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AUTOMATIC IDENTIFICATION OF GENERALIZED
UPPER BOUNDS IN LARGE-SCALE OPTIMIZATION

MODELS*

GERALD G. BROWNt AND DAVID S. THOMENt

To solve contemporary large-scale linear, integer and mixed integer programming problems,
it is often necessary to exploit intrinsic special structure in the model at hand. One commonly
used technique is to identify and then to exploit in a basis factorization algorithm a
generalized upper bound (GUB) structure. This report compares several existing methods for
identifying GUB -structure. Computer programs have been written to permit comparison of
computational efficiency. The GUB programs have been incorporated in an existing optimiza
tion system of advanced design and have been tested on a variety of large-scale real-life
optimization problems: The identification of GUB sets of maximum size is shown to be among
the class of NP-complete problems; these problems are widely conjectured to be intractable in
that no polynomial-time algorithm has been demonstrated for solving them. All the methods
discussed in this report are polynomial-time heuristic algorithms that attempt to find, but do
not guarantee, GUB sets of maximum size. Bounds for the maximum size of GUB sets are
developed in order to evaluate the effectiveness of the heuristic algorithms.
(PROGRAMMING; LARGE-SCALE SYSTEMS; GENERALIZED UPPER BOUNDS)

1. Introduction

Contemporary mathematical programming models are often so large that direct
solution of the associated linear programming (LP) problems with the classical simplex
method is prohibitively expensive, if not impossible in a practical sense. It has been
found that most of these problems are sparse, with relatively few nonzero coefficients,
and usually possess very systematic structure. These problems exhibit inherent struc
tural characteristics that can be exploited by specializations of the simplex procedure.

Methods to exploit special model structure can be categorized generally as indirect
(e.g., decomposition), where a solution to the original problem is achieved by dealing
with related models. which are individually easier to solve, or as direct when the
original problem is solved by a modified simplex algorithm. Among the direct
methods, the most frequently used technique is called basis factorization [7], where the
reflection of special problem structure appears and is used to good benefit in the
intermediate LP bases. Basis factorization can be dynamic, where the algorithm deals
with each basis sequentially and/or independently in an attempt to extract as much
specialized basis structure as possible, or static, where the algorithm depends upon
certain types of special structure being present in all bases.

Static basis factorizations include simple upper bounds, generalized upper bounds
(GUB), and embedded network rows, among many others. Simple upper bounds are a
set of rows for which each row has only one nonzero coefficient. Generalized upper
bounds are a set of rows for which each column (restricted to those rows) has at most
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one nonzero coefficient. Network rows are a set of rows for which each column
(restricted- to those rows) has at most two nonzero coefficients or opposite sign.

Each of these factorizations permits the simplex algorithm to deal with the static
subsets of the rows (and columns) of all bases encountered with prior knowledge that
they will satisfy very restricted rules. Most of these methods work best when logic can
be substituted for arithmetic (as is the case with the coefficients ± 1). For this reason,
static factorizations often restrict the special structure to possess only ± 1, or to be
scaled so as to produce an equivalent result.

The concept of generalized upper bounds was introduced in 1964, the result of work
by Dantzig and Van Slyke [5]. The name is derived from analogy to the simple upper
bound structure. Graves and McBride [7] refer to Static Signed Identity Factorization
as a term more suggestive of the implied basis structure. Since their introduction, some
form of GUB has been implemented in many commercial LP systems. There is often
confusion between the mathematical characterization of GUB and these various,
widely used implementations of GUB, in that the latter often restrict the GUB set
membership rules to permit uncomplicated simplex logic. All of the methods reported
here address the full generality of GUB sets but can be modified to produce restricted
GUB sets as necessary.

The details of how GUB can be exploited to reduce the computations of the simplex
algorithm are not discussed here. See [1], [5], [7], [11], [13]. The underlying concept is
that the GUB structure enables the simplex algorithm to manipulate the GUB rows
implicitly, with logic rather than floating point arithmetic, thus reducing the effective
size and solution time for the problem. The more GUB rows one is able to identify, the
fewer rows one has to carry explicitly through the simplex operations. In large
problems there exists a huge number of subsets of rows that satisfy the GUB criteria. It
is generally regarded that those subsets with more rows are "better" GUB sets since
they imply a more contracted explicit basis. The implied problem, then, is to find the
maximum GUB set.

Optimal algorithms to find a maximum GUB set do exist. These entail enumeration
schemes and cannot be guaranteed to be efficient in a practical sense. Conceivably,
2m

- m sets of rows might have to be searched before a maximum GUB structure is
found: as the problem size grows, the number of possible sets that need to be checked
increases exponentially. As will be shown later, the hope of ,. finding an efficient
algorithm to find the maximum GUB set for any general problem ~~ dim.

Therefore, researchers and practitioners have concentrated on constructing efficient
heuristic algorithms that attempt to identify, but do not guarantee, a maximum GUB
set. A few of these methods showing great promise .have been reported, but they have
not been tested with large-scale problems.

This report (abstracted from [4]) outlines several automatic heuristic GUB-finding
procedures that have been developed and published in the recent literature. These
procedures are tested on a suite of large-scale, real-life optimization problems, and are
modified to improve their behavior. Comparative performance of the methods is given
both in terms of the computational effort to identify a GUB set, as well as the size of
the GUB set achieved.

Identification of GUB sets of maximum row dimension is shown in Section 7 to be
among the class of NP-complete problems. However, easily computed upper bounds on
the size of the maximum GUB set are developed and used to evaluate objectively the
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quality of heuristic GUB algorithms, showing that very nearly maximum GUB sets are
routinely achieved.

