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If a linear program tLP) possesses a large generalized network (G N) submatrix, this structure
can be exploited to decrease solution time. The problems of finding maximum sets of GN
constraint s and finding maximum embedded GN sub matrices are shown to be NP-complete,
indicating that reliable, efficient solution of these problems is difficult. Therefore, efficient heuristic
algorithms are developed for identifying such structure and are tested on a selection of twenty-three
real-world problems. The best of four algorithms for identifying GN constraint sets finds a set
which is maximum in twelve cases and averages 99.1% of maximum. On average, the G N
constraints identified comprise more than 62.3% of the total constraints in these problems. The
algorithm for identifying embedded GN submatrices finds submatrices whose sizes, rows plus
columns, average 96.8% of an LP upper bound. Over 91.3% of the total constraint matrix was
identified as a GN submatrix in these problems, on average.

'The act of being wise is the act of knowing what to overlook."
William James (ca. 18901
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1. Introduction

Large-scale linear programming (LP) models frequently have sparse coefficient
matrices with special structure. If special structure can be identified, it can often
be exploited to reduce the cost of solving the LP. 'Direct factorization ', e.g. [13],
maintains a partitioning of the rows and/ or columns of all simplex bases. Computa­
tions are reduced with respect to standard methods if special structure can be isolated
within the partitions. 'Decomposition', e.g. [14], splits a problem into a master
problem and one or more subproblems. This technique is most efficient when
subproblems consist entirely of special structure allowing their rapid solution. The
details of these exploitation schemes will not be discussed here.

Useful structures found embedded in a subset of the rows and! or columns of an
LP constraint matri x include simple upper bounds (at most one nonzero element in
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each row), generalized upperbounds (GUB) (at most one nonzero coefficient in each
column), and networks (at most two nonzero elements in each column). Varieties
of embedded networks include the general case, generalized networks (G N), general­
ized transshipment networks (GT) (at most one coefficient not equal to +I), and
pure networks tN ET) (at most one +1 and one -I in each column).

Simple upper bounds, GUB and NET structures have been exploited in various
commercial and experimental optimization systems, and efficient automatic identifi­
cation schemes have been developed to find these structures, e.g., [4, 7, 8].

Recent research has produced very efficient specialized simplex algorithms for
solving network problems. (For example, see [3] for NET, [6] for GN, and [6, 11]
for GT.) This research has, in turn, been exploited to develop factorized optimization
systems which solve general LP problems with a set of rows exhibiting NET structure
[12], G N structure [18], and GT structure [12, 19]. Even more recently, optimization
systems have been tested which use direct factorization [19] or primal and/ or dual
decomposition [14] to exploit embedded G N structure.

Now that software is available to solve GN (and GT) problems [6], it is very
likely that several research groups will exploit GN in various ways in the n~ar future .
To support this research, we are interested in efficiently and automatically identifying
G N structure of the following varieties in general LP coefficient matrices:

GNc A subset of LP columns which are GN, or
GN R A subset of LP rows which are GN, or
G NR.C An embedded G N within a subset of the rows and columns of LP.
Because the efficiency of solving a general LP. with GN-exploiting methods is

enhanced if the G N structure is large, maximum G N structures are our goal. This
leads to the maximization problems described below.

Let A = {ai j } be the m x n coefficient matrix of LP, and let H = {hij} be the
associated 0-1 incidence matrix for A. The three maximization problems, formulated
as integer programs, are

max
c

s.t.

'C.... .I
j

I hi/:j~ 2 for all J,
j

where Cj is a binary decision variable indicating inclusion of column J in G Nc :

max L r,
R

s.t. Ih i / , :'!S 2. forall},
I

r, E {O. I},
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where r, is a binary decision variable indicating inclusion of row i in GN R ; and

M(GN R•c):

max
RoC

s.t.

r; Cj E {O, I},

where r, and cj are binary decision variables indicating respective inclusion of row

i and column j in GN R•C , and where mj ;;: L hij - 2. Note that our definitions of

maximum G N factorizations are expressed simply as the sum of the rows and! or

columns included.

Much work has been done on the development of algorithms to identify special

substructures in LPs. Previous work in identifying GUB subsets of constraints is

well known [4, 7]. Brown and Wright [8] have explored ways to identify NET subsets.

Extraction of hidden NET structure with general linear transformations has been

discussed by Bixby and Cunningham [2] and by Musalern [20]. Identification of

G N row sets and other structures has been proposed by Schrage [21].

The problems of identifying maximum GUB and NET constraint subsets arc

NP·complete and consequently, exact solutions cannot be guaranteed to be obtained

quickly. Since GUB and NET constraints are special cases of GN constraints, it is

to be expected that exact solutions of the G N identification problems will also be

difficult to obtain. We show that the ON identication problems. are, in fact, NP­

complete, but also give effective and reliable heuristic algorithms for them.

In Section 2, the complexities of the three maximization problems are investigated.

M (GN R) and M (G N R.C> are shown to be difficult and so, in Section 3, efficient

algorithms are developed for finding approximate solutions to these problems. Four

specialized integer programming heuristics are described for identifying maximal

GN R sets. Two of the algorithms are <additio n' heuristics which begin with the

empty GN R set and successively add rows while maintaining feasibility . The other

two algorithms are <deletion ' heuristics which begin with an infeasible GN R set and

successively delete rows until a feasible set is found . Algorithm G NRC for M (G NR.d
takes as input the ONR set found by anyone of the GN R heuristics. Then, it

successively adds rows which introduce the least amount of weighted infeasibility

and drops those columns where an infeasibility results, In this way, a sequence of

G N R.C sets is produced and the maximum of these taken to be the heuristic solution

to M (G N R.C>' After the algorithms are presented, computational experience is given
in Section 4.

