Outfitting and Pre-positioning Theater Ballistic Missile Defense AEGIS Battle Groups to Meet an Exigent Threat of Attack

Gerald Brown Kevin Wood Naval Postgraduate School

The Problem

- Weapons of Mass Destruction:
- intercontinental ballistic missiles developed by rogue states

The Problem

• New threats from rogue states

A Solution

• Anti-Ballistic Missile Defenses

A Solution

- Anti-Ballistic Missile Defenses
- Multiple-tier defense
- Air Force, Army, and Navy programs

A Navy Solution

• AEGIS Ships re-fitted to carry and launch a variety of anti-missile missiles

A Navy Solution

• AEGIS can be pre-positioned advantageously

Aegis Platform

Aegis Platform

The Navy AEGIS Problem

• How do outfit and pre-position a limited number of AEGIS platforms to meet an exigent threat

The Navy AEGIS Problem

• We may have multiple AEGIS defenders

Expedia:	RUSSIA	65° () 00	t.
Featuring MapPoint® Y	akutsk	Magadsin	50*
En Andre Pet	ropávlovsk-Kar	nchatskiy 👝 🦳	180*
Ulaanba	ater		45*
907 MONGOLIA	Qidinar		40°
CHINA Changchi	un 🕞 🔔 Vladiv	/ostok	170
95°	Seoul	HTTL	X
Laryua		Tokyo	30*
Chongoing	gju japan ^N	lagoya	1655
Guangz	hou PACIFI	C OCEAN	00.0
	+	Tropic 9	Ŧ
© 2002 Microsoft Corp an	nd/or its suppliers.	140° 145° 150°	15°

The Navy AEGIS Problem

- Intercept during boost phase is best
- Intercept during ascent phase is also feasible
- After this, other layers of defense take over

Expedia:	RUSSIA	65° () 00	t.
Featuring MapPoint® Y	akutsk	Magadsin	50*
En Andre Pet	ropávlovsk-Kar	nchatskiy 👝 🦳	180*
Ulaanba	ater		45*
907 MONGOLIA	Qidinar		.१२०° 40°
CHINA Changchi	un 🕞 🔔 Vladiv	/ostok	170
95°	Seoul	HTTL	X
Laryua		Tokyo	30*
Chongoing	gju Japan ^N	lagoya	1655
Guangz	hou PACIFI	C OCEAN	00.0
	+	Tropic 9	Ŧ
© 2002 Microsoft Corp an	nd/or its suppliers.	140° 145° 150°	15°

- Engagement cycle is very short a minute or two
- Geographic proximity is important
- Each AEGIS will carry just a few interceptors
- More than one interceptor variant may be carried

- A rogue attack will likely be a single salvo
- The salvo will consist of just a few, or perhaps just a single ICBM

- Source of attack salvo is a small geographic area
- Physics limits boost and and ascent phase track to threatened targets

- Neither attacking ICBM's, nor defending interceptors work perfectly
- The probability of a successful attack is a function of the attacking ICBM(s), what is attacked in the salvo, and the joint effect of interceptors launched

- The probability of an attack succeeding despite a defense interception is not an independent function of each constituent event
- A reasonable, conservative assumption is that each AEGIS platform will control its own engagement

A Notional Decision Model

- The attacker wants to maximize expected target damage
- The defender wants to minimize expected target damage

A Notional Model

- We seek defense actions (an intercept) that minimizes the attacker's maximum damage
- We assume that the attacker knows what we know where we are, and what we'll intercept with and that the attacker will optimize his salvo with this knowledge

An Attack

- Consists of an ICBM launched at a vulnerable target with expected damage
- Multiple ICBM types allowed
- Each ICBM type limited in number

A Defensive Action

- Each ICBM intercept option involves a salvo of interceptors varying in number and type
- Each AEGIS platform may be pre-positioned at some defendable ocean station
- Each AEGIS platform may be outfitted with a variety of missile type loadouts

A Defensive Action

- ICBM intercept probability computed for entire salvo as a single event
- At most one option can be launched at each ICBM
- Simultaneous engagements by an AEGIS platform may be limited

