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The occurrence of early failures in a fixed-sample acceptance test, where 
the sample observations are obtained sequentially, presents an interesting 
decision problem. I t  may be desirable to abandon the test a t  an early 
stage if the conditional probability of passing is small and the testing cost 
is high. This paper presents a stopping rule based on the maximum-likeli- 
hood estimate of total costs involved in the decision to continue beyond 
an early failure. A Bernoulli model, an exponential model, and a Weibull 
model are examined. 

S UPPOSE THAT one of the acceptance criteria specified in the design 
L of a new product is that a random sample of n items show r ,  or fewer, 
failures in a performance test. If the performance test requires an ex- 
tensive period of time to complete, an interesting decision problem may 
arise. The investigator may be able to judge, well before completion, that 
the probability of passing is low and design modifications are required. 
By abandoning the partially completed test, the investigator can save the 
delay cost of waiting until completion, as well as the actual cost of perform- 
ing the remainder. There is an accompanying risk that the decision to 
abandon was incorrect, resulting in costs for an unnecessary design change 
and a complete rerun of the test. 

There are two situations where this problem may arise. The first is 
caused by a limitation in facilities that necessitates sequential item-by- 
item testing. The observations mill be sequential Bernoulli trials. 

Second, the performance criterion may be a life test for an extended 
number of hours. If the n items are tested simultaneously, the sample 
observations mill be order statistics from whatever parametric probability 
model is the true underlying life distribution. 

This paper is concerned with the specification of decision rules for judg- 
ing whether to continue or abandon performance tests when early failures 
are encountered. Both the random-sample (sequential Bernoulli trials) 
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and ordered-sample (life testing) cases will be examined. I n  the life-testing 
model, we consider cases where the true underlying distribution is either 
exponential or Weibull. 

ASSUMPTIONS 

LET C1 = cost per hour of conducting the test, Cz= cost per hour of delay in 
finishing the design (e.g., facilities and personnel devoted to this project 
that would be otherwise available), C3= total cost of redesign (including the 
time required to  implement it). 

The cost of redesign C3 is undoubtedly the most difficult to  estimate. 
This cost is to  include whatever redesigns are necessary to  make the prob- 
ability of failure on rerun negligible. To simplify the mathematics, it is 
assumed that unnecessary design changes, caused by incorrectly abandoning 
the test, will also have a beneficial effect on performance. This assumption 
appears warranted for many electronic and mechanical systems, where the 
introduction of redundancies, higher-quality components, etc., can always 
be expected to improve reliability. 

(a) The Bernoulli model. Consider a requirement for r or fewer failures 
in n trials at  the point where k trials have been performed and have resulted 
in i failures. If 0 is the probability of a single failure, then the a priori 
probability of passing is given by the negative binomial probability that  the 
(rf 1)st failure occurs at trial (nf I ) ,  or later: 

After i failures are observed in k trials, the conditional probability of 
passing may be estimated numerically by the method of maximum lilteli- 

and is - - 1 ) ) 7 + 1  ( ;)~-r+t-l  

Po= C 1- - 
l=n-k+l 7"-1 k 

Let C A  be the estimated expected cost of abandoning the test after k 
trials. If each individual observation requires h hours, then 

The second term in the brackets has Ic as a multiplier, since n additional 
tests are performed in the rerun, hut (n-k) are saved hy stopping after 
trial 1i. 

Let Co be the cost of continuing the test at trial k .  For its computation, 
we require an estimate of the expected waiting time for completion of an 
unsuccessful test. This conditional expectation may be estimated hy the 
method of maximum likelihood as 
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The estimated cost Co is given by C O = E ( ~ ) ( C ~ + C ~ ) .  The decision 
rule will be based on the relative magnitude of C, and 60. The simplest 
rule mould be: If CO<Ca, continue the present test; if GOZC~, abandon the 
present test and initiate a redesign. However, since both Ca and are 
estimates subject to sampling error, one might require 6 0  to be substantially 
higher than before initiating redesign. Let D represent a constant, 
greater than unity, which mould require stronger inequality of costs to ini- 
tiate redesign; then the rule could be: If 6 1 0 1 ~ . C A ,  abandon the test. In 
the examples that follow, D is assumed to be unity for simplicity. 

The aforementioned difficulty in estimating the redesign cost Ca suggests 
the desirability of a sensitivity analysis on this cost. 

(b)  The life-testing model. I t  mill be assumed in this section that the 
times of interest to the decision maker are restricted to those where a failure 
has just occurred. 

Let yl, y2, . . . , y, be the ordered sample observations from a population 
with life distribution f(t, 8). Let 6 be the maximum-likelihood estimate of 
8, based upon the first k order statistics. Let g(y1, . . ., yk; 8) be the joint 
density of the k observations, and g(y1 . . . yk, yr+