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This paper introduces important new IunclJons for analytic solution of l..anch­
ester-type equations of modem warfare for combatbe~ two han IOgel oeous
forces modeled by power attJition.rate caeffioents with ' no offset : Tabulations
of these LanchesleroClifford·Schlill/i (or LCS) /unctions allow one to study this
partICUlar varialJle.<;oeffioent model almost as easily and ttloroughIy as l..anch­
ester's classic constant-<:oeffioent one . LCS IunclJons allow one to obtain
important information rill partICUlar, force-arnhilation prediction) wfthout having
to spend the bmeand effort of computing force.Ievei trajectories. Thechoice of
these partJcuIar functions is based on theoretical considerations that apply in
general to Lanchester·type equations of modem warfare and provide guidance
fordeveloping other canonical functions. Moreover, our new LCS functions also
provide vaJuab'e information about relatedvariable-coeffident modets. Also. we
introduce an important transtormahan of the battle's time scale that not orlIy
simptifies the forCfHevef equations. butalsoshows thatrelatwe fireeffectiveness
and intens;ry of combatare the only two weapon-system parameters determin­
ing the cou rse of such variable-coeffioent Lanchester·type combat.

I N AN EARLIER paper (Taylor and Brown (1976]), we showed how
to solve variable-coefficient Lanchester-type equations of modern

warfare for combat between two homogeneous forces. In that paper, we
introduced canonical hyperbolic-like Lanchester functions for construct­
ing the solution. Unfortunately, with only these previous results one is
limited to computing force-level trajectories and cannot gain a real
understanding of qualitative model behavior (e.g. force annihilation)
without extensive numerical computations (and only then for specific
values of model parameters). Since the appearance of our earl ier work,
several mathematical discoveries (Taylor and Comstock [1977], Taylor
[1979b]) have provided new qualitative insight about the behavior of this
combat model. We wish to show here how these new results allow
parametric analysis of combat modeled by power attrition-rats coeffi­
cients with somewhat the same facility as allowed by F. W. Lanchester's
classic constant-coefficient model. In order to obtain this analysis capa-

Subj«t d o_i{icolion: 434 Lanc~r·type equationa, «9 (orce-annihiLation prediction .
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bility, however, one must redefine the Lanchester-Clifford-Schliifli (or
LCS) functions, which we introduced in Taylor and Brown [1976].

It is important for the military OR analyst to have a clear understand­
ing of how the initial force ratio and weapon -system-capability parame­
ters interact to determine a battle's outcome. One is consequently inter­
ested in developing insights into the dynamics of combat by explicitly
portraying the relation between the various factors of the combat­
attrition process and battle outcome. Modeling battle termination is a
somewhat controversial topic (Taylor [1979a]), and no mathematical
theory exists for other than determining zero points of solutions
(i.e. force annihilation) to such differential-equation models (Taylor
[1979b]). However, it is of considerable utility just to be able to easily
predict the occurrence of force annihilation in simulated Lanchester­
type combat. One is always interested in determining what conditions
lead to the annihilation of an enemy force, since such an occurrence (of
course) guarantees victory. Although actual battles rarely go completely
to annihilation, a commander may decide to terminate an engagement
once he anticipates that annihilation is possible, and hence force-anni ­
hilation conditions may be useful in modeling engagement termination.
Additionally, a commander would seek to avoid engagements in which
his own force could be annihilated, and such conditions may provide, for
example, valuable information for the modeling of engagement avoidance.

In our earlier paper (Taylor and Brown [1976]), we gave various
examples of hyperbolic-like Lanchester functions (in particular, the LCS
functions, which arise from power attrition-rate coefficients with "no
offset"). Subsequent research by Taylor and Comstock has revealed,
however, that these canonical LCS functions must be redefined to permit
force-annihilation prediction from initial conditions without having to
spend the time and effort to compute force-level trajectories. It then
became obvious that the entire topic of representing the solution to such
Lanchester-type equations in terms of general Lanchester functions
(GLF) should be critically reexamined. Consequently, we developed new
general considerations for the selection of canonical Lanchester functions
(Taylor and Brown [19770]). Based on these considerations, we also
developed new LCS functions for the special case of power attrition-rate
coefficients with "no offset" (modeling, for example, weapon systems
with the same maximum effective range) which are presented here. These
power Lanchester (i.e. LCS) functions are significant, not only because
they correspond to attrition-rate coefficients modeling a large class of
combat situations of interest, but also because they yield valuable infor­
mation about other related canonical Lanchester functions, e.g. the offset
power Lanchester functions (see Taylor and Brown [1978] and Section
10 below). With the availability of tabulations of these new LCS func-
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tions, one can study this model almost as easily and thoroughly as
Lanchester's classic constant-coefficient one. Such models are important
for developing insights into the dynamics of combat (Bonder and Honig
[1971]. Taylor [198Oa]).

