
Mathematical Programming 64 (1994) 17-51

Dynamic factorization in large-scale optimization

Gerald G. Brown*, Michael P. Olson
Naval Postgraduate School. Monterey, CA 93943, USA

(Received20 July 1990; Revisedmanuscript received 23 March 1993)

Abstract

Factorization of linear programming (LP) models enables a large portion of the LP tableau to be
represented implicitly and generatedfrom the remainingexplicit part. Dynamicfactorization admits
algebraicelementswhichchangeindimensionduring the courseof solution.A unifyingmathematical
framework for dynamic row factorization is presented with three algorithms which derive from
differentLP modelrowstructures:generalizedupperboundrows,purenetworkrows,and generalized
networkTOWS. Eachof these structuresis a generalization of its predecessors, andeach corresponding
algorithm exhibits just enough additional richness to accommodate the structure at hand within the
unifledframework. Implementation andcomputational results arepresentedfor a varietyof real-world
models. Theseresultssuggestthateachof thesealgorithmsis superiorto the traditional, non-factorized
approach, with thedegreeof improvement dependingupon thesizeandqualityof the rowfactorization
identified.

Key words: Factorization; Linearprogramming; Generalized upperbounds; Purenetworks; Generalized networks

1. Introduction

A recurring theme in the development of algorithms for linear programming has been

the identification and exploitation of special problem structure. Ideas as apparently disparate

as the bounded-variable simplex method, primal and dual decomposition methods, pure and

generalized network primal simplex algorithms, primal partitioning and column generation

schemes may be unified to a degree with this view .

The factorization approach introduced by Graves and McBride (1976) isolates special

structure in LP tableaus. We are interested in using factorization to reinterpret existing

algorithms, and to discover common principles and apply them to develop new algorithms.

"Correspondingauthor.

0025-5610 trJ I994-The Mathemat ical Programming Society. Inc. All rights reserved
SSDI0025-5610(93)E004~-F

18 G.G. Brown, M.P. Olson r Mathematical Programming 64 (/994) 17-5/

Although all algorithms developed this way will, in theory, solve any LP, the efficiency of

any particular factorization approach will be influenced by the relative number of factored

constraints and their influence on the algorithm: the si:e and quality ofthe special structure
isolated determines the influence of any particular factorization applied to any particular

LP.
Based on prior work by Brown and Graves (1975), in which generalized upper bound

rows were successfully incorporated in a large-scale optimization system, we are interested

in pursuing dynamic row factorization, where the dimension of the factored structure may

vary (or even fail to be present) as the solution progresses. In our setting, we require the
row structure of the model instance to be specified prior to solution, and that this structure

remain fixed during solution. An extension of this approach is to allow the row structure to

vary as the model is solved: this is a conceptually simple extension of the approach.

Each algorithm is developed by factoring the constraints of the LP model into two classes:
those that have the special structure (factored) and those that do not (explicit). This

constraint factorization induces a factored structure in the LP tableaus which is exploited

computationally. We demonstrate the dynamic factorization approach for three special
structures:

- generalized upper bound TOWS;

- pure network rows; and
- generalized network rows.

We implement each of the factorization algorithms by integrating it within the X-System
(Brown and Graves, 1975).

While the terms' 'partitioning" and' 'factorization" are frequently used interchangeably

in the literature, we observe a distinction between the two approaches. We consider parti­
tioning methods to be based on special structure in the original problem instance, which
need not induce special structure in the LP tableau - in fact, the method need not be
tableau-based. In contrast,Jactorization methods are based on special structure which occurs
in bases and thus in the basic tableau. Thus, we classify dual decomposition (Dantzig and
Wolfe , 1960), primal decomposition (Benders, 1962), and primal partitioning (Rosen,
1964) as examples of partitioning methods.

Perhaps the earliest example of what we consider factorization is the treatment of simple

upper bounds by Dantzig (1954) and (1963) and, independently, by Charnes and Lemke

(1954). They observe that it is more efficient to enforce the "logical" upper bound

constraints with logical tests within the algorithm rather than treat them explicitly along

with other ' 'structural" constraints. While not originally presented in the context of a formal

tableau factorization, the approach is easily viewed as such.

The mutual primal-dual method of Graves (1965) focuses attention on the special role
of nonnegativity constraints in linear programming. A clear distinction is drawn between
the computational convenience of treating nonnegativity constraints implicitly rather than

G.G. Brol1'n. M.P. Olson / MClthl!/IIarica/ Programming 64 (/994) /7-5/ 19

explicitly and the unambiguous mathematical equivalence of all problem constraints, struc­
tural or nonnegativity. Emphasizing the special importance of inequality constraints, the

approach yields an elegant theory and, as we will see. efficient implementations. We view

this algorithm as the first formal example of factorization.

A similar primal-dual algorithm is presented by Balinski and Gomory (1965) . Related

work, in which efforts are made to exclude slacks from the product-form representation of

the primal basis, includes that ofZoutendijk (1970) and Powell (1975).

Dantzig and Van Slyke (1967) extend the earlier work for simple upper bounds and lend

a more structured treatment to generalized upper bounds (GUB) . In a problem with p GUB
constraints and m structural constraints, their approach requires a working basis ofdimension

m+ 1. a considerable savings when p is large .
Hartman and Lasdon (1972) specialize this approach to the multicommodity capacitated

transshipment problem. In this case, the structure of the basic pure network columns intro­
duces additional structure into the working basis, allowing further simplifications in basis
representation and update techniques. Helgason and Kennington (1977) develop techniques

for representing the working basis in product form and provide graphic interpretation of the

basis updates. Kennington (1977) reports an implementation of the algorithm.

McBride (1972) and Graves and McBride (1976) formalize and generalize the factori­

zation approach. They view factorization as a unifying framework for tableau-based simplex
specializations and illustrate this by developing a variation of the GUB algorithm ofDantzig
and Van Slyke and a GUB algorithm for the doubly-coupled linear programs of Hartman
and Lasdon (1970) .They present a new algorithmfor the set partitioning LP and an equality­
constrained form ofthe pure network with side constraints model. Brown and Graves (1975)

report an implementation of inequality-form, dynamic GUB row factorization for large­
scale problems.

Schrage (1975) extends the succession of simple and generalized upper bounds by
introducing variable upper bounds (VUB), which are constraints of the form Xj ~ xi. where

Xk is said to be the variable upper bound of Xj ' Schrage implicitly represents the VUB
constraints by expressing VUB variables in terms of other variables. This permits the basis

representation to be treated in two parts, one a large matrix which changes infrequently and

thus needs only occasional update, and the other a small working basis which requires

regular attention. Thus, computation and storage savings may be realized. Schrage (1978)

extends these ideas to what he calls generalized VUB (GVUB) constraints, which arise
frequently in models with fixed charges.

Klingman and Russell (1975) sketch a factorization method for solving transportation
problems with side constraints. They suggest techniques for performing simplex iterations
and updating the problem representation. Chen and Saigal (1977) present a similar approach

for solving capacitated network flow problems with additional linear constraints. Both of

these presentations employ a graphical description of the basis update and treat the basis in

two parts: one corresponding to a rooted spanning tree defined on the underlying graph, and

the other a general working basis. Glover et al. (1978) report an implementation of the

:::!o G.G. Brown, M.P. 0/.1'1/11 / Mathematicul Programming 64 1/994) /7-5/

Klingman and Russell design. but one which (curiously) only accommodates a single side

constraint. McBride (1989) reports an implementation which requires the pure network

rows to be equalities and allows more than one side constraint.
Generalized networks with side constraints are addressed by Hultz and Klingman (1976),

who present details for the simplex priceout, column generation, and basis update . Hultz
and Klingman (1978) report an implementation that (curiously) solves the .•singularly

constrained" generalized network problem. McBride (1989) reports an implementation

that is not restricted to a single side constraint.

The factorization approach has been extended by consideration of embedded structures.
Glover and Klingman (1981) consider an LP with embedded pure network structure, i.e.,

the pure network structure appears in only a subset of the rows and columns of the tech­
nological coefficient matrix. They give an algorithm similar in spirit to their pure network

with side constraint model, but the presence of the " side variables" significantly compli­

cates the basis representation and update. They report an implementation of the algorithm

but (curiously) restrict test problems to have no complicating variables.

McBride (1985) solves an LP with embedded generalized network structure, presenting
methods for pricing, column generation, basis representation update and data structures. A

successful implementation is reported to be about five times faster than MINOS (ca. 1977:
Murtagh and Saunders, 1977) for the models tested.

Algorithms to solve problems with special substructures have motivated research to
efficiently identify such substructures. Brearley, Mitra and Williams (1975) describe algo­
rithms for detecting GUB row sets and exclusive-row structure sets (a set of rows whose
structure may be transformed to GUB by column scaling) . Greenberg and Rarick (1974)

and Brown and Thomen (1980) develop algorithms to identify GUB sets. Brown and

Wright (1984) identify pure network constraint substructures. Brown. McBride and Wood
(1985) present a method for locating embedded and row-only generalized network struc­

tures.

Todd (1983) develops a geometric interpretation of factorization which is for our pur­

poses equivalent to the algebraic development of Graves and McBride (1976) .
In the following sections we establish notational conventions, develop the mathematical

foundation of a primal-dual simplex method and show the effects of row-factorization.

Next, a general row-factorization algorithm is developed, specialized to GUB, pure network,
and generalized network rows, and tested on a suite of real-world problems. Finally, we
discuss how the methods can be generalized further and how they can be applied more
effectively.

2. Mathematical preliminaries

The traditional statement of the linear programming (LP) problem is

G.G. Brown, M.P. Olson/ Mathematical Programming 64 (1994117-51

(LP) min wy

s.t. a;y~,.;, ;=I, ... ,m,

ejY~ 0, j= 1, ... , n,

21

where y is an n-vector of decision variables, w a vector of cost coefficients, each a, an n­
vector of technological transformation coefficients, each r, a scalar right-hand side coeffi­

cient, and ej thejth unit vector. While this statement ofthe problem is clear and unambiguous.

there are reasons for preferring an alternative. The insistence upon drawing a formal dis­

tinction between the "structural" constraints a.ye;», and the "nonnegativity" constraints

ejY~ 0 obscures the mathematical structure of the problem by suggesting that the two types
of constraints are inherently different. Certainly the exploitation of the special structure of
the ejY ~ 0 constraints leads to computational efficiencies; however, in our theoretical devel­
opment of the algorithm, we prefer to treat them simply as general inequality constraints.

