as “Lagrangian Relaxation” (e.g.,
Geoffrion 1974), especially in the context of “subgradient optimization”. However, in
subgradient optimization only the last {y,; %) is used. (To see this, note that the
Lagrangian Relaxation of DP leads to a subgradient problem using /(),, y3) as the
objective goal for DP (y%).) Since it is a necessary condition that all the inequalities of
the Master Problem be satisfied in order to achieve a gain at a given step, the neglect of
all but the last inequality greatly complicates and weakens convergence. An observant
reader will find precisely this unstable behavior in the numerical examples of Held,
Wolfe, and Crowder (1974).

The decomposition theory advocated here also readily assimilates the use of goals.
Using a 3-level hierarchy of linear penalties, a high penalty for all noncut and nongoal
constraints, a medium penalty for the cuts (e.g., (3.5)), and a low penalty for the goals
(e.g., (3.4)) retains all the essentials for convergence by ensuring that the constraints will
violate in the same hierarchical order. The violation of the goal constraints at each step
is ignored. When a violation of the cut constraints (3.5) occurs a new e-optimal bound is
achieved. The best procedure in goal incorporated decomposition is to use a decreasing
sequence €; > € > €3+ « - of optimality tolerances and a decreasing sequence b; > b,
> b« - - of neighborhood bounds. The tolerance level ¢; is reduced when cut infeasibi-
lity occurs. The local bound b; is reduced at each break in the monotonic decrease of

Step 0: Initialization
¢, ¢rinitial, minimal convergence tolerances
8, 0sinitial, minimal trust regions
n = 0, nsinitial, final numbers of cuts
Incumbent value = Large number
Configuration Limitations (some fixed assignments y5)
Step 1: Initial Configuration and Decomposition Goals
Heuristic assignment of all of y,
Set initial decomposition goals
Step 2: Solve Master Problem
If feasible, ignoring goals, go to Step 3
Else if n = O stop infeasible.
Else if € < ¢/go to Step 4
Else reduce convergence tolerance e and repeat Step 2.
Step3: n=n+1
Solve Subproblems
Incumbent test for improved solution value
If no improvement and 6 > d,reduce trust region &
Step 4. If n = nygo to Step 5
If feasible, ignoring goals, go to step 2
Else if initial heuristic assignment still in force
Relax heuristic assignments
Increase convergence tolerance e
Increase trust region &
Go to Step 2
Else go to Step 5
Step 5: Termination

FIGURE 2. A Skeletal Example of a Primal Goal Decomposition Algorithm.
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v(3»). Moderation is a virtue in the selection of the tolerance levels ¢;. They are in effect
aspiration levels, and greed forces large departure from the current neighborhood where
the dual local derivatives x()%5) have some validity.

Figure 2 depicts the overall operation of an instance of the entire decomposition
algorithm developed here. The local trust region for continuous variables in the master
problem can be managed and a fashion reminiscent of nonlinear programming, with
movement limited to a fraction of the current values (e.g., the neighborhood bounds b,
initially derive from (2.8) and the restriction fraction parameter 6).

5. Computational Experience

The decomposition has been implemented using the X-system (Brown and Graves
1975) for problem generation, coordination and master problem solution, and em-
ploying GNET (Bradley, Brown, and Graves 1977) for solving the pure network sub-
problems.

The X-system intrinsically incorporates and exploits goal constraints, so that the
implementation of hierarchical penalties is very easy and the solution performance is
good. GNET (ca. 1981) is even more efficient for the network problems than its
progenitor (ca. 1974).

We were particularly interested in the actual behavior of the decomposition in light
of the theoretical evidence. Accordingly, early experiments with real-life data were run
with, and without the goal constraints.

Without the use of the goals (3.4), 30 iterations could not produce a solution of the
prototypic problem within 4 million (annual) dollars of the optimum. Using the goals
the initial solution was 3.5 million dollars better than the final solution without the

Step 0: Initialization (e.g.)
Cost Conversion (master-to-subproblems) ($millions-to-mils, 10°)
Activity Conversion (master-to-subproblems) (10°)
High Penalty (demand (3.3), facility assignment (2.5, 2.6)) (100.0)
Medium Penalty (production (2.3, 2.4), cuts (3.5)) (20.0)
Low Penalty (supply goals (3.4)) (0.5)
Initial, minimal convergence tolerance (e, €) (0.2, 0.05)
Initial, minimal trust region (4, 9 (0.05, 0.0001)
Configuration Limitations (fix some Wy, Z;’s)

Step 1: Initial Configuration, initial supply goals, production goals
Solve subproblems with s, = available Sy (lower bound on v(MP))
Set production goals 5§ to flows =, X;u
scaled equal to product capacities Cjx
If all facilities assigned, go to Step 2
Unassigned facilities assigned to plants (fix all Wy, Z’s)
Find production capacities
Solve subproblems with S = available Sj;
Set production goals sf}k to flows %, Xy
scaled equal to product capacities C‘,-k

Step 2: Solve Master Problem (with s%) (for sy, Wik, Z1)
If € can be reduced, € = max {¢/2, ¢;} (reduce €)
Step 3: Solve Subproblems with s7;, = Sy (for X))
if 6 can be reduced, 6 =max {6/2, é;} (reduce 6)
Step 4: If heuristic facility assignments relaxed (free those W, Z,’s)
increase trust region e = 4¢, (increase €)
increase convergence tolerance § = 44, (increase 0)

Step 5: Termination

FIGURE 3. Example Details for Model at Hand.



1478 GERALD G. BROWN, GLENN W. GRAVES AND MARIA D. HONCZARENKO

goals. Further, the initial solution (with goals) was refined with 12 iterations to yield a
further gain of 0.466 million dollars.

