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PRODUCTION AND SALES PLANNING WITH LIMITED
SHARED TOOLING AT THE KEY OPERATION*

GERALD G. BROWN, t ARTHUR M. GEOFFRIONt AND GORDON H.
BRADLEYt

The focus of this paper is multiperiod production and sales planning when there is a single
dominant production operation for which tooling (dies, molds, etc.) can be shared among
parts and is limited in availability. Our interest in such problems grew out of management
issues confronting an injection molding manufacturer of plastic pipes and fittings for the
building and chemical industries, but similar problems abound in the manufacture of many
other cast, extruded, molded, pressed, or stamped products. We describe the development and
successful application of a planning model and an associated computational approach for this
class of problems.

The problem is modeled as a mixed integer linear program. Lagrangean relaxation is
applied so as to exploit the availability of highly efficient techniques for minimum cost
network flow problems and for single-item dynamic lot-sizing type problems. For the practical
application at hand, provably good solutions are routinely being obtained in modest comput
ing time to problems far beyond the capabilities of available mathematical programming
systems.
(INVENTORY/PRODUCTION APPLICATIONS; PRODUCTION-FLOW SHOP; IN
TEGER PROGRAMMING APPLICATIONS)

1. Introduction

This paper addresses production and sales planning in a seasonal industry with a
single principal production operation for which tooling can be shared among parts and
is limited in availability.

The specific context of our experience is the production of injection molded plastic
pipes and fittings for the building and chemical industries. The principal production
operation is injection molding and the tooling consists of mold bases used to adapt the
injection molding machines to the molds proper. Mold bases typically require 4-6
calendar months to obtain at a cost which can approach the cost of the molding
machine itself, so their availability is limited and good utilization is important.

Other possible domains of application include production facilities based on casting,
molding, stamping, extrusion, or pressing of finished or nearly finished products. Dies
and molds and associated adaptive tooling are usually expensive and often designed
for use with more than one end product. Machine tooling with elaborate jigs and
fixtures constitutes another large area of potential application. Although there can be
just one principal operation to be modeled, there may also be preparatory and final
finishing operations.

An informal statement of the problem treated is as follows. A facility produces
many different parts (products), each by a principal operation calling for a specific
type of tool and anyone of a number of machines compatible with the tool. Machines
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are aggregated into machine groups and tools into tool types. Production and sales are
to be planned for each part over a multiperiod horizon (typically monthly for a full
year):

Determine
* how much of each part to produce in each time period
* how much of each part to sell in each time period
* how much of each part to carry forward as inventory from each time period into

the next
* a tool/machine assignment schedule specifying, for each time period, the number

of days of production of each tool type in conjunction with each compatible
machine group

so as to satisfy all necessary constraints
* limited availability of tools in each time period
* limited availability of machines in each time period
* tool/machine compatibility restrictions
* for each part in each time period, sales cannot exceed forecast demand

and so as to satisfy desired managerial policy constraints
* for each part in each time period, sales must exceed a certain fraction of demand

stipulated by management
* for each part, the ending inventory at the conclusion of the planning horizon must

take on a stipulated value
* no planned backlogging (unfilled demand is lost)

in such a manner as to maximize total profits over all parts for the duration of the
planning horizon, calculated according to

* incremental net profit contribution per unit sold
* less variable operating costs associated with production (by tool type and machine

group)
* less fixed costs associated with production (by part, for each period with positive

production)
* less part-specific inventory holding costs.

The problem as stated has elements in common with many familiar dynamic
planning and resource allocation problems. It is more detailed than most seasonal
planning problems in that discrete fixed costs are included and no aggregation is
necessary over parts, yet it stops short of encompassing detailed scheduling because
other aggregations are employed (tools ~ tool types, machines ~ machine groups,
time ~ time periods). Related production planning and scheduling problems in the
molding industry can be found in [3], [7], [9].

A proper mathematical formulation as a mixed integer linear program is given in §2.
The next section presents a solution approach based on a particularly attractive
Lagrangean relaxation and sketches our full scale computational implementation. §4
describes computational experience with the injection molding application mentioned
earlier. For this application, solutions well within 2% of optimum are routinely
produced in about 3 minutes of IBM 370/168 time for mixed integer linear programs
on the order of 12,000 binary variables, 40,000 continuous variables, and 26,000
constraints.
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2. Problem Formulation

This section formally defines and discusses the problem as a mixed integer linear
program.

