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If a linear program ( LP) possesses a large generalized network {(GN) submatrix, this structure
can be exploited to decrease solution time. The problems of finding maximum sets of GN
constraints and finding maximum embedded GN submatrices are shown to be NP-complete,
indicating that reliable, efficient solution of these problems is difficult. Therefore, efficient heuristic
algorithms are developed for identifying such structure and are tested on a selection of twenty-three
real-world problems. The best of four algorithms for identifying GN constraint sets finds a set
which is maximum in twelve cases and averages 99.1% of maximum. On average, the GN
constraints identified comprise more than 62.3% of the total constraints in these problems. The
algorithm for identifying embedded GN submatrices finds submatrices whose sizes, rows plus
columns, average 96.8% of an LP upper bound. Over 91.3% of the total constraint matrix was
identified as a GN submatrix in these problems, on average.

“The act of being wise is the act of knowing what to overlook.”
William James (ca. 1890}
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1. Introduction

Large-scale linear programming (LP) models frequently have sparse coefficient
matrices with special structure. If special structure can be identified, it can often
be exploited to reduce the cost of solving the LP. "Direct factorization’, e.g. [13],
maintains a partitioning of the rows and/or columns of all simplex bases. Computa-
tions are reduced with respect to standard methods if special structure can be isolated
within the partitions. ‘Decomposition’, e.g. [14], splits a problem into a master
problem and one or more subproblems. This technique is most efficient when
subproblems consist entirely of special structure allowing their rapid solution. The
details of these exploitation schemes will not be discussed here.

Useful structures found embedded in a subset of the rows and/or columns of an
LP constraint matrix include simple upper bounds (at most one nonzero element in
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each row), generalized upper bounds (GUB) (at most one nonzero coefficient in each
column), and networks (at most two nonzero elements in each column). Varieties
of embedded networks include the general case, generalized networks (GN), general-
ized transshipment networks (GT) (at most one coefficient not equal to +1), and
pure networks (NET) (at most one +1 and one —1 in each column).

Simple upper bounds, GUB and NET structures have been exploited in various
commercial and experimental optimization systems, and efficient automatic identifi-
cation schemes have been developed to find these structures, e.g., [4, 7, 8].

Recent research has produced very efficient specialized simplex algorithms for
solving network problems. (For example, see [3] for NET, [6] for GN, and [6, 11]
for GT.) This research has, in turn, been exploited to develop factorized optimization
systems which solve general LP problems with a set of rows exhibiting NET structure
[12], GN structure [18], and GT structure [12, 19]. Even more recently, optimization
systems have been tested which use direct factorization [19] or primal and/or dual
decomposition [14] to exploit embedded GN structure.

Now that software is available to solve GN (and GT) problems [6], it is very
likely that several research groups will exploit GN in various ways in the near future.
To support this research, we are interested in efficiently and automatically identifying
GN structure of the following varieties in general LP coefficient matrices:

GN( A subset of LP columns which are GN, or

GNgr A subset of LP rows which are GN, or

GNgr¢ An embedded GN within a subset of the rows and columns of LP.

Because the efficiency of solving a general LP. with GN-exploiting methods is
enhanced if the GN structure is large, maximum GN structures are our goal. This
leads to the maximization problems described below.

Let A={a;} be the mXn coefficient matrix of LP, and let H ={h;} be the
associated 0-1 incidence matrix for A. The three maximization problems, formulated
as integer programs, are

M(GN¢):

max Y ¢
(. j )

s.t. Y hye; <2 forall j,

Cj € {03 l}»
where ¢; is a binary decision variable indicating inclusion of column j in GN¢:
M(GNgp):

max L

i

st. Y hyr,<2 forally,

r,e {0, 1},
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where r; is a binary decision variable indicating inclusion of row i in GNg; and
M(GNg):

max rt+) ¢

R.C 2,: ' ; !
st. Y hyri+mic;<2+m; forallj,

i
ri, G {0, 1},

where r; and ¢; are binary decision variables indicating respective inclusion of row
i and column j in GNg, and where m; =}, h; ~2. Note that our definitions of
maximum GN factorizations are expressed simply as the sum of the rows and/or
columns included.

Much work has been done on the development of algorithms to identify special
substructures in LPs. Previous work in identifying GUB subsets of constraints is
well known [4, 7]. Brown and Wright [8] have explored ways to identify NET subsets.
Extraction of hidden NET structure with general linear transformations has been
discussed by Bixby and Cunningham [2] and by Musalem [20]. Identification of
GN row sets and other structures has been proposed by Schrage [21].

The problems of identifying maximum GUB and NET constraint subsets are
NP-complete and consequently, exact solutions cannot be guaranteed to be obtained
quickly. Since GUB and NET constraints are special cases of GN constraints, it is
to be expected that exact solutions of the GN identification problems will also be
difficult to obtain. We show that the GN identication problems. are, in fact, NP-
complete, but also give effective and reliable heuristic algorithms for them.