2. Complexity

· In this section we investigate the complexity of MIONe), M (ON R ) , and

,H (G NR.e). M (G Ne ) is trivially solvable in polynomial time by choosing all columns
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with at most two nonzero elements in them; consequently, its complexity will not

be discussed further. The other two problems are more interesting.

Following standard practice, M(GN R) and M (GNR.d will be studied with respect

to their associated decision problems:

D( G N R): Does there exist a set of rows R in H such that, for positive integer k < m,

IRI~ k and I hij~ 2 for allj?
;·: R

D (GN R•C ) : Does there exist a set of rows R and columns C in H such that, for

positive interger k < m + n,

IRI+ICI~k and I u,«: foralljEC?
i e R

Of course, a polynomial algorithm for one of the above decision problems would

imply a polynomial algorithm for the associated maximization problem using, say,

a binary search on the values of k.
We consider the complexity of D(GN R•C ) first. Yannakakis [24] investigated the

problem of finding the least number of nodes which can be deleted from a bipartite

graph such that the resulting induced subgraph has a particular property. Restated

in terms of the decision problem, he gives the following theorem on 0-1 matrices

as a corollary of his results on graphs.

Theorem I. Let Q be any class of 0-1 matrices which is closed under permutation and

deletion ofrows and columns. Let H be an m x n 0-1 matrix, and let k be some positive

integer, k < m + n. Then, finding an mo x no submatrix Ho ofH such that HI)E Q and

mo+ no~ k is polynomial if the matrices of Q have bounded rank and is NP-complete

otherwise.

It is assumed above that membership in Q can be determined in polynomial time

for a matrix of bounded size (otherwise, NP-hardness would be implied).

This theorem is impressive in that it handles the NP-completeness question for

0-1 matrices in a wholesale fashion . The NP-completeness of D(GN R.C ) follows as

a simple corollary.

Corollary l. D (G N R.( ) is NP-complete.

Proof. Let Q be the class of 0-1 matrices with at most two Is in each column. Q
is obviously closed under permutation and deletion of rows and columns: matrices

of arbitrarily large rank can be found in Q and membership in Q can be determined

in polynomial time. D(GN R.( ) for the incidence matrix H is equivalent to searching

for an m.,x flo submatrix HI) of H such that H o E Q and ml) + no~ k. Therefore, by

Theorem I, D( G N R.C) is N Pvcomplete. ~



G.G. Brown, R.D. McBride and R.K. Wood / Extracting embedded generalized networks 15

A 0-1 matrix H is represented as a bipartite graph with nodes on one side of the
bipartition corresponding to rows, nodes on the other side of the bipartition corre­
sponding to columns, and an edge (i,j) for each hi} = 1. D(GNR ) corresponds to a
node-deletion problem with deletions restricted to one side of the bipartition;
Yannakakis's results do not directly apply since they pertain to node deletions on
either side of the bipartition. I Therefore, we use a problem-specific proof to show
that D (G N R) is NP-complete.

Lemma t. D(GNR) is NP-complete.

Proof. For ease of representation, D(GNR) will be equivalently stated in matrix
notation:

D(GNR ) : Does there exist a binary m-vector x such that tx~ k and H Tx:r;;2?

D(GNR ) is obviously in NP. We show that it is NP-complete by a transformation
from the 'Exact Cover by 3-Sets' problem [15], as specialized by Garey and Johnson
[10].

D(X3C): Does there exist a binary p-vector y such that ty = q and Ny = t where
1'1 is a 3q x p, 0-1 matrix with exactly three Is in each column and at most three Is
in each row?

For each row i in N with only one I or two Is, augment N with one or two unit
vector columns ei, respectively. Since none of these columns could be included in
an exact cover of size q, D (X3C} is equivalent to

D(X3C'): Does there exist a binary vector y' of length p + I such that ly' = q and
(E, N)y' = 1 where E corresponds to I augmenting columns?
By construction of D(X3C'), no set of columns of cardinality less than q could ever
cover all the rows exactly once let alone more than once. Thus, D( X3C') is equivalent
to a 'minimum cover problem'.

D(MC): Does there exist a binary vector y' such that ty':r;;q and (E,N)y'~l?

Let x = 1-y'. Since each row contains exactly three Is, D(Me) is equivalent to a
'maximum uncover problem'.

D(MUC): Does there exist a binary vector x such that 1x~p+l-q and
(E, N)x:r;; 2?

Since all above transformations are of polynomial complexity, and since D (MUC)
is an instance of D(GNR), D (GN R) is NP-complete. 0

3. Algorithms

The complexity results of the preceding section indicate that solving M (G NR)

and M(GNR.d exactly could be very time-consuming. Therefore, heuristic
algorithms have been developed for obtaining approximate solutions. We describe
the algorithms for MIGN R) first.

I Bartholdi [1] has addressed thi s topic, but his results are incomplete. For instance, without additional
restrictions. his Theorern Z would imply that DCGN( ) is NP-complete.
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used up by sett ing XI to 1. The addition heuri stic stops when no additional variables

can be set to I without violating feasibility. A deletion heuristic begins with the

usually infeasible solution x == 1 and successively sets to 0 that variable x, which

myopically minimizes loss of effective profit ':,1Ifj' Here, 'PI is a penalty which reflects

the amount of infeasibility currently being contributed by xj == I. The deletion

heuristic stops when a feasible solution is obtained.