In order to achieve a consistent form, we rewrite the nonnegativity constraints as - eiY~ 0

and group them with the structural constraints. The problem statement then becomes

(PLP) rrnn wy
y

s.t. a.yc r., i= 1, ... , m+n,

where wy is called the extremal function.

From the standpoint of a primal algorithm, a matrix partitioned form of the primal tableau

is derived. Let {ail' Qi!' .•. , Qin } be a basis for ~n at yO. For notational cortv~nience we will
partition the constraints into two sets, those that are basic (binding) at yO and those that are
nonbasic (not necessarily binding) at yO,

Using this notation , the current basic solution v" may be expressed as By" =f, and since
the rows of B are by definition linearly independent. r" exists.

To isolate the important algebraic components let us assume that at the current basic
solution the basis consists of h structural constraints and n - h nonnegativity constraints.
Then

12 G.G. Brown, M.P. Olson ZMathematical Programming 64 (1994) 17-51

b, ail II r,
b2 a., f~ r i1

B= b" «;
and 1=

Ih r.;

bh + 1 -ej il• 1 1h+ 1 0

bh+ 2 -eih .2 Ih+2 0

b" -ejll f" 0

In partitioned matrix form,

h n-h

B=(A~I A 12)tz ,
-I n-II

and thus

11 II-II

P= -B-'=(A~' -Ai/
IA (2)h .

I n-h

Similarly, D can be written as

d. -ejl g. 0
d2 -ej 2 g2 0

D=
dh -ej h and

gh 0
g= =

dh + 1 ait. +1 gh +1 r ih+ 1

dh + 2 a;" "'2 gh + 2 r il,+:!

dill a· gill r,
'''-i'm ',, +11I

and in partitioned matrix form

II n-h

D=(-I 0)h
AzIAz2 III-h

Then

II

DP=-DB - I=(Alii
-A1,AIi'

and we shall callDP the principalpartof the tableau. Bypartitioning w= (WIo W2).gT= (gb

g2)T and yO = (l:. y~), the complete tableau may be written in partitioned matrix form as

G.G. Brown. M.P. Olson / Mathematical Programming 64 (1994) 17-51 23

II-II

A li1A 1:!

A:!:! -A2IAli
IA

1:!

w:! - wlA i1 I A l :!

Note that y? is displayed explicitly in this tableau. Also, y~ =0 since the corresponding
nonnegativity constraints are basic and thus binding.

The corresponding dual problemis

(DLP) max xr
..

s.t. xai~wi, j= I, .. ., n,

xe, ~O, i= 1, m.

To develop a matrix partitioned formof thedual tableau, weproceedas before. Assuming
the dual basis consistsof h structural constraints and m - h nonnegativity constraints, we
have

- (I:! III) - (iJ n lit 0 0)u - u • u , ".", u - w ' , w ,."., w , ," .. , ,

so

u=(u l , U
2)=(W I, 0).

The nonbasic constraints are then

K= (k l k2 klt)=(e il ej~ e'" a}h+1 aill)
, , ••• , " •• ''1'' , •• _, ,

. - (,1,2 ,1/)-(0 0 0 ih+1 ill)I. - L ,I. , ... , I. - , , ••• , , w , ... , w ,

so 1'= (1< [.1) = (0, w1
) .

The matrix partitioned form of the basis is then

11

T=(A 11

A:!J

m-II

o \1 ,
I Jm-II

and with the choiceof Q= T - I,

/II-II

o \z ,
I Jm-/I

with the remaining constraints forming

G.G. Brown. M.P. Olson I Muthematical Programming 64 (/994) 17-51

The principal part of the dual tableau is

QK=[-:1:~ ~1 ~] [~ ~:~]=[-:1:~~1 A22 ~I~:11~IAl1 J.
which we find to be exactly the principal part of the primal tableau, so

DP=QK.

Thus a single tableau representation supports both primal and dual algorithms.

3. Interpretation of primal and dual forms

We may interpret a primal or dual algorithm as simply different perspectives of this same
tableau, wherein a primal algorithm basis change is viewed as exchanging primal constraints
and a dual basis change exchanges dual constraints. The classical Simplex Method may then

be interpreted as soloing (PLP) using the dual perspective. That the classical Simplex
Method is naturally interpreted as a dual algorithm comes as a surprise to the conventionally

trained. However, the consequent mathematical insight is compelling, especially in light of
the notational simplification and apparent underlying role of A ~ I , which we refer to as the

transformation kernel.

There are several reasons for preferring a primal-dual algorithm to the Simplex Method.

From a computational standpoint, because slack variables are carried logically rather than
introduced explicitly, we are able to clearly identify the essential information needed to
execute the algorithm. The matrix A ~ I plays a key role in the calculation of the tableau,
and the entire tableau can be constructed from A ~ 1 and originalproblem data . Since A ~ 1

is a submatrix of the inverse, T - I, used by the Simplex Method, it is smaller and requires
fewer arithmetic operations to update than does T - 1.

A second advantage of a primal-dual algorithm lies in the flexibility it offers for spe­
cialization to particular problem classes or structures. Indeed, it is the special structure and

simplicity of the nonnegativity constraints that motivate the development of the algorithm

in the first place. It is frequently the case that other special structures can be identified in

classes of (PLP). Examples of such structures include simple upper bounds, generalized

upper bounds, variable upper bounds, pure and generalized network substructures. etc. Such
structure may be " static" in that its nature and dimension remains fixed throughout the
solution process, or the structure may be "dynamic" in which case its precise nature andl

or dimension may vary as the problem is solved. Some special structures may be more
strongly characterized by their column structure and others by their row structure. The
primal-dual perspective leads naturally to explanations of the implications of virtually any

such problem structure and greatly simplifies the implementation of such a specialization.

When an LP appears as a subproblem in a more sophisticated solution setting (for

example, in a mixed integer programming problem or a nonlinear programming problem).

G.G. Brown, M.P. O/SOIl / Matll/!lIIl/ticl/1 Programming 64 (/994) /7-5/ 25

the row / column symmetry of a primal-dual algorithm is of critical importance in special­

izing the solution approach. The inherent symmetry of such an algorithm permits easy

adaptation to branch-and-bound and cutting-plane approaches to mixed integer program­

ming. to column generation settings. as well as to primal and dual decomposition techniques.

We believe the reason for this flexibility offered by the algorithm lies in its more complete

mathematical foundation. There is a natural consistency that arises from the choice of a

rector space having the same dimension as the problem rariables that is lacking in other

approaches. A natural geometric interpretation of the solution trajectory follows directly

from this development. Incidental issues such as finding an initial basic feasible solution
and dealing with degeneracy are resolced constructively in this mathematical framework
(Graves, 1965). Other approaches resort to unnecessarily complicated tangential efforts.

All the research results reported here can be developed. with some effort. in the framework

of the classical Simplex Method. However. we choose to present these results in the manner

of their development - the mutual primal-dual view presented by Graves.

4. Column and row generation

Rather than maintain a complete tableau DP. now consider the generation ofjust column
c of this tableau. Rewriting in a manner that highlights our intentions. and labelling row
and column partitions for identification

(j) (jj)

DP= (i) ([A Ii I J [A Ii IAd) .
(ii) -Az1[AIi I

] Azz-Az,[AIiIA12]

By properly sequencing our computations we will exploit the fact that region (ii) of a

given column is simply a linear combination of terms in region (i) of the same column.

Assume we want to place the current representation of column c into a work array z,

which we partition as ZT = (zT . ;:I) to correspond to regions (i) and (ii) . Expressed in

terms of the transformation kernel AIi I • we compute column c as:

if cis in (j),

z, = [Alii]'".

and then

- - A [",].4v:!- - 21 1 ,

or, if c is in (jj) ,

:::1 = [A Ii 1(A I:!)"],

and then

Then the current representation of column c is available in ::: T = (:T•zI).

26 G.G. Brown, M.P. Olson / Mathematical Programming 64 (1994) 17-51

The computation of row r of the tableau proceeds in a similar manner. We now view the

principal part of the tableau as

(j) (jj)

DP= (i) ([Ajjl] [Ajj
1JA I2].

Iii) [-A:!IAjjl] A:!:!+[-A~IAjjl]AI:!

If we want to place the current representation of row r in a work array f partitioned

conformably with (j) and (jj) as z= (Z3, Z4), we compute:

if row r is in (i),

Zl = [A jj I] r s

and then

or. if row ris in (ii) ,

and

and the current representation of row r is available in z= (Z3' Z4)'

We see that in each case calculations proceed by first using a representation of A ill to

compute a portion of the row or column and then using this initial computation and original

problem data to compute the remaining part. We will discover that our specializations

extend this approach by introducing additional tableau partitions which allow this compu­
tational strategy to be applied on a larger scale.

5. Transformation kernelupdate

The dynamic behavior of A il l is important. We see from the primal row basis Band
nonbasic rows D that the dimension of A ill corresponds to the number of basic structural

constraints, or, equivalently, to the number of nonbasic nonnegativity constraints (recall

that if a nonnegativity constraint is nonbasic and thus nonbinding, the corresponding variable

may possibly be nonzero). Recalling that our primal view of a basis exchange is as an

exchange of constraints between Band D, we see that one of four cases may occur during
a pivot:

• A structural constraint enters the basis B and a structural constraint leaves the basis and

enters D. Since the number of basic structural constraints (and the number of nonbasic
nonnegativity constraints) remains unchanged, the dimension ofA ill is unchanged. A pivot
of this type involves a row in region (j) of B and a row in region (ii) of D. and thus it

corresponds to a pivot coordinate in the location ((ii), (j)) of the tableau DP.

G.G. Brown, M.P. O/SOIl / Mathematical Programming 64 (/994) /7-5/ 27

• A nonnegativity constraint enters the basis and a nonnegativity constraint leaves the
basis. Again, the dimension of A ii I remains unchanged. Since this pivot involves a row in

region (jj) of B and a row in region (i) of D, the corresponding tableau DP pivot coordinate

lies in ((i), (jj».
• A structural constraint enters the basis and a nonnegativity constraint leaves the basis,

and thus the number of basic structural constraints (equivalently, the number of nonbasic

nonnegativity constraints) increases by one. The dimension of A ii I is increased by one.