In Section 2, the complexities of the three maximization problems are investigated.
M({GNg) and M(GNg) are shown to be difficult and so, in Section 3, efficient
algorithms are developed for finding approximate solutions to these problems. Four
specialized integer programming heuristics are described for identifying maximal
GNp sets. Two of the algorithms are ‘addition’ heuristics which begin with the
empty GNj set and successively add rows while maintaining feasibility. The other
two algorithms are ‘deletion” heuristics which begin with an infeasible GNg set and
successively delete rows until a feasible set is found. Algorithm GNRC for M(GNg ()
takes as input the GNg set found by any one of the GNy heuristics. Then, it
successively adds rows which introduce the least amount of weighted infeasibility
and drops those columns where an infeasibility results. In this way, a sequence of
GNpg ¢ sets is produced and the maximum of these taken to be the heuristic solution
to M(GNg ). After the algorithms are presented, computational experience is given
in Section 4.

2. Complexity

In this section we investigate the complexity of M(GN¢), M(GNg), and
M(GNg (). M{GN()is trivially solvable in polynomial time by choosing all columns
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with at most two nonzero elements in them: consequently, its complexity will not
be discussed further. The other two problems are more interesting.

Following standard practice, M(GNg) and M(GNg ) will be studied with respect
to their associated decision problems:

D{(GNg): Does there exist a set of rows R in H such that, for positive integer k < m,

[RI=zk and ¥ h;<2 forall;?
R

v

D(GNg): Does there exist a set of rows R and columns C in H such that, for
positive interger k <m+ n,

IR|+|C|=k and Y h,<2 forallje C?
iR

Of course, a polynomial algorithm for one of the above decision problems would

imply a polynomial algorithm for the associated maximization problem using, say,

a binary search on the values of k.

We consider the complexity of D(GNg ) first. Yannakakis [24] investigated the
problem of finding the least number of nodes which can be deleted from a bipartite
graph such that the resulting induced subgraph has a particular property. Restated
in terms of the decision problem, he gives the following theorem on 0-1 matrices
as a corollary of his results on graphs.

Theorem 1. Ler Q be any class of 0-1 matrices which is closed under permutation and
deletion of rows and columns. Let H be an m X n 0-1 matrix, and let k be some positive
integer, k <-m+ n. Then, finding an my X n, submatrix H, of H such that H,e Q and
my+ ny= k is polynomial if the matrices of Q have bounded rank and is NP-complete
otherwise.

It is assumed above that membership in Q can be determined in polynomial time
for a matrix of bounded size (otherwise, NP-hardness would be implied).

This theorem is impressive in that it handles the NP-completeness question for
0-1 matrices in a wholesale fashion. The NP-completeness of D(GNg ) follows as
a simple corollary.

Corollary 1. D(GNg ) is NP-complete.

Proof. Let Q be the class of 0-1 matrices with at most two Is in each column. Q
is obviously closed under permutation and deletion of rows and columns: matrices
of arbitrarily large rank can be found in Q and membership in Q can be determined
in polynomial time. D(GNy () for the incidence matrix H is equivalent to searching
for an m, X n, submatrix H, of H such that H,€ Q and m,+ n,= k. Theretfore, by
Theorem 1, D(GNg ) is NP-complete. ]
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A 0-1 matrix H is represented as a bipartite graph with nodes on one side of the
bipartition corresponding to rows, nodes on the other side of the bipartition corre-
sponding to columns, and an edge (i, j) for each h; = 1. D(GNR) corresponds to a
node-deletion problem with deletions restricted to one side of the bipartition;
Yannakakis’s results do not directly apply since they pertain to node deletions on
either side of the bipartition.' Therefore, we use a problem-specific proof to show
that D{GNyg) is NP-complete.

Lemma 1. D(GNy) is NP-complete.

Proof. For ease of representation, D(GNg) will be equivalently stated in matrix
notation:

D(GNyg): Does there exist a binary m-vector x such that 1x=k and H'x<2?

D(GNy) is obviously in NP. We show that it is NP-complete by a transformation
from the ‘Exact Cover by 3-Sets’ problem [15], as specialized by Garey and Johnson
[10].

D(X3C): Does there exist a binary p-vector y such that 1y =g and Ny =1 where
N is a 3¢ X p, 0-1 matrix with exactly three 1s in each column and at most three 1s
in each row?

For each row i in N with only one 1 or two s, augment N with one or two unit
vector columns e, respectively. Since none of these columns could be included in
an exact cover of size q, D(X3C) is equivalent to

D(X3C’): Does there exist a binary vector y’ of length p +/ such that 1y’ =g and
(E, N)y'=1 where E corresponds to ! augmenting columns? ‘
By construction of D(X3C’), no set of columns of cardinality less than g could ever
cover all the rows exactly once let alone more than once. Thus, D(X3C"’) is equivalent
to a ‘'minimum cover problem’.

D(MC): Does there exist a binary vector y’ such that 1y's g and (E, N)y'=1?
Let x=1—y". Since each row contains exactly three 1s, D(MC) is equivalent to a
‘maximum uncover problem’.

- D(MUC): Does there exist a binary vector x such that 1x=p+[/-g and
(E,N)x=<2?