Although the solution without the goals was within about 1% of the optimum (which
might seem an acceptable approximation), it is largely the ability of mathematical
models to achieve these final refinements that justifies their use.

The solution of this relatively difficult initial prototypic problem on an IBM 3033
using FORTRAN IV H (Extended) with OPTIMIZE (2) required 64 seconds and 0.6
megabytes region.

The goals and hierarchical linear penalties can be generated in many ways, providing
a rich experimental arena. We have tested static goals induced from initial capacity
estimates, and dynamic goals derived from subproblem solutions with capacities fixed
by preceding master problem solutions. Static penalties for the goals have been com-
pared with dynamic asymmetric penalties determined by a heuristic which examines
shortages and excess capacity in successive master problem solutions. The combination
of static goals and dynamic penalties has performed best.

However, it is more significant that in our experience any goal-penalty combination
exhibits profound improvement over classical decomposition. This robustness gives
compelling evidence that goal decomposition is more effective in dealing with the
complications of infeasibility than classical decompositions.

Figure 3 shows some of the details specific to the NABISCO problem in the context of
the algorithm steps in Figure 2. The cost and activity conversion factors serve for
translation of units between the mixed integer master problems and the pure integer
network subproblems; the other penalties and tolerances inherit their units from these
conversion factors.

6. Managerial Experience

The particular decision support system developed for Nabisco Brands has been
named BPDOS—Biscuit Production-Distribution Optimization System. In actual de-
cision-making situations, BPDOS has proven itself to be the management support
system it was conceived and built to be. The thorough evaluation of the facility plan-
ning issues that Nabisco Brands must address on a frequent basis has been enhanced
significantly. The top managers, who ultimately must make the decisions about closing
old bakeries, introducing new technology or products, and moving production facilities
from one bakery to another, now can do so with fully integrated and rapidly available
information on the cost and capacity implications of those decisions.

For example, BPDOS has been used to help management analyze the operational
and financial implications of closing an old bakery which was inefficient by today’s
standards in materials and product flows. Additionally, higher than average mainte-
nance costs were eroding the profit margins of products made in that bakery. The
question was,

“Can the products made in the old bakery be produced elsewhere within existing capacity, and,
if so, at what cost?”

Through a series of BPDOS runs, the production planning analysts were able to demon-
strate to top management how the production capacity lost in closing one location
could be “made-up” among those bakery locations that would remain. The realigned
production-distribution system showed which products should be produced on each
combination of facilities for each of the roughly 160 branches (“‘customers™) to mini-
mize total production and distribution costs.

Another application of BPDOS has been in the analysis of equipment requirements
to convert all Ritz cracker production to “slug” packs vs. “dump” packs. In the tradi-
tional dump pack, the crackers are loose inside the box. With the slug pack, the crackers
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are stacked in three or more columns, and each column is wrapped separately in waxed
paper. Through a series of BPDOS runs the production planning analysts were able to
tell top management what additional equipment would be required, and in which
locations, to convert fully to slug-type packaging.

Yet a third application of BPDOS has been in the roll-out planning for new prod-
ucts. Given market forecasts over five- to ten-year planning horizons, BPDOS can show
how new production capacity should be introduced over time to minimize current
production and distribution costs. When markets develop for new products, as reflected
in increased demand, production facilities must be rebalanced to get the optimal facility
utilization mix at any point in time.

The above kinds of facility planning issues have always existed, and they were not
ignored prior to the implementation of BPDOS. However, prior to BPDOS, each
planning scenario took about three days to work up manually; given the size of most
scenarios, fully integrated and consistent evaluations could not be guaranteed, much
less (nearly) optimal solutions. Using BPDOS, the scenario evaluation time has de-
creased to half a day, most of which is devoted to loading new data, such as demand
forecasts. This 83% reduction in time to carry out a scenario analysis is significant since
upwards of 50 such “What If” exercises may be done each year. That translates to
saving more than half a man-year of a highly experienced production planner; and that,
in turn, translates to a cost reduction of over $25,000.

In terms of actual computational time, the average BPDOS problem has taken 2-3
CPU seconds on an IBM 3033 with VM/CMS. The most difficult problems seldom
require longer than 60 CPU seconds. For large problems, the actual turnaround time
for the analyst sitting at a display terminal has been about three minutes per scenario.
Including all the data file definitions and full-screen prompting menus that have been
set up for BPDOS in the CMS operational environment at Nabisco Brands, the region
requirements are just under 0.75 megabyte.

7. Conclusions

Although our model has a strategic perspective—fixed charges and binary decision
variables contribute much of the computational optimization workload—it is surpris-
ing that significant savings are achieved just by resolution of production and transporta-
tion costs. Even for a fixed configuration of plants and facilities, the optimal assignment
of production is a subtle affair, capable of producing remarkable cost reductions.

The new solution methodology has revolutionized our thinking about decomposi-
tion and relaxation methods. Many years of computational experience have convinced
us that this new class of decompositions has much to recommend it.!

! We are indebted to Messrs. Les Brewster and Al Frank of Nabisco Brands, Inc., for their support of this
research project.

Dr. Richard Powers of Insight, Inc., has been of invaluable assistance in bridging the significant gap
separating sound theory and routine application.

Al Washburn has suggested several clarifications, and Rick Rosenthal has generously contributed improve-
ments in style and presentation.

This paper was originally presented at ORSA/TIMS, Houston, October 14, 1981, under the title “Large-
Scale Facility and Equipment Location: An Application of Goal Programming in Multicommodity Decom-
position”.
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