This corresponds to a pivot coordinate in region (I ii), (jj» of the tableau DP.
• A nonnegativity constraint enters the basis and a structural constraint leaves the basis,

and thus the dimension of A ii I decreases by one. The corresponding pivot coordinate in

DP is «i), (j».
We see that we may exert some influence on the behavior of the dimension of A ii I by

our strategy for selecting target exchanges for primal and dual constraints (i.e., our pricing
strategy) and through our tie-breaking rules for choosing pivot row/ column, and that this
dynamism is an inherent feature of an effective algorithm. We have already seen the

fundamental importance of the kernel (A 11) in our computations. Thus, a successful imple­
mentation must manage this dynamic behavior efficiently and reliably.

6. Factorization

The row-factorized problem to be considered is

(FLP) min wy
.v

s.t. Ey«; r

Fy~b

(explicit constraints),

(factored constraints).

- ly ~ 0 (nonnegativity constraints),

where y is an n-vector of decision variables, w a vector of cost coefficients, E a matrix of

constraint coefficients for' 'explicit" constraints with right-hand side m-vector, r, F a matrix

of constraint coefficients for "factored" constraints with right-hand side p-vector b, and
-[the negative of the identity matrix. In this general development, we refer to the F-type

constraints as "factored" only to distinguish them from the "explicit" E-type constraints,
and assume nothing about their structure. Not until our specializations later will we impose

special structure on F, and the structures we will consider may permit the representation of
the F-type constraints without the inversion of a matrix. We will see that this approach is
centered around handling the part of the basis corresponding to the E-type constraints

explicitly while factoring the portion of the basis corresponding to the F-type constraints.

The notation is chosen to suggest this idea.

Recall that a basis for the primal algorithm consists of n linearly independent rows from

the constraint matrix when it is assumed to include both structural (explicit and factored)

28 G.G. Brown, M.P. otso«/ Mathematical Programming 64 (/99-1) /7-5/

and nonnegativity constraints. Assume that the currentrowbasisconsistsof k rowsfromE,
I rows from F and n - (k + l) rowsfrom - I. Repeating our notation

k+1 /1- (k+/)

B=(All ',. A I2) HI ,
o -I n- (k+/)

where [All AI:d includes all basic structural rows, from both E and F.

Wewillultimately be interested in isolating theeffectof eachtypeof structural constraint
algebraically in the factored tableau, and thus we require greater resolution in our factored
basis. Introducing obvious notation, we have

k I

[All A12] =(Ell EI2

F21 F22

Il-(k+l)

En) k,

F23 I

where the kernel of dimension k+ I is given by

Because A I J is a basis for Iffik + t it follows that it is always possibleto identify amongthe
columns of [F2 1 Fz 2 J a nonsingular submatrix Fl 2 of dimension I, sinceotherwise the rank
of [Fl 1 Fl 2) is at most1- I and thus the rankof All is at mostk+ 1-1, or equivalently the
rank of B is at most n - 1. We will later see that one of the important implementation
challenges is the taskof efficiently managing the structure and nonsingularity of F22•

The full factored row basis is then

k

B= (j)(Ell
(jj) F2 1

(iiD 0

n-(k+l)

:~: 1;
-I n-(k+/)

Introducing the notation

whereAII is the Schurcomplement, or Gausstransform, of Fl 2 in AII (e.g., Goluband Van
Loan, 1983), we can write its inverseas

Grouping the coefficients of the nonbasic constraints and applying the same column
ordering yields

G.G. Brown, M.P. Olson / Mathematical Programming 64 r1994) /7-51

k /1- (k+J)

0) (-1
0 0

)'D= (ii) 0 -[0
:II-k(iii) EJ 1 EJ:! EJ3

(iv) F4 1 F.J,2 F4J p-l

29

The principal part of the factored tableau is DP, where P = - B- 1 is the conjugate row

basis. With the additional notation

the principal part of the factored tableau is

Partitioning w= (WI> W2' W3' W4), rT = (rT. rI) and bT = (b T. bI> and introducing the
notation

- - F-1FW2=W2 -WI 22 21'

the complete factored tableau is

A- - 1
II

-F:!~IF~IAjjl

- --I
-AJIA II

• ' -1
-F~IAII

- I
-W2A II

-Ail l EI2F ~21

(/+ F ~-21 F2 1Ajj 1EdF;1

(A.w4 Ii I EI 2 - EJ2)F ; 1
- - - I - I

(F~IAlr EI2-F~2)F12

(Iv!AJj IE
12 -II'I}F;I

Ajj1Al]
F ;1(F2J -F2IAJjI A,J)

- - --1-AJJ-AJIA II AI]
- - --1-
F~J -F~IA II Au

lVJ - W2A Ii 1AI .,

Ajjl'l

F;I(br-F2JAjj'f1}

f 2 -AJIAJjlfl
- - - I
b2 - F~IA Jj 'I

»'IF;lbl +w2AI'rl'l

We see that with knowledge of the current factorization, we can construct the entire
tableau from F ; I, Aill and the original problem data. The dimension of FnJ is equal to

the number of F-type constraints that are currently basic, and thus can be at most p. The
dimension ofAil l is equal to the number of E-type constraints that are currently basic, and
thus cannot exceedm. We callA ill the explicit transformation kemel and F;I thefactored

transformation kernel.

30 G.G. Brown. M.P. O/SOIl/ Muthematical Programming 6.J(/ 994) /7-5/

7. Factored column and row generation

Consider generation of column c from the principal part of the tableau DP. Rewriting in

a manner that highlights our intentions

(jj)

[-AIi ' E12F ; ']
{F;I_F nI F2 I [Jl

-E3 1[J-E.~:!{ }

- Foil [] - F-l:d }

(ill)
- 1-

[Ali An]
{F;I F23 -F;I F:!I[

E33 - £31 [] - £3:! {
F.J,3 - F.J,I [] - F.J,:d r)

where A13 is defined as before, and the brackets" [] .. and" { }" contain terms common

to but displayed only once for each column.

Assume we want to place column c into work array z, We partition z conformably as

.: T = (zT,zI,.:r,zJ), refer similarly to components of unit vector eC, and employ a (m +p) ­

vector work array Z. The notation " - " denotes simple assignment, " = " indicates that a
set of factored equations must be solved, and" =:> " explains the corresponding result.

If column c is in (j) ,

- ~[A--I] <'
':' I ~ II •

and then

then

and finally

':.J, +- - F.J,1 [:.d - F.J,:d.::!};

if c is in (jj), solve

- E - E F ~ I) (·,::+- L:!'::! ~ ,:,+- - (12 2~ ,

then

_. -A -I =
~I II ~ [A- - ' E F -I]C

=:> Z l - - II 12 22 ,

:- (e2)"-F:! I[.:::d.

F22 .:2 =: =:> '::2-ICFi2
Ir-F;'F21[.:d l.

and finally

G.G. Brown , M.P. Olsolll Mathematical Progranunitu; 6.J (/99-1) /7-5/

~3 ~ -E31[~I] -E3'1{~'1}'

':4+- -F..d:::d -F4 '1 { ':: l };

if c is in (jjj),

~+- (E\3>" - E 1'1:::'1 ==> ~+- (Au)",

~1 +-Aill~ ==> :::, +-[Ail IA\3]",

then

and finally

Similarly, row r can be generated. The principal part of the tableau is now viewed as

31

(jj)

{-[]E12F;'}

IF;' - []E''1F 22 1
}

{(-E32 - [JEdF;I}

{ (- F42 - [JEd F 22 1 }

where .43 1 and F.H are defined as before, and the brackets" [l " and" { }" contain terms

common to but displayed only once for each row.
Assume we want to place row r into work array [. We partition Zconformably as z= (z:o;,

':0' ':7), refer similarly to components of unit vector en and employ a (m +p)-vector work

array Z.
If row r is in (i),

::~ ~ [,4 ill i.

then

f'.nF22 =: ==> ':0 +-1- [,4"IJrE''1 F ;;;1].

and finally

32 G.G. Brown, M.P. Olson t Mathematical Programming 64 (1994) 17-51

if r is in (ii) I solve

then

:: +--- :;A- - I
~5 •. II - [F-1F A-- I]= :5 +--- - 22 21 II n

and finally

Z, +- [fs]£ 13 + {f6 }F23 ;

if r is in (iii),

i+--- - (£32)n

f,6 F22=i = Z6+--(£.,,2)rF ii l,

i+- (£31)r + ioF21 = i+--- (A31) n

then

i+- - (E32) ,. - [ZdE 12 ,

Z6F22 =i = Z6 +--- {(- (En)r - [Z~]EI2)F;I},

and finally

z, +--- (E:n),.+ [Z:~]EJ3 + {z"IF23 ;

if r is in (iv),

:: F -:; = :: +- - (F) F- 1
....6 22 - ~ ...·6 ~~ r 2:!'

then

G.G. Brown. M.P. Olson / Muthematical Programming 64 (/994) /7-5/

and finally

:7 ~ (F~3)r + [:~dEI3 + (~}F:'.3'

"

8. The complete algorithm

33

The complete algorithm is described in terms of abstract functions which operate on
fundamental data structures.

Tableau managementrequires two index maps: one yielding the intrinsic coordinate in
the principal part of the tableau for each original, extrinsicproblemrow or column, and the
other its inverse map. Intrinsic arguments are shown in lower case, and extrinsic in upper
case. Index_Excbange(index! ,index2) updates these maps for the exchange of a pair of
tableau coordinates index1 and index2.

The tableau regionsare successivepartitionsof indices:

Tableau ENDING
region INDEX

0) MEC
(ii) MFC

(iii) MER
(iv) m
(j) NER

(jj) NFR
(jjj) m+n

Contentsof region

basic Columns solving Explicit rows
basic Columns solvingFactored rows
nonbasicExplicit Rows
nonbasicFactored Rows
basic Explicit Rows,
basic Factored Rows
nonbasic Columns

Increment(endingjudex) and Decrement(ending_index) are functions to modify
these ending indices.