2. Problem Definition and Representations

The Linear Programming problem is defined as

Min
s·t.r<Ax<r
12< x <b

c'x
(range constraints.j

(simple bounds),
(L)

where L and rare m-vectors, x, c, Qand bare n-vectors and A is an m X n matrix. The
constraints are sometimes defined as equations, but for the general case of GUB
treated here constraints can be equations, inequalities or a mixture. The immediate
discusssion will be directed at (L); integer and mixed-integer problems are treated
later.

Two rows of A are said to conflict if there exists at least one column with nonzero
coefficients in both rows. The GUB problem can be restated as that of finding a subset
of the rows that do not conflict.

There are several ways one can model the maximum GUB problem. Three ap
proaches are presented to aid in the understanding of the theoretical context of the
heuristic methods examined and to highlight the formal complexity of the original
problem.

Graph Theory Representation

A graphical representation of the matrix A can be constructed through the following
mapping rule, f. Let each row of A be a vertex of the graph. Should two rows of A
conflict then the two vertices of the graph are joined by an edge. This mapping retains
all the necessary conflict information. If two vertices, a and b, are joined by an edge, e,
then a and b are adjacent, and a (or b) is incident with e. If a and b are not adjacent,
this indicates that the corresponding two rows in A do not conflict.

This introduces the notion of independence. Given a graph G = (V, E), a subset
V' E V is said to be an independent set if no two of its elements are adjacent. It follows
that if an independent set of vertices can be found in G then the corresponding rows of
the matrix A do not conflict and thus define a GUB set. Conversely, a GUB set for A
defines an independent set for the graph G. It is also clear that an independent set for
G is maximum if and only if the corresponding GUB set for A is maximum.

Consider the set tern' the set of all A-type matrices having m rows. The above
mapping factors this set into a definite number of classes. Two matrices, A 1 and A 2 are
said to belong to the same class, C, if and only if each is mapped into the same graph,
Gc • Thus, an independent set of vertices of G; correspond to a GUB row set for every
matrix in the class C.

The incidence matrix N is defined with nij = 1 if vertex i is incident with edge t- and
nij = 0 otherwise. There exists one, and only one incidence matrix for each graph of § ,

where § is the set of all graphs having m vertices.
Since the set of all N-type matrices with m rows is a subset of tern' every class of tern

contains one and only one incidence matrix. In general, for the GUB problem, every m
row matrix is equivalent to one of a finite number of incidence matrices. Superficially
this may seem to be a simplification. But as shown in Section 7 the GUB problem on
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N is as difficult as the independent set problem on G. The equivalent statements of the
GUB problem do," however, offer different views of the problem which are helpful in
considering algorithms for and analysis of the problem. (Note: In Garey and Johnson
[6] it is shown that two other graph problems, the "vertex cover" and the "clique"
problem, are equivalent to the independence problem, and hence the GUB problem.
These problems do not seem to offer any additional insight for the GUB problem.)

Conflict Matrix Representation

The conflict matrix ~ is defined with mij = 1 if row i conflicts with row j in (L), and
mij = 0 otherwise. Note that this matrix is symmetric. The sum for any row (or column)
indicates the number of other rows it is in conflict with, plus one. This sum indicates
for any particular row how many other rows would be subsequently excluded from a
GUB set by its addition.

The rows of a GUB structure can be rearranged to form an embedded identity
matrix in ~.

Vector Space Representation

Yet another heuristic approach can be modelled using vectors in an n-dimensional
vector space, where n is the number of variables in the problem (L). Consider each row
of A as a vector in this space, having unit length in those "dimensions" corresponding
with its nonzero coefficients.

R, the resultant vector from the sum of all vectors of the rows of A, indicates the
number of conflicts, plus one, associated with each variable of (L). A hypercube in
n-space situated in the first orthant at the origin with length 1 in all positive directions
denotes the feasible GUB region. Should R extend beyond this area, then the set of
rows corresponding to the vectors determining R does not constitute a GUB structure.

A gradient vector can be calculated indicating the direction of the shortest distance
to the feasible region. It can be used to determine which row to remove from the set to
obtain the largest movement in the desired direction. When R falls within the feasible
region, the set-of rows determining R constitutes a GUB set.

3. Earlier Literature

Two papers dealing with efficient GUB finding methods are worthy of special note.
Brearley, "Mitra and Williams [2] establish a very useful framework for study of

methods for finding GUB structure, as well as an insightful discussion of these
methods and a taxonomy for their classification.
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They define three sets consisting of the rows of the technological matrix A. The first
set, the eligible set, is made up of every row of A that is individually eligible to belong
in the GUB set.- The structure set is a subset of the eligible set and includes all those
rows currently considered as members of the GUB set. The candidate set consists of
those rows of the eligible set that are candidates for inclusion (or re-inclusion) in the
GUB set. Everyone of the methods examined in [2] is described in terms of
manipulation of these sets.

Each method of building a GUB set employs one of two basic strategies. The
row-addition strategy begins with an empty structure set. Then, based on a particular
criterion for inclusion, rows are removed from the candidate set and either added to
the structure set or dropped from further consideration. This procedure continues until
the candidate set is empty. The rows in the structure set form an admissible GUB
structure.

The row-deletion strategy takes the opposite approach and is divided into two
phases. Methods of this type initially place all eligible rows in the structure set. This
normally leads to an infeasible GUB set with many conflicting rows. Based upon the
particular decision rules, rows are removed from the structure set and placed in the
candidate set. The first phase of this strategy ends when a feasible structure is
obtained.