We adopt the following notation. Essential use is made of the concept of a standard
day, which is a part-specific measure of quantity. It is, for a given part, the quantity
that would be produced in one calendar day if a tool of the required type were
operating normally on any compatible machine.

Indices
i indexes parts
j indexes tool types
k indexes machine groups
t indexes time. periods, t = 1, ... , T
g(j) index set of the parts requiring tool type j (these index sets must be mutually

exclusive and exhaustive)
CX(j) index set of the machine groups compatible with tool type j

Given Data
aj t days of availability of type j tools during period t
bk t days of availability of machine group k during period t
Cj k t variable daily operating cost during period t of tool type j on machine group k,

for compatible combinations of j and k
dit demand forecast for part i in period t, in standard days
fit fixed cost associated with the production of part i in period t
hit cost of holding one standard day of part i for the duration of period t
10 initial inventory in period 1 of part i, in standard days (must be > 0)
I(T terminal inventory desired for part i, in standard days, at the conclusion of the

last period (must be > 0)
mit maximum possible production of part i in period t, in standard days
Pit profit contribution associated with selling one standard day's worth of part i in

period t, exclusive of the other costs included in the model
ait minimum fraction of d., which must be satisfied as a matter of marketing policy

(0 < «, < 1)

Decision Variables
lit planned inventory of part i at the end of period t, in standard days (1 < t < T)
Sit planned sales of part i in period t, in standard days
J/jt planned production days for tool type j in period t
"Wjkt planned production days for tool type j on machine group k during period t,

for compatible combinations of j and k
X it planned production of part i during period t, in standard days
r:t a binary variable indicating whether or not part i is produced during period t
Using this notation, the problem can be posed as the following mixed integer linear

program.

MINIMIZE - 2: 2: Pit Sit+ 2: 2: 2: Cj k t "Wjkt
I, S, V, w,x, Y i t j k t

+ 2: 2: hit(Ii ,t- 1+ I i ,t )/ 2+ 2: 2:fit Yit
i tit

(1)
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subject to

2: J¥jkt = J/jt, all it, (2)
k E:J{(j)

J/jt= 2: x., all it, (3)
iE<J(j)

2: J¥jkt < bkt, all kt, (4)
j

lit = I i,t - l + X; - Sit' all it, (5)
aitdit < Sit < d it, all it, (6)

0< x; < mitYit, all it, (7)

o< }j't < ajt, all it, (8)

lit > 0, all it (1 < t < T), (9)

J¥jkt > 0, all jkt, (10)

Yit = 0 or 1, all it. (11)

It is understood that any summations or constraint enumerations involving j and k
together will run only over compatible combinations of i and k.

The objective function is the negative of total profit over the duration of the
planning horizon. It is the negative of profit contribution associated with sales over the
planning horizon, plus: machine operating costs, inventory holding costs (applied to a
simple 2-point estimate of the average inventory level of each part in each period), and
fixed costs.

Constraints (2) and (3) serve to interrelate machines, tools, and parts. Constraints (4)
and (8) respectively enforce the availability limitations on machines and tools. Con
straint (5) defines ending inventories in the standard way. Constraint (6) requires the
planned sales to be between forecast demand and some specified fraction thereof.
Constraint (7) keeps production within possible limits and also forces Yit to be 1 when
X it is positive. Constraint (9) specifies that there be no planned backlogging. Con
straints (10) and (11) require no comment.

Some additional comments are appropriate.
1. There can be more than one tool (resp. machine) available of a given type (resp.

group). Such census information, along with downtime estimates, determines the aj t
(resp. bkt) coefficients.

2. The index sets g(.) specify a unique tool type for each part. Typically these index
sets will not be singletons, so that a number of parts compete for the same tooling.

3. The fixed cost coefficients fit are perhaps best interpreted as surrogates for
detailed setup costs; fit is incurred in the model when part i is produced in period t
irrespective of whether this requires a tool changeover (part i's tool type may be
common to the part run previously), and irrespective of whether more than one
machine must simultaneously make part i in order to achieve the planned production
Xit. To specify setup costs at a greater level of detail would require a major revision of
the model that would transport it from the realm of planning to the realm of detailed
scheduling. Yet setup costs cannot be ignored entirely because this tends to cause some
of every part to be produced during every period, a situation clearly unacceptable
from the production viewpoint. Our solution is to take the fit'S as empirically weighted
average setup costs.
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4. The terminal inventory level is the only significant terminal condition of the
model. It is known from studies of related models (e.g., [8]) that liT can have a
significant effect on solution quality, and hence that it should be set at some estimate
of what the optimal inventory would be for part i at the end of period T in a similar
model with many more periods. In practice, this means drawing on historical operating
experience, insights obtained previously with the help of the model, and managerial
judgment.