We have specialized two addition heuristics and two deletion heuristics to

,\o1(G N R ) . The addition heuristics begin with an empty GN R set and successively

add rows to the set until a maximal set is obtained. The deletion heuristics begin

with an infeasible G N R set consisting of all the rows, and rows are successively

deleted until a feasible set is obtained. Since a GN R set obtained by deletion ma y

not be maximal , a second phase , an add ition phase, is appended to insure that the

set is maximal. To further expand the G N R set found, it is possible to devi se

po st -maximal techniques simila r to the 2-opt, 3-opt and general k-opt procedures

used in traveling salesman heuristics, e.g., [16, 17]. Application of such techniques

was unwarranted, however, since computational results in Section 4 show that

ex cellent approximate solutions were obtained us ing the basic addition and deletion
heuri stics.

The addition heuri stics are described by Algorithm GNRa, with variations

'Greedy' and 'Toyoda' . The effective profit as sociated with adding row i to the G N R

set is 1/ RPj where Ri", is a row penalty deri ved from the current nonmaximal

so lution, the nonzero elements in the row and fea sibility requirements. Thus, at

ea ch step of the algorithm, the row with the smallest penalty is added to the G N R

set. Feasibility is maintained by setting to infinity the row penalty of any row whose

addition would cause an infeasibility. In the Greedy variation , RPj equals the number

of nonzero elements in the row if the penalty is finite , The Toyoda variation is a

modification of an integer programming heuristic developed by Toyoda [23]. In this

heuristic, the finite row penalty Rp, is based not only on the number of nonzero

elements in the row, but al so on how close to feasibility limits addition of the row

would bring the current solution .

The deletion heuri stics a re described by Algorithm GNRd, with variations

'Dobson' and 'Senju & Toyoda'. In this algorithm, each row has a penalty RP,

which, roughly speaking, indicates how much infeasibility the row is contributing.

1/ Ri"; is the loss in effective profit if row i is removed from the GN R set. Thus, th is

algorithm successively deletes rows with maximum penalty to minimize the loss of

effecti ve profit.
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Dobson [9] analyzes and gives worst-case performance guarantees for an addition
heuristic for integer programs of the form min ex. s.t. Ax ~ b. 0~ X ~ u~ x integer.
where all data is nonnegative. By simple substitution of variables, however, the
Dobson heuristic may be interpreted as a deletion heuristic for problems in the
form of M(GN R ) . At each deletion 'step of this heuristic, RPj is the number of
nonzero elements in row i which are contributing to an infeasibility. If mo is the
optimal solution to M (G NR)'and mD is the heuristic solution obtained by deletion
only. Dobson's worst-case bound on performance is (m - mD)/( m - mo)~ Lt= I I I k
where d is the maximum number of nonzero elements in any row. This is the only
performance guarantee known for any of the heuristics implemented in this paper.
Unfortunately. the upper bound on mo this yields is rather weak in practice. (See
Table 3.) Any addition heuristic may be used as a second phase for a deletion
heuristic, but for the Dobson deletion heuristic. we chose the greedy addition
heuristic as the second phase since the definition of RPj is consistent between the
two phases.

The second variant of GNRd is a specialization of the heuristic devised by Senju
and Toyoda [22] which those authors label an 'effective gradient method'. For
M(GNR)~ H T maps the set of feasible r values into the n-dimensional hypercube
whose sides are of length 2. At every step of the algorithm, given current infeasible
solution r, RPj = (, H T r - 2thi, where the jth element of (HT r - 2t is
max{O,L7,,", hijrj-2}. RPj may be interpreted as the length of the projection of the
vector hi onto the shortest vector extending from the point H T r outside of the
hypercube to the boundary of the hypercube. The modified Toyoda addition heuristic
is used as the second phase of this heuristic.

The two algorithms GNRa and GNRd~ with their variations, are outlined as
follows:

Algorithm GNRa

Input: The LP coefficient matrix A.

Output: A set ofrow indices IR corresponding to the largest GN Rset found in A.

Comment: The basic algorithm is the 'Greedy' addition heuristic. The modified
'Toyoda' heuristic is obtained by substituting the statement in square brackets for
its predecessor.

Step O. •Initialization'
Initialize:

(a) f=0and f'={1.2 .... ,m}.
(b ) For each column j, a column bound

Comment: CHI is the number of elements column j may contain.
(c) For each i E J', a row penalty
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Step 1. 'Row Addition'

Let RP = RP, be the smallest row penalty (corresponding to row s E I' ).

If RP < ce then

(a) Move s from I ' to I.
(b) For each column j such that a; 'i= O.

(i) Let CB j = CBj - 1.

(ii ) If CBj = 0 then for each i;:e s such that ajj 'i= 0, let RPj = 0:; ,

[
Ui l For each i v s such that aj j 'i= 0, if CBj=1 then let RPj=RPj+IJ

else let RPj =00 . J
(c) Repeat Step I.

Step 2. 'Termination'

Print IR = I and STOP.
End of Algorithm GNRa

Algorithm GNRd
Input: The LP coefficient matrix A.

Output: A set of row indices IR corresponding to the largest G N R set found in A.
Comment : The basic algorithm is the ' Dobson' heuristic. The 'Senj u and To yoda'

heuristic is obtained by subs tituting the statements in square brackets for their

predecessors.

Step O. •Initialization '

Initialize:

(a ) I ={I, 2, . . . , m} and I' =0.
(h) For each column i. a column penalty

CP; = (I I) - 2.
U l t .;JeO

j ,- I

Comment: CPj is the number of 'excess' elements in column j;
(c) For each ; l~ I, a row penalty

RPj = L I.
C l fl ~n

C P, · 0

Comment: RP, is number of units of infeasibility which ro w i is currently

contributing.