Since all above transformations are of polynomial complexity, and since D(MUC)

is an instance of D(GNg), D(GNg) is NP-complete. [

3. Algorithms

The complexity resuits of the preceding section indicate that solving M(GNg)
and M(GNg ) exactly could be very time-consuming. Therefore, heuristic
algorithms have been developed for obtaining approximate solutions. We describe
the algorithms for M(GNy) first.

' Bartholdi [ 1] has addressed this topic, but his results are incomplete. For instance, without additional
restrictions, his Theorem 2 would imply that D(GN_ } is NP-complete.
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ciiective profit assoctaded with X s ¢ ¢ where ¢ 35 a penadty whose defingtion
varies between heunstics, but which in some way reflects the units of feasibitiny
used up by setting x, to 1. The addition heuristic stops when no additional variables
can be set to | without violating feasibility. A deletion heuristic begins with the
usually infeasible solution x=1 and successively sets to 0 that variable x; which
myopically minimizes loss of eftective profit ¢,/ ¢;. Here, ¢, is a penalty which reflects
the amount of infeasibility currently being contributed by x;=1. The deletion
heuristic stops when a feasible solution is obtained.

We have specialized two addition heuristics and two deletion heuristics to
M(GNg). The addition heuristics begin with an empty GNy set and successively
add rows to the set until a maximal set is obtained. The deletion heuristics begin
with an infeasible GNg set consisting of all the rows, and rows are successively
deleted until a feasible set is obtained. Since a GNp set obtained by deletion may
not be maximal, a second phase, an addition phase, is appended to insure that the
set is maximal. To further expand the GNg set found, it is possible to devise
post-maximal techniques similar to the 2-opt, 3-opt and general k-opt procedures
used in traveling salesman heuristics, e.g., [16, 17]. Application of such techniques
was unwarranted, however, since computational results in Section 4 show that
excellent approximate solutions were obtained using the basic addition and deletion
heuristics.

The addition heuristics are described by Algorithm GNRa, with variations
‘Greedy’ and ‘Toyoda’. The effective profit associated with adding row i to the GNy
set is 1/ RP, where RP, is a row penalty derived from the current nonmaximal
solution, the nonzero elements in the row and feasibility requirements. Thus, at
each step of the algorithm, the row with the smallest penalty is added to the GNg
set. Feasibility 1s maintained by setting to infinity the row penalty of any row whose
addition would cause an infeasibility. In the Greedy variation, RP; equals the number
of nonzero elements in the row if the penalty is finite. The Toyoda variation is a
modification of an integer programming heuristic developed by Toyoda [23]. In this
heuristic, the finite row penalty RP, is based not only on the number of nonzero
elements in the row, but also on how close to feasibility limits addition of the row
would bring the current solution.

The deletion heuristics are described by Algorithm GNRd, with variations
‘Dobson’ and *Senju & Toyoda'. In this algorithm, each row has a penalty RP,
which, roughly speaking, indicates how much infeasibility the row is contributing.
I/ RP, is the loss in effective profit if row i is removed from the GNyg set. Thus, this
algorithm successively deletes rows with maximum penalty to minimize the loss of
effective profit.
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Dobson [9] analyzes and gives worst-case performance guarantees for an addition
heuristic for integer programs of the form min cx,s.t. Ax=b,0<x=<u, x integer,
where all data is nonnegative. By simple substitution of variables, however, the
Dobson heuristic may be interpreted as a deletion heuristic for problems in the
form of M(GNg). At each deletion step of this heuristic, RP, is the number of
nonzero elements in row i which are contributing to an infeasibility. If m, is the
optimal solution to M(GNg) and my, is the heuristic solution obtained by deletion
only, Dobson’s worst-case bound on performance is (m—mp)/(m—my)<¥&_, 1/k
where d is the maximum number of nonzero elements in any row. This is the only
performance guarantee known for any of the heuristics implemented in this paper.
Unfortunately, the upper bound on m, this yields is rather weak in practice. (See
Table 3.) Any addition heuristic may be used as a second phase for a deletion
heuristic, but for the Dobson deletion heuristic, we chose the greedy addition
heuristic as the second phase since the definition of RP, is consistent between the
two phases.

The second variant of GNRA is a specialization of the heuristic devised by Senju
and Toyoda [22] which those authors label an ‘effective gradient method’. For
M(GNg), H" maps the set of feasible r values into the n-dimensional hypercube
whose sides are of length 2. At every step of the algorithm, given current infeasible
solution r, RP.=(H'r—2)"h', where the jth element of (H'r-2)" is
max{0, .7, h,;r; —2}. RP, may be interpreted as the length of the projection of the
vector h' onto the shortest vector extending from the point H™r outside of the
hypercube to the boundary of the hypercube. The modified Toyoda addition heuristic
is used as the second phase of this heuristic.

The two algorithms GNRa and GNRd, with their variations, are outlined as
follows:

Algorithm GNRa
Input: The LP coefficient matrix A.
Output: A set of row indices Iy corresponding to the largest GNg set found in A.
Comment: The basic algorithm is the ‘Greedy’ addition heuristic. The modified
‘Toyoda’ heuristic is obtained by substituting the statement in square brackets for
its predecessor.
Step 0. ‘Initialization’
Initialize:
(a) I=Pand I'={1,2,..., m}.
{b) For each column j, a column bound

CB,=2.