5. The maximum possible production mit is the smaller of two limits: the physical
limit imposed by full utilization of all available tooling and machines, and the limit on
the amount of production that could be absorbed considering demand over the
planning horizon, specified terminal inventory, and initial inventory. The second limit
is redundant in view of (5) and (6); it is incorporated only to tighten the standard LP
relaxation to be discussed later. The first limit, however, may well be binding (as it was
in our application owing to part-specific limitations not subsumed by (4) and (8)).

6. The policy parameters ail can be used, for instance, to maintain desired product
line breadth when profit considerations alone would tend to narrow excessively the
range of products produced.

7. There are several alternative problem representations which are equivalent to
(1)-(11) and just as natural. Some of these are more compact; for example, the J/jt
variables can be eliminated. The representation given is designed, principally through
the introduction of the J/jt variables and the use of the standard day concept, to render
the algorithmic manipulations of the next section as transparent as possible.

Before turning to the question of solving (1)-(11), we pause to define

h!t = t(hil + hi,t+l) for all i and 1 < t < T,

H = t 2: (hi1liQ + hiTliT)
i

so that the third term of (1) can be expressed equivalently as

T-l

2: 2: h!tlit+ H.
i t=1

3. Solution Via Lagrangean Relaxation

For the practical application at hand, there are -approximately 1000 parts, 90 tool
types, 15 machine groups, 12 time periods, and 480 compatible combinations of tool
types and machine groups. This leads to dimensions of approximately

40,000 continuous variables (l, S, V, W,X)

12,000 integer variables (Y)

26,000 constraints of type (2), (3), (4), (5), (7).

Problems of this magnitude are generally considered to be far beyond the current
state-of-the-art of general mixed integer linear programming. Consequently, we sought
a way to exploit the special structure of the problem.

The key was to recognize that (1)-(11) is a network flow problem with fixed charges
for certain arcs, and that Lagrangean relaxation [4] [5] [10] with respect to (3) is an
attractive way to generate lower bounds on the optimal value of (1)-(11). The resulting
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Lagrangean subproblem separates into as many independent simple transportation
problems in the W variables as there are time periods, and as many independent
dynamic single-item lot-size problems as there are parts. The original monolith is
thereby decomposed into manageable fragments.

It is easy to see that (1)-(11) is a fixed charge minimum cost network flow problem.
See Figure 1 for an example with 3 parts, 2 tool types, 3 machine groups, 3 time
periods, g(l) = {I}, g(2) = {2, 3}, %(1) = {I, 2}, and %(2) = {2, 3}. The notational
conventions followed in Figure 1 and subsequent figures are: the minimand term
corresponding to each arc is written over the arc, the upper capacity limit or' each arc is
written under it (omission implies infinite capacity), the constraint on the net outflow
of each node is written under it (omission implies = 0, or strict conservation), and a
fixed cost arc is drawn as a dashed line, with the amount of the fixed charge incurred
for its use given as the first of the two annotations written over it. The curved arcs
between the part nodes are not annotated for lack of room; the typical arc is:

period t period t+1

Now consider the Lagrangean relaxation of (1)-(11) using multipliers ~t for (3):
drop (3) and replace the objective function (I) by

T-l

MINIMIZE - 2: 2: Pit Sit + 2: 2: 2: Cjkt»jkt+ 2: 2: hitlit
I,S,V,W,X,Y i t j k t i (=1

+ 2: 2:fit Yit+ 2: 2:~t( 2: x, - l/}t) + H.
i ( j ( iE1(j)

(1 - A)

FIGURE 1.

TOOLS

t11'~!j1- --
1------~T1B ------ 11\11

t21,:> !~1__
---,- 11\21
---~1.!~~31

m31

t12~!.!2_-
--- 11\12

t22E!1~-
_-,- 11\22
- - -32!.P_X~2

m32

PARTS
-P11 811

d11

-P21 821

d21

-P31 831

d31

-P12 812
d12

-P22 822

d22

.-P32532

d32

-P13 513

d13

-P23 523
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Dropping (3) causes the variables {V, W} to become completely decoupled from the
variables {I, S, X, Y}. In fact, the decoupling extends even farther: the first set of
variables is decoupled over t and the second set over i. Thus the indicated Lagrangean
relaxation of (1)-(11) yields the following independent problems: for each t,