(c) For eac h i '::'. I, a row penalty

RPj = L CPr
" ,,;;t:. O

C /', . ·"

Comment: RP, is the sum of ex cess elements in columns with a nonzero

entry in row i.
Step I. 'Row Del etion"

Let RP = RPJ be the largest row penalty (corresponding to row IE11.
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IfRP >Othen

(a) Move I from I to 1'.
(b) For each column j such that au 'I' 0

(i) If CPi = 1 [If CPi > 0] then, for each i"t:- s such that ail ¢ 0, let

RPi = RPj - 1.
(ii) Let CP;= CPj - 1.

(e) Repeat Step 1.
Step 2, 'Row Addition Penalties'

For each i E 1', compute a row penalty

if CPI <°for all aij;t 0,

otherwise.

r . r I(C~+3)

lRP, =1:"0 if cv, < °for all ail"t:- OJ

otherwise.

Step 3. 'Row Addition'

Let RP = RP, be the smallest row penalty (corresponding to row s E 1') ,
If RP <: 00, then

(a) Move s from I'to J.
(b) For each j such that a,j ¢ 0, let C~ = CPi + I.
(e) Go to Step 2.

Step 4. 'Termination'

Print TR = T and STOP.

End of Algorithm GNRd

The execution times of the above algorithms and the other algorithms described

in this paper are quite short if proper data structures are used. The initial computation
of the row and column penalties can be made very quickly if the nonzero entries

in each row and column are stored in a linked list. Column penalties are then

updated in a single pass of a row. Because of sparsity, row penalties can usually

be updated in passes through just a few columns. Efficiency is further improved if
row and column partitions are maintained with an indirect address array which

allows contiguous access. Associated with this mapping array, a second array

expresses the inverse map to speed updating.

An easily computable upper bound on M(GN R ) , denoted UB R , is useful for

checking the efficacy of the above algorithms. Algorithm UBR is designed for this

purpose. Let AI and A;, be a partition of the rows of A and let z, =, and =;' be the

solutions to ,o\I(GN R ) on .4, Al and .4;" respectively. If UBI is any valid upper

hound on .-\ll (G N R J for A), then

z « =, + =;' ~ UBI +=;'.
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Algorithm UBR iteratively applies the above statement, computing the simple bound

UBi and letting A = A~ after each iteration. This is repeated until all columns of
A~ have at most two nonzero elements in them at which point Z2 is equal to the
number of rows in A2• UBR is then given by the sum of the UBI upper bounds
found at each iteration plus z~ found at the last iteration. At each iteration, A is
partitioned with respect to that column j having the maximum number of nonzero
entries. AI is all rows of A with Qij;l: 0 and UBI = ZI =2 since column j has only
nonzero elements in A I'

Algorithm UBR
Input: The LP coefficient matrix A.

Output: A value UBR , an upper bound on IfRI.
Step O. 'I nitialization'

Initialize:

(a) I={1.2, ... ,m},and UBR=O.
(b) For each column j, a column count

CCJ =(2: I).
tJ" :eel

/ '. J

Step I. 'Iterative Partitioning'
Let CC = cel be the largest column count (corresponding to column I).

If CC > 2 then
(a) Let UBR =UB R+2.

(b) For each i E I such that ail ;I: 0,
(i) Delete i from I.

(ii) For each .i such that ali;l: 0, update column count letting CCi =

CC;-1.
(c) Repeat Step 1.

Step 2. 'Termination'

Print UB R = UB R +III and STOP.
End of Algorithm UBR

Algorithm GNRC, the heuristic for M(GN R•C ) ' is outlined next. Anyone of the
integer programming heuristics described for M (G NR) could be applied to this

problem. However , these algorithms will normally give only a single answer to the
problem; our algorithm allows the exploration of a complete trajectory of maximal

G N R.t sets beginning with G N R and ending with G Nc. Our algorithm begins with
the set of rows I R found in Algorithm G NRa or GNRd and repeatedly attempts to
expand this set by deleting columns, always saving the largest G N R.< set found.
This approach was suggested by manual analysis of several problems for which the
GN R set is limited by a few key complicating columns. Deleting these columns

produced a much larger embedded G N R.C set, and motivated development of a new
factorization LP code which effectively exploits GNR.l structure [19].
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Algorithm GNRC

Input: The LP coefficient matrix A and a GNR set JR , IJRI < m, e.g., JR from
Algorithms GNRa or GNRd.

Output: A set of row indices I R.c and a set of column indices JR .C corresponding
to the largest GNR,c structure found in A.

Step O. 'Initialization'
Initialize:

(a) I=IR, I'={1,2, ... ,m}-I, J={1,2, ... ,n}, IR.c=I, and JR,c=J.
Comment: I and J are the current sets of row and column indices while
I R•C and JR•C store the best sets found.

(b) For each column j E J, a column penalty

CP; = ( L I) -2.
0,,"' 0
i., l

Comment: These column penalties remain as an artifact of Algorithm
GNRd and can be defined as input.

(c) For each i E I', a row cost

RCj = L 1.
a.,» I)

CP, =u

Comment: RCj is the number of columns which must be deleted if row
i is added to I.

Step 1. 'Column Deletion'
Let RC = Rc. be the smallest row cost (corresponding to row S E 1').

(a) For each j E J such that asj ¥:0,
(i) Let CPi = CPi + 1.

(ii) If C~ = I then delete j from 1. and for each i E l' such that aij =P 0,
update row costs letting RCi = RCi - I.

(b) Move s from I' to l.
Step 2. •Row-inclusion Penalties'

For each i E I', compute a row penalty

{
a:~ o (CPj + I)

Rp. = / "..1
r

00 otherwise.