The results of this paper are also important for understanding complex
operational differential-equation models that are widely used in both the
United States and also NATO count ries as defense-planning tools (see
Huber et al. [1975. 19791. Taylor (l979a]). The modern higb-speed.Iarge­
scale digital computer has made it possible to develop and use such
complex Lanchester-type combat models (e.g. see Bonder and Farrell
(1970); Bonder and Honig; Command and Control Technical Center
(CCTC) [1979]). Nevertheless. a simple combat model such as we con­
sider here may yield a clearer understanding of important relations that
are difficult to perceive in a more complex model. and such insights can
provide valuable guidance for subsequent higher-resolution computerized
investigations. As Geoffrion [1976) has emphasized. one can use a sim­
plified auxiliary model for understanding the basic dynamics and behavior
of a large-scale complex operational model. Furthermore. one can fit an
ana lytical model to data generated from a detailed combat simulation.
and thus a simple analytical model like the one considered here may
provide an economical frame work for summarizing simulation output
data (see Ignall et al. [1978] for a lucid discussion of th is modeling
strategy in a nonmilitary context).

1. VARIABLE-COEFFICIENT LANCHESTER-TYPE EQUATIONS OF
MODERN WARFARE

We consider the following variable-coefficient Lanchester-type equa­
tions of modern warfare for combat between two homogeneous forces for
x and y > 0 (see p. 45 of Taylor and Brown (1976) for further discussion)

{
dX/ dt = -a(t)y with x(O) = xo,

(1.1)
dy/dt = -b(t)x with yeO) = Yo.

where t = 0 denotes the time at which the battle begins, x(t) and yet)
denote the numbers of X and Y at time t, and a(t) and b(t) denote time­
dependent Lanchester attrition-rate coefficients. which do not explicitly
depend on x and y. In particular. both a and b depend explicitly upon
time (perhaps via an inte rmediate variable such as range ret)~, but a does
not directly depend on the number of targets x. Although combat between
two military forces is a complex random process, such a deterministic
model of the combat attrition process is frequently employed to provide
insights into the dynamics of combat (e.g. see Weiss [1957]; Bonder and
Farrell; Bonder and Honig; Taylor and Parry 11975). Taylor [198Oa]).
Moreover, current large-scale operational models (e.g. see Bonder and
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Farrell, Bonder and Honig, CCTC) more or less take (Ll) as the point
of departure for their development through the process of model enrich­
ment (see Morris [1967] for a lucid discussion of this enrichment process).
For example, in the detailed VECTOR-2 operational model (e.g. see
CCTC), the attrition-rate coefficients are nonautonomous and depend
(in quite a complicated fashion) on, not only the engagement conditions
(e.g. range between firer and target, target and/or firer motion, posture,
ete.), but also the number of firers and targets.

Equations 1.1 are usually taken to model combat in which both sides
use aimed fire and target acquisition times are independent of the number
of firers and targets (see Taylor [1974, 1980a), Taylor and Brown [1976]
for further details). Other forms of Lanchester-type equations appear in
the literature, but we will not consider them here (see Dolansky [1964],
Taylor [1974, 1979a, 1980a)). The Lanchester attrition-rate coefficients
a(t) and b(t) depend on such variables as force separation, tactical posture
of targets, rate of target acquisition, firing doctrine, firing rate, and so
forth (e.g, see Bonder [1965, 1967, 1970]; Bonder and Farrell). Bonder
[1965J (see also Bonder and Farrell) has stressed the importance for
evaluating weapon systems of such variable coefficient differential com­
bat models to represent temporal variations in firepower on the battle­
field.

We assume that aCt) and bet) are defined, positive, and continuous for
to < t < +00 with to s 0 (see Taylor and Brown [1976], Taylor [1979b]
for further discussion). We further assume that aCt) and bet) are such
that their right-hand limits exist at to, with +00 allowed as a possibility:
we define a(to) as lim,-<,+a(t) and similarly define b(to). Note that the
values 0 and +00 are possible for a(t) and bet) only at t = to. For
convenience, we introduce the notation aCt) E L(to, T) to mean that
f~ a(t)dt exists. We also assume that aCt) and b(t) E L(to, T) for any
finite T 2: to. It follows that, for example, aCt) ~ L(to, +00) implies that
limr_+_ f~ a(t)dt = +00. We will further take aCt) and bet) to be given
in the form aCt) = k"g(t) and bet) = k"h(t), where k. and k" are positive
constants chosen so that a(t)/b(t) • k,,/k. if and only if get) • h(t) (see
Taylor [1979b, 1982)). In other words, II" and k" are basically "scale
factors," which are useful for parametric study of battle outcomes as
related to various system parameters. This factorization of aCt) and bet)
is not used directly in (1.1), but is implicit in constructing the general
Lanchester functions used to represent the analytical solution to (1.1)
(see pp. 441 and 448 of Taylor [1979b)). It is also convenient to introduce
the combat-intensity parameter Al and the relative -fire-effectiveness pa­
rameter AR defined by