MINIMIZE 2: 2: 2: ej kt Ujkt - 2: 2: Ajt Jtjt
V,W jkt jt

subject to (2), (4), (8), (10) for fixed t

and for each i,

T-I

MINIMIZE - 2: Pit Sit + 2: h;t1it + 2: fit r,+ 2: Aj(i)tXit
I, S, Y, Y t t = 1 t t

subject to (5), (6), (7), (9), (11) for fixed i

where j (i) is the index of the tool type required by part i.
Using v(·) to stand for the optimal value of problem (.), the optimal value of the

full Lagrangean relaxation can be expressed as

2: v(R t
) + 2:V(Ri) + H.

t i
(12)

This quantity is a lower bound on the optimal value of (1)-(11) for any choice of A.
Figures 2 and 3 portray (R t

) and (Ri ) for the example illustrated in Figure 1. The
same notational conventions apply. Observe that the network for (R t) has been
simplified by using (2) to eliminate the V-variables, and that the network for (Ri ) has
been simplified by tying the pure source nodes together. Notice that Lagrangean
relaxation amounts to "scissoring" the B-type tool nodes in Figure 1 and placing a
penalty or premium on the incident arc flows.

How good a bound is (12)? The answer depends on the choice of A. It is known that
a good choice is the optimal dual vector associated with (3) in the standard LP
relaxation of (1)-(11), in which (11) is relaxed to 0 < Y it < 1 for all it. This choice of A
yields a value for (12) that is at least as high as the optimal value of the standard LP
relaxation itself. Moreover, strict improvement is likely because the Integrality Prop
erty defined in [5] does not hold. Superior choices of A may well exist, and might be

MACHINES TOOLS

~b3t

FIGURE 2. Sample Equivalent Network for (R t
) .
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5i
t=2

5i
t=1

::r
:;-

Pi -P115i1

t=1
= I iO

5i
t=3

s -ai3di3

FIGURE 3. Sample Equivalent Fixed Charge Network for (R;).

found by auxiliary calculations other than the standard LP relaxation, but we do not
pursue such possibilities here. 1

One can build a branch-and-bound procedure around this Lagrangean relaxation.
For the industrial application which stimulated this work, however, it has proven
sufficient to generate a feasible solution to (1)-(11) based on the Lagrangean solution.
The objective value of this solution has consistently been sufficiently close to the lower
bound from Lagrangean relaxation that no further refinement has been needed.

A formal description of the solution procedure is now presented.
Step 1. Solve the standard LP relaxation of (1)-(11) via an equivalent capacitated

network formulation. Denote the associated dual variables for (3) by Xj t •

Step 2. Form the Lagrangean relaxation of (1)-(11) with respect to (3) using the
values of ~t from Step 1. Solve it via the independent subproblems (R t

) and (R;).
Denote the combined optimal solution to the full Lagrangean relaxation by (1°, So, V O

,

WO,Xo, yo) and its optimal objective value by LB.
Step 3. Form the standard LP relaxation of (1)-(11) with fit revised to 0 if Y;? = 1

and augmented by a large positive constant if Y;? = o. Solve for an optimal solution
(I', S', V', W',X', Y') via an equivalent capacitated network formulation. Let Y" be
Y' with all fractional components rounded up to unity. Form the revised solution with
Y' replaced by Y" and denote its objective value under (1) by UB. This solution is
feasible in (1)-(11) and is within UB-LB of being optimal. Stop.

We comment on the nature of the problems needing to be solved at each step.
Steps 1 and 3 each. yield an equivalent capacitated minimum cost network flow

problem, and hence can be executed efficiently using one of the modern primal
simplex codes developed for such problems (e.g., [2]). It is evident that, when (11) is
relaxed to 0 < Yit < 1 for all it, the right-hand inequality of (7) must hold with strict
equality for all it at optimality. This permits elimination of Y, whereupon (7) and (11)
can be replaced by

(11)'

'See [4], [5], [10], and the new convergent procedure in [6].
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and the ~i~tfit Yit term of (1) is replaced by

2: 2: fit x;
i t mit
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In other words, the standard LP relaxation of (1)-(11) has no fixed cost feature.
Problem (R t) can be converted easily to a simple transportation problem. However,

using LP duality theory it can be shown that the values of Ujkt found at Step 1 .are
also optimal in (R t) for all t. Thus no work at all need be performed in connection
with these subproblems.

