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This paper discusses automatic detection and exploitation of
embedded structure in Large-Scale Linear Programming (LP) models.
We report experiments with real-life LP and mixed-integer (MIP)
models in which various methods are developed and tested as
integral modules of an optimization system of advanced design
[6]. We seek to understand the modeling implications of these
embedded structures as well as to exploit them during actual
optimization. The latter goal places heavy emphasis on effi-
cient, as well as effective, identification techniques for
economic application to large models. Several (polynomially
complex) heuristic algorithms are presented from our work. In
addition, bounds are developed for the maximum row dimension of
the various factorizations. These bounds are useful for objec-
tively estimating the quality of heuristically derived
structures.

I. INTRODUCTION

Automatic detection and exploitation of special structure in
large-scale LP (or MIP) models has been the subject of a con-
tinuing research program conducted at the Naval Postgraduate
School and UCLA over the past decade. This paper draws from
various results in this effort, and refers (sparingly) to signi-
ficant work by other researchers. The references contain com-
plete descriptions of these results for the interested reader.
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Our scope is intentionally limited to automated methods of
sufficient efficiency to enable us to economically apply them to
real-world optimization problems. Thus, we consider only those
approaches showing greatest promise for immediate practical
application. Although the interpretations of embedded model
structure can lend profound insights in their own right, we are
equally interested in detecting errors in data preparation and
model generation --mathematiéally mundane issues of fundamental
importance to the practitioner.

The sheer size of contemporary large-scale LP models pre-
sents significant computational difficulties, even for otherwise
elementary factorizations. Implementation of effective struc-
tural analysis procedures is primarily a matter of exercising
large-scale data structures efficiently. As we shall see,
though, these practical considerations can give significant
theoretical guidance in the specification of efficiently
achievable classes of model transformations.

That detection of embedded special structure can be of
practical importance in actual model solution is undisputed. It
is widely known that explicit simplex operations can be
materially improved in efficiency by incorporation of basis
factorization methods (e.g., [6], [9], and references of [7]).
The details of such modifications of the simplex procedure are
not given here. However, the underlying themes of simplex fac-
torization are the substitution of logic forxr floating point
arithmetic, and separation of the apparent problem monolith into
more manageable components.

This paper deals exclusively with row factorizations. The
pervasive implied problem for row factorization is the identifi-
cation of the best embedded structure from all those that may
lie at hand in any particular model. Conventional wisdom
differs as to the criterion for this discrimination among fac-

torizations of the same class. However, it is generally
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accepted that the row dimensionality of the factorization serves
as an excellent measure of effectiveness. In this sense,
embedded special structures fall naturally into a taxonomy
implied by the intrinsic complexity of the associated maximum
row identification problems.

We proceed with a discussion of several types of embedded
special structures detectable by efficient polynomially complex
algorithms. These structures are considered in increasing order
of maximum row identification complexity. We emphasize that
efficient polynomial algorithms are operationally defined here
as low-order polynomial in terms of intrinsic problem dimensions
(e.g., number of rows, columns, and non-zero elements), and not
in terms of the total volume of model information (e.g., total

number of bits in all coefficients, ad nauseam).
2. SIMPLE REDUCTIONS

LP models often exhibit simply detected structural charac-
teristics which permit a reduction in row dimensionality without
loss of model information. Several such reductions are possible
in evidently polynomial complexity. These include:

a) Void Rows

b) Void Columns

¢) Singleton Rows (simple upper bounds)

d) Singleton Columns

e) Fixed Variables

f) Rows that Fix Variables

g} Null Variables

h) Non-extremal Variables

i) Redundant Rows.

Some of these reductions do not obviously decrease row
dimension. However, the reductions may be applied repeatedly to

the model, revealing at each iteration more rows which can be
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removed. Thus the cyclic application of reductions continues
until a minimal model results.

Experiments with some of these reductions have been reported
by Brearley, Mitra and Williams [5]. More extensive work at
large-scale has been done by Bradley, Brown and Graves [3] and
by Krabek [11].