Al = .Jk.k., and AR = k,,/k.. (1.2)

(See Taylor and Brown [1978], Taylor [1979a, 1980b) for further details.)
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The X force level as a function of time, x(t), may be represented as
(Taylor and Brown (1976))

x(t) = XoIC,.{O)CX<t) - S,.{O)Sx(tli (1.3)

- Yo~ICX<O)Sx(t) - Sx(O)Cx(t)I,

where the hyperbolic-like general Lanchester functions (GLF) Cx<t) and
Sx(t) are linearly independent solutions to the X force-level equation

d'x/dt' - III/a(t)]da/dtldx/dt - a(t)b(t)x = 0, (1.4)

with initial conditions CX<to) = I, ll/a(to)ldCx/dt(to) = 0, Sx(to) = 0, and
II/a(tolldSx/dt(to) = I/~. When (for example) alto) = 0 or +00, an
initial value such as II/a(tolldCx/dt(to) should be interpreted as
lim,.-.",.II!/a(tlldCx/dt(t)). Taylor and Comstock, and Taylor [1979b]
introduced and studied exponential-like GLF. In Taylor and Brown
[1976], we have discussed the representation of force levels in terms of
GLF and have shown t hat these two types (i.e, hyperbolic-like and
exponential- like GLF) are essentially the only kinds of GLF, but that
t he hyperbolic-like ones are to be prefe rred.

2. GENERAL FORCE-ANNIHILATION-PREDICTION CONDITIONS

The following theorem generalizes Lanc hester's famous square law to
variable-coefficient combat (see Taylor [1979b) for proof of a more
general result ).

T HEOREM I (Tay lor and Comstock). Assume that either a(t) f/. L(O, +00)
or b(t) f/. L(O, +00). Then the X force will be annihilated in finite time if
and only if

Xo/Yo < ~IICx(O) - Q*Sx(O)l![Q*Cy(O) - S,.{O)II, (2.1)

where the parity-condition parameter Q* is unique and given by

lim,..... [Sx(t)/Cx(t)] = I/Q* = 1/llim,_[S,.{t)/C,.{t))l. (2.2)

An answer to the seemingly simple question "Who will be annihilated
in battle?" requires a significant extension of the theory of the real zeros
of nonoscillatory (in the strict sense) solutions to the general second­
order linear differential equation (Taylor [1979b)). Furthermore, consid­
eration of Theorem I shows that the power Lanchester (or LCS) func­
tions introduced in Taylor and Brown [1976] were inappropriately de­
fined (see Taylor and Brown [1977a] for further details). It is, therefore,
the purpose of this paper to appropriately redefine the power Lanchester
functions in light of Theorem 1.
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3. COMBAT MODELED WITH POWER ATTRITION·RATE
COEFFICIENTS

A large class of ta ctical situat ions of interest can be modeled with the
following general power attrition -rate coefficients

a(t) = k,,(t + Ks)", and b(t) = k.(t + Ks + Ko)', (3.1)

where 1', v, Ks, Ko '" O. Taylor and Brown [1976J discuss the modeling
roles of Ks and Ko. We will call Ks the starting parameter, since it allows
us to model battles that begin within the maximum effective ranges of
both opponents. We will call Ko the offset parameter, since it allows us
to model battles between opposing weapon systems with different maxi­
mum effective ranges. We also observe that to = -Ks .

The above nomenclature is motivated by Bonder's [1965] model of a
constant-speed attack against a static defensive position

dx f dt = - a(r)y, and dy'[dt = -fl(r)x, (3.2)

where r denotes the range between opposing forces, and a (r) and fl(r)
denote range-dependent attrition-rate coefficients. Range is related to

time by

r(t ) = r. - vt, (3.3)

(3.4)
r.. :s r,for

for

where 0 :5 t :5 r.lv, r. denotes the opening range of battle, and v > 0
denotes the constant attack speed. For example, consider the constant­
speed attack of a homogeneous Y force against the static defensive
position of a homogeneous X force (see Figure 1). The basic idea is t hat
force separation (i.e. range between the oppos ing forces) cha nges over
time and that the fire effectiveness of (for example) a single Y firer,
denoted as a(r) , depends on the force separation.

In many cases of tactical interest, we may model the fire effectiveness
of the Y weapon system as a function of range with (see pp. 196-200 of
Bonder and Farrell)

{
a.O - rlra)"

a (r) =
o

where r; denotes the maximum effective range of the Y weapon system
and I' 2: 0 models the range dependency of Y's attrition-rate coefficient
(see Figure 2). We model fl(r) similarly, with corresponding quantities r.
and v,