Problem (RJ is a mixed integer linear program with T equations, 3T - 1 continuous
variables and T binary variables. Tying the S, nodes of Figure 3 together with the Qi
node and performing a change of variables Sit = Si~ + aitdit to eliminate the lower
bounds on the sales variables yields an equivalent capacitated transshipment problem
with fixed charges on T of the arcs. The transshipment problem has T + 1 nodes, T
capacitated sales arcs (Si~)' T - 1 inventory arcs (lit) and T capacitated production
arcs (Xit) with fixed charges. Because only the minimum sales demand must be
satisfied, this problem has T more variables than the closely related dynamic lot-size
problem presented in [1]. This feature of our model allows "lost sales," which is an
important aspect of the planning problem for the application at hand.

4. Application and Computational Results

The model and computational procedure just described have been under develop
ment and application since 1977 at plants of R&d Sloane Manufacturing Company
of Sun Valley, California. The following identifications and specializations are appro
priate.

General Model

parts (i)

tool types (j)

machine groups (k)

tool/machine compatibility

time periods (t)
Cjkt, fit, «; Pit

Molding Application (main plant)

the top 1000 injection molded
fittings (about 92% of all sales
volume)
about 90 types of interchangeable
mold bases (total mold base census
about 130)
about 15 groups of interchangeable
injection molding machines (total
machine census about 60)
about 480 jk combinations permis
sible
typically the next 12 months
taken as independent of t

The problem faced by R & G Sloane is a strongly seasonal one. Since the bulk of
the company's business involves residential plumbing products, demand peaks along
with residential construction in the summer months. Since the peak season demand
rate exceeds the available capacity of mold bases and machines, constraints (4) and (8)
tend to be binding at that time of year (typically, about 40% of the mold base
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constraints and 80% of the machine constraints are binding 5-8 months of the year).
Typical relative magnitudes of the major cost categories associated with an optimal
solution are:

fixed costs
inventory carrying
variable operating

14.3
16.9
68.8

100.0

Unfilled demand typically occurs for well under 10% of all parts.

Computational Implementation

A full scale computational implementation has been carried out for this application.
The computer ,programs are in three modules:

1. data extraction and data base definition
2. problem preprocessing and diagnosis
3. optimization and report writing.

Data extraction primarily involves conversion of current production, marketing, and
inventory control operating data to the form required by the model. The data base is
organized and generated in sections:

· problem parameters and conditions
· machine group descriptions
· mold bases and their machine compatibility
· part descriptions and demand forecasts.

Preprocessing identifies structural and mathematical inconsistencies in the problem
posed, and assists in preliminary diagnosis of critical shortages in equipment availabil
ity.

The optimization module solves the capacitated pure networks presented in Steps 1
and 3 with a GNET variant (XNET/Depth) [2]; an advanced starting solution is used
which assumes high equipment utilization.

The fixed charge problems (Ri ) are addressed with an enumeration algorithm that
also employs GNET [2]. The overall algorithm applies implicit enumeration using a
standard backtrack method to specify the binary variables. For each setting of the
binary variables (or "case"), a capacitated transshipment problem is solved with a
highly specialized version of GNET/DEPTH. The algorithm has several external
parameters that permit tuning for high performance.

Extensive pre-solution analysis is performed to identify periods where production is
mandatory (e.g., first period minimum demand greater than initial inventory) or
precluded (e.g., large initial inventory). Additional dominance tests reduce the number
of cases to be examined (a particularly effective technique involves keeping a running
bound on the number of periods that can have positive production in an optimal
solution).

Early analysis of this algorithm showed that a small number of problems (.-"10%)
consumed a large fraction (.-,,75%) of the total computer time in Step 2. Further
analysis of the time-consuming problems showed that solution trajectories were charac
terized by frequent incumbent improvements in the initial cases followed by large
numbers of cases with little or no improvement. This suggested a modification to
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construct very good (but not necessarily optimal) solutions in significantly less time. A
single parameter, JUMP, directs the enumeration to skip over a number of cases when
the number of cases since the last improvement increases; the enumeration skips the
integer part of the number of cases since last improvement divided by JUMP.

Solving Step 2 with the modified algorithm actually yields final solutions at Step 3
that are better than those from the exact algorithm. Although the exact and estimated
bounds in Step 2 are nearly equal, the modified algorithm produces solutions with
more setups than the exact algorithm. Up to a point, more setups improve the value of
the final solution in Step 3. Since the final solution from Step 3 always has more setups
than the optimal solutions from Step 2, it is better to allow Step 2 to construct good,
but not necessarily optimal, solutions with more setups than to require Step 3 to insert
the setups.