Detection of all redundant LP rows requires complete solu-
tion of equivalent LP problems, and is thus equivalent in
complexity to LP. (We hesitate to say polynomial in the sense
of Khachian's recent result.) Thus, We restrict redundant row
detection to orthogonal redundancy, revealed by substitution of
bounds for problem variables. An efficient detection algorithm
results.

With real-life LP and MIP models, a remarkably large frac-
tion of model rows can be removed by these simple technigques.
For some cases, models have been nearly solved this way.

We note that integrality conditions can be superimposed on
these simple reductions (e.g., tighten bounds on integer vari-
ables by truncation) to strengthen them. Nonlinear models also
benefit from these reductions, and from others not addressed in
this paper.

Table 1 contains the characteristics of several real-life
linear and mixed integer models. Table 2 displays the results
of simple reductions applied to these models [3]. Multiple
passes are made for each model until no more reductions are
possible. The times given are for execution on an IBM 360/67

using FORTRAN H (Extended) without code optimization.
3. GENERALIZED UPPER BOUNDS
Rows for which each column has at most one non-zero coeffi-

cient (restricted to those rows) collectively form a generalized

upper bound (GUB) set. Usually, we additionally require that
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TABLE 1. Sample LP (MIP) Models

Colunys Non-zero
Model Rows Total Integer Coefficients
TRUCK 220 4,752 4,752 30,074
FOAM 1,000 4,020 42 13,083
AIRLP 171 3,040 0 6,023
ELEC 785 2,800 0 8,462
ODSAS 4,648 4,683 0 30,520
LANG 1,236 1,425 0 22,028
FERT €06 9,024 0 40,484
COAL 171 3,788 0 7,506
CUPS 361 582 1456 1,341
PAD 696 3,984 0 13,459
JCAP 2,487 3,849 860 9,810
PAPER 3,628 6,643 0 32,644
NETTING 90 177 114 375
PIES 663 2,923 0 13,288
GAS 799 5,636 0 27,474
PILOT 376 2,172 0 13,0567

the coefficients in these rows be capable of being rendered to
1 by simple row or column scaling.

The problem of identifying a GUB set of maximum row dimen-—
sion is NP-hard [7], making optimal éUB factorization algorithms
hopelessly inefficient for our purposes. Heuristics adapted
from work by Graves and by Senju and Toyoda (see [14], and
references of [5] and [7]) work very effectively and dependably
at large-scale to find maximal GUB sets.

Unfortunately, the problem of determining just the s7ze of
the maximum GUB set is also NP-hard. However, Brown and Thomen
[7] have developed bounds on the size of the maximum GUB set
which are sharp and easily computed. These bounds have been

used to show, in some cases, that maximum GUB sets have been
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TARLE 3.

Model

TRUCK
FOAM
AIRLP
ELEC
CO0AS
LANG
FERT
COAL
PSS
PAD
JCAP
PAPER
NETTING
PIES
GAS

PILOT

GUB Fuctovization [7]

Rows-GUB
Eligible

Row Conflicts GUB
Count Quality SKEC
10,435 40, 28% 5.00
3,186 98. 18% 1.78
2,988 100.00% 0.65
6,167 65.80% 1.15
b,820 18.61% 7. 12
46,424 365.15% 14,80
16,456 98.59% 6.73
3,768 91.749% 0.92
744 66.67% 0.21
4,416 41.87% 3.34
16,578 29.19% 2.8
36,047 31.65% 5.77
46 78.26% 0.05
4,11¢ 40.76% 2.82
28,220 93.25% 3.79
12,110 33.73% 4,76
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achieved via heuristic methods. In any case, the bounds provide
excellent objective measure of the quality of any GUB set,
regardless of the means of its derivation. Frequently, manual
GUB analysis will suffice for models with amenable structure.
The bounds are developed in terms of the number of distinct
conflicts present in the model. Two rows are in conflict if
they each have a non-zero element in a common column, making
them mutually exclusive in a GUB set. If g is the number of
rows in conflict with row i , then the total problem conflict

count for a model with m rows is
1 1 '
= — < = -
¢ =3 2 s, <3 m{m-1) .
i

A problem-independent bound on the size of the maximum GUB

set is [7]

Uy = L_.S + v.25 + m{m-1) - 2c¢ ,

1 o : ]
where (. indicates truncation to an integer.