A second phase involves examining the removed rows in the candidate set. Those
that do not conflict with any of the members of the current structure set are taken
from the candidate set and reincluded in the structure set. Those that do conflict are
deleted from the candidate set and dropped from further consideration. The second
phase ends when the candidate set is empty. At this point the rows of the structure set
constitute an admissible GUB set.

Brearley, Mitra, and Williams examine over 18 different methods. These appraoches
differ in the primary and secondary decision criteria for including (or removing) a row
in the GUB structure set. The heuristic decision rules examined are based on the
following model entities and combinations thereof: Include or remove a row based
upon:

(a) the number of nonzero elements in the given row,
(b) the number of rows in conflict with the given row,
(c) the number of nonzero elements in rows that conflict with the given row,
(d) the row's relative weight obtained by the inner product of a vector representation

of the row and a directional gradient.
These methods were implemented with an ALGOL program run on an ICL 4130

computer. Twelve linear programming problems ranging in size from 12 rows up to
166 rows were used for computational tests. The results show that those row-addition
methods using heuristic (d) above "consistently performed very well" [2]. Similarly,
those methods using heuristic (b) were found to perform nearly as well as (d).

McBride [15] compares the directional gradient method (d) with an approach
suggested but not tested by Greenberg and Rarick [8]. The latter method uses the
conflict matrix as does heurisitc (b). However, it focuses on finding a maximal
embedded identity matrix within the conflict matrix, rather than using the conflict
matrix to determine conflict counts, applying a specialization of the preassigned pivot
procedure (P 3) normally used for reinversion [9]. McBride's results indicate that
heuristic (d) is significantly faster. However, neither method consistently achieves a
larger GUB set.
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McBride also comments on the notion of a "good" GUB set. He finds merit in
selectirig a set of GUB rows that minimizes the nonzero build-up in the representation
of the inverse transformation of the explicit basis during actual optimization. Results
are also given for a restricted GUB set selection that gives priority to equality
constraints. Since equality constraints are always binding in feasible solutions, the
subset of the basis associated with binding constraints, or kernel [7], is expected to
have fewer explicit nonzero elements.

Based upon the results in these papers, and on independent computational experi
ence with automatic GUB factorization reported by Brown and Graves [3], the present
research intially concentrated on those approaches utilizing the two most successful
heuristics based on conflict and directional gradient (i.e. methods 1.2, 11.2, 11.9 and
11.10 of [2]).

The models studied in this report are of much larger scale and include mixed-integer
problems as well as models for which prior GUB row sets have been manually
specified.

4. Determination of the Eligible Set

The implementation of GUB in simplex algorithms usually admits only ± 1 as
nonzero coefficients in the GUB rows. In linear programming, a column scaling can
make each nonzero element in a GUB row ± 1. For variables of an integer or mixed
integer programming problem, the columns of matrix A that correspond to integer
variables cannot be scaled without inconvenience for other optimization functions
depending upon the integrality condition. Therefore, nonzero elements in columns
corresponding to integer variables will be modified by row scaling. If it is impossible to
obtain the necessary ± 1 nonzero coefficients by row scaling and column scaling of
columns corresponding to continuous-valued variables, the row is deemed not eligible
for inclusion in a GUB set.

It is an objective of this research that the procedures examined for locating a GUB
set in a linear programming problem be designed to be incorporated as an automatic,
integral part of a contemporary optimization system of advanced design.

Each method is implemented as a feature of the read routine (written to accept input
in the standard MPS format, as well as editing information indicating integer vari
ables, scaling, and known prior GUB structure). Each method automatically examines
the rows of the input and specifies a GUB set. The appropriate rows and columns are
then scaled as necessary to obtain the proper GUB structure, and passed on to the
optimizing portion of the system. (Note that the editing information places conditions
that must be satisfied for any achievable GUB set.)

In determining the set of eligible rows, the following factors have to be considered.
a. Through the editing process, have some of the rows been dropped from the

problem? If so, these "masked" rows are not eligible for inclusion in the GUB
structure and are thus dropped from the set of eligible rows.

b. Through the editing process, have any rows been predesignated to be in the GUB
structure? Large segments of the constraints can often be selected for the GUB set
either visually or by recognition of a member of a convenient class of models. Any
rows that conflict with these rows are not eligible for subsequent inclusion.

c. All rows designated "nonconstrained" (which include the objective function) are
ineligible for inclusion in the GUB structure.

d. If there are any integer-valued variables, an additional check is performed. A row
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in the GUB set must eventually be capable of being scaled to ± 1 nonzero coefficients.
This is achieved, if necessary, through a combination of row and column scaling.
However, with integer variables, column scaling is no longer advisable. Therefore any
row with a nonzero element in integer columns that is not a + 1 or - 1, or capable of
being rendered into a ± 1 in those positions through row scaling alone, must be
marked as ineligible for inclusion in the GUB structure.

Once the above restrictions have been considered, the resulting set of eligible rows is
then available for search in order to construct the desired GUB structure.

5. Implementation of Automatic GUB Heuristics

Conflict Methods

These employ the notion of a conflict measure for each row. Consider the conflict
matrix; M, of the corresponding technological matrix A, for which a GUB set is to be
found. An individual element, mik is 1 if row i and row k of the original matrix have at
least one column) such that aij ::1= 0 and akj =1= o. If the two rows have no nonzero
coefficients in a common column then the corresponding mik of the conflict matrix is
O. Summing across a row of the conflict matrix can thus give the measure of the
number of rows plus one that are in conflict with a given row. For a given row, this
sum less one, called the row's deletion potential, indicates exactly how many other rows
would be immediately excluded from the GUB set by inclusion of this row.