An Optimization Model

$$\begin{cases} \max_{Y} \sum_{a} \left(k_{a} v_{t_{a}} \left[1 - \sum_{d \in D_{a}} (1 - \delta_{d}) X_{d} \right] \right) Y_{a} \\ s.t. \sum_{a \mid m = m_{a}} Y_{a} \leq s_{m} \\ \sum_{a \mid t = t_{a}} Y_{a} \leq 1 \\ Y_{a} \geq 0 \end{cases} \quad \forall m \in M \left[\alpha_{m} \right] \\ \forall t \in T \quad [\beta_{t}] \\ \forall a \in A \end{cases}$$

A Defensive Action

- Where to place each AEGIS defender?
- How to outfit each AEGIS defender?
- Against an ICBM salvo, which AEGIS defender(s) should engage each ICBM?

An Optimizaton Model

$$\min_{\substack{Y \in X \\ X \in X}} \begin{cases} \max_{Y} \sum_{a} \left(k_{a} v_{t_{a}} \left[1 - \sum_{d \in D_{a}} (1 - \delta_{d}) X_{d} \right] \right) Y_{a} \\ s.t. \sum_{a \mid m = m_{a}} Y_{a} \leq s_{m} \\ \sum_{a \mid t = t_{a}} Y_{a} \leq 1 \\ Y_{a} \geq 0 \end{cases} \quad \forall m \in M \left[\alpha_{m} \right] \\ \forall t \in T \quad [\beta_{t}] \\ \forall a \in A \end{cases}$$

Restrictions on AEGIS Actions

	$\left(\sum_{d\in D_a} X_d \le 1\right)$	$\forall a \in A$
	$X_d \leq \sum_g R_{dg}$	$\forall d \in D$
	$R_{dg} \leq Z_{gld}$	$\forall d \in D, g \in G$
	$\sum_{q} Z_{gl} \le 1$	$\forall l \in L$
	$\sum_{l=1}^{n} Z_{gl} \le 1$	$\forall g \in G$
	$\sum_{d} n_{di} R_{dg} \leq F_{ig}$	$\forall i \in I, g \in G$
$X \in \mathbf{X} = \mathbf{x}$	$\begin{cases} F_{ig} + SLACK_{ig} = fmax_i \end{cases}$	$\forall i \in I, g \in G \left\}$
	$\sum_{p} F_{ig} \leq s_i$	$\forall i \in I$
	$X_d \in \{0,1\}$	$\forall d \in D$
	$Z_{gi} \in \{0,1\}$	$\forall g \in G, i \in I$
	$R_{dg} \in \{0,1\}$	$\forall d \in D, g \in G$
	$F_{ig} \in \{0, 1, 2,\}$	$\forall i \in I, g \in G$
	$fmax_i - fmin_i \ge SLACK_{ig} \ge 0$	$\forall i \in I, g \in G$
		J

An Optimization Model

 $\min_{\alpha,\beta,X\in\mathbf{X}} \sum_{m\in M} s_m \alpha_m + \sum_{t\in T} \beta_t$ $\alpha_{m_a} + \beta_{t_a} + \sum_{d \in D_a} p_d k_a v_{t_a} X_d \ge k_a v_{t_a} \quad \forall a \in A$ *s.t*. $\sum X_d \le 1 \qquad \qquad \forall a \in A$ $d \in D_a$ $\sum n_{di} X_d \le b_i \qquad \forall i \in I$ $a \in A, d \in D_a$ $\alpha_m \geq 0$ $\forall m \in M$ $\beta_t \ge 0$ $\forall t \in T$ $X_d \in \{0,1\} \qquad \forall d \in D$

An Optimization Model

- We prefer Benders Decomposition
 - isolate the ICBM attack subproblem
 - from our defensive action master problem
- This permits the defensive action to influence any feature in the attacker's problem

Instance

- 8 ICBM's in a single salvo
- 5 Aegis platforms
- 20 Candidate Ocean Stations
- 2 Interceptor types
- 25 Interceptors available

Conclusion

- Optimization offers a key tool to investigate what to develop, how to outfit, and where to deploy
- To defend from any ICBM attack scenario