A tighter, problem—dependent bound is

m—rgc,-, cf_(m—y)y

L.S + V.25 + y(2m-y -1) - 2¢, c > (m~=-y)y ;
where
y = mix S; -

Tighter upper bounds have been derived for the size of the
maximum GUB set, as well as lower bbunds.

Table 3 contains the results of automatic GUB factorization
applied to the benchmark models [7]. Row eligibility is based
on the capability to scale the row to contain only 0, *1
coefficients. (U0 yuzlity is the number of GUB rows found,
expressed as a percentage of the best known upper bound on maxi-

mum GUB row dimension (actual GUB quality may be better than
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this conservative estimate). The results were obtained using

FORTRAN H (Extended) with code optimization.

4. IMPLICIT NETWORK ROWS

Implicit network rows are a set of rows for which each
celumn has at most two non-zero coefficients (restricted to
those rows) and for which columns with two non-zero coefficients
(in those rows) can be converted by simple row and column
scaling such that the non-zero coefficients have opposite sign.
Such rows in LP are commonly called networks with gains.

Pure network rows (NET) can be converted by simple row and
column scaling such that all non-zero coefficients (restricted
to those rows) have value *1 , and such that columns with two
non-zexo coefficients (in those rows) have one +1 and one -1.
Such rows in LP are called pure networks (e.g., [4]).

Simole row and column scaling is restricted such that
application of each scale factor renders an entire row, or
column, to the desired sign (and unit magnitude for pure NET).

The problem of identifying a NET factorization of maximum
row dimension is NP-hard [15], making optimal NET identification
algorithms practically useless. The problem of determining just
the size of the maximum NET set is also NP-hard. Thus, heuris-
tic identification methods are mandated.

An extension of GUB heuristics can be used to achieve NET
factorizations. First, a GUB set is determined by methods men-
tioned in Section 3. Then, a second GUB set is found from an
eligible subset of remaining rows. The second GUB set is con-
ditioned such that its row members must possess non-zero coeffi-
cients of opposite sign in each column for which the prior GUB
set has a non-zero coefficient.

This double-GUB (DGUB) factorization yields a hipariiie NET

factorization. Thus, DGUB heuristically seeks the maximum
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embedded transportation or assignment row factorization. Pure
network equivalents derive from proper editing of eligible rows.

Generalizing on the theme of Senju and Toyoda [14], a more
general method has been developed by Brown and Wright [8] for
direct NET factorization of implicit network rows. Pure NET
rows can be identified with the same procedure by simple
screening of admissible candidate rows.

This heuristic is designed to perform a network factoriza-
tion of a signed elementary matrix (0,%*¥1 entries only). It is
a deletion heuristic which is feasibility seeking. The measure
of infeasibility at any point is a matrix penalty computed as
the sum of individual row penalties. The algorithm is two-
phased, one pass, and non-backtracking. The first phase yields
a feasible set of rows, while the second phase attempts to
improve the set by reincluding rows previously excluded. Each
iteration in Phase I either deletes a row or reflects it
(multiplies it by -1} and guarantees that the matrix penalty
will be reduced. Thus, the number of iterations in Phase I is
bounded by the initial value of the matrix penalty, which is

polynomially bounded.
Let A = [aij] be an m x n matrix with aij =0,%f1Y 1i,j.

Problem: Find a matrix N = [nij} with (m-k) rows and n
columns which is derived from A by
1. Deleting k rows of A where k >0 ,
2. Multiplying zero or more rows of A by -1,
where N has the property that each column of N has at most
one +1 element and at most one -1 element. We wish to find
a "large" N 1in the sense of containing as many rows as

possible, i.e., minimize k .
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1. E 1is the set of row indices for rows eligible for
inclusion in N and is called the eligible set.

2. C is the set of row indices for rows removed from E
in Phase I {Deletion). Some rows in C may be readmitted to
E in Phase II. C 1is called the candidate set.