Conflict row-addition places all the eligible rows on a candidate list. From the
candidate list, individual rows are selected by minimum deletion potential and removed
to be added to the structure set. Other rows that are in conflict with the selected row
are immediately removed from the candidate list and discarded. The selection of rows
for the structure set and the discarding of conflicting rows continues until the
candidate list is exhausted. The resulting structure set forms a GUB set.

A modification to the above heuristic is possible which breaks ties among rows
sharing the minimum deletion potential by (for instance) selecting the row having the
most nonzero elements for inclusion with the GUB structure set.

The program used to test this heuristic approach is adapted from an earlier version
made available by Graves.

Conflict Row-Addition

Step 1. Identify Eligible Rows. Set f3i = 1 if row i is an eligible row, and equal to 0
otherwise.

Step 2. Determine Deletion Potential. Scan each eligible row i and increment f3i by
the number of other eligible rows k where aij and a kj are both nonzero for at least one
column). (f3i is the deletion potential, plus one.)

Step 3. Stopping Condition. If any f3i is greater than 0, go to the next step.
Otherwise, stop. At termination, the structure set is a GUB row set.

Step 4. Row Selection. Select row i having the minimum positive ("deletion poten
tial") f3i and add it to the structure set.

Step 5. Exclude Rows in Conflict with Selected Row. Locate the (f3i - 1) rows in
conflict with the selected row. For each of these rows k, locate the (13k - 1) rows that
they are in conflict with and decrement f3i ,for those rows by one.

Step 6. Marking Selected and Excluded Rows Ineligible for Further Consideration.
Set f3i and the 13k's equal to zero. Go to step 3.
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Conflict Row-deletion is a two-phase method which initially places all the eligible
rows in the structure set. From this set individual rows are selected during Phase 1 and
placed on the candidate list by maximum deletion potential. During Phase 2, remain
ing candidate rows that do not conflict with the structure set can be reconsidered in
LOFI order [2].' A modification of phase 2 is used in this research which simply
excludes from further consideration all conflicting rows, reincludes any remaining
candidate rows, and repeats phase 1, until no further nonconflicting candidates
remain.

Gradient Methods

Gradient row-deletion employs a heuristic method suggested by Senju and Toyoda
[17] for approximate solution of certain linear programming problems with 0, 1
variables. The objective is to obtain a maximum number of rows in the GUB structure
while satisfying the stipulation that the GUB rows be disjoint.

Max Z = Xl + X2 + . . . + X m

S.t. 2: Xi < 1,j = 1, ... , n
i : aij=l=O

where Xi E {O, I},

m is the number of candidate rows in (L), (S)

n is the number of variables in (L),

Xi is the variable which detemines whether row i is in the

GUB set or not, and
Z is the objective function.

Using the vector space viewpoint outlined earlier, consider each row of (S) as a vector
in n-space. A resultant vector R is determined by the sum of all the included rows and,
in general? extends beyond the feasible space denoted by the unit hypercube. A
gradient vector is calculated from this infeasible point in the direction of the shortest
distance to the feasible region. An inner product of this gradient with each of the row
vectors results in a relative weight for each row, which can be viewed as indicating the
relative contribution that removal of the row would have towards obtaining a feasible
structure set.

Rows are removed from the structure set according to their relative weight, the
largest weight being removed first. This process is continued until a feasible set of
GUB rows has been obtained. (The gradient vector is not recomputed as the method
proceeds.)

Next, a phase 2 procedure examines each of the initially removed rows to see if any
can be reincluded into the structure set without violating the GUB restrictions. Upon
completion of phase 2, the selected rows constitute a GUB set.

A variation on the above procedure recalculates the shortest distance to the feasible
region after the removal of each row. With the new gradient, a new set of relative
weights for the remaining rows is then calculated and used, if necessary, to determine
which of the subsequent rows will be removed.

Another modification is possible whenever two rows are found with equal weights.
As a tie-breaking rule, the row found to have the least number of nonzero coefficients
may be discarded first.
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Gradient Row-Deletion

Phase 1: Deletion of Infeasible Rows
Step O. Initialize Sets. Add all eligible rows to the structure set. The candidate set is

empty.
Step 1. Determine the Vector R. For each column), define Pi as the number of rows

in the structure set having nonzero elements in column).
Step 2. Determine Relative Weight of Each Row. For each row i, define Vi as the

sum of (Pi - 1) of every column), for which aij =1= o.
Step 3. Feasibility Condition. If for every column, Pi < 1, then go to step 6; else find

a column) such that Pi > 1.
Step 4. Determine Row for Exclusion. Examine the rows in the structure having

nonzero elements in column). Select the row i with the largest Vi.

Step 5. Remove Selected Row. Remove row i from the structure set, decrementing Pi
by one for every column) with aij =1= O. Add row i to the candidate set and return to
step 3.

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows
Step 6. Eliminate Rows in Candidate Set that Conflict with the Feasible Set. For

every row i of the candidate set that has at least one aij =1= 0 in a column with Pi = 1,
remove that row from the candidate set.

Step 7. Re-inclusion of Rows. If any rows remain in the candidate set, then find row
i having the smallest Vi. Remove row i from the candidate set and re-include it in the
structure set. Increment Pi by one for every column) where aij =1= o.

Step 8. Stopping Condition. If the candidate set is empty, stop; else go to step 6.
To modify the algorithm in order to compute a new gradient vector after the

removal of each row in phase 1, step 5 is changed as follows:
Step 5*. Remove Selected Row. Remove row i from the structure, decrementing Pi

by one for every column) such that aij =1= O. Locate each row k that is in conflict with
row i. Decrement Vk by the number of conflicts between the two rows. Add row i to
the candidate set and return to step 3.