Step 3. 'Row Addition'
Let RP = RP, be the smallest row penalty (corresponding to row S E l').

If RP~O then

I a) Move s from I' to l.
(b) For each j E J such that a., =P 0

(i) Let CPi = CP/+ 1.
(ii ) If C~=O then for each iEI' such that ai/¥:O, update row costs

letting RC, = RC, + I.
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(c) Go to Step 2.

Step 4. 'Incumbent Test'

If ITI + II I> II R.cl+ \lR,cl then let I R.C= I and 1R•C =1.
Step 5. 'Termination'

If ill< m, then go to Step 1. Otherwise, print IR,c, 1R,,,,,, and STOP.

End of Algorithm GNRC

A stronger test, allowing preemptive termination, is possible at Step 5: If IIi< m
and m +11!> II R.cl+ !l R.( I. However, the weaker test permits the exploration of a

complete trajectory for GN R.( as discussed above.

Along the lines of UB R, an easily computed upper bound on M(GN R•C ) , denoted

UB R .<, was developed to check the accuracy of GNRC. Partition A as follows:

Let z, ZII and z~ ~ be the solutions to M(GN R ) on A, A ll and All, respectively, and

let UBI I be any sim ple upper bound on M(GNR.C> for A ll' Then,

Algorithm UBRC computes UBR,c by iteratively applying the above statement,

computing the simple bound UBI! and letting A = All after each iteration. This is

repeated until all columns of A12 have at most two nonzero elements in them at

which point z~ is equal to the number of rows plus the number of columns in All'

UBR,c is then given by the sum of the UBI upper bounds found at each iteration

plus Zl~ found at the last iteration. If All is selected such that it consists of single

column and three rows, all with nonzero elements, then UBI I = Zil =3. Computa­

tional experience has indicated an effective rule for selecting the partition: among

all columns in .4 having at least 3 nonzeros, select that column having the minimum

number of nonzeros, and within that column select the first three rows with nonzeros

in them. If k partitions are carried out before A 12 becomes a GN matrix, it follows

that:

UBR,l = 3k+ lId +11121;::: 3k + (1/1 - 3k) +(111- k) = III+111- k.

The last equality is used in computing UBR,c.

Algorithm UBRC

Input: The LP coefficient matrix A.

Output: A va lue UBR.< , an upper bound on I/R.l 1+11R.<.I.
Step O. 'Initialization'

Initialize:

l a ) ! ==-={1,2, ... , m }, a nd LiBR.c=i/ i+i1 1.
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(b) For each column i .» column count

CCi = ( ~ I).
a,,"O

i f; I

Step I. 'Iterative Partitioning'
Let CC = CC be the smallest column count greater than 2 (corresponding to

column s).
If no such column exists, go to step 2. Else,

(a) Let UBR•C = UBR•C - 1.
(b) For exactly three i E I such that a is '" 0,

(i) Delete i from 1. .
(ii) For each j such that aij '" 0, update column count letting CCj =

C~-I.

(c) Repeat Step I.
Step ,2. 'Termination'

Print UBR.C and STOP.

End of Algorithm UBRC

4. Computational experience

The algorithms described in Section 3 have been implemented in FORTRAN using
the X-System [5] as the host optimization package. Table I identifies twenty-three
LP and mixed integer programming (M IP) problems which have been collected
from various sources over the years. Some of these models are very well known,
e.g., Dantzig's PILOT and the U.S. Department of Energy's PAD and PIES, and
most of them were sent to us because of their difficulty, solution expense, or outright

solution failure on commercial optimization systems. ·Table I shows problem
dimensions excluding right-hand sides and objective functions. Computation times
displayed in Tables 2-4 are compute-seconds, accurate to the precision shown, for
FORTRAN IV H (Extended) with Optimize(2) , run on IBM 3033AP under VM/CMS.

Algorithms GNRa and GNRd were used to identify GN R rows with Algorithm
UBR used to give an upper bound on the total number of such rows. To check
accuracy, we attempted, within budget limitations, to solve exactly the integer linear
programs for M( GNR ) in those cases where IIRI < UBR • (We were successful in all
but one case, as seen. Times for sol ving the ILPs averaged 214.1 seconds for those
problems solved.) Results for GNRa and GNRd, given in Table 2, are (a ) the size

of the optimal G N R set found by the ILP, (b) the size of thi s set as a percentage
of total problem rows m, (c) the size of the GN R set found by GNR, (d) the size

of this set as a percentage of the [LP optimum, and (e) the time required by the

algorithm. For G N Rd, the column labeled IIRI uses the notation a: b where a is
IJRI and b is the number of rows in JR which were gained in the addition phase of
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Table I

LP /MIP problem set

Pro blem Co nstraints Varia b les Nonzero Model
Elem ents

AIR 170 3 040 6023 Physical Distribution
ALUMI N UM 4045 68U5 27 917 Econometric Production & Distribution

COAL 170 3 753 7506 National Energy Planning
CU BICI 657 3 074 IS 894 Combinato rics Problem

C CBIC2 2689 I 1905 63361 Bigger Combinato rics Problem

CUPS 360 6 18 1 34 1 Production Schedul ing

ElEe 784 2 SOO 8 462 Energy Production & Consumption
FERT 605 9 024 40484 Production & Distribution
FOAM 999 4020 13083 Production Scheduling

FOOD 401 0 14 409 23332 Production, Distribution & Inventory
Planning

GAS illS 554 1 3 1 020 Production Scheduling
]CAP 2 486 3849 9510 Production & Sh ipment Sched uling
LA NG I 23:' 1425 22028 Equi pment & Manpower Scheduling
NE T rIN G ~9 190 388 Int ernational Currency Exchange
ODSAS 4 647 4995 30 832 Manpower Plan ning
PAD 694 3 297 15541 Energy Allo cation, Distri bution &