Comment: CB, is the number of elements column j may contain.
(c) Foreach ie I, a row penalty

RP= Y I

o
a,=0
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Step 1. *‘Row Addition’
Let RP = RP, be the smallest row penalty (corresponding to row se [I').
If RP << then
(a) Move s from I' to L
(b) For each column j such that a; # 0.
(i) Let CB;=CB;~1.
(i1) If CB; =0 then for each i # s such that a; # 0, let RP, =,
[&ii) For each i#s such that a,;#0, if CB;=1 then let RP,= RP,+ IJ
else let RP, =x.
(c) Repeat Step .
Step 2. ‘Termination’
Print Iz =TI and STOP.
End of Algorithm GNRa

Algorithm GNRd
Input: The LP coefficient matrix A.
Output: A set of row indices I corresponding to the largest GNg set found in A.
Comment: The basic algorithm is the ‘Dobson’ heuristic. The *Senju and Toyoda’
heuristic is obtained by substituting the statements in square brackets for their
predecessors.
Step 0. ‘Initialization’
Initialize:
{a)y I={1,2,...,m}and I'=9.
(b) For each column j, a column penalty

CP, —-( Yy 1) -2
a, #0

i I
Comment: CP; is the number of ‘excess’ elements in column j.
(¢) For each ie I, a row penalty
RP,= 3} L.
(l”i()

(& A

Comment: RP, is number of units of infeasibility which row i is currently

contributing.
(¢) For each i< I, a row penalty ]
RP,= Y CP.
b e

Comment: RP, is the sum of excess elements in columns with a nonzero
- entry in row i. _
Step I. ‘Row Deletion”

Let RP = RP, be the largest row penalty {corresponding to row /€ I).
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If RP >0 then
(a) Move I from I'to I'.
(b} For each column j such that a;#0
(i) If CP,=1 [If CP,>0] then, for each i#s such that a,#0, let
RP,=RP, - 1.
(ii) Let CP,=CP,—1.
(¢} Repeat Step 1.
Step 2. 'Row Addition Penalties’
For each ie I', compute a row penalty

] Y if CP,<O0forall a;#0,
RP'_ — a, =0
b otherwise.

a,=0

[ Y (CP+3) if CP<0forall a,#0
RP. =

1 xX otherwise.

Step 3. ‘Row Addition’
Let RP = RP_ be the smallest row penalty {corresponding to row se [I').
If RP <o, then
(a) Move s from I'to I
(b) For each j such that a;# 0, let CP,=CP,; + 1.
(c) Go to Step 2.
Step 4. ‘Termination’
Print Iy =1 and STOP.
End of Algorithm GNRd

The execution times of the above algorithms and the other algorithms described
in this paper are quite short if proper data structures are used. The initial computation
of the row and column penalties can be made very quickly if the nonzero entries
in each row and column are stored in a linked list. Column penalties are then
updated in a single pass of a row. Because of sparsity, row penalties can usually
be updated in passes through just a few columns. Efficiency is further improved if
row and column partitions are maintained with an indirect address array which
allows contiguous access. Associated with this niapping array, a second array
expresses the inverse map to speed updating.

An easily computable upper bound on M(GNy), denoted UBg, is useful for
checking the efficacy of the above algorithms. Algorithm UBR is designed for this
purpose. Let A, and A. be a partition of the rows of A and let z, z; and z, be the
solutions to M(GNg) on 4, 4, and A, respectively. If UB, is any valid upper
bound on M(GNy) for A, then

=+ = UB + ..
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Algorithm UBR iteratively applies the above statement, computing the simple bound
UB, and letting A = A. after each iteration. This is repeated until all columns of
A, have at most two nonzero elements in them at which point z, is equal to the
number of rows in A,. UBg is then given by the sum of the UB, upper bounds
found at each iteration plus z. found at the last iteration. At each iteration, A is
partitioned with respect to that column j having the maximum number of nonzero
entries. A, is all rows of A with a;#0 and UB, =z, =2 since column j has only
nonzero elements in A,.

Algorithm UBR
Input: The LP coefficient matrix A.
Output: A value UBg, an upper bound on |I|.
Step 0. ‘Initialization’
Initialize:
(a) I={1.2,...,m}, and UBz=0.
(b) For each column j, a column count

(1)
u,,rﬂ

i

Step |. “Iterative Partitioning’
Let CC = CC, be the largest column count (corresponding to column /).
If CC > 2 then
(a) Let UBg= UBg+2.
(b) For each i€ I such that a; #0,
(i) Delete i from L
(ii) For each j such that g, #0, update column count letting CC, =
CC~1.
(c) Repeat Step 1.
Step 2. ‘Termination’
Print UBg = UBg+|I| and STOP.
End of Algorithm UBR