These two basic methods have been implemented as integral modules of a large
scale optimization system. Therefore, explicit conflict matrices are not built. (To have
done so would have consumed too much computer time and space.) Instead, all the
information is stored in the vectors {3, P, and u, Logical flags associated with each row
indicate whether it is eligible, and whether it is in the candidate set or in the structure
set.

The problem data is expressed internally in terms of only the unique nonzero
elements. This input is stored in a doubly linked list having both a row and a column
thread. Thus, along with any nonzero coefficient aij' the location of adjacent nonzero
elements in both the row i and column) are also immediately available. This crucial
feature permits efficient row access for various operations (e.g., to locate all rows that
conflict with a given row at a particular column).

6. Computational Results

The heuristic methods have been tested on 15 problems that vary in size from 92
constraints to 4,648 constraints. A description of each of the problems is given in
Figure 2. As can be seen, four of the problems are mixed integer and two are pure
integer.



LARGE-SCALE OPTIMIZATION MODELS 1175

Number Number Integer
Problem of rows of columns Columns Nonzeros

VANN 92 1,324 1,324 .2,648
NETIING 103 247 103 494
AIRLP 171 3,040 ° 6,023
COAL 171 3,753 ° 7,506
TRUCK 239 4,752 4,752 30,074
CUPS 415 619 145 1,341
FERT 606 9,024 ° 40,484
PIES 663 2,923 ° 13,288
PAD 695 2,934 ° 13,459
ELEC 785 2,800 ° 8,462
GAS 799 5,536 ° 27,474
FOAM 1,017 4,020 42 17,187
LANG 1,236 1,425 ° 22,028
lCAP 2,487 3,849 560 9,510
ODSAS 4,648 4,683 ° 30,520

FIGURE 2.

The results of these experiments are given in Appendix A. The first two columns
give the rows and nonzero column elements, respectively, of the GUB structures
found. The time given in column three is the time required to locate the GUB set once
the set of eligible rows has been determined. The final columns give additional
information relating to the two versions of the gradient methods examined and
represents total time in phase 1 and the number of rows reincluded in the GUB
structure during phase 2.

As with the earlier work cited, the Senju and Toyoda methods were found to be
consistently the faster. Gradient row-deletion which updates the gradient after each
row is removed takes longer in phase 1 than its nonupdating counterpart. However, it
so selectively deletes the rows, that few if any rows are ever added back into the
structure during phase 2. This suggests that it be implemented as strictly a one-phase
method.

All methods are robust in that they consistently find large GUB sets. The conflict
approaches generally find a larger number of variables with nonzero coefficients in the
GUB rows. However, they definitely become relatively inefficient when larger prob
lems are analyzed, regardless of the relative size of the GUB structure in the problem.

There is some discrepancy between these results and those published earlier [2]. The
wide variation between gradient row-deletion with, and without, gradient updating has
not been observed in the current experiments. It is hypothesized that this is due
partially to differences in implementation of the various approaches and partially to
problem size and structure variations between these studies.

7. Problem Complexity

The complexity of a problem is said to be polynomial if an algorithm exists for which
the fundamental operations are limited by a polynomial function of intrinsic problem
dimensions. Such an algorithm would be called a polynomial time or good algorithm.
The class of all problems for which such algorithms exists is denoted (P). If an
algorithm is not polynomial time, then it is defined to be an exponential time algorithm.
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The disadvantage of an exponential algorithm is the explosive growth of the maximum
solution time as the dimensions of the problem increase [14].

A problem x is said to be reducible to a problem y if each good algorithm for solving
y can be used to produce in polynomial time a good algorithm for solving x [12]. Note
that this does not necessarily require that a good algorithm for x and y actually exist.
This requires only that if one exists for y, then one also exists for x.

An intractable problem is one for which it is known that no polynomial time
algorithm exists. In between this class of problem, and the class P, is a vast number of
problems whose status is uncertain. Among these is a class of nondeterministic
polynomial-time problems (NP) for which a polynomial-time algorithm can be shown
to exist that can verify a guessed solution, but for which the existence of a (de
terministic) polynomial-time algorithm to actually solve a problem has not yet been
demonstrated.

If every problem of the class NP is reducible to the problem y, then y is said to be
NP-hard. In addition, if y itself belongs to NP, then y is NP-complete [6], [12].

The following problem is known as the independent set decision problem (ISD). It
belongs to the set of NP-complete problems.

(ISD) Given a graph G = (V,E) and an integer t, decide whether G contains an
independent set of size t or more.

The GUB decision problem (GUBD) can be defined as follows:
(GUBD) Given an integer p and an m X n matrix K defined as Kij = 1 if aij =1= 0, and

Kij = 0 otherwise, decide whether K contains a set of p or more rows iI' i2 , ••• , iq such
that

q

2: kid < 1 for every column; q >p.
e=l

(*)

Given an instance of the ISD problem, the incidence matrix N can be constructed.
This matrix along with the integer t is an instance of the GUBD problem. The
following theorem proves the correctness of this reduction:

THEOREM. The incidence matrix N has t rows satisfying (*) if and only if there are t
vertices in G that are independent.

PROOF. a) Assume there exists trows of N that satisfy (*). They correspond to
vertices Vi I' vi2' ••• , Vir in G. If any two of these vertices are adjacent, then

t

2: nid.= 2
e=l

where j is the column in N that corresponds to the edge connecting the two vertices.
This is a violation of the assumption, hence the t vertices in G are not connected to
one another.

b) Assume there exists t vertices ViI' Vi2' ••• , Vir in G that are independent. Since no
two are adjacent, the corresponding rows in N satisfy (*) [19]. Q.E.D.