Co nsumpti on
PAPER :2 S6X 5348 23746 Eco nometric Na tional Production
PI ES 662 301 1 13 376 En ergy Product ion & Cons umption
PILOT 974 2172 12927 Energy Development Planning
REFIN E 5 220 5994 40 207 Oil Refinery Model
STE EL 831 1 276 9 ~Oli Econometric Production & Distribution
TR UCK 220 4 752 30074 Fleet Dispatch (Se t Co ver )
WADDI NG 299 1 1500 1 82708 Multicornmo dity Prod. & Distribution

Planning

the heuristic. Problems are weighted equally in computing average percentages in
the 'totals' row of the table. Times listed do not include input or output.

All GNR variants perform quite well. The addition phase in GNRd did not often
contribute a significant fraction of the GN rows found, but the additional rows
found helped make both GNRd variants slightly better than either of the GNRa
variants. The best algorithm on this problem set, GNRd (Senju & Toyoda), finds
an average of 99.1% of the maximum G N R set on those problems which we can
solve exactly . The G NR sets average 62.3% of the tot al problem rows on the se same
problems. GNR computation times are nominal compared with actual solution time s
of the seminal LPs and MIPs.

Results for UBR. given in Table 3, include (a) the size of the optimal G N R set,
(b) the upper bound, (c ) the upper bound as a percentage of the ILP optimum, and
(d) the time requi red to find the upper bound. For compariso n, we include (e)
Dob son 's upper bound labeled 'L1BDR' and to that bound as a percentage of the

ILP optimum. Table 3 also displ ays some properties of GN R as found by GNRd,
Senju and Toyoda. These properties include (g), the number of disjoint embedded
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Result s for a lgo rith ms G N Ra a nd G N Rd Q
_ _ - ___ • _ _ _ _ _ _ _ _ _ - ' 0 _ _ _ _ _

._ ~- . -.._ - --_ . Q

Problem M(GN RI GNRd Senju & Toyoda G N Rd Dobson GNRa Toyoda G N Ra G reedy txl
~

ILP Opt. "'0 In I/RI % Opt. Time 11RI % Opt. Time I/itl 'Yo Opt. Ti me I/RI 'Yo Opt. Time ::E
.':s- - _ ._ - - '--' _ ._- .... .- - - - - - --- - - -------..-- _ ..__.__.
~

AIR 170 100 170 100 0.0 170 100 0.0 170 100 0.1 170 100 0.0 !=l
ALUMI NUM 2 198 54.3 2 175: 1J Q9.0 9.2 2174:1 6 100 9.2 2 194 99.8 7.3 2 179 99.1 7.3

~
C O A L. 170 100 170 100 0.0 170 100 0.0 170 100 0.0 170 IOU 0.0 ...

txl
C UBI CI 312 47.5 291 :X 93.3 0.4 295 :7 94.6 0.3 293 93.9 0.2 295 94 .6 0.2 ::l.

s:...
C UB IC2 1 264 47.0 I J<) I :25 94.2 5.1 1177:19 93 .1 4.9 I 192 94.3 s.o I 195 94 .5 2.9 '"l:l
C UPS 333 92.5 333 100 0.0 333 100 0.0 325 97.6 0.1 325 97.6 0.1 :s

s:...
E LEC 520 (,6.3 520 100 0.3 520 100 0.3 520 100 0.4 518 100 0.3 (\:l

F ER T 572 94.5 572 100 0.2 572 100 0.2 562 98.3 0.3 562 98.3 0.2 ~

FOAM 951 <) 5.2 951 100 0.1 951 10(1 0.1 951 100 0.6 Q51 100 0.6
~

FOOD J 716 92.7 37 16 IOU I.X 3716 100 1.8 3709 99.8 9.1 3710 99.8 9.1 c:>

UAS 73 73 100 2.6 73 :25 0.1 73 100 0-.1
e,

9.3 100 1.1 73 100 -]CAP 1013 4U.7 1002:2 9X.9 4.0 1007.6 99.4 4.0 970 95.8 2.2 960 . 94 .8 2.2 ~
LA NG 714 57.8 714 100 1.5 7 14 100 0.8 7 14 100 0.7 714 100 0.7 ~
N ETfING 72 :W.9 72 100 0.0 72 100 0.0 71 98.6 0.0 71 98 .6 0.0 ::l.;;.
ODSA S 1498 32.2 1490 :95 99.5 16.5 1446:61 96 .5 16.1 1498 100 6.7 1463 97 .7 6.5 00

PAD 122 17.6 122 100 1.2 122 100 0.4 122 100 0.1 122 100 0.1 "'::!
PAP ER 1 836 64.0 I li31:7 99 .7 3.9 1807: 12 98.4 3.9 1804 98.3 4.0 1795 97.8 4.0 0-

"'s::...
PI ES 281\ 435 288 100 0.4 285 99.0 0.3 284 98.6 0.2 284 98 .6 0.2 s:...a
PILOT 470 48.3 462 :1 91U 0.7 459:5 97.7 0.6 459 97.7 0.4 459 97.7 0.4 CiQ

REfiN E 99.4 12.9 3070 98.3 12.8 '"3 12X 59.9 3 110:1 14.1 3 109:5 99 .4 13.6 3085 98.6 ':s

"'ST EEL. 431 5) .9 419 :1 97.2 0.5 421 :2 97.7 0.4 425 98.6 0.3 424 98.3 03 a
:::-:

TRU CK NA NA 70 :1 NA 0.2 70: 2 NA 0.2 68 NA 0.0 60 NA 0.0 N

"'WADDI NG 2 2 11 73.9 2208: 1 99.9 4.7 2 208: I 99 .9 3.4 2 182 98.7 4.8 2 152 97 .3 4.7
s:...
:s

"'Total s 22002 62.3 2 1950 99.1 67.4 21 871 98.9 61.6 21841 98.6 53.5 21722 98.3 52.7 ~
c:S

*""NA indicat es I P so lutio n not available. (LP opt imum is 85.)