Algorithm GNRC, the heuristic for M(GNg ), is outlined next. Any one of the
integer programming heuristics described for M(GNg) could be applied to this
problem. However, these algorithms will normally give only a single answer to the
problem; our algorithm allows the exploration of a complete trajectory of maximal
GNy  sets beginning with GNy and ending with GN.. Our algorithm begins with
the set of rows I found in Algorithm GNRa or GNRd and repeatedly attempts to
expand this set by deleting columns, always saving the largest GNg set found.
This approach was suggested by manual analysis of several problems for which the
GNyg set is limited by a few key complicating columns. Deleting these columns
produced a much larger embedded GNy ¢ set, and motivated development of a new
factorization LP code which effectively exploits GNg structure [19].
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Algorithm GNRC
Input: The LP coefficient matrix A and a GNg set Iy, |Iz]<m, e.g., Iz from
Algorithms GNRa or GNRd.
Output: A set of row indices Iy ¢ and a set of column indices Jg - corresponding
to the largest GNg ¢ structure found in A.
Step 0. ‘Initialization’
Initialize:
(@) I=Ig, I'={1,2,...,m}—~1,J={1,2,...,n}, Iyc=1 and Jy o= J.
Comment: I and J are the current sets of row and column indices while
Ir ¢ and Jg ¢ store the best sets found.
(b) For each column je J, a column penalty

CP = ( > l) =2,
a, =0
i1
Comment: These column penalties remain as an artifact of Algorithm
GNRd and can be defined as input.
(c) Foreachiel’, a row cost
RC,= Y 1.
b0
Comment: RC; is the number of columns which must be deleted if row
i is added to L
Step 1. ‘Column Deletion’
Let RC = RC, pe the smallest row cost (corresponding to row se I').
(a) For each jeJ such that a;; #0,
(i) Let CP,=CP;+1.
(i1) If CP,=1 then delete j from J and for each i€ I' such that a; #0,
update row costs letting RC; = RC;— 1.
(b) Move s from I'to I.
Step 2. ‘Row-inclusion Penalties’
For each ie I', compute a row penalty
L (CP+1) if CP,<0 for all a; #0,

a, =0
RP: i jed
0 otherwise.

Step 3. ‘Row Addition’
Let RP = RP, be the smallest row penalty (corresponding to row se I').
If RP=0 then
(a) Move s from I'to L
(b) For each jeJ such that a; #0
(1) Let CP,=CP + 1.
(ii) If CP,=0 then for each ie I' such that a, # 0, update row costs
letting RC, = RC, +1.
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(¢) Go to Step 2.
Step 4. ‘Incumbent Test’
If I +|J]>{Ig ¢l +|Jrc| then let Ig =1 and Jg=J.
Step §. ‘Termination’
If [I| < m, then go to Step 1. Otherwise, print I ¢, Jr - and STOP.
End of Algorithm GNRC

A stronger test, allowing preemptive termination, is possible at Step 5: If [I| <m
and m+|J|> |Ig |+ |Jr |- However, the weaker test permits the exploration of a
complete trajectory for GNg ¢ as discussed above.

Along the lines of UBg, an easily computed upper bound on M(GNg (), denoted
UBg ¢, was developed to check the accuracy of GNRC. Partition A as follows:

Let z, z;, and z,, be the solutions to M(GNy) on A, A,, and A.., respectively, and
let UB,, be any simple upper bound on M(GNg ) for A,,. Then,

b

sz +2sUB) + o

Algorithm UBRC computes UBg ¢ by iteratively applying the above statement,
computing the simple bound UB,, and letting A = A., after each iteration. This is
repeated until all columns of A4,, have at most two nonzero elements in them at
which point z, is equal to the number of rows plus the number of columns in A,..
UBg (- is then given by the sum of the UB, upper bounds found at each iteration
plus z,, found at the last iteration. If A, is selected such that it consists of single
column and three rows, all with nonzero elements, then UB,, = z;, = 3. Computa-
tional experience has indicated an etfective rule for selecting the partition: among
all columns in A having at least 3 nonzeros, select that column having the minimum
number of nonzeros, and within that column select the first three rows with nonzeros
in them. If k partitions are carried out before A.; becomes a GN matrix, it follows
that:

UBRr( =3k+|I|+1Js,

=3k + (1]~ 3Kk) +(|J] — k) =| 1| +|J]| - k.

The last equality is used in computing UBg -

Algorithm UBRC
Input: The LP coefficient matrix A.
Output: A value UBg . an upper bound on |Ig (| +|Je.|-
Step 0. Initialization’
Initialize:
ta) I={1,2,...,m}, and UBg . ={Ii+J|.
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(b) For each column j, a column count

a, =0

iel

Step 1. ‘Iterative Partitioning’
Let CC = CC, be the smallest column count greater than 2 (corresponding to
column s).
If no such column exists, go to step 2. Else,
(a) Let UBgc= UBgrc—1.
(b) For exactly three i€ I such that a; # 0,
(i) Delete i from I.
(ii) For each j such that a; #0, update column count letting CC;=
CC;—1.
(c) Repeat Step 1.
Step 2. ‘Termination’
Print UBg  and STOP.
End of Algorithm UBRC

4. Computational experience

The algorithms described in Section 3 have been implemented in FORTRAN using
the X-System [S] as the host optimization package. Table I identifies twenty-three
LP and mixed integer programming (MIP) problems which have been collected
from various sources over the years. Some of these models are very well known,
e.g., Dantzig’s PILOT and the U.S. Department of Energy’s PAD and PIES, and
most of them were sent to us because of their difficulty, solution expense, or outright
solution failure on commercial optimization systems. Table | shows problem
dimensions excluding right-hand sides and objective functions. Computation times
displayed in Tables 2-4 are compute-seconds, accurate to the precision shown, for
FORTRAN IV H (Extended) with Optimize(2), run on IBM 3033AP under VM/CMS.