Substituting (3.3) and (3.4) into (3.2), we find that K. = (r. - ra)/v
and Ks = (ra - ro)/ v, and that k. = ao(vlr)a and k. = flo(vlr.Y. T hus, Ko,
Ks 2: 0 if and only if r» 2: r.. '" roo Moreover, for th is part icular application
(and this situation is typical), the attrition-rate coefficients are techni-
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cally not defined in the tactical scenario for t > t_,. Nevertheless, one
can conceptually embed Bonde r's tactical model with these time-depend­
ent attrition-rate coefficients in the mathematical model in which (3.1)
are assumed to hold for all t 2: 0 as long as one is careful not to use any
quantities computed from the mathematical model outside range of
definition of the tactical scena rio. In particular, one must verify that
force annihilation occurs within the range of definition of the tactical
scenario (e.g. before t.... for Bonde r's tactical model), and this require­
ment generates the need of computing the time at which force annihila­
tion occurs in the mathematical' model in which the coefficients are
assumed to hold for all t 2: O. We raise this point again in Sections 6 and
8 and illustrate it in the examples given in Section 9.
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Figure 1. Diagram of Bonder's constant-speed attack model. Force
separation, r(t), is given by r(t) = '0- vi.

When the offset parameter is equal to zero (i.e. Ko = 0), the coefficients
(3.1) reduce to the following power attrition-rate coefficients with "no
otiset "

a(t) = k,,(t + Ks)", and bIt) = k.(t + Ks )". (3.5)

As we have just seen above in Bonder's model, these coefficients model
(for example) combat between weapon systems with the same maximum
effective range, so that there is no "offset" in the capabilities of the
opposing systems to "reach out" on the battlefield. It is the purpose of
this paper to introduce new power Lanchester functions that facilitate
force-annihilation prediction (and also determination of how long the
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battle will last) for "aimed-fire" combat modeled by the power attrition­
rate coefficien ts with "no offset" (3.5). The results of this section show
how the physical characteristics of the weapon systems and environment
are related to these coefficients.

4. A TRANSFORMATION TO NORMALIZE THE BATTLE'S TIME
SCALE BY THE INTENSITY OF COMBAT

In this sect ion we show how transformation of the battle's time scale

2500

'a

500
0 .0 L_---.-__=.::::::j:=:;;~::::::..:~-~

o 1000 1500
Range , (mete,, )

Figure 2. Dependence of Y's attrition-rate coefficient a (r ) on the
exponent IJ with the maximum effective range of the weapon system and
kill rate at zero range held constant. [Nores: (1) The maximum effective
rangeof the system is denoted a. r. = 2000 meters. (2)a(O) = a. =0.6X
casualti es/(unit time x number of Y firers) denotes the weapon-system
kill rate for Yat zeroforce separation (range). (3)The opening rangeof
battle is denoted a. r. = 1250 meters and (a••hown) r. < r •. )

0.2

0. 6
AIt,ition­

Rote
Coeff icient

a ( r )
0.4

provides important insight into the parametric dependence of the course
of combat. Accordingly, we introduce the new independent variable T

defined by (see Taylor and Brown [1976, 1977a]. Taylor [1979b] for
further details)

TIt) =i'~a(s)b(s)ds, (4.1)

and let TO denote T(O). As is readily seen. this transformation is well
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defined and invertible. We observe that 10 s 0 implies that TO2: O. If we
denote the "average intensity of combat" as -to(t )b(t ), then

-to(t )b(t) t = {Oft) J.' -to(S)b(S)ds}t = T - TO. (4.2)

The substitution (4.1) transforms 0.4) into

d'x/dT ' - ('''')ld In R(t )/dT/dx/dT - x = 0, (4.3)

with initial conditions X(To) = Xo and /1/-tR(O)ldx/ddTo) = - Yo, where
Rit) = o(t )/b(t). Equation 4.3 is highly significant (see Section 10 below)
because it clearly shows that the course of combat depends on just the
two weapon-system parameters: (1) R(t) = o(t)/b(t), the relative fire
effectiveness (Y to X) of the opposing weapon-system types, and (2) /(t)
= -to(t)b(t), the intensity of combat (through (4.1), which relates I (t) to
T). In particular, from (4.3) we see t hat the nature of temporal variations
in relative fire effectiveness will have a significant effect on the course
of combat (see T aylor [1980b] for further details).

For the power attrition-rate coefficients with no offset (3.5), the
transformed X force-level equation becomes

d'x/dT' + 1(2q - 1)/Tldx/dT - X = 0, (4.4)

with initial conditio ns X(To) = Xo an d I(T/2) 2q-1dx/dT/ ,••• = -yoJX;; IAi/("
+ " + 2)1. Here

and

q = (" + 1)/(" + " + 2), (4.5)

dt) = 12Ai/(" + " + 2)l(t + K s ),· · ..2J/'. (4.6)

Let us observe that 0 < q < 1 when" and" > -1. Furthermo re, q > '''' if
and only if dR/dt < 0, i.e, R(t) is a strictly decreasing function of time.