Generate_Row(row) and Generate_Column(column) place numeric values of a tab­
leau row or column in ROWCOL(), which is commensurate with the tableau dimensions.

Using ROWCOL(), Update_Rim(row,col) maintains current numeric values of the
right-hand side and bottom row of the tableau in RIM().

Theexplicittransformation kernel, AIi ~ isoperatedon byfunctionsusingROWCOL():

Add_E-Kernel_Row(ROW),
Add_E-Kernel_Column(COLUMN),
Delete_E-Kernel_Row(ROW).
Delete_E-Kernel_Column(COLUMN),
Replace_E-Kernel_Row(REPLACED_ROW,REPLACING_ROW), and
Update_Explicit_Transformation_Kernel, the pivotal update.

Table s.t
Secondary and tertiary tableau exchanges

w
~

(j)
Delete _R-Kernel_Column(ROW)

Index_Exchange: coJ.NER)

Index_Exchanger NER.NFR)

Decrementt NER)

(i) Decrement(NFR):

Delete_E.Kernel_Row (COL)

Index Exchanget row.MEC)

Index_Exchange(MEC.MFC)

Decrement! MEC)
Decrement! MFC)

(ii)

Delete_E-Kernel_Column! ROW)

IndexExchaaget coJ.NER)

Index_Exchange(NER.NFR)

Decrement(NER)

Decrement(NFR):

Find_E-Kernel_ColumnJor_Key(ROW.KIN)

Delete_E-Kemel_Row! KIN)

Index_Exchange(kin.MEC)

IndexExchanget row,MFC)

Decrement(MEC)

Decrement(MFC)

(jj)
Index_ExchangeIcol ,NFR)

Decrement/ NFR):

Find_F -Kernel_Column_to_Remover COL,KOU)

Generate Row! kou)

Replace_E-Kemel_Row! ROW,KOU)

Index_Exchange(row.kou)

Index_Exchanger row.Ml-C)

Index_Exchange(MFC.MER)

Decrement(MFC)
Decrement(MER)

Index_Exchange(col.Nl-R)

Decrement(NFR) :

IF (Factored_Kernel_Singular(COL,ROW)) THEN

Find_F-Kernel_Column_to_Remove(COL,KOU)

Find_E-Kernel_ColumnJor_Key (ROW.KIN)

Generate_Row(kou)

Replace_E-Kernel_Row (KIN.KOU)

Index_Exchange(kin.kou)

ENDIF

Index_Exchange(row,MFC)

Index_Exchange(MFC.MER)
Decrement(MFC)
Decrement(MER)

(ill)

(no morc exchanges)

(no more column exchanges) :

IF (Factored_Kernel_Singular! ROW,COL)) THEN

Find_E-Kernel_ColumnJor_Key! ROW,KIN)

Replacc_E-Kernel_Row(KIN.ROW)

Index_Exchange(kin.row)

ENDIF

!=l
!=l
t:tlg
::
~
~

~
<,

~
:.;.
~
~;:;.
s,
~

~
<It:

i3
§
::.

:;;;
~
....
~....
~
V>....

A pivot in tableau row "row" and column "col" is associated with problem row or column indices ROWand COL. and begins with Generate_Row(row) ,
Gcnerate_Columnlcol). Update_Rim(row,col), and primary Index_Exchange(row.col). Next, depending upon the tableau region. secondary and even tertiary
exchanges shown above may be required to preserve the factorization and the tableau structure so the pivot can then be completed with Update­
_Factored_Kernel(ROW.COL) and Update_Explicit_Transformation_Kernel.

(iii) (no more exchanges)

(iv]

Delete_E.Kernel_Column(ROW)

Index_Exchange(col.NER)

Decrementt NER):

Delete_E-Kernel_Row (COL)

Find_E-Kernel_Column_for_Key(ROW,KIN)

Index_Exchanger kin.MEC)

Decrementr MEC)

Increment(MER)

Index_Exchange(row,MER)

Add_E-Kernel_Column(COL)

Increment(NER);
Index_Exchange(col,NER)

Find_F·Kernel_Column_to_Remove(COL,KOU)

Generate_Row(kou)

Add_E.Kernel_Row(KOU)

Index_Exchange(kou.MEC)

Increment(MEC)
Index_Exchange(row.MER)

Decrement(MER)

(no more column exchanges);

IF (Factored_Kernel_Singular(COL,ROW)) THEN

Find_F-Kernel_Column_to_Remover COL,KOU)

Generate_Row (kou)

Find_E-Kernel_Column_for_Key(ROW.KIN)

Replace_E.Kernel_Row(KIN,KOU)

Index_Exchange(kin.kou)

ENDIF

Add_E-Kernel_Column(COL)

Increment(NER)
Increment(NFR)

Index_Exchange(col.Nf'R)

Index_Exchange(NFR.NER) :

Add_E-Kernel_Row(ROW)

Increment! MEC)

Increment(MFC)
Index_Exchange(row,MEC}

Index_Exchange(MEC,MFC)

Increment(NFR)

Index_Exchange(coI,NFR) :

IF (Factored_Kernel_Singular(COL.ROW » THEN

Find_E-KernetColumn_for_Key(ROW,KIN)

Replace_E-Kernel_Row(KIN.ROW}

Index_Exchange(kin.row)

ENDIF

Increment(MFC)

Increment(MER)
Index_Excbange(row.MER)
Index_Exchange(MER.MFC}

o
o
~
~
:;:
.?i
~
:'l:I
o
t::;
g
......

~
So
~
:;
[
~

ti
l)Q

:3:::
:::
==$£.
0­
ol..
~....
~....
j.I
VI...

Vol
VI

36 G.G. Brown, M.P. Olson/ Mathematical Programming 64 (/994) 17-5/

Aii I can be represented in any way that suits the implementer and efficiently supports
thesefunctions. Generally, wefind Aii I to be relatively sparse,and reporthereresultsusing
an array with an entry-point for each inverse row and column which accesses a stack of
orthogonally-linked nonzero inverse elements. We have also implemented a dense vector­
processorversion, and the designissues for LU-based schemes are givenby Olson (1989).

The factored kernel, F22, is manipulated with:

Factored_Kernel_Singular(ROW,COLUMN),a Boolean function,
Find_E-Kernel_Column_for_Key(ROW,COLUMN),a columnfrom region (i),
Find_F-Kernel_Column_to_Remove(ROW,COLUMN), a columnfrom region (ii) ,

and
Update_Factored_Kernel(ROW,COLUMN), the pivotal update.

The complete abstract algorithm is:

Step O. Initialize.
Step 1. Selectprimalor dual algorithm.
Step 2. Selecta primal (col) or dual (row) violation;

STOP if current solution is terminal, or
Generate_Column(col) or Generate_Row(row).

Step 3. By ratio test with RIM() and ROWCOL(),
select a (row) or (col) pivot coordinate;
STOP if current solution is terminal, or
Generate_Row(row) or Generate_Column(col).

Step 4. Update_Rim(row,col),
primaryIndex_Exchange(row,col),
perform secondary and tertiaryexchanges (Table 8.1),
Update_Factored_Kernel(ROW,COL),
Update_Explicit_Transfonnation_Kernel,
Go to Step 1.

Functions for maintaining the factored kernel vary with the factorization, and a good
implementation willexploitthesedifferences. However, a general specification will suffice
for all factorizations here.

We are exclusively interested in performing two fundamental operations:
1. Solvingfactored equations of the form

and

G.G. Brown, M.P. Olson / Mathematical Programming 64 (1994) 17-51 37

where z;! and Z2 are unknown and b;! and b;! are rational (not necessarily integer).

2. Restoring F22 to the desired form of F22 which makes the factored equations above

easy to solve, where F;!2 results from inflicting F:!.2 with a column exchange, a column and

row deletion, a column and row addition, or a row exchange.

Factored_Kernel_Singular(LABEL I.LABEL2) predicts whether F22 will be singular

if:
1. LABELl gives a basic column in a basic factored ROW for which COL=LABEL2

would be exchanged;
2. LABELl is a basic factored ROW solved by basic column COL=LABEL2, both of

which would be removed from the factored kernel;
3. LABELl is a nonbasic factored ROW, which would be added to the factored kernel

with column COL = LABEL2; or
4. LABELl is a basic factored ROW which would be replaced by some other row

LABEL2.
The first case, a column exchange, is equivalent to asking whether solving F22Z2 = b2 with

b2 equal to region (ii) of the proposed entering column COL, yields a nonzero term

associated with the basic factored row in Z2(row). This is easy to answer for the factoriza­
tions we discuss. For instance, Brown and McBride (1984) show that back-solving a

"nearly-triangulated generalized network" basis F22 only as far as ROW will suffice, and
that this can be implemented as a traversal of the "backpaths" of the (zero, one, or two)

coefficients in b'2 for the column now basic in ROW. If numerical precision is an issue,
Z2(row) can be computed during this search and tested for significance.

The second case, a row and column deletion, is trivial because the resulting F22 will

always be nonsingular.
The third case, a row and column addition, can be answered by adding ROWand COL

to F22 without disturbing its desirable special structure , thus creating an instance of case
one. For instance, placing ROW first, and COL last in F22 suffices for all factorizations

discussed here.
The fourth case, a row exchange, can be answered by applying the second case, deleting

ROWand its basic column, and then (perhaps repeatedly) applying the third case, adding

. the row with index COL and any column which would yield a nonsingular F22•

Find_F~Kernel_Column_to_Remove(ROW,COL) given basic factored row ROW,
returns its basic, or "key" column COL.

Find_E~Kernel_ColumnJor_Key (LABEL,COL), given either a nonbasic factored
ROW = LABEL, or a basic column LABEL solving a basic factored ROW, searches for an

acceptable basic column COL in Explicit Rows (region 0» using Factored­
_Kernel_Singular(ROW,COL) .

Update_Factored_Kernel(LABEL1,LABEL2) restores F22 to the desired form of F22'

with a possible increase or decrease in dimension. Following the case-by-case scheme of

Factored_Kernel_Singular. we pre- and post-process the factored basis representation to

38 G.G. Broll'lI. M.P. Olson / Mathematical Programming 64 (199~) 17-51

permit use of a single, static factorization update of conventional design. Olson (1989)
pursues this in considerable detail.