Algorithms GNRa and GNRd were used to identify GNg rows with Algorithm
UBR used to give an upper bound on the total number of such rows. To check
accuracy, we attempted, within budget limitations, to solve exactly the integer linear
programs for M(GNy) in those cases where |Iz| < UBg. (We were successful in all
but one case, as seen. Times for solving the ILPs averaged 214.1 seconds for those
problems solved.) Results for GNRa and GNRd, given in Table 2, are (a) the size
of the optimal GNy set found by the ILP, (b) the size of this set as a percentage
of total problem rows m, (c) the size of the GNy set found by GNR, (d) the size
of this set as a percentage of the ILP optimum, and (e) the time required by the
algorithm. For GNRd, the column labeled |Ig| uses the notation a:b where a is
Ix| and b is the number of rows in Iz which were gained in the addition phase of
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Table 1
LP/MIP problem set

Problem Constraints  Variables Nonzero Model
Elements
AIR 170 3040 6023 Physical Distribution
ALUMINUM 4045 6 805 27917 Econometric Production & Distribution
COAL 170 3753 7 506 National Energy Planning
CUBICI 657 3074 15894 Combinatorics Problem
CUBIC2 2689 11905 63 361 Bigger Combinatorics Problem
CUPS 360 618 1341 Production Scheduling
ELEC 784 2800 8462 Energy Production & Consumption
FERT 605 9024 40484 Production & Distribution
FOAM 999 4020 13083 Production Scheduling
FOOD 4010 14 409 23 332 Production, Distribution & Inventory
Planning
GAS 788 5541 31020 Production Scheduling
JCAP 2486 3849 9510 Production & Shipment Scheduling
LANG I 23§ 1 425 22028 Equipment & Manpower Scheduling
NETTING %9 190 388 International Currency Exchange
ODSAS 4647 4995 30832 Manpower Planning
PAD 694 3297 15 541 Energy Allocation, Distribution &
Consumption
PAPER 2868 5348 23 746 Econometric National Production
PIES 662 3011 13376 Energy Production & Consumption
PILOT : 974 2172 12927 Energy Development Planning
REFINE 5220 5994 40207 Oil Refinery Model
STEEL 831 276 9 808 Econometric Production & Distribution
TRUCK 220 4752 30074 Fleet Dispatch (Set Cover)
WADDING 2991 15001 82708 Multicommeodity Prod. & Distribution
Planning

the heuristic. Problems are weighted equally in computing average percentages in
the ‘totals’ row of the table. Times listed do not include input or output.

All GNR variants perform quite well. The addition phase in GNRd did not often
contribute a significant fraction of the GN rows found, but the additional rows
found helped make both GNRd variants slightly better than either of the GNRa
variants. The best algorithm on this problem set, GNRd (Senju & Toyoda), finds
an average of 99.1% of the maximum GNp set on those problems which we can
solve exactly. The GNy sets average 62.3% of the total problem rows on these same
problems. GNR computation times are nominal compared with actual solution times
of the seminal LPs and MIPs.

Results for UBR, given in Table 3, include (a) the size of the optimal GNy set,
{b) the upper bound, (c) the upper bound as a percentage of the ILP optimum, and
(d) the time required to find the upper bound. For comparison, we inclide (e)
Dobson’s upper bound labeled "UBDy" and (f) that bound as a percentage of the
ILP optimum. Table 3 also displays some properties of GNg as found by GNRd,
Senju and Toyoda. These properties include (g), the number of disjoint embedded