Since the ISD problem, a problem known to be NP-complete, is reducible to the
GUBD problem, it follows that the GUBD problem itself is NP-complete. (It is clear
that the reduction is polynomial time and it is also clear that GUBD is in NP.) The
related problems of finding a maximum independent set and a maximum GUB set are
not in NP, however, they are NP-hard. It is therefore unlikely that a polynomial-time
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algorithm will be found for these problems. Only exponential-time algorithms are
presently available.

The above analysis of GUB algorithms has only addressed the worst case bound. No
conclusions are made about the average performance of an algorithm. In other words,
the possibility of the existence of an algorithm with good average performance, but
having an exponential worst case bound, has not been ruled out.

8. Upper Bounds for the Size of Maximum G UB Set

The intrinsic difficulty of identifying a maximum GUB set has been shown to be
essentially impossible for problems of the scale at hand. However, the efficient
heuristic procedures have been shown to provide very large GUB sets, whose size
appears to be relatively stable for each problem regardless of the particular method
applied. This suggests that these large GUB sets may be, in fact, very nearly
maximum, although there is no practical way to verify this directly.

Although the problem of determining the size of the maximum GUB set is also
NP-hard, it is possible to develop an easily computable upper bound on the maximum
GUB set size. This bound can then be used to objectively evaluate the quality of the
GUB sets produced by heuristic algorithms.

It is clear that the number of rows of a GUB set can be no greater than the number
of rows in the problem. Also anyone row by itself can form a GUB set. But these
bounds are of little practical use when considering the problem of identifying a
maximum GUB set. Utilizing information that is already available in the heuristic
procedure, it is possible to construct in polynomial time an upper bound on the size of
the maximum GUB set. (It is also possible to construct a lower bound on the size of
the maximum GUB set, but that topic is not pursued in this report.)

For the purpose of developing a better bound, the incidence matrix representation
(N) of the problem is used. Let Si be the number of l's in row i. Note that Si is the
number of edges incident to vertex i in G. Also note that Si = f3i - 1. The number of
columns in N represents the number of distinct conflicts that exist between the rows of
the original problem. This number is denoted as c, and can be found by the following
formula

n

2: Si
i=l

c= -2-'

If c is greater than 0, all the rows of N cannot simultaneously belong to a GUB set,
which implies the cardinality of the GUB set is less than m. As c becomes larger, the
following argument shows that the upper bound of the maximum GUB set decreases.

If c is positive, but strictly less than m, it is possible for all the conflicts to involve
one row. Removal of that row would then leave m - 1 rows that form a GUB set.
Thus for c in the range from 1 to m - 1, an upper bound on the size of the maximum
GUB set is m - 1. Since one row can conflict with at most m - 1 other rows, once
c > m, at least two rows have to be removed to form a GUB set. For m < c < [(m 
1) + (m - 2)] it is possible to construct an incidence matrix such that all the conflicts
are between a pair of rows and the remaining set of rows. Removal of the pair would
result in a GUB set of m - 2 rows. This constructive argument continues until
c = [(m)(m - 1)]/2, which occurs when each row conflicts with every other row. At
that point, the max maximum GUB = min maximum GUB = one row.
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c < (m - y)y,

In general, for any problem with an m X c incidence matrix, the largest maximum
GUB set that can be obtained is:

U 1 = LO.5 +~0.25 + (m)(m - 1) - 2c

where L indicates truncation to an integer.
The above bound is problem-independent and a sharp bound in that matrices with a

GUB set the size of the bounding value can be constructed.
With additional information about a specific problem a better bound can be

constructed. Since Si is the number of other rows that conflict with row i, removing row
i from the set of rows reduces the number of conflicts, c, by Si' Let y denote max Si'

Since y is the largest row conflict count, c can be reduced by not more than y with the
removal of each row. The minimum number of rows that would have to be removed to
reduce the number of row conflicts to 0, is I c/ y. Therefore, given m, c and y, the
bound can be improved to

_{m - I ; ,
U2 - ,..------------

LO.5 +.~0.25 + y(2m - y - 1) - 2c, c >(m - y)y;

where I indicates rounding up to the next integer.
In order to determine y, the entire f3 vector must be examined.
A third, even better bound can be obtained with additional information on the

frequency of the conflict counts from 1 to y. The procedure is the same as above, in
that when a row is removed with y conflict count, c decreases by y. However, instead
of continuing to decrease c by y; it is decreased by the next largest Si' This procedure
continues until, once again, c becomes zero. This bound is named u3 •

The bounds developed can be used to objectively evaluate the size of a GUB set
found by heuristic methods. In two problems examined, VANN and AIRLP, the
number of rows in the GUB set equal an upper bound on the maximum GUB set for
the problem. Therefore, for those problems, the heuristic methods are verified to have
located maximum GUB sets.

Manual specification of a GUB set from visual inspection can utilize these bounds
as an excellent measure of the maximum additional rows to be found. This informa
tion is also an aid in deciding whether to subject the problem to additional automatic
search for GUB.

9. Extensions

The upper bounds developed in this report vary from a problem-independent bound
to tighter problem-dependent bounds. It is speculated that additional information can
be easily extracted from the actual conflict structure of the problems that can be used
to tighten the existing bounds even further. This is strongly suggested by manual
analysis of problems with particularly loose bounds for which the conflict structure
seems to have higher-order pathology. In addition, lower bounds have been developed
by similar methods.

Another area that warrants further study is the special structure of the incidence
matrix representation of the original problem. It is noted that for an incidence matrix,
N, the relative weights generated for each row are (except for a constant) identical for
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both the conflict and the gradient methods studied. This implies that for a matrix N,
the row-deletion heuristics will identify the same GUB set.