Table 8.2 displayssupporting data structures for thesefunctions.

9. Computational experience

The factorization methods introduced here have been implemented and used to solve a
variety of existingmodels provided by our colleagues. With their help, we have extracted
suggested problem instances froma diversity of decision supportsystemson hostcomputers
ranging from mainframes to micro-computers. Because our goal is to test factorization
technology in isolation, the resultsreported hereare achieved withoutbenefit of any model­
specific knowledge or tuning.

However, we also seek to develop effectivemodeling tools for customized use in devel­
opingand refining new models. To this end, we havegreatly benefited from the experience
and advice of our colleagues, and we include some discussion of modeler guidance and
insightalongwith the numerical results.

Each model is introduced belowby a short synopsis. Multiple instancesof some models

Table 8.2
Factorization algorithm data structures

Factorizations

GUB,PN,GN

PN,GN

GN

DataStructure

RIM()
ROWCOL(
MSKRC()

LQRC()

KEY(}

WORK{)

MSKWK()

LQWK(
POI)
P()

D()

VGN()
JMUU)

Size Use

m +n current tableauright-hand side, bottomrow
m+ /I current tableaurow and column
Tn +II logicalmask true for corresponding nonzeroin

ROWCOl(), falseotherwise
In +/I LIFOqueues of nonzerorow and columncoordinates in

ROWCOL()
m+/I basic columnin basic factoredrow, and vice versa

p values for b~ or b~ in basic factoredequations
p logical maskfor nonzerorow and columncoordinates in

WORK()
P LIFOqueueof nonzerocoordinates in WORK(}
p next basic factored row in pre-order
p off-diagonal row withnonzerofactoredcoefficient
p depth, remaining back-substitution path lengthin factored

component

p generalized networkcycle factors
/I ratioof generalized networkcoefficients in each column

Generalized upperbound (GUB). pure network(PN), andgeneralized network(GN) factorizations respectively
require more data structures to support kernel factorization. For each factorization. F11 is maintained in some
partial ordering of rows,and of columns- a signed identity for GUB. upper-triangular for PN (e.g.. Bradley.
Brown. andGraves. 1977), and nearly-upper-triangular forGN (e.g., Brownand McBride. 1984). Directsolution
of factored kernel equations F~::.: = I): and :.-I F11 = hI is performed alternately using the data structures shown.

G.G. Brown, M.P. Olson / Muthematical Programm ing 64 (1994) 17-51 .W

are reported where diversity of size, structure. and taxonomy have proven interesting to the

modelers. For those models that employ nonlinear, mixed integer, or decomposition features.

we report solution statistics for the initial linear program.

• GTE. The seven Telephone Operating Companies within GTE have adopted an inte­
grated business system called Capital Program Management System (CPMS) to guide their

3 billion dollar per year capital planning. The system includes a large scale mixed integer

programming optimization system that optimizes the critical economic tradeoffs between

maximizing the long-term budget value of the firm's equity and satisfying shorter-term
financial constraints, resource limitations and service objectives. Investment opportunities

for the next 5 years are modeled as 0-1 variables with alternative implementations for each.

The objective is to maximize the net present value ofthe capital portfolio. There are financial

constraints on capital, internally generated funds, net income to common, and limits on
resources such as labor hours, lines installed, etc. There are also constraints that enforce
logical relationships among opportunities (such as, if choose A then must choose B). See

Bradley (1986) .
• INVEST. Capital allocation and project selection for Mobil Oil Corporation are modeled

as a two-stage multi-year nonlinear capital budgeting problem with over 40 000 integer

variables. A master problem allocates capital among markets over a multi-year horizon

considering the estimated nonlinear effects on sales of concentrated marketing investments.
The instance reported here is a mixed-integer linear program subproblem of the two-stage
model which, given these annual capital expenditure limits for a market, selects particular

alternate investments. Such subproblems are easy to solve, and optimality is achieved with
a single iteration of the nonlinear master problem. See Harrison, Bradley and Brown (1989).

• TANKER. A crude oil tanker scheduling problem faced by a major oil company is
solved using an elastic set partitioning model. The model takes into account all fleet cost
components, including the opportunity cost of ship time, port and canal charges, demurrage
and bunker fuel. The model determines optimal speeds for the ships and the best routing of

ballast (empty) legs, as well as which cargoes to load on controlled ships and which to spot

charter. All feasible schedules are generated, the cost of each is accurately determined and

the best set of schedules is selected. See Brown, Graves and Ronen (1987).

• HFDF. A large-scale elastic set partitioning model used to assign frequencies for a
network of high frequency direction finding receivers. See Brown, Drake, Marsh, and
Washburn (1990).

• GAS. A multi-time period strategic model for use by natural gas utilities for determining
optimal contract levels for gas purchase, storage and transmission. An underlying general­
ized network flow model represents gas being bought, stored, shipped and consumed over

a multi-year horizon, typically at a monthly level of detail. Constraints and variables are
added to handle variable maximum and minimum purchase levels, variable leased or con­

structed storage and variable transmission capacities. An integrated parallel model incor­

porates the peak requirements necessary on some days during cold winter months. This

model has been used by a number of utilities including Southwest Gas Corporation and

G.G. Brown, M.P. Olson/ Mathematical Programming 64 (/994) /7-51

Questar Pipeline Corporation to plan operations and to justify such plans to regulatory

agencies. See Avery, Brown, Rosenkranz and Wood (1992).
• KELLOGG. A multi-time period , multi-plant production/inventory / transshipment lin­

ear program for Kellogg cereals . The model guides weekly processing, packaging and

shipping decisions. Production consists of two stages: processing lines produce basic prod­
ucts which are then packaged on packaging lines into different-sized containers to yield

finished products. Processing lines produce a subset of the basic products and have limited
capacity with overtime charges for weekend shifts . Packaging lines are analogous. In-house

inventory capacity is limited although outside storage is available to additional cost. Inter­
plant shipments of finished products are made by rail or truck. See Wood (1989).

• ODS. A commonly occurring problem in distribution system design is the optimal
location of intermediate distribution facilities between plants and customers. A multicom­

modity capacitated single-period version of this problem is formulated as a mixed integer

linear program. A solution technique based on Benders Decomposition is developed....An

essentially optimal solution is found and proven with a surprisingly small number ofBenders
cuts. See Geoffrion and Graves (1974). The instances reported here are decomposition

master problems.

• TAM. The annual decision on how much the Air Force should spend on aircraft and on
munitions is of great interest to many people. How the Air Force staff develops information
to support the decision has changed over the years. Currently , a linear program is being

used by the Air Force Center for Studies and Analysis and is being tested by the Munitions
Division of the Plans and Operations Directorate (AF/XOXFM) for munitions tradeoff

analysis . The LP uses existing data and estimates of (I) aircraft and munition effectiveness,

(2) target value, (3) attrition, (4) aircraft and munition costs, and (5) existing inventories

of aircraft and munitions. Other factors considered are weather and length of the conflict.
See Might (1987) and Jackson (1989).

• PHOENIX. A planning model for the multi-year, multi-billion dollar modernization of
the U.S. Army's aging helicopter fleet. The mixed integer linear program employs a multi­
product production/ inventory formulation with aged inventory. Goal constraints attempt to
enforce fleet size, maximum age, and technology goals for each year and each offour aircraft

missions, while also keeping expenditures within upper and lower limits. Additionally,
combinatorial constraints and variables handle production line startup and shutdown costs,

minimum and maximum production levels and requirements linking certain production
lines. See Clemence, Teufert, Brown and Wood ((988) and Brown, Clemence, Teufert and

Wood (1990).

• EA6B. Configures jammers of hostile radar on an EA-6B "Prowler" Naval electronic
warfare aircraft. See Sterling (1990).

• DEC. Digital Equipment Corporation uses this model to determine worldwide manu­
facturing and distribution strategy for new products. This mixed integer, linear program

suggests a production. distribution, and vendor network which minimizes cost and/or
cumulative cycle times subject to constraints on estimated demand, local content , and joint

G.G. Brown, M.P. Ols(1/1 / Mathematica!Programming 64 (199.J) 17-51 ~I

capacity, over multiple products, echelons, and time periods. Cost factors include fixed and

variable production charges, distribution via multiple modes, taxes, duties and duty draw­

back, and inventory charges. See Harrison, Arntzen and Brown (1992).

• AMMO 4H. A four-commodity transshipment model for delivery over time of military

products from production and storage locations to overseas locations to support theater

operations is developed. The model covers five physical echelons, including production

plants, storage depots, ports of embarkation, ports of debarkation and geographic field

locations . Road, rail, sea and air transportation are modeled, and product demands are time­

phased. Capacitation occurs primarily on sea and air links, and as throughput capacities on

transfer points, requiring replication of some echelons. The objective of the model is to
minimize deviation from on-time deliveries. See Staniec (1984) .

• BUSCH. A model of brewery-to-wholesaler movements of beer for Anheuser-Busch.
The model also includes some packaging decisions and is essentially a multicommodity
flow model with joint capacity constraints arising from loading dock and inventory capac­
ities as well as some managerial requirements. See Brown, Marner, McBride and Wood

(1992). The instance reported here is a small pilot model for the full-scale system with

millions of variables which is solved directly , or by decomposition.

• BAR. A linear, mixed-integer multi-period production-inventory master planning
model. See Harrison (1992) .

Four implementations are compared: "XS" is an unadorned version of the X-System,
an implementation of the Graves mutual primal-dual method with its GUB factorization
disabled, while "XS(GUB)", "XS(PN)", and "XS(GN)" each employ the respective

factorizations discussed here. To establish a frame of reference, performance of these
implementations is compared with two well-known commercial solvers: IBM's Optimiza­
tion Subroutine Library "OSL" (Release 2, 1991), and two versions of "CPLEX" (Ver­
sion 1.2, 1990, and Version 2.0, 1992).

Ideally, one would develop four equivalent formulations of each model, each customized
for its particular solver with the goal of inducing a large factored row set of the appropriate

type. This approach is a consistent theme in the literature dealing with specialized algorithms

and one that we strongly endorse. Alternate formulations of a model are often available,

and it seems sensible to choose one that exploits as much as possible the strengths of the

solver.