Table 2
Results for algorithms GNRa and GNRd

Problem M{GNg) GNRd Senju & Toyoda GNRd Dobson GNRa Toyoda GNRa Greedy

ILPOpt. o m gl % Opt. Time [Ix] % Opt. Time [Ie] % Opt. Time [7e] % Opt.  Time
AIR 170 100 170 100 0.0 170 100 0.0 170 100 0.1 170 100 0.0
ALUMINUM 2198 543 217513 990 9.2 2174:16 100 9.2 2194 998 7.3 2079 991 73
COAL 170 100 170 100 0.0 170 100 0.0 170 100 0.0 170 100 0.0
CUBICI 312 415 291:8 933 0.4 295:7 946 03 293 939 0.2 295 946 02
CUBIC2 1 264 47.0 1191:25 942 5.1 1177:19 931 49 1192 943 3.0 1195 945 29
CUPS 333 925 333100 0.0 333100 0.0 325 976 0. 325 976 0.1
ELEC 520 66.3 520 100 0.3 520 100 0.3 520 100 0.4 518 100 0.3
FERT 572 94.5 572 100 0.2 572 100 0.2 562 983 0.3 562 983 02
FOAM 951 95.2 951 100 0.1 951 100 0.1 951 100 0.6 951 100 0.6
FOOD 3716 92.7 3716 100 1.8 3716 100 1.8 3709 998 9.1 3710 998 9.
GAS 73 9.3 73100 2.6 73:25 100 1.1 73 100 0.1 73 100 0.1
JCAP 1013 40.7 1002:2 989 4.0 1007.6 994 40 970 958 2.2 960 948 2.2
LANG 714 57.8 714 100 1.5 714 100 08 714 100 0.7 714 100 0.7
NETTING 72 $0.9 72100 0.0 72100 0.0 71 986 00 71 986 0.0
ODSAS 1 498 322 1490:95 99.5  16.5 1446:61  96.5 6.1 1498 100 6.7 1463 977 6.5
PAD 122 17.6 122100 1.2 122100 0.4 122 100 0.1 122 100 0.1
PAPER 1 836 64.0 1831:7 997 39 1807:12 984 3.9 1804 983 4.0 1795 978 4.0
PIES 288 435 288 100 0.4 285 99.0 03 284 986 0.2 284 986 0.2
PILOT 470 483 462:1 983 0.7 459:5 977 06 459 977 04 459 977 0.4
REFINE 312% 59.9 3110:1 994 141 3109:5 994 136 3085 986 129 3070 983 128
STEEL 43\ 51.9 419:1 972 0.5 421:2 977 04 425 986 0.3 424 983 03
TRUCK NA NA 70:1 NA 2 70:2 NA 0.2 68 NA 0.0 60 NA 0.0
WADDING 2211 739 2208:1 999 47 2208:1 999 3.4 2182 987 438 2152 973 47
Totals 22062 62.3 21950 991 674 21871 989 61.6 21841 986 535 21722 Y83 527
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NA indicates P solution not available. (LP optimum is 85.)
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Table 3
GNR features

Problem M{GNg} Algorithm UBR Dobson Bound Embedded GN, components
1LP Opt. UBy % Opt.  Time UBDy % Opt. Total Largest Smallest Null Sing.
(m+n) {m+n) Cols. Cols.
AIR 170 170 100 0.0 170 100 1 170+ 3 040 — 0 57
ALUMINUM 2198 2214 100.7 1.7 3798 172.8 145 1118+ 3431 1 +1 0 1234
COAL 170 170 100 0.0 170 100 i 170+3 753 — [} 0
CUBIC1 312 324 103.8 0.2 595 190.7 36 150+1716 1+2 124 612
CUBIC2 1 264 1332 105.4 2.7 2479 196.1 149 562+6 064 1+6 353 2 488
CUPS 333 336 100 0.0 383 106.0 13 60+ 102 12+12 72 74
ELEC 320 524 100.9 .2 705 135.6 14 74+ 408 2+16 18 174
FERT 572 572 100 0.1 600 104.9 | 57249024 —_ 0 1757
FOAM 951 957 100.6 0.0 991 104.2 11 31141321 1+ 1 14 1161
FOOD 3716 3720 100.1 0.1 3939 106.0 75 1 785+7 147 I+4 522 6 989
GAS 73 74 101.4 0.1 682 934.2 11 53+4714 1+2 336 5018
JCAP 1013 1031 101.8 0.2 2162 213.4 130 116+ 468 142 82 I 305
LANG 714 726 101.7 0.1 1122 157.1 3 704+ 1 225 1+2 189 31
NETTING 72 72 100 0.0 84 116.7 17 20+80 241 23 990
ODSAS | 498 1510 100.8 23 4181 279.1 115 701+ 2403 1+4 507 1 663
PAD 122 122 100 0.0 558 457.5 3 82+1354 8+33 1730 1179
PAPER 1836 1863 101.5 0.4 2730 148.7 402 285+ 1601 1+1 675 1761
PIES 288 296 102.8 0.0 571 198.3 35 146+ 1615 {+2 926 720
PILOT 470 490 104.3 0.1 887 188.7 78 177 +533 I+1 618 624
REFINE 3128 3179 101.6 08 4766 152.3 574 1353+2928 1+1 364 2158
STEEL 431 458 106.3 0.1 763 177.0 95 180+ 541 I +1 248 548
TRUCK NA 105 NA 0.1 197 NA 2 69+3 028 1+18 1706 2345

WADDING 2211 2222 100.5 0.2 2 866 129.6 3 969 +4 169 1+1 4414 5032

9
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GN components, (h) the largest and smallest components, (i) the number of null
columns, and (j) the number of singleton columns. These properties are of interest
since the structure of the embedded generalized network affects the solution tech-
niques used in an LP factorization. For example, components consisting of single
rows may be handled most efficiently without utilizing a complete generalized
network code.

UBg is surprisingly tight, averaging 101.4% of the true maximum, and computation
times are nominal. Dobson's bound is poor, averaging 203.1% of the true maximum.
The GN components found usually consist of a few large components and numerous
small components.