5. LANCHESTER -CLIFFORD·SCHLAFLI (LCS) FUNCTIONS

Consider the function Fa(x) defined by the power series

Fa(x) = f(o) L>-o (x/2)'-'/lk!r(k + a ll. (5.1)

For a ~ 0, -I, -2, .. . , the radius of convergence for Fa(x) is infinite by
the ratio test for convergence of power series (Knopp (1956)) . Hence,
Fa(z) is an enti re function of the complex variable z = x + iy with an
essential singularity at the point of infinity. Now consider the function
Ha(x) defined by the infinite series

Ha(x) = rca) L>-o (x/2) " " a'/lk!r(k + a + Ill. (5.2)

Observing that Ha(x) = 0/a)(x/2)'"Fa+l(x), we see that for a > 0 the
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infinite series (5.2) is uniformly convergent on compact subsets of the
complex plane. One can also readily deduce the recursive relation F.(x)
= Fo+,(x) + l(x /2) '/[a(a + 111F•• ,(x). We will call the functions F.(x)
and H.(x) Lanchester-Clifford-Schliifli (LCS) functions. Other properties
are readily deduced and are given in Table I.

Although the solution of the X force-level Equation 1.4 with the power
attrition-rate coefficients (3.5) may be expressed in terms of known
higher transcendental functions (see Taylor [1974]. Taylor and Brown
[1976]. Taylor and Comstock) , we have chosen to introduce the LCS
functions, since tabulations of these other functions are only available
for a very restrictive range of parameter values of interest in Lanchester
combat theory. For example, we can construct such solutions with
modified Bessel functions of the first kind of fractional order, but
tabulations of these (e.g. see Abramowitz and Stegun (1964)) exist only
for a restrictive set of values of the order p (i.e, p = ±'A, +'h, ±'h, ±%, ±

TABLE I
PROPERTIES O. THE LeS fuNCTIONS F.(%) ANO H.(%)

1. dF.Jd% - (%/2)' ·"H.(%).
2. dH.Jd% - (%/2)"" F. (%).
3. F. (O ) - 1.
4. H.(O) - 0 for a > O.
5. F.(x)FI.. (x) - H.(:r)H1...(x ) 0::: 1 for all % where a is neither an integer nor zero.
6. dF. /d%(O ) - O.
7. 1(42)'·"dH.Jd%(%)I-. - 1.
8. F

'
/2(x ) - cosh s.

9. H 1/1(%) - sinh x.

'A), where p = (" + 1)/(" + p + 2). Furthermore, there are no tabulations
of functions corresponding to the quotient of two GLF. Consequently,
we have introduced our new LCS functions, which provide much of the
information desired about such battles. The naming of our LCS functions
follows from the facts that a function similar to F.(x) was introduced by
Ludwig Schlafli [1867/68] and that a related one appears in a posthumous
fragment of the great English geometer William Kingdon Clifford
(1882).

The function F.(x) satisfies the linear second-order ordinary differen­
tial equation

d'F./dx' + l(2a - 1)/xldF./dx - F. = 0, (5.3)

with initial conditions F.(O) = 1 and dF./dx(O) = 0, while H.(x) satisfies

d'H./dx' - l(2a - 1)/xldH.Jdx - H. = 0, (5.4)

with initial conditions (for a > 0) H.(O) = 0 and l(x/2)I-2·dH./dx(xll_
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= 1. Thus, IF., HI_.I is a fundamental system of solutions to

d'F/dx' + 1(2a - l)/xldF/dx - F = 0, (5.5)

with Wronskian W(F., H._.) = (x/2)'-" . It follows that the GLF for the
X and Y force-level equations for combat modeled by (1.1) with attrition­
rate coefficients (3.5) are given by

Cx!t) = Fq(T), Sx(l) = p.t/(I' + v + 2)12q-IHp(T), (5.6)

Cy(t) = Fp(T), Sy(I) = IAt/(1' + v + 2)J'-2qHq (T), (5.7)

where q is given by (4.5), P = 1 - q, and T(I) is given by (4.6).
If we define

T.(x) = HI_.(x)/F.(x) (5.8)

and let Tx(l) = Sx(t)/Cx(l) denote a hyperbolic-like GLF corresponding
to the hyperbolic tangent, then

Tx(l) = IAt/(1' + v + 2)12q- 'Tq(T). (5.9)

Taylor [1979b] shows that for I' and v > -1, Tx(t) is a strictly increasing
function with range [0, l/Q*) for I E [0, +CXl) and th at

Q* = Ir(q)/r(p)IlAt/(1' + v + 2)J'- 2q. (5.10)

Conseque ntly (2.2) and (5.9) yield that T.(x) is strictly increasing with
T.(O) = 0 and

lim._~T.(x) = I'(I - a)/r(a). (5.11)

6. USE OF LCS FUNCTIONS FOR ANALYZING COMBAT

T he Lancheste r-Clifford-Sc hliifli (LCS) functions F.(x) and H.(x) are
very useful for ana lyzing "aimed-fire" combat modeled by the power
attrition-rate coefficients with "no offset" (3.5). Here, we assume that
the attrition-rate coefficients (3.5) hold for all I 2: 0 in the mathematical
model (1.1). Recall (see Section 3 above) that one must be careful not to
use any results computed from the mathematical model out of the range
of definit ion of the tactical scenario describing the tactical sit uation
considered in any particular application. For such combat, these LCS
functions may be used to (l) compute force levels as a function of time,
(2) predict force annihilation, and (3) compute the time of force annihi­
lation. We will now show how to obtain this information.