"Jv.
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00.

Tablt:' .1 0
G N R features 0

.- . .-_.._ -~ . ~ . _--~ -~-- - ._- - ._ . ~ ~ ._. --- .- -- ...__. - ---- t:l:l

Problem M (GNR I Algo rithm li BR Dobson Bound Embedded GN 1, components
a
~

ILP Opt. lIBR % Opt. Time UBD R % Opt. Total Largest Smallest Null Sing. ?

Im +n) (m+n) C o ls. Co ls. ?;l

. __.._--- - - ~_.- .__._ ---- -- - - !:J

AIR 170 170 100 U.O 170 100 I 170 + 3 040 - 0 57 a::
"AL UMI Nl iM :::! 191\ 1 2 14 100.7 1.7 379& 172.8 145 1 118+ 3431 I t I 0 I :::!34 t:l:l

E:
COAL 170 170 100 0.0 170 100 I 170+3753 - 0 0 '"
CUBIC I 31:2 324 103.8 0.2 595 190.7 36 150+ 1716 1+2 124 612

l::l
:::e,

C U BIC 2 1264 1332 105.4 2.7 2479 196.1 149 562 +6064 1+6 353 2488 ?;l
C LIPS .B 3 336 100 0.0 353 106.0 13 00 + 102 12 + 12 72 74 ?'
E LEC 520 524 100.9 0.2 705 135.0 14 74+4011 2+ 16 Ii) 174

~FERT 572 572 100 0.1 600 104.9 I 572 + 9 024 - 0 1757 0

FOAM \)51 957 100.6 0.0 991 104.2 II 311 + 13 21 1+ 1 14 1 161
l::l..
""-

FOOD .~ 716 3720 100.1 0.1 3939 106.0 75 1785+7147 1+4 522 (,989
~

G AS 73 74 101.4 0.1 682 934.2 II 53 + 4 7 14 1+2 336 5018 ~
leA P 1013 1031 101.8 0.2 2162 2 13.4 130 116+468 1 4 2 82 13U5 "~.
LA NG 7 14 726 101.7 0.1 I 122 157. 1 3 704 + I 225 1+2 189 311 ':I<l

N ETTI NG 72 72 100 0.0 84 116.7 17 20 +80 2+1 23 990 I'>
~

ODSAS 1498 1510 100. 8 2.3 4181 279 .1 115 701 + 2 403 1+4 507 1663 0-

'"
PAD 122 122 100 0.0 558 457 .5 3 82 + 1354 8 + 33 1730 1 179 ~

I'>

PAPER I lO6 1803 101.5 0.4 2 730 148.7 402 2X5 + 1601 1+1 675 1761
e,

()Q

PI ES 2.88 296 10~ .8 0.0 571 198.3 35 146 + 1615 1+2 926 720 '"::sI'>

PILOT 470 490 104.3 0.1 887 188.7 78 177 +- 533 1 + I 61 8 624 ~
R EFIN E 3 128 3 17l) 101.6 0.8 4766 152.3 574 1353+2928 1+1 364 2158 ti '

I'>

STEEL 431 458 106.3 0.1 763 177.0 95 180+541 I 1- 1 248 548 l::l..
:::

T R UC K NA 105 NA 0.1 197 NA 2 69 +3028 1+18 1 706 2345 I'>

WADDING 2 211 2222 100.5 0.1 2866 129.6 3 %9 +4169 1+1 4414 5032 ~...
;>:--" ---~--._--

_.__ . ---_.,._- ---------- - - - .----_. ._-- -- - ..,
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G N components, (h) the largest and smallest components, (i ) the number of null

columns, and (j) the number of singleton columns. These properties are of interest
since the structure of the embedded generalized network affects the solution tech­
niques used in an LP factorization. For example, components consisting of single
rows may be handled most efficiently without utilizing a complete generalized
network code.

UB R is surprisingly tight. averaging 101.4% of the true maximum, and computation

times are nominal. Dobson's bound is poor, averaging 203.1% of the true maximum.
The GN components found usually consist of a few large components and numerous
small components.

Table 4 gives the results obtained by Algorithm GNRC and Algorithm UBRC.
Since no ILP optimum is known for M(GNR,c ) in most cases, the items displayed
differ from those items displayed in Tables 2 and 3. The results reported for Algorithm
G NRC are (a) the size of the GNR,c structure found, (b ) the time in seconds required
to find the structure excluding input and output, (c ) the size of the GNR,c as a

Tabl e 4

GN R,c results

Problem Algorithm G NRC Aig. UBRC

11Rcl+IJR ('1 Time 0 .' u' ~'cl Time 11RI+ n 11("1+m/ 0 ' 0
, .