3. The phase "reflect row i' of A " means to multiply each
element in row i' by -1, i.e., 345 « "y Y3.

4. Other notation will be defined in the algorithm itself.

Algorithm

Phase I -Deletion of Infeasiole Fous
J J

Step 0: Initialization. Set E = {1,2,...,m}, C=¢ .
For each column j of A compute the + penalty (K;) and
the - penalty (K,) as follows:

K; = ) 1|-1. x= ) 1-1.
1 EE: aij >0 i€E: aij<0

These penalties represent the number of excess +1 and -1
elements, respectively, in column Jj which prevent the rows
whose indices remain in E from forming a valid N matrix. A
penalty value of -1 for K;(K;) indicates that the column

does not contain a +1 (-1l) element.

Step 1: Define row penalties. For every i € E, compute

a row penalty (pi) as follows:

p, = y K+ ) K, .

B > i . <
3 aij 0 3 aij 0

This is simply the sum of + penalties for all columns in which
row i1 has a +1 plus the sum of - penalties for all columns
in which row i has a -1 .

-

Step 4: Define wmatrix ronailly. Compute the penalty (h) for

the matrix by summing the row penalties as follows:
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[ »
ige
If h =0, then go to Step 7. Otherwise, gc to Step 3.

Step 3: fHow eelection. Find the row i' ¢ E with the
greatest penalty, i.c.,

such that p,, = max p, .
i .
1LEE

tn

Find 1' ¢

(If there is a tie, choose 1' £from among the tied values.)

Compute the reflected row penalty P for 1i' as follows:

p., = f (K, +1) + y (KT+1).
"L i j — ]

3 . - . . > F 3 : . . < i

3 dl,j 0 3 al,3 )

This wouldbe therow penalty for row 1' 1f it wers to Lareflacted.

(3 b bl I S N . 2T -
Ghep 2 LJEtete, QP rejlect Poi.

#

Case i) p,, >p., - Let E<«E ~ {i'}, c« c Uu{i'}

i i
o to step 5.

Case 1ii) Py < Py Reflect row 1' . Go to Step 6.

Steps &1 Reduce ooiwmm penaities as follows:

5 + +
For all j such that a,,. >0, K, « K, - 1.
1] ] ]
Por all j such that a.,. <0, K] « K] - 1.
2] ] 3
Go to Step 1.
Jlep dr 0 Thauge soiuwm ponaitics as follows:
Using the ai'j values G ter reflection of row L',
y % 5 e + .
For all ) suach that «,,, > 0, ‘nj “ Kj + 1 and

, +
For all j such that Ay <90, K, « Kj - 1 and

" & . ' . oo ~
L R SRy PY R TR oo DGl T
Vol L AT Bl SR A e for ¥ v PR [ N S wliia 4en P [ &
PRI F A A R R Tor 0N TAG rows WAt Liwdlaes
/ o
©oa - . A e T T e wiv 4% S B y =9 - i 2 3 -~ 3 - ~ P s we
in O, sume vessivly veflected From the orecizal A makrollx,
e TR .- <yt ) e TS AT T eme of Rl rows te WarL D W st
Lo A Vallda L NATY LK. ACAHCYC T, LOMO S A XOWH XemGtioad S0In
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E and placed in C may now be reincluded in E 1if they do not
make h > 0 . Remove from C (and discard) all row indices for
rows which, if reincluded in E in present or reflected form,
would make h > 0 . I.e., remove 1 from C if:

a) 3 3, such that a,., > 0 and K: =0

1 R i1

or ai_,1 < 0 and Kf =0 .
) 3 Iy

wnd
by 3 3 such that a.. >0 and XK. =0

2 132 ]2
+

O 84 <0 and K. =0.
2 32

J0F, otherwise go to Step 8.

I3

4
th
@
[l
>
-
(y
v
e
i

*

25 Leot pow jur pethoecusior. At this point a row

Step & Le
from C may be reincluded in E . There are several possible
schemes for selecting the row. After the row is reincluded, the

column penalties are adjusted. Then go to Step 7.