The parameter JUMP is a very effective control on the number of setups. As JUMP
decreases from the value that yields an exact algorithm (2T

) , the number of setups
tends to increase. Experimentally, JUMP = 3 has been shown to produce superior final
solution values from Step 3 for a wide variety of problems.

The bound produced from Step 2 is a valid lower bound only if the optimal solution
is obtained for each (RJ problem. However, the estimated bound has been repeatedly
verified to be very close (less than 1%) to the correct bound. It would be possible to use
the modified algorithm to construct solutions for Step 3 and the exact algorithm to
construct a valid lower bound; however, we have chosen to utilize routinely just the
modified algorithm, with occasional use of the exact algorithm to verify the quality of
the estimated bound.

After Step 3, solution reports are presented at several levels of aggregation so as to
facilitate managerial interpretation. They display all detailed solution features, esti
mated opportunity costs for critical mold bases and machines, and an overall analysis
of profi tabili ty, turnover, and customer service.

Computational Results

Approximately 30 runs per year are carried out. Computational performance has
exhibited a high degree of run-to-run stability in terms of solution quality and
computer resources consumed.

Table 1 summarizes several aspects of performance for a recent typical run. The
main storage requirement was about one megabyte. Notice that the bound produced

TABLE 1

Pivots
IBM 370/168
CPU Seconds

Typical Computational Performance: A Problem with 953 Parts, 92 Tool Types, 16 Machine Groups

Normalized
Objective
Value !!.-

Preprocessing
Optimization

Step 1 (LP Relaxation)
Step 2 (Lagrangean Relaxation)
Step 3 (Generate Feasible Solution)

Report Writing

10.0

55.0
25.7
54.2
30.6

175.7

103.2
101.6
100.0

37,933
376,241

36,954

~ormalizationis relative to the value of the feasible solution obtained at Step 3. The Step 2 value
is an estimated bound.
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by the Lagrangean relaxation is significantly better than the standard linear program
ming relaxation bound. Notice also that the time in Step 2 is smaller than what one
might expect; the 12-period fixed charge problems were processed in an average of
only .027 seconds each (for comparison, the typical time quoted in [1] for exact
solution of a proper subclass of these problems of the same size was 0.25 seconds on
an IBM 370/158). For this run, 142 (resp. 10) of the 11,436 binary Y variables
changed from value 0 (resp. 1) in Step 2 to value 1 (resp. 0) in Step 3. This shows that
the solution to the Lagrangean relaxation of Step 2 required but minor adjustment
with respect to the fixed charge arcs in order to yield the good feasible solution of Step
3.

More generally, our experience has been that optimization CPU time for similar
sized problems seldom varies more than ± 10%. Computing time is very nearly
proportional to the total number of parts. The final estimated optimality tolerance
(which was 1.6% in the Table 1 run) tends to become smaller the more tightly
capacitated tool and machine availability is; tolerances in the vicinity of 2/10 of 1%
are commonly observed in the most tightly constrained situations. In no case has the
tolerance ever exceeded 2%.

5. Conclusion

This paper has demonstrated the practical applicability of a procedure based on
Lagrangean relaxation to a significant class of integrated production and sales plan
ning models. The particular way in which this procedure is designed thoroughly
exploits the recent major advances made for minimum cost network flow problems.
Provably good solutions are routinely being obtained in modest computing time to
mixed integer linear programs of a size far beyond the capabilities of generally
available mathematical programming systems.

The system is used regularly at R & G Sloane Manufacturing Company. Day-to-day
production scheduling is still performed manually, but with the benefit of the system's
guidance and predictions of bottlenecks in the future. The integrated nature of the
model has made the system valuable as a focal point for coordinating planning
activities among the key functional areas of the firm: inventory control, finance,
marketing, and production operations. Two specific illustrations are the evaluation of
major capital expenditure and interplant equipment transfer opportunities. A recent
Business Week article [11] featured this application, with the Vice President of
Operations quoted as crediting the new system for an increase in total operating profits
during a recent year of $500,000.2

2partially supported by the National Science Foundation and by the Office of Naval Research. This work
could not have been completed without the abiding cooperation and support of R & G Sloane Manufactur
ing Company. Special thanks are due to Mr. Ralph G. Schmitt, Vice President of Operations. Valuable
comments from the referees and from Jay Brennan are also gratefully acknowledged.
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