Table 4 gives the results obtained by Algorithm GNRC and Algorithm UBRC.
Since no ILP optimum is known for M{GNg ) in most cases, the items displayed
differ from those items displayed in Tables 2 and 3. The results reported for Algorithm
GNRC are (a) the size of the GNg ¢ structure found, (b) the time in seconds required
to find the structure excluding input and output, (c) the size of the GNg as a

Table 4

GNR.(‘ results

Problem Algorithm GNRC Alg. UBRC

IAREITA Time o4 Y% % Time |lgl+n |J]+m

(m+n) UBLPg, UBg ¢

AIR 3210 0.0 100 100 100 0.0 3210 3210
ALUMINUM 9027 13.6 R3.2 91.7 91.7 2.3 8 980 5508
COAL 3923 0.0 100 100 100 0.0 3923 3923
CUBICt 3365 0.6 90.2 99.4 94.8 0.4 3365 659
CUBIC?2 13096 1] 89.7 99.5 94,7 64 13 096 2690
CUPS 051 0.0 97.2 100 99.7 0.0 951 713
ELEC 3322 0.3 92.7 99.0 98.3 0.2 3320 1042
FERT 9 396 0.3 99.7 100 999 0.2 9 596 2362
FOAM 4971 0.1 99.0 160 99.7 0.1 4971 1044
FOOD 18 137 0.8 98.3 99.5 994 0.1 18 125 17 860
GAS 5920 54 93.5 94.9 94.5 0.2 5614 848
JCAP §%22 5.5 91.9 97.7 99.8 0.2 4851 5718
LANG 2139 l.1 804 v7.8 90.2 0.2 2139 1905
NETTING 262 0.0 939 97.8 100 0.2 262 256
ODSAS 7556 40.0 78.4 78.0 %6.1 1.2 6470 5094
PAD 3621 39 90.7 98.8 95.3 0.3 3419 2416
PAPER 7 388 4.6 89.9 93.9 96.2 0.9 7179 4905
PIES 3313 0.9 90.2 49.5 94.8 0.2 3299 2 241
PILOT 2645 1.4 84.1 95.7 91.6 0.2 2634 1 567
REFINE 9 326 19.3 832 93.8 924 2.3 9104 7724
STEEL 1 700 0.9 807 91.5 89.7 0.2 1695 I131
TRUCK 4822 0.5 97.0 NA 98.3 0.3 4822 220
WADDING 17 209 33 95.6 99.7 7.8 1.0 17 209 14 451
Totals 141 321 1181 91.3% 96.8% 95.6 17.1 138 232 ]7 582

NA indicates not available.
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percentage of the total constraint matrix, and (d) the percentage of the LP upper
bound (UBLPg ) achieved by the algorithm. The results reported for Algorithm
UBRC are (e) |Ir c]+|Jr.c| as a percentage of UBg ¢, and (f) the time required to
obtain UBg . For comparison, the last two columns of the table give the total
number of rows and columns obtained for the GNi and GN, problems. These are
the sizes of the embedded GN submatrices when restricted to row submatrices and
column submatrices, respectively. Each problem is weighted equally to compute
average percentages in the ‘Totals’ row.

GNRC performs very well, also. The algorithm finds a GNg ¢ structure whose
size averages 91.3% of the size of the total constraint matrix. The size of the structure
averages 96.8% of the LP upper bound on those problems for which the bound was
obtained. (Times to obtain the LP bound averaged 315.8 seconds.) With respect to
UBg ¢, the GNg ¢ set found averages 95.6%. Thus, the upper bound provided by
algorithm UBRC is only slightly weaker, on average, than the LP upper bound. In
addition, UBRC has more than a 400 to 1 computational speed advantage over the
LP upper bound making it very attractive.

Additional computational studies have been performed to investigate the struc-
tures which GNR and GNRC obtain. Figure 1 summarizes this work for ELEC,
JCAP, PAD, PIES and PILOT. The outer rectangle represents, to scale, the constraint
matrix for each problem. The area above the dashed line represents the GNy set
found by GNRd, Senju and Toyoda. Within this area are indicated the connected
components found by a simple connectivity algorithm. As indicated previously in
Table 3, a few large components are typically found together with numerous small
components. The area to the left of the vertical line represents the GN. set. The
irregular lines trace the trajectories of the GNg, (- structures found by GNRC, ranging
from GNg on the right to GN at the lower left. From any point on this trajectory,
all rows and columns above and to the left form a GN set. The circle indicates the
largest GNg ¢ structure found on this trajectory.

5. Conclusion

Although GN identification is easy, GNg and GNpg ¢ identification is theoretically
difficult. However, maximal, and often optimal GNg and GNg ¢ substructures can
be found in an LP constraint matrix using the heuristic algorithms developed here.
In some problems, large GNy structures can be found, while in other problems, it
is necessary to remove some columns to find a large embedded GNyg ¢ structure.
Since execution time is modest for heuristic GN identification, our algorithms can
be applied as a matter of course in general LPs to seek GN substructures. Evidence
from the problem set indicates that this is well-advised if a GN-exploiting method
is available: no members of the problem set were known, a priori, to contain
significant GN structure and yet, in several cases, GN structure was predominant.
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