Modifications can be made to Step 0 to allow for
1) Matrices including non- O ,* entries and/or 2) Pre-
specified network rows. The modifications are:
1. E={i| ag, = 0,*+*1 for all 3} .
2. Iet © = {i| row i is prespecified} .
E<«~lL-~-P
After computation of K; and K; , find for all j
+

+
if 3 1 ¢ ¥ such that aii -~ 1 then Kj A Kj + 1,

if 4 i ¢ P such that = ~1 then K; e K; + 1 .

[

1]
At termination of the algorithm, the rows in N are given by
EUP.

b eGald s obtatned Sposer Boand on bhe meXdmua row dimer-
Lot s uehacrk factorinaticn is:
A
b, - T omax (L, b, .
: J

J
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This bowid is easily computed and evidently sharp. It can
be usod to obijectively evaluate the quality of a heuristically
derived network factorizaticn. The bound may alsco be used to
prucmptively terminate factorization effort.

Cther bcunds may be similarly derived.

Table 4 displays the results of DGUB and NET factcrizations
of the benchmark mcdels. Row eligibility is determined by the
capability to scale each row, by row scaling alone, to contain
only 0, *1 entries. The AZ7 guality is the number of NET
rows found, exgprossed as a percentage of the upper bound on
maximum NET row dimension given above (actual NET quality may be

considerably better than this estimate).

S. HIDDEN NETWCRK ROWS

! are a set of rows which satisfy NET row

Hidden network rows
restrictions after linecar transformation of the model. That is,
realization of these (LNET) rows may require a general linear
transformation of the original mcdel.

The discrimination between Zinpi cit and /it iden network rows
is not (necessatily) in their use, but rather in their detec-
tivn. The transformation group associated with implicit network
rows involves orly permutations and simple scaling of individual
rows and columns. The hidden network rows require a completely
qeneral lincar trans{ormation and partial ordering. Thus,
identification of hilden networks requires significant computa-
tion just to identify eligible rows, since any given row may
conflict with subscets of its cohorts after transformation.

This problem has been solved for »omi .. /c hidden network
factorination, where all rows are shown to be LMNET or the algo-

ritinm fails. Bixby ani Cunningiam [2] and Muslem [13] have

o sgm= Tad >} - . S, P - S e o g
sovm hdldden o Siedg [D), dun e
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5
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NET Fac
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Lo

TOTL 5

1tion [8

]

Rows SEC
47 8. 40
961 1,89
150 Jd.42
578 J.9Y
317 3. 5Y
588 3. 74

5.00
0.92

NET
Rows Quazity SEC
40 33, 6H8% 13.83

199

100.00%
I8, 46%
77.51%
87.20%

100.00%

100.00%
38.33%
97.56%
83.97%
78.88%
9d.74%
96.97%
94.08%

100.00%

1.186
0.35
2.97
14,658
14.382
8.15
0.43
0.14
0.569
44.07
24.1¢
0.08
.69
V.7
.36
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3iven polvnomially complex methods for complete INET conversion.
{(The conmlete GUB protlem is polvnomial as well.)
Strategically, tho complete hidden INET factzorization
raeguires two steps:
Detastion: necessary conditions for existence of a complete
ILNET factcerization mast e established, and
Sealing: a linear transformation to achieve the NET
structure must be determined, if one exists.
Cunningnam and Bixby attempt detection, followed by scaling.
Musalem tries s-aling, then detection. This is a crucial dif-
fercnce betwesn methods, since problems whichh cannot be com-
pletely NET factorized may fail in either step.

Briefly, Cunningham and Bixky Jefeo? by showing that the
incidence matrix of the model rows can be converted to a qgraphic
matroid. They emplov a mathod by Tutth (see references of [2]).
Civen success, the graphic record of the detection is used to
attempt to scale the model to NET, or to show that no such
scaling exists.

Musalem ge:les the model to a *1 matrix, and then uses a
method by Iri (see references of [13]) to build a tree, edas by
edye, which reveals the partial ordering coincident with com-
lste hidden INET factorization.