According to (1.3), (5.6), and (5.7), we may write the X force level as

x(l) = XolFp(To)F.(T) - Hq(To)Hp(Tll

- Yo.n::;.IAr/(1' + v + 2112q-'lFq(To)Hp(T) - Hp(To)Fq(T)I.
(6.l)
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From (5.11) and (6.1) (see Taylor [1979b] for details), we may conclude
the following force-annihilation-prediction result. (Alternatively, we may
substitute (5.6). (5.7). and (5.10) into Theorem 1 to obtain Theorem 2.)

THEOREM 2: Consider combat between two homogeneous forces modeled
for all t 2: 0 by (1.1) with power attrition-rate coefficients (3.5). Assume
that I' and " > -1. Then the X force wiU be annihilated in finit e time if
and only if

""/Yo < JX;,(>-//(I' + " + 2»)e-p(r( p )/r(q))([F,(To)

- (r(q)/r(p»)Hp(ro)]/[Fp(ro) - [r(p)/r(q)]H.(ro)]I .

When ro = 0 (i.e. Ks = 0), the X force will be annihilated to finite time if
and only if

""/Yo < JX;,(>-//(I' + " + 2»)...."(r(p)/r(q» . (6.2a)

However, one must verify that force annihilation does not occur out of
the range of definition of the tactical scenario for any particular appli ­
cation (e.g. after t_ for Bonder's constant-speed attack model considered
in Section 3 above) . Turning now to the determination of the time at
which annihilation occurs for the mathematical model in which the
attrition-rate coefficients (3.5) have been assumed to hold for all t 2: 0,
we see that when (6.2) is satisfied, the t ime to annihilate the X force, tax.
is determined by x(t,X) = O. It follows that

T. (r(t,X») = (""Fp(ro) + yoJX;,(>-//(1' + "+ 2)]r-P

.Hp(ro)]/ [""H. (ro) + yoJX;,[>-//(1' + "+ 2)]"-PF,(To)].

or. more explicitly.

t,X = r -1IT;'[[""Fp(ro) + yoJX;,[>-r!(1' +" + 2)]"-P

.Hp(ro)I/(""H. (ro) + yoJX;,(>-r!(1' + P + 2)je-PF,(To)Jll.

where r -' and T; ' denote inverse functions.

(6.4)

7. AVAILABLE TABULATIONS OF LCS FUNCTIONS

Tabulations of the Lanchester-Clifford-Schliil1i functions, which are
given in Taylor and Brown [1977b. 1977c), are available from the Na­
tional Technical Information Service. These reports contain five-deci­
mal-place tables of the hyperbolic.like LCS functions Fa(x), H,~(x), and
T.(x) for values of the argument x = 0.00(0.01)2.00(0.1)10.0 and various
values of the order a. The short table (Taylo r and Brown [1977c])
contains tabulations for eleven values of a in the range (0. 1) correspond­
ing to 1', P = 0, I, 2, 3; while the longer table (Taylor and Brown
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[1977bJ) contains tabulations for 26 values of a in the same range
corresponding to u, P = 0, lA, Ih , 1, Ilh, 2, 3. As we have seen above in
Section 3 (see (3.2), (3.4), and Figure 2), such values of Jl and. allow one
to analyze, for example, a wide variety of range capabilities for weapon
systems in Bonder's [1965] constant-speed attack model (3.2). These
tables have been calculated by the recursive methods given in Section 8
of Taylor and Brown [1976].

8. OUTLINE OF COMPUTATIONAL PROCEDURE

The above-mentioned tabulations of these new LCS functions make
the analysis of an important class of Lanchester-type battles a compar­
atively easy matter. Before we consider numerical examples to show that
insights may be easily obtained into the dynamics of combat, let us
outline the general computational procedure (based on the results given
in Section 6) that one follows in the analysis of such combat. Accordingly,
the basic steps involved are as follows:

(1) Determine from (6.2) whether the X force can be annihilated,
(2) If annihilation is possible, determine the time of the X force's

annihilation as follows:
(a) Compute T .(T.x ) by (6.3) [here T.X = «t.X )],

(b) Using interpolation, determine T. X from the appropriate tab­
ulation of T., and

(c) Using (4.5), compute t.x = T-l(T. X) .

Note from the above that these two determinations involve only the
initial force ratio u, = ro/Ya (and not the individual initial force levels
themselves). Additionally, one must verify that such numerical results
hold within the range of definition of the tactical scenario in any
particular application. For example, in the examples of the following
section, we applied the above computational procedure to Bonder's
constant-speed attack model for which the tactical scenario is only
defined for 0 S t s t...,. = ra/v. In these examples, when the X force is
not annihilated within this given time t_" we calculated the final X
force level by (6.1) with the help of our tabulations.