As things now stand, GUB-finding demands far less cost than the benefits derived
during model optimization. Better GUB-finding methods may result from simple
extensions arising from relaxations of (S), use of conflict information of higher order,
limited application of backtracking enumeration, or exploitation of conditioned
bounds ion the remaining candidate rows to allocate heuristic effort.

Finally, research is continuing on automatic location of network row structure (e.g.,
Musalem [16] and Wright [18]). As one illustration of an immediate generalization of
the GUB results, a GUB set for a problem can be identified and then another GUB set
of an eligible subset of remaining rows can be found. Thus, a bi-partite network row
factorization can be achieved (e.g., transportation or assignment rows).

10. Conclusions

The computational benefits of a large GUB set for an LP problem are widely
recognized. This report shows that the identification of a maximum GUB set is a
difficult problem, essentially as hard as many other widely known difficult problems.

The use of heuristics seems inescapable. This report has examined two promising
heuristics (with two versions of each) applied to a series of real-life, large-scale models.
All versions are robust in. their ability to find large GUB row sets. However the two
versions that use the Senju and Toyoda method are consistently the fastest. These two
methods are essentially equal in their efficiency and effectiveness. Since the version
which recalculates the gradient after the removal of each row so selectively removes
the rows during the first phase that few if any rows are re-included in the GUB set
during the second phase, this suggests that the latter phase be omitted.

The representation of an infinite number of m-row matrices by a finite number of
incidence matrices offers a powerful and concise way of examining the GUB problem.
Under this representation, both basic heuristic methods investigated assign (within a
constant) the same relative selection weights to each row.

Finally, the ability to define upper bounds on the maximum size of the GUB set
gives a new powerful tool in this area. It enables one to evaluate the quality of GUB
sets found even in every large problems, for which the algorithmic identification of a
maximum GUB set is probably impossible in general. In some cases, verification of a
heuristically achieved maximum GUB set is now possible. Further, the bounds
developed may be further enhanced in future research, and may be applicable to
related problems of equivalent complexity. 1

Appendix A

This appendix contains computational results for fifteen linear, mixed-integer and
integer models. All execution times reported are expressed in actual CPU seconds,
accurate to the precision displayed for IBM 360/67 and FORTRAN H (Extended).

For clarity, the following terms are defined:

Eligible rows: The number of rows of the model initially eligible
for inclusion in a set of GUB rows.

I The authors wish to thank Gordon Bradley and Shmuel Zaks for their insights on complexity, and also
Glenn Graves and William Wright for thier considerable assistance.
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Conflict count: The number of columns of the incidence matrix for
the problem.

Conflict density: The ratio of the conflict count to the maximum
conflict count for that problem size [i.e., m(m - 1)/2].

Time to find Elig: The time in CPU seconds to determine the set
of eligible rows.

IMAX: The maximum of Si'

U1, U2 , U3 : Bounds defined in Section 8.

The methods are labelled:

CRA
CRD
GRD*
GRD

Conflict Row-Addition
Conflict Row-Deletion
Gradient Row-Deletion (with gradient update)
Gradient Row-Deletion

Problem: VANN Description: Fleet Dispatch Model
Rows: 92 Eligible rows: 69 IMAX: 0
Columns: 1324 Conflict count: 0 VI: 69
Integer: 1324 Conflict density: 0 U2: 69
Nonzero: 2648 Time to find Elig: 0.141 sec V3: 69

Method Rows in Columns in Time to find Time in Number added
GVB set GVB set GVB set (sec.) Phase 1 in Phase 2

CRA 69 1324 0.237
CRD 69 1324 0.125
GRD* 69 1324 0.202 0.198 0
GRD 69 1324 0.202 0.198 0

Problem: NETTING Description: Currency Exchange Model
Rows: 103 Eligible rows: 71 IMAX: 5
Columns: 247 Conflict count: 46 VI: 70
Integer: 103 Conflict density: 1.85% V2: 59
Nonzero: 494 Time to find Elig: 0.022 sec V3: 46

Method Rows in Columns in Time to find Time in Number added
GVB set GVB set G:VB set (sec.) Phase 1 in Phase 2

CRA 36 84 0.169
CRD 36 84 0.164
GRD* 36 i7 0.047 0.042 0
GRD 36 72 0.042 0.037 0

Problem: AIRLP Description: Fleet Dispatch Model
Rows: 171 Eligible rows: 170 IMAX: 150
Columns: 3040 Conflict count: 2983 VI: 151
Integer: 0 Conflict density: 20.77% V2: 150
Nonzero: 6023 Time to find Elig: 0.076 sec V3: 150

Method Rows in Columns in Time to find Time in Number added
GVB set GVB set GVB set (sec.) Phase 1 in Phase 2

CRA 150 3000 1.16
CRD 150 3000 0.761
GRD* 150 3000 0.645 0.639 0
GRD 150 3000 0.444 0.439 0
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Problem: COAL Description: Energy Development Model
Rows: 171 Eligible rows: 170 IMAX: III
Columns: 3753 Conflict count: 3753 VI: 146
Integer: 0 Conflict density: 26.13% U2: 136
Nonzero: 7506 Time to find Elig: 0.106 sec U3: 121

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 111 3753 1.38
CRD 111 3753 1.24
GRD*' 111 3753 0.920 0.912 0
GRD 100 2568 0.641 0.631 0

Problem: TRUCK Desciption: Fleet Dispatch Model
Rows: 239 Eligible rows: 221 IMAX: 171
Columns: 4752 Conflict count: 10438 Ul: 165
Integer: 4752 Conflict density: 42.94% U2: 159
Nonzero 30074 Time to find Elig: 0.116 sec U3: 144