Both methods are polynomially conplex. However, complete
INET factorization is relatively expensive by either method in
that quite a large amoung of real aritimetic and logic is
rrquired.  Underiying data structures have not been suggested
for cither method. koth methods foil 3£ complete INET factor-
iaation is impessible, and neither leaves the investiagator with
much infoxmation useful in salvaging a partial INET factoriza-
tion. We conjecture that risk of preemptive fadlure narrowly

Gy

favors the Musalem aprvroach, sinece he dofers the relatively

involved doetuecrion step.
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Locating a hidden LNET factorization of maximal rocw dimen-
sion has been suggested by Eixby [1] and by Musalem [13], but ro
concrete method is given and no computational testing is
reported. Evidently, the maeinign LNET problem is NP-hard, and
its maximal relaxation remains unsolved in the practical sense

of this report.

6. CONCLUSION

The techniques reported here have been used with great
success on a wide variety of large LP (MIP) models. The context
of this research is certainly atypical in that the models which
we work with are often sent to us for analysis and solution pre-
cisely because they have already failed elsewhere. In these
cases, our motives are to guickly diagnose suspected trouble
before optimization, prescribe remedies, and perform the actual
optimization reliably and efficiently.

This has undoubtedly biased our view of structural detection
methods. Practical considerations arising from turnaround dead-
lines and the specific advantages of our own optimization system
{v]? have colored our judgment. Many provocative suggestions
for further research have not been pursued, either due to lack
of wpportunity, to poor intuition, or to sheer economics.
wWhether or not by equivalent prejudice, Krabek [11] reports some
similar methods for simple reductions applied to laxrge MIP's.

A great deal of insight has been gained from these experi-

ments.  The cost of factorization is truly insignificant
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relative: to the information and (primarily) solution efficiency

gained thereby. Revelations have ranced from outricght rejection

—

23 absurd formulations o sultle inferences on the inter-
rersonal conflichs of model proponents., Very few models fail to
roeveal some totally ansuspected structural curiosity. Indeci,

it is ofzen some miror abverration thuat proves most revealing.

cemenimes, the e inad ol ci Loniner Seatures oolloeoe
tivaly contribute to a discovery of significant model attributes.

Cur gyenexral operational

3

uidelines has bLeen to aveid heavy
computational investment in factorization. Rather, highly
e¢fficient methods are used repagicacy on variations of each
model. Manual and ©xtuiTive analysis of these results usually
vevieal mich more tinan could be reascnably expected from any
totally automated method applied to problems of exponential
complexity. Interactive analysis of large-scale models is
uncompromisingly challenging in a technical sense and equally
rewurding.

Accordingly, we have not vet implemented maximal hidden net-
work heuristics, or block-angular clustering methods. In the
former case, we find intrinsic NET factorization to unerringly
reveal more general network forms. Also, reformulation to a NET
factorization commonly requires more than a linear transforma-
tion; variables ané constraints must freguently be augmerntcd to
achieve the desired arc and nolde lntexpretation.

In the case of block—anguldr and attendant structures, we
require a great deal more information than row and column index
subsets and aggregate relaticns to develop an effective and
cconemically sensible mathematical decomposition scheme;
further; cven fcr 'nfumiliar models such structure is usually
apparent in thoze casces that invite decomposition.

For a moru clrcumspoect and less mechanical review of struc~
tural interpretation for LE meilels, sece Greenberqg [10]. From
the swoandpeint of bis paper, the Tosinidgques reported here are

cimzls wonadis fanctions of omalvais.
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Large fuctorizations are routinely found as intrinsic fea-
tures in real-life models. However, we feel that it 1is an
abominable practice to preselytize in faver of scome particular
xmodel siructure at the cxpense of model realisin or common =ense.

For instance, network models have recently recelved unpre-
cedented attention in the literature. The implication has often
been that since networks are usually found in medels, networks
should be used as the exclusive model. This is, of course,
patent ncensense, smacking of a solution in search of a problem.
An analyst should view factorizations as specializations of
models, rather than forcing models to £it certain popular fac~

torizations [4].
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