However, all of the models used here are "off-the-shelf" in the sense that they were
developed at various times by various modelers, and alternate formulations are impracti­
cable . Thus, the approach is to preserve a single, unfactored representation of each model,
and attempt to identify favorable row structures through the use of heuristics .The procedure
is based on the work of Brown and Thomen (1980), Brown and Wright (1983) and Brown,
McBride and Wood (1985). The heuristics are greedy and myopic in the sense that they

initially consider the entire row set of the problem, and discard one row at a time without

backtracking until the remaining set satisfies the desired row factorization. This can be

expected to confound or destroy structure introduced by the modeler. Although the auto-

42 G.G. Brown, M.P. 01.1"(1/1/ Muthematical Programming 64 (/99.J) 17-5/

matic factorization implementation has options to accept modeler guidance, the methods

are compared here without this subjective complication. While these model-naive experi­
ments yield interesting and useful observations about the implementations, they suffer for

lack of guidance by a skilled modeler.
Table 9.1 shows the important structural information concerning the model instances to

be solved.
Table 9.2 displays solution times for the sample problems. These CPU times exclude

initial problem input, factored row identification, and final output - on average about 0.2

second per problem.
The original formulations of most of the test problems are strongly influenced by the

modeler's solution strategy. For instance, TANKER is endowed with a GUB structure

which places every binary variable in an associated set from which only one member can

be chosen; this maximal GUB set is also sought for its tendency to yield nearly-integer

Table 9.1
Problem dimensions

/I 111 POUB/% PPN/% PON/% NZEL

GTE 6624 960 909/95 909/95 922/96 58
INVEST 11989 1338 941170 I 101/82 1 168/87 33
TANKER 7598 83 32/39 32/39 66/80 31
HFDF 10 548 61 31/51 31/51 32/52 189
GASPN A 27884 6848 4345/63 5934/87 5976/87 37
GASPNC 15362 3794 2658170 3418/90 3420/90 20
GASPNE 5102 I 184 434/37 877174 883175 7
GASGNA '27 884 6848 4484/65 5 142/75 5976/87 37
GASGNC 15362 3794 2664170 3084/81 3420/90 20
KELLOGG 2 17841 3818 1265/33 2578/68 2596/68 35
KELLOGG 3 27490 5727 2295/40 3867/68 3892/68 54
KELLOGG 4 37139 7636 2428/32 5156/68 5 188/68 74
KELLOGG 5 46788 9545 3388/36 6445/68 6484/68 93
ODS I 11568 3023 528/17 540/18 558/18 21
ODS 3 23993 594 490/82 490/82 490/82 68
TAM 5 10531 438 102/23 132/30 162/37 94
TAM 8 6104 420 118/28 154/37 196/47 49
TAM 12 17793 629 177/28 231/37 294/47 165
PHOENIX 10 6884 1618 206/13 220/14 I 153171 14
PHOENIX 30 17212 4305 293/07 303/07 3604/84 48
EMB 12247 2978 1 610/54 2921/98 2921/98 16
DEC 14518 2171 677/31 677/31 1088/50 24
AMM04H 83497 13963 6874/49 12892/92 12892/92 129
BUSCH 4 7997 1248 649/52 1 140/91 1 148/92 15
BAR 49032 7446 2712/36 4575/61 5134/69 102

For each problem. the total number of structural variables is II. structural constraints 1/1. GUB rows found by the
identification heuristic PGl'O' pure network rows PPI" generalized network rows POl" and thousands of nonzero
technological coefficients NZEL. For example. GTE has 58 thousand nonzero technological coefficients for 6 624
variables: GTE can be viewed as having 960 explicit and no factored rows. or as 909/95o/c GUB-factored and
960 - 909 = 51 explicit rows. as 90Q PN-fal:tored rows. or as 922 GN-factored and 38 explicit rows.

G.G. Brown, M.P. Olson / Mathematicul Programming 64 (/994) /7-5/ 43

Table 9.2
Solution seconds

AMDAHL 5995-700 486/33 MHz PC

X-System IBM XS CPlEX

none GUB PN GN OSL GN I.2 2.0

GTE 9 8 8 8 43 41 65 58
INVEST 4 5 4 4 23 24 52 49
TANKER 8 10 JO 8 6 48 8 9
HFDF 100 101 101 III 40 462 581 542
GASPN A 2376 778 50 57 291 321 1 714 1221
GASPNC 4 4 3 3 79 26 185 245
GASPNE 72 33 4 6 13 33 165 50
GASGNA 1 115 542 294 72 312 385 3532 2262
GASGNC 4 4 3 3 71 26 186 236
KELLOGG 2 3 :2 2 2 69 5 219 194
KELLOGG 3 5 5 5 5 144 9 513 440
KELLOGG 4 48 36 26 24 500 115 1274 1 III
KELLOGG 5 1 122 1459 320 248 1210 926 2615 2243
0051 6 3 2 5 125 22 1042 414
ODS 3 6 6 6 6 23 38 58 56
TAM 5 55 60 45 40 44 231 151 86
TAM 8 24 14 14 17 21 69 77 71
TAM 12 108 112 88 106 101 312 416 378
PHOENIX 10 4 2 2 2 20 10 84 73
PHOENIX 30 41 25 26 9 335 69 1 171 1239
EA6B 75 33 9 9 45 44 177 244
DEC 189 32 42 80 71 93 317 293
AMM04H . 42 41 35 46 1000 277 1762 1597
BUSCH 4 5 5 4 4 26 34 55 46
BAR 290 212 106 114 382 480 1366 1222

An AMDAHL 5995-700 running under IBM VM/CMS /XA with IBM VS FORTRAN 2.3.0 is used to render
performance in CPU-seconds accurate to the precision shown for the basic ' 'XS" -system using no factorization,
compared with dynamic factorizations of "XS(GUB) ", pure network "XS(PN) ", and generalized network
"XS(GN)" rows. "IBM-OSL" shows primal simplex performance on the same computer of the mM Optimi-
zation Subroutine Library, Release 2 (1991). "486/ 33" shows the clock-time performance of " XS(GN)" on a
microcomputer (33 MHz Inte1486 with 32 MB RAM) followed by that of "CPLEX" (Version l.2) (1990) and
of "CPLEX" (Version 2.0) ((992) on the same microcomputer.

solutions to the linear program. AMMO 4H is a multicommodity capacitated transshipment

problem and thus is best suited to a pure network factorization; it was originally solved by

dual decomposition rendering pure network sub-problems. PHOENIX is a muIticommodity

equipment replacement model closely following the generalized network factorization par-
adigm .

The row structures in Table 9.2 have been found without modeler help by our automatic

identification heuristic, yet they corroborate the modelers ' intentions, TANKER reveals the

same pure network rows as the GUB rows, or a generalized network constructed by iden-

44 G.G. Brown, M.P. OIStJIl / Mathematical Programming 64 (1994) 17-51

tifying one additional row to be paired with each GUB row. PHOENIX exhibits a dominant

structure that is clearly a generalized network.

One would anticipate the factorization exploiting the dominant row structure to win

computation tests . This is wrong more often than right. Table 9.2 shows that the more
general factorization dominates the less general. with few exceptions: GTE 's relatively large

GUB set. and the large pure networks in GAS PN A, GAS PN E, and AMMO 4H seem to
satisfy our prior bias toward model-dictated factorizations.

Table 9.2 also suggests that our myopic use of heuristics to automatically identify factored

structure has its pitfalls. In a number of problem instances, we identify significantly larger
factored sets with the more general factorizations, yet we enjoy little improvement in

computation times (e.g. , INVEST, ODS 3, TAM 8) . This suggests that the "quality" of a

row factorization is not completely specified by its size.

We have pursued this notion by inviting some of the modelers to guide our identification

heuristic to precisely the row sets they intended. Some of the results have been striking:
Wood (1989) reports significant improvements for problems in the GAS system.

Table 9.3
Maximumnumberof elements in explicit transformationkernel

GTE
INVEST
TANKER
HFDF
GASPN A
GASPNC
GASPNE
GASGN A
GASGNC
KELLOGG 2
KELLOGG3
KELLOGG4
KELLOGG5
ODS I
ODS 3
TAM 5
TAM 8
TAM 12
PHOENIX 10
PHOENIX30
EA6B
DEC
AMM04H
BUSCH4­
BAR

XS

13
9
I
3

1550
18

263
1470

19
6
9

79
1299

9
o

28
20
38
32

169
1 155

218
235

10
290

XS(GUB)

o
I
I
I

891
5

110
758

7
2
4

41
1015

I
o

22
15
42
21

157
270
39
92
5

163

XS(PN)

o
I
I
I

30
o
7

340
1
o
o

10
138

I
o

15
8

16
21

185
o

-\.9
o
o

70

XS(GN)

o
I
o
1

54
o
5

59
o
o
o

11
128

5
o

18
IO
21

I .
I
o

46
o
o

41

The number of nonzero elements (in nearest thousands) in the explicit transformation kernel A=:I gives some
indication of how much information is not captured by factorization. as well as an idea of relative storage
requirements.

G.G. Brown, M.P. O/SOIl / Muthematical Programming 6-J (/fJ94) /7-5/

Table 9.4
Bindingexplicit constraintsat optimality

45

GTE
INVEST
TANKER
HFDF
GASPN A
GASPNC
GASPN E
GASGNA
GASGNC
KELLOGG 2
KELLOGG 3
KELLOGG 4
KELLOGG 5
ODS I
ODS 3
TAM 5
TAMS
TAM 12
PHOENIX 10
PHOENIX 30
EA6B
DEC
AMM04H
BUSCH4
BAR

Binding/%

554/58
763/57
51/61
58/95

3068/45
2324/61

901176
3064/45
2323/61
1950/51
2942/51
4 136/54
5270/55

361/12
410/69
264/60
279/66
412/66

1098/68
3298177
2939/99
1328/61
6686/46

840167
4687/63

GUB/%

20/02
201/15
60/72
29/48

1953/29
850/22
573/48

1854/27
861/23

1015/27
1368/24
2491/33
2305/24

83/03
0/00

227/52
240/57
352/53

1096/68
3236175
1334/45

736/34
3153/22

481/39
3250/44

PN/%

20/02
195/15
39147
29/48

299/04
68/02
90/08

1 155/17
402/11
92/02

148/03
391/05
592/06
76103
0100

168/38
142/34
205/33

1090/67
3239175

26/01
726/33

13/00
5/00

1 895/25

GN/en-

18102
162/12

9/11
28/46

349/05
90/02
79/07

359/05
89102

118/03
183/03
452/06
617/06
117/04

0100
186/42
175/42
251/40
80/05

110/03
27/01

421/19
14/00
8/01

1450/19

Not all constraintsare bindingat optimality. The firstcolumn lists the numberof binding explicit constraintsand
expresses this as a percentageof all constraints: the following columns display the number of binding explicit
constraintsand their correspondingpercentagesunder the alternatefactorizations.