9. NUMERICAL EXAMPLES

In the section we examine a couple of numerical examples to show how
our results lead to insights about the dynamics of combat between two
homogeneous forces. As in Taylor [1974] and Taylor and Brown [1976],
we consider Bonder's [1965J model (3.2) for the constant-speed attack
against a static defensive position. We will focus on the new results of
this paper [in particular, the prediction of battle outcome from initial
conditions without explicitly computing the force-level trajectories] and
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will follow the computational procedure outlined in the previous section.
Here the tactical scenario is defined only for 0 :s t :s t~" since the
constant-speed attack ends at t~. = ' o/v. Hence, for t > t~. one must
not use any results from the mathematical model in which the attrition­
rate coefficients (3.5) have been assumed to hold for all time. From the
input data given in Table II, we compute the parameter values shown in
Table III. We observe from Table 8B of Taylor and Brown [1977b] and
Table III above , the predicted agreement between I'f I - a)/r(a) and the
limiting value of T .(x) as x --+ +00 (see (5.11» for a = q = ~ (recall (4.5)).
We now consider two cases: (1)'0 = 2000 meters, and (11)'0 = 1250
meters. The interested reader can find these examples worked out in
even more detail in Taylor and Brown (1977b, 1977c].

When z, = 2000 meters (see Figure 3 of Taylor [1974]), we have Ks =
oand T O = O. The maximum time that the battle can last is t~. = 14.91
minutes, since at this time the attackers reach their final objective (i.e
the defensive position). We now consider the qualitative behavior of the

TABLE II
INPUT DATA FOR NUMERICAL EXAMPLES

~ ... 1... - 2.
ao - O.06X caaualties/minute/Y unit.
Po = O.6Y casualties/minutelX unit.
r. c ' . = 2000 meters.
v .. 5 miles /hour.

Jl = 1, v = 2 force-level trajectory shown in Figure 3 of Taylor [1974].
T heorem 2 te lls us that X can be annihilated if and on ly if Xo/Yo < 0.420.
By (6.3), the an nihilation time of the X force is given by Tq[dt.x )] =

3.544 Xo/Yo. For Xo = 10, Yo = 30, we have Tq(T.x) = 1.8122 so that from
Table 8A of Taylor and Brown [1977b] (using linear inte rpolation) we
obtain T. X = 1.009. Hence, (4.6) yields t.x = 14.24 minutes and , .x = 89.8
meters. Further results are given in Table IV.

When '0= 1250 meters (see Figure 3 of Taylor and Brown [1976]), we
have Ks = 5.5923 meters, T O = 0.0975, and t.... = 9.32 minutes. In this
case (again, for Jl = I, v = 2), X can be annihilated if and only if Xo/Yo<
0.382 with (from (6.3» the annihilation time of the X force given by
Tq(T.x) = (3.565"0 + 0.223)/(0.156"0 + 1.004), where "0 = Xo/Yo. Some
further numerical results are given in Table V. Again, these parametric
results should be contrasted with the sing le Jl = I, v = 2 force-level
trajectory shown in Figure 3 of Taylor and Brown [1976].

10. FINAL REMARKS

In Sections 6 and 9, we have seen how our new definition of power
Lanchester functions (guided by the general requirements for GLF given
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in Taylor and Brown [1977a)) allows one to conveniently obtain much
valuable information about the model (1.1) with attrition- rate coefficients
(3.5) without explicitly computing the entire force-level trajectories. In his
well-known survey paper on the Lanchester theory of combat, Dolansky
suggested the development of such outcome-predicting relations without
solving in detail and/or computing force-level trajectories as one of
several problems for further research. Our Theorem 2 is a step toward
resolving this problem (see also Taylor and Parry; Taylor and Comstock;
Taylor [1979a)). Previously, one was limited to being able to compute
only force-level trajectories, but now we can tell who is going to be
annihilated (and when ) without explicitly computing the trajectories.

We have answered questions about qualitative model behavior (e.g.
force annihilation) , not only for specific values of, for example, initial
force levels, but also for the entire possible range of values for the initial
force ratio (i.e. parametric analysis of model behavior). The results of
this paper may be used for other parametric analyses (see Bonder [1971]
for a lucid discussion of the importance of such analyses), e.g, parametric

TABLE III
PARAMETER VALUES FOR N UMERICAL EXAMPLES

k.. - 4.0233 x lO-s X casualties!(minute)" /Yunit.
k. - 2.6979 x 10- 1 Y casualtie s/(minute)"/X unit.
p - 2/5, q - 3/ 5.
f(p) /f(q) - 1.48951.
Ko _ o.

dependence of battle outcome on attrition-rate coefficients. Thus, our
new results now allow one to develop important insights into the dynam­
ics of combat between two homogeneous forces with temporal variations
in fire effectiveness. With the availability (Taylor and Brown [1977b,
1977c]) of tabulations of the LCS functions, one can now analyze combat
modeled by the power attrition-rate coefficients (3.5) with somewhat the
same facility as he can for the constant-coefficient case and thus aid in
parameter analyses.