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 32 1069 6.88
CRD 30 1099 7.095
GRD* 30 857 5.00 4.95 2
GRD 32 986 1.70 1.58 8

Problem: CUPS Description: Production Scheduling Model
Rows: 415 Eligible rows: 390 IMAX: 48
Columns: 619 Conflict count: 744 Ul: 388
Integer: 145 Conflict density: 0.98% U2: 374

Nonzero 1341 Time to find Elig: 0.042 sec U3: 294

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 213 494 2.96
CRD 214 442 3.15
GRD* 214 466 0.212 0.194 0
GRD 200 394 0.384 0.132 24

Problem: FERT Description: Production & Distribution Model
Rows: 606 Eligible rows: 605 IMAX: 580
Columns: 9024 Conflict count: 16455 Ul: 577
Integer: 0 Conflict density: 9.01% U2: 576
Nonzero: 40484 Time to find Elig: 0.257 sec U3: 567

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 559 9024 15.8
CRD 559 9024 10.5
GRD* 559 9024 6.73 6.71 0
GRD 559 9024 2.52 2.50 0
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Problem: PIES Description: Energy Production & Consumption Model
Rows: 663 Eligible rows: 662 IMAX: 21
Columns: 2923 Conflict count: 4116 Ul: 655
Integer: 0 Conflict density: 1.88% U2: 466
Nonzero: 13288 Time to find Elig: 0.866 sec U3: 422

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 180 1848 10.8
CRD 169 1693 13.5
GRD* 172 1811 2.82 2.77 1
GRD 177 1761 1.31 0.788 28

Problem: PAD Description: Energy Production & Consumption Model
Rows: 695 Eligible rows: 694 IMAX: 23
Columns: . 2934 Conflict count: 4416 Ul: 687
Integer: 0 Conflict density: 1.84% U2: 502
Nonzero: 13459 Time to find Elig: 0.104 sec U3: 449

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 200 1864 13.1
CRD 189 1771 16.6
GRD* 188 1708 3.34 3.26 2
GRD 189 1275 1.35 0.928 21

Problem: ELEC Description: Energy Production & Consumption Model
Rows: 785 Eligible rows: 784 IMAX: 22
Columns: 2800 Conflict count: 6167 Ul: 776
Integer: 0 Conflict density: 2.01% U2: 503
Nonzero: 8462 Time to find Elig: 0.089sec U3: 492

Method Rows in Columns in Time to find Time in Number added
GUB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 309 2461 11.4
CRD 210 2791 16.1
GRD* 309 2641 1.15 1.12 0
GRD 309 2605 0.842 0.579 14

Problem: GAS Description: Production Scheduling Model
Rows: 799 Eligible rows: 789 IMAX: 608
Columns: 5536 Conflict count: 22220 Ul: 760
Integer: 0 Conflict density: 7.15% U2: 752
Nonzero: 27474 Time to find Elig: 0.151 sec U3: 652

Method Rows in Columns in Time to find Time in Number added

GUB set GUB set GUB set (sec.) Phase 1 In Phase 2

CRA 583 5102 16.2
CRD 639 5536 lOA
GRD* 608 5309 3.79 3.77 0
GRD 639 5533 1.47 1.44 1



LARGE-SCALE OPTIMIZATION MODELS 1183

Problem: FOAM Description: Production Scheduling Model
Rows: 1017 Eligible rows: 1006 IMAX: 261
Columns: 4020 Conflict count: 8186 VI: 997
Integer: 42 Conflict density: 1.62% V2: 974
Nonzero 17187 Time to find Elig: 0.198 sec U3: 934

Method Rows in Columns in Time to find Time in Number added
GUB set GVB set GUB set (sec.) Phase 1 in Phase 2

CRA 932 4020 23.4
CRD 932 4020 9.47
GRD* 917 3981 1.73 1.71 0
GRD 917 3981 0.902 0.879 0

Problem: LANG Description: Equipment &Manpower Scheduling Model
Rows: 1236 Eligible rows: 1235 IMAX: 184
Columns: 1425 . Conflict count: 46424 VI: 1196
Integer: 0 Conflict density: 6.09% V2: 982
Nonzero: 22028 Time to find Elig: 0.072 sec V3: 973

Method Rows in Columns in Time to find Time in Number added
GVB set GVB set GUB set (sec.) Phase 1 in Phase 2

CRA 382 1207 46.2
CRD 338 908 54.2
GRD* 342 923 14.9 14.8 2
GRD 342 922 12.4 1.13 234

Problem: JCAP Description: Production Scheduling Model
Rows: 2487 Eligible rows: 2446 IMAX: 488

Columns: 3849 Conflict count: 16578 VI: 2439
Integer: 560 Conflict density: 0.55% V2: 2412
Nonzero: 9510 Time to find Elig: 0.265 sec V3: 1812

Method Rows in Columns in Time to find Time in Number added
GVB set GVB set GUB set (sec.) Phase 1 in Phase 2

CRA 529 2072 104
CRD 512 2186 153
GRD* 529 2087 2.23 1.87 5
GRD 523 1393 3.98 1.10 59

Problem: ODSAS Description: Manpower Planning Model
Rows: 4648 Eligible rows: 4647 IMAX: 4194
Columns: 4683 Conflict count: 5220 VI: 4645
Integer: 0 Conflict density: 0.05% V2: 4645
Nonzero: 30520 Time to find Elig: 0.263 sec U3: 4024

Method Rows in Columns in Time to find Time in Number added
GVB set GUB set GUB set (sec.) Phase 1 in Phase 2

CRA 751 3116 369
CRD 721 3846 651
GRD* 749 4436 7.12 6.88 0
GRD 751 3020 3.01 2.57 2
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