A few of our corresponding modelers have had the opportunity to build models from

scratch with a particular factorization in mind. This admits model coercion and a wide range

of well-known reformulation methods which we think can materially change both the size

and quality of the result. Their early reports show promise. Among the models discussed

here, the GAS and KELLOGG systems have been subsequently reformulated to enhance

generalized networks, GTE has been re-engineered to further accentuate its dominant GUB

set, and TANKER-like and many ODS models have been moved to a micro-computer; all
these models are now larger, but much easier to solve.

It is surprising and encouraging that the transition to more general factorizations seldom
degrades performance much, even when few additional factored rows are won by the
increased generality . This contradicts popular folklore that the more general factorizations

demand substantial, if not overwhelming increases in the resulting sizes of the factored
structures. In fact. computational testing reported by others has usually been limited to

models in which the number of explicit rows is in the range of one to twenty (e.g.• Chen

and Saigal, 1977; Glover. Karney. Klingman and Russell, 1978; Glover and Klingman,

46 G.G. Brown, M.P. Olson / Mathematical Programming 64 (/994) 17-51

1981). Our results are all the more remarkable given the lack of guidance from the modeler
for the "intended" row factorization.

Table 9.3 shows the maximum size of the Aii I in terms of its nonzero element... We see

that the maximum size of the explicit transformation kernel tends to decrease as the gen­
erality of the factorization increases. Recalling the definition of the explicit transformation
kernel,

this trend is as we would expect. Each potentially binding explicit row which can be
converted to a factored row reduces the likely size of Aii 1 • Also, the density of the term
- El'lF ;.1 F~, generally increases with the density of F;.1 . For F'!.'!. k-by-k, the number of
nonzeros in F 2;1 for the GUB factorization is k, for pure networks perhaps as large! k2

,

and for generalized networks as large as e.There are some exceptions to this trend in Table
9.3, especially in model instances in which the size of the (GN) factored row set is not
significantly larger than that of (PN). This is because for a given factored kernel F22 , the
exact (PN) representation of F ;2 I is generally more sparse than that of the less exact
floating-point representation of (GN) .

It is usually the case that many constraints are not binding at optimality, as can be seen
in Table 9.4. A distinguishing feature of dynamic factorization is the ability to limit attention
to binding constraints, handling binding factored constraints with great efficiency, and
working with a relatively small number of binding explicit constraints. Explicit binding
constraints on the order of a few thousand, or less, are quite manageable. This is well beyond
the size of previously reported implementations.

10. Conclusions

Previous research by others generally suggests that specialized algorithms such as those
presented here are useful only when the factored structure completely dominates . There are
even reports of algorithms for solving problems having a single unfactored (explicit)
constraint (Hultz and Klingman, 1978; Klingman and Russell, 1978). When implementa­
tions have been reported, problem suites have been limited to instances having a very small
number of explicit constraints, typically in the range from one to twenty (Chen and Saigal,
1977; Glover, Karney, Klingman and Russell, 1978; Glover and Klingman, 1981). The
consensus seems to be that such algorithms are quite delicate, and deserve to be viewed as
specialized algorithms, useful only for solving very special problem instances.

We refute this view. Dynamic factorization is competitive with commercial-quality

optimization systems on every model instance we have tested.
The development here stresses the similarities among the algorithms and the natural

extensions leading from one to the next. This is in contrast to the development reported for
similar. non-dynamic algorithms (e.g.• Dantzig and Van Slyke, 1967; Klingman and Rus-

G.G. Brown. M.P. O/SOIl / Mathema tical Programming 64 t /994) 17-5/ 47

sell, 1978; and Hultz and Klingman, 1978) in which the specifics of the individual algorithm

obscure the generality of the approach. The conceptual difference between our algorithms

is seen to be largely isolated to the structure of a single algebraic entity. the factored kernel. .
By abstracting the structure of the factored kernel and concentrating on the general algorith~

design. the versatility and flexibility of this approach is clarified.

The algorithmic development leads directly to an implementation. The resulting software

suite exhibits a "single system image" . The modularity of the algorithm allows the defi­

nition of an " abstract data type" (see, e.g., Aho, Hopcroft and Ullman, 1974) which

isolates the data structures and update procedures for the factored kernel from the rest of
the implementation. Each factorization is seamlessly integrated within the system design.

The early I980s produced a great deal of research on automatic identification of special
structure in LP models (see, e.g., Gunawardane and Schrage, 1977; Glover, 1980; Schrage ,
1981; Brown, McBride and Wood, 1985; and Bixby and Fourer, 1986) . We have incor­

porated the most useful of these ideas into our implementation, and we have what we believe

to be the first complete implementation which supports automatic identification of factored
row sets. This capability may be used to identify new factored structure or to validate or
augment a modeler-provided recommendation. When faced with the choice ofeither solving

an unfactored model instance or automatically identifying a factored structure and then

using the corresponding solver, our results show that the latter is nearly always to be
preferred. Modelers have conducted extensive additional computational experimentation

with the X-System not reported in this paper. These results suggest that in addition to the

quantity of factored rows. the quality of these rows influences the performance of factori­
zation algorithms. While not well understood, it is clear that the myopic approach of our

heuristics is no substitute for the modeler's guidance in identifying factored structure.
Processing networks (Koene, 1982) are network models which allow proportional flow

restrictions on the arcs entering or leaving some nodes . One formulation of such a model
results in a pure or generalized network structure with a set of complicating columns. Chen
and Engquist (1986) propose a primal partitioning algorithm for solving processing network

problems. An alternate formulation yields a pure or generalized network structure with

complicating rows: this is precisely the structure dealt with here.

The multicommodity capacitated transshipment problem (MCTP) has been the subject

of much research over the years, and a number of specialized algorithms have been proposed

to solve it (see, e.g., Assad, 1978, or Kennington, 1978). The usual MCTP formulation is

a pure network which each commodity uses independently in its own flow model, but with
side constraints on the total common flow of all commodities over some of the network
arcs. The side constraints form a GUB row set, while the rest of MCTP forms a pure
network; either view might be preferred depending upon size of the common network, the

number of side constraints, and the number of commodities. In our experience, the network
factorization usually dominates the GUB factorization, and the pure network factorization

presented here is a powerful technique for solving MCTPs. As an experiment, we customized

our (PN) implementation for MCTP to exploit the special structure of the explicit side

48 G.G. Brown, M.P. Olson t Mathematlcal Programming 64 (19C)·J} 17-51

constraints. This highly-specialized implementation performed no better on AMMO 4H.

and we now believe that this would be true for most MCTPs.

There are problems which would exhibit a large factored row structure if not for a set of
complicating columns (e.g.. see Brown, McBride and Wood, 1985) . One would expect the

structure of the factored kernel to be dominated by that of the predominant row structure,
with only occasional complications due to the exceptional columns. One might allow for
this exceptional structure in the factored kernel by identifying it "on-the-fly" as the algo­

rithm progresses, and preserving the sanctity of the core factorization. Though conceptually

simple, some iterations of this algorithm would border on the spectacular. This approach
may be thought of as a hybrid between the dynamic factorization developed here and

dynamic basis triangulation methods (see, e.g., Hellerman and Rarick, 1971, 1972; Saun­

ders, 1976, and McBride, 1980).

Dynamic extrinsic factorization is subsumed by the algorithms presented in this paper if
we activate functions in the update analogous to the secondary exchanges now employed.

Essentially all that has to be done is ensure that successive factored components retain their
stipulated special structure. We speculate that this will work best in cases where model
structure is amenable, and quite likely will require some model-specific customization to
perform well on difficult models. We have limited our experimentation to those static

extrinsic cases which we believe to be most generally useful.

References

A.Y. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis ofComputer Algorithms (Addison-Wesley,
Menlo Park, CA, 1914).

A. Assad, " Multicommodity network flows - A survey," Networks 8 (1918) 31-9I.
W. Avery, G.G. Brown, J.A. Rosenkranz and R.K. Wood, "Optimization of purchase, storage and transmission

contracts for natural gas utilities," Operations Research, 40(3) (1992) 446-462.
M.L. Balinski and R.L. Gomory, "A mutual primal-dual simplex method," in: Recent Advances in Mathematical

Programming (McGraw -Hili. New York, 1963).
J.F. Benders. "Partitioning procedure for solving mixed-variables programming problems, " Numerische Math­

ematik 4 (1962) 238-252.
R.E. Bixby and R. Fourer, " Finding embedded network rows in linear programs I: Extraction heuristics," Report

No. 86431-0R, Oekonometrie und Operations Research, Bonn University (Bonn, 1986).
G.H. Bradley, "Optimization of capital portfolios," Proceedings of the National Communications Forum 86

(1986) pp. 11-17.
G.H. Bradley, G.G. Brown and G.W. Graves, " Design and implementation of large-scale primal transshipment

algorithms," Management Scien ce 24(I) (1977) 1-34 .
A.L. Brearley, G. Mitra and H.P. Williams, "Analysis of mathematical programming problems prior to applying

the simplex algorithm," Mathematical Programming 8 (1978) 54-83.
G.O. Brown. R.D. Clemence Jr., W.R. Teufert and R.K. Wood, " An optimization model for modernizing the

army's helicopter fleet," Interfaces 21(4) (1990) 39-52.
G.G. Brown. D.A. Drake. A.B. Marsh and A. Washburn. "Mathematical methods applied to managing a system

of direction-finding receivers ," Military Operations Research Society (Annapolis. MD. 1990).
G.O. Brown and G.W. Graves. " Elastic programming: A new approach to large-scale mixed-integer optimiza­

tion: ' presented at ORSA/TIMS meeting. Las Vegas, NY I 1915l .