In his classic paper, Lanchester [1914] considered constant fire effec­
tiveness for individual firers and deduced his famous square law

111>:0' - x'(t)l = a lYo' - y'(t )j, (10.0

where a and II denote the constant attrition -rate coefficients. It follows
from (10.1) that (provided there is no "time limit" for combat)

X will be ann ihilated if and only if >:O/Yo < ,la/II. (10.2)

Thus, we see that equality of Lanchester-type fighting strengths depends
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TABLE IV

A N NIHILATI ON OF TH E X FOR CE AS A F UNCTION Of THE INITIAL FOR CE RATIO

FOR 1'0 = 2000 METERS

767

(Xo!y,)

0.333
0.250
0.200

t./(Minules)

14.24
11.61
10.19

r."(Meters)

69.8
443.2
633.2

on two parameters: (I) initial force ratio, and (II) relative effectiveness.
When the timing of military actions is also considered, we add a third
parameter, the intensity of combat = J;;fJ, to this list of significant
combat parameters. No such simple relation like the square law (10.1),
which yields (10.2), holds in general for variable attrition-rate coeffi­
cients. However, by transforming the independent variable t to normalize
the battle's time scale by the intensity of combat, we found that the
course of such variable-coefficient combat depends on only the two
weapon-system parameters: (I) relative fire effectiveness, R(t ) = a(t)/
bIt ), and (II) intensity of combat, Itt) = '/a(t )b(t ). This way of viewing
the attrition-rate coefficients a(t) and b(t) is both intuitively appealing
and also important because under some circumstances relative fire effec­
tiveness (i.e. only one parameter) plays the major role in determining
battle outcome (e.g. when a(t)/b(t) • constant, the intensity of combat
does not influence th e outcome of battle (provided that there is no time
limitation». (See also Taylor [1980b].) Moreover, we did extend (10.2)
to combat modeled with the power attrition- rate coefficients with "no
offset" (3.5) (see Theorem 2). This is the first time that such a generali­
zat ion of the square law has been obtained for the variable-coefficient
Lan chester-type model (1.1) with a( t) /b (t) " constant. We observe that
for Ks > 0, this "exact" outcome-prediction relation (i.e. necessary and
sufficient condition for force annihilation) involves higher transcendental
functions (here, the LCS functions) and is comp lementary to the suffi­
cient condition (involving only elementary functions) given by Taylor
and Parry for Ks > O.

Work by Bonder [1965, 1967, 1970], Clark (1969], Barfoot [1969J, and

TABLE V

ANNIHILATION OF THE X FORCE AS A F UNCTION OF THE INITIAL FOR CE RATIO

FOR '-0 = 1250 METERS

(Xo!y,)

0.333
0.250
0.200

10.63
7.56
6. 17

235.9
422.8

• t- - 9.32 minutes and X, = x(r = 0) - 1.35.
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Bonder and Farrell on the prediction of Lanchester attrition-rate coef­
ficients (see Taylor and Brown [1976J for further discussion and refer­
ences) has generated interest in variable-coefficient Lanchester-type
models. Interest in the power attrition-rate coefficients with "no offset"
(3.5) is provided by S. Bonder's [19651 model (3.2) and his examination
of predicted attrition rates for various weapon systems (see pp. 196-200
of Bonder and Farrell). However useful our results may be in their own
right , they have far greater import: (1) they are a model for the treatment
of other Lanchester functions and their tabulations, and (II) they may
be used in the numerical determination of the parity-condition parameter
Q* for related attrition-rate coefficients (e.g. (3.1) with K«> 0). In Taylor
and Brown [19781, we show how our tabulations of the LCS functions
playa key role in the numerical determination of the parity condition
parameter Q* for the general power attrition-rate coefficients (3.1) with
positive "offset" (i.e. s,» 0).

We have extended our mathematical theory (Taylor and Brown
[1976]) of variable-coefficient Lanchester-type equations of "modern
warfare" for combat between two homogeneous forces in order to be able
to more thoroughly analyze such models (see also Taylor and Brown
[1977a)). The classic ordinary-differential-equation theories (e.g. see
Hille (1969]) were inadequate to supply all the answers sought about
such combat models (Taylor [1979b]). The mathematical theory of the
model (1.1) with coefficients (3.5) is now nearly as complete as that of
the constant-coefficient model. Such results as we have given here are
very useful for understanding the dynamics of combat, i.e. how the trading
of casualties will be projected over time. H. K. Weiss [1959) has empha­
sized that such a simplified combat model is particularly valuable when
it leads to a clearer understanding of such significant relationships that
would tend to be obscured in a more complex model.
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