(m+ n) UBLPR.( UBR,c

A[R 32 10 0.0 100 100 100 0.0 3 110 3 21 0
ALUMI NUM 9027 D .t! 83.2 91.7 91.7 2.3 8980 5 508
COAL 3 923 O.U 100 100 100 0.0 3923 3 923
CUBIC l 3 365 U.6 90.2 99.4 94.8 0.4 3 365 659
CU BIC2 13096 ILl 89.7 99.5 94.7 6:'4 13096 2 690
CU PS 951 U.O 97.2 IOU 99.7 0.0 951 713
ELEe J 322 0..1 41.7 99.0 98.3 0.2 3 .'10 1 042
FERT 9596 0.3 99.7 IOU 99.9 0.1 9596 2362
FOAM 4Y71 0.1 1;19 .0 100 99.7 0.1 4 971 1 044
FOOD 181.17 O.X 98.5 99.5 99.4 0.1 181 25 17 860
GAS 5920 5.4 93.5 94.9 94.5 0.2 5614 848
./CAP 5 ~2~ 5.5 '11.9 97.7 99.8 0.2 4 SSl 5718
LANG ~ 139 I.l 80.4 97 .8 90.2 0.2 2139 [ 905
NETI ING 262 0.0 93.9 97.8 100 0.2 ~62 256
OD SAS 7 556 40.0 78.4 7S,O 86,1 1.2 6470 5 094
PAD 3621 3.9 90.7 98.8 95.3 0.3 3 41Q 2 416
PAPER 7388 4.6 89.9 95.9 96.2 0.1) 7 179 4 90S
PIES 331 3 0.9 90.1 99.5 94.8 0.2 3299 2241
PILOT 2 645 1.4 84.1 95.7 9 1.6 0.2 2634 1567
REFI NE 93 26 l'U 83.2 93.S 92.4 2.3 9 104 7729
STEE L 1 700 0.9 80.7 9 1.5 89.7 0.2 1695 I 13I
T Ru C K 4 822 0.5 97.0 NA CIS,) 0.3 4 822 220
WADDI NG [7209 :U 95.6 99.7 97.8 1.0 17209 14451

Totals 141 321 118.1 91J % 96.8"1:, 95.'" 17.1 138232 875X2
--~.~----_._----_ .~ ~ _ .. ._..__._-- -_. ..._- ---_.. -~--_ ._-

NA ind icates 1101 available.
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percentage of the total constraint matrix, and (d) the percentage of the LP upper

bound {UBLPR,eJ achieved by the algorithm. The results reported for Algorithm
UBRC are (e) IIR.cl+IJR.cl as a percentage of UBR,c, and (f) the time required to
obtain UBR,c, For comparison, the last two columns of the table give the total
number of rows and columns obtained for the ONRand ONe problems. These are
the sizes of the embedded G N submatrices when restricted to row submatrices and
column submatrices, respectively. Each problem is weighted equally to compute
average percentages in the 'Totals' row.

GNRC performs very well, also. The algorithm finds a ONR.e structure whose
size averages 91.3% of the size of the total constraint matrix. The size of the structure
averages 96.8% of the LP upper bound on those problems for which the bound was
obtained. (Times to obtain the LP bound averaged 315.8 seconds.) With respect to
UBR•C ' the GNR,e set found averages 95.6% . Thus, the upper bound provided by
algorithm UBRC is only slightly weaker, on average, than the LP upper bound. In
addition, UBRC has more than a 400 to 1 computational speed advantage over the
LP upper bound making it very attractive.

Additional computational studies have been performed to investigate the struc­
tures which GNR and GNRC obtain. Figure I summarizes this work for ELEC,
lCAP, PAD, PIES and PILOT. The outer rectangle represents, to scale, the constraint
matrix for each problem. The area above the dashed line represents the G NRset
found by GNRd, Senju and Toyoda. Within this area are indicated the connected
components found by a simple connectivity algorithm. As indicated previously in
Table 3, a few large components are typically found together with numerous small
components. The area to the left of the vertical line represents the GNe set. The
irregular lines trace the trajectories of the GN R.C structures found by GNRC, ranging
from GNR on the right to GNe at the lower left. From any point on this trajectory,
all rows and columns above and to the left form a GN set. The circle indicates the
largest GNR,c structure found on this trajectory.

5. Conclusion

Although G Ne identification is easy, GNR and G NR.C identification is theoretically
difficult. However, maximal, and often optimal ON Rand G N R.C substructures can
be found in an LP constraint matrix using the heuristic algorithms developed here.
In some problems, large GNRstructures can be found, while in other problems, it
is necessary to remove some columns to find a large embedded GNR,c structure.
Since execution time is modest for heuristic G N identification, our algorithms can
be applied as a matter of course in general LPs to seek GN substructures. Evidence
from the problem set indicates that this is well-advised if a GN-exploiting method
is available: no members of the problem set were known, a priori, to contain

significant G N structure and yet, in several cases, G N structure was predominant,
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ELEC

JCAP

'GNRCOMPONENTS ( 130 )

(Z ,3 8 0+3,4 42) - - - - - - - - /---..,,.

GN
C(3,232

) COLUMNS (3,849)

PAD

COLUMNS (3, 2 97)

(365 +3,256 ) ----.....,.-6"1

ROWS (6 9 4) L..- .....L..-::==- ---'

PIES

GNRCOMPONENTS ( 3 e; )~

GNR(288) --- - - - -- -------------- -~II--------~=======;~

ROWS (662) l....- ---.l...o:::::::::.::.. ---.J

COLUMNS (3,Om

Fig. 1. Embedded generalized networks.
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PILOT

!GNRCOMPONENTS (~ I

- _.. . - - - - - - - - -~ - - - - _ .. - ------------_ . -- -_.---=-==-::-~
( 532 + 2,113)

-~
,"'~ GN

_~ RC-----ROWS (9 74 l ~ _l.._===_ ___l

COLUMNS (2,172)

Fig. I ( COnt.l.
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