G.G. 8rol1"II, M.P. Olsolll MathematicalProgramming 64 (1994) 17-51 49

G.G. Brown,G.W. Gravesand D. Ronen, " Scheduling ocean transportation of crude oil," ManagementScience
33(3) (1987) 335-346.

G.G. Brown.J.W. Marner. R.D. McBrideand RK. Wood. "Solving a large-scale generalized multi-commodity
flow problem." ORSA!TIMS (San Francisco, CA. 1992).

G.G. Brown and R.D. McBride. "Solving generalized networks," Management Science 30(12) (1984) 1497­
1523.

G.G. Brown.RD. McBride and R.K. Wood. "Extracting embedded generalizednetworks from linear program­
ming problems," Mathematical Programming Study 32 (1985) 11-31.

G.G. Brown and D. Thomen, " Automatic identification of generalized upper bounds in large-scale optimization
models," MonagementScience 26(III (1980) 1166-1184.

G.G. Brown and W. Wright, " Automatic identification of embedded network rows in large-scale optimization
models." Mathematical Programming 29 (1984) 41-56.

A. Charnesand C.E. Lemke, •'Computationaltheoryof linearprogramming. I: The boundedvariablesproblem."
ONR ResearchMemorandum 10.Graduate School of IndustrialAdministration,CarnegieInstitute of Tech­
nology (Pittsburgh,PA, 1952).

C. Chen and M. Engquist. "A primal simplex approach to pure processing networks." Management Science
32(12) (1986) 1582-1598.

S. Chenand R Saigal, " A primalalgorithmfor solvinga capacitatednetworkflowproblemwithadditional linear
constraints," Networks 7 (1977) 59-79.

R.D. Clemence Jr., W.R. Teufert, G.G. Brown and R.K. Wood. " Phoenix: Developing and evaluating army
aviation modernization policies using mixed integer linear programming," 27tll U.S. Army Operations
ResearchSymposium (Fort Lee.VA. 1988).

CPLEXOptimization. Inc.. Using the CPLEX(TM) Linear Optimizer(Version 1.2) (Incline Village,NV, 1990).
CPLEXOptimization, Inc.• Using the CPLEX(TM) Linear Optimizer and CPLEX(TM) Mixed Integer Optimizer

(Version2.0) (Incline Village,NV, 1992).
G.B. Dantzig, " Notes on linear programming: Parts VIII, IX, X-upperbounds. secondaryconstraints, and block

triangularity in linear programming," ResearchMemorandum RM-J367,The RandCorporation(SantaMon­
ica. CA. 1954).

G.B. Dantzig,Linear Programming and Extensions (Princeton University Press,Princeton. NJ, 1963).
G.B. Dantzigand R.M. Van Slyke, "Generalizedupper boundingtechniques," Journal ofComputerand System

Sciences I (1967) 213-226 .
G.B. Dantzig and P. Wolfe, " Decomposition principal for linear programming," Operations Research 8(I)

(1960) 101-111.
A.M. Geoffrion and G.W. Graves, " Multicommodity distribution system design by Benders decomposition,"

ManagementScience 29(5) (1974) 822-844.
F. Glover. "Transformations enlarging the network portionof a class of LP/embedded generalizednetworks,"

MSRS 80-1, University of Colorado (Boulder, CO, 1980).
F. Glover.J. Hultz,D. Klingman and J. Stutz. "Generalized networks" A fundamental computer-based planning

tool," Management Science 24(12) (1978) 1209-1220.
F. Glover. D. Karney. D. Klingman and R. Russell, " Solving singly constrained transshipment problems,"

Transportation Science 12(4) (1978) 277-297.
F. Glover and D. Klingman. " The simplex SONalgorithmfor LP!embedded networkproblems," Mathematical

Programming Study 15 (1981) 148-176.
G.H. Golub and C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, MD.

1983).
G.W. Graves, "A completeconstructivealgorithm for the general mixed linear programming problem," Naval

ResearchLogisticsQuarterly 12(I) (1965) 1-14.
G.W. Gravesand R.D.McBride. "The factorization approachto large-scale linearprogramming:' Mathematical

Programming 10 (1976) 91-/10.
H.J. Greenberg and D.C. Rarick. "Determining GUB sets via an invert agenda algorithm." Mathematical Pro­

gramming 7 (1974) 240-244.
G. Gunawardane and L. Schrage. "Identification of special structure constraints in linearprograms." University

of Chicago (Chicago. It. 1977).

50 G.G. Brown, M.P. OIsOIl / Mathematical Programming 6.J(/994) /7-5/

T.P. Harrison. G.H. Bradley and G.G. Brown. " Capital allocation and project selection via decomposition:'
presented at CORS/TIMS/ORSA meeting. Vancouver. Be (1989).

T.P. Harrison. B.C. Arntzen and G.G. Brown. "Global manufacturing strategy analysis:' presented at ORSAI
TlMS meeting. Orlando. FL (1992) .

T.P. Harrison. Private communication (1992).
I .K. Hartman and L.S. Lasdon. "A generalized upper bounding method for doubly coupled linear programs:'

Technical Memorandum No. 140 (1970).
J.K. Hartman and L.S. Lasdon, "A generalized upper bounding algorithm for multicommodity network flow

problems:' Networks I (1972) 333-354.
R.V. Helgason and 1.L. Kennington. " A product form representation of the inverse of a multicommodity cycle

matrix," Networks 7 (1977) 297-322.
E. Hellerman and D. Rarick. " Reinversion and the preassigned pivot procedure:' Mathematical Programming I

(1971) 195-216.
E. Hellerman and D. Rarick. "The partitioned preassigned pivot procedure (P4

) : ' in: OJ. Rose and P.A.
Willoughby. eds.. Sparse Matrices and their Applications (Plenum. New York. 1972) pp.67-76.

1. Hultz and D. Klingman. " Solving constrained generalized network problems:' Research Report CCS 257.
Center for Cybernetic Studies. University of Texas at Austin (Austin. TX, 1976) .

J. Hultz and D. Klingman, "Solving singularly constrained generalized network problems." Applied Mathematics
and Optimization A (1978) 103-119.

IBM Corporation, Optimization Subroutine Library Guide and Reference Release 2 (Kingston. NY. 1991) .
I.A. Jackson. "A taxonomy of advanced linear programming techniques and the theater attack model," Master's

Thesis, Air Force Institute of Technology. Air University (Wright-Patterson Air Force Base. OH, 1989).
J.L. Kennington. "Solving multicommodity transportation problems using a primal partitioning simplex tech­

nique," Naval Research Logistics Quarterly 24(2) (1977) 309-325.
J.L. Kennington, "A survey of linear cost multicommodity network flows," Operations Research 26 (1978)

209-236.
D. Klingman and R. Russell, " On solving constrained transportation problems. " Operations Research 23(I)

(1975) 91-107.
D. Klingman and R.Russell, "A streamlined simplex approach to the singly constrained transportation problem:'

Naval Research Logistics Quarterly 25l 4) (1978) 681-696.
I. Keene, " Minimal cost flow in processing networks, a primal approach: ' Ph.D. Thesis. Eindhoven University

of Technology (Eindhoven, The Netherlands , 1982) .
R.D. McBride, " Factorization in large-scale linear programming." Working Paper No.22, University of Califomi a

(Los Angeles, CA. 1972).
R.D. Mcbride, " A bump triangular dynamic factorization algorithm for the simplex method." Mathematical

Programming 18 (1980) -l9-61.
R.D. Mcbride, "Solving embedded generalized network problems." European Journal ofOperational Research

21 (1985) 82-92.
R.D. McBride. Private communication (1989) .
R.I. Might , "Decision support for aircraft and munitions procurement." Interfaces 17(5) (1987) 55-63.
B.A. Murtagh and M.A. Saunders. " MINOS user's guide. " Technical Report SOL 77-9. Systems Optimizat ion

Laboratory. Department of Operations Research. Stanford University (Stanford. CA. 1977).
M.P. Olson. " Dynamic factorization in large-scale optimization:' Doctoral Dissertation. Naval Postgraduate

School (Monterey. CA. 1989) .
S. Powell. "A development of the product form algorithm for the simplex method using reduced transformation

vectors," Mathematical Programming 9 (1975) 93-107.
1.B. Rosen. " Primal partition programming for block diagonal matrices." Numerical Mathematics 6 (1964) 250­

260.
M.A. Saunders. "A fast, stable implementation of the simplex method using Bartels-Golub Updating:' in: J.R.

Bunch and OJ. Rose. eds.. Sparse Matrix Computations (Academic Press. New York. 1976) pp. 213-226.
L. Schrage. " Implicit representation of variable upper bounds in linear programming." Mathematical Program­

lIIillg4 (1975) 118-132.
L. Schrage. "Implicit representation of general ized variable upper bounds in linear programming ." MarJre/l/atiml

Prngrumming 14 (197 8) 11-20.

G.G. Brown. M.P. 01.\'011 / Mm/re/lwtiml Pragrunnning' 6./ (199./) 17-51 51

L. Schrage. "Some comments on hidden structure in linear programs: ' in: HJ. Greenberg and I. Maybee. eds..
Computer-assisted Analvsis lind ModelSimplijicarion (Academic Press. New York, 1981) pp. 389-395 ,

C.J. Staniec, . 'Design and solution of an ammunition distribution model by a resource-directive multicommodity
network flow algorithm:' Master's Thesis, Naval Postgraduate School IMonterey, CA. 1984).

1.Sterling , "An EA-6B transmitter loading and assignment model: ' Master 's Thesis. Naval Postgraduate School
' (Monterey. CA, 1990).

MJ . Todd. "Large-scale linear programming : Geometry . working bases and factorization," Mathematical Pro­
gramming16(I) (1983) 1-10.

R.K. Wood. Private communication (1989).
G. Zoutendijk, " A product-form algorithm using contracted transformation vectors:' in: 1. Abadie. ed., Integer

and NonlinearProgramming (North-Holland , Amsterdam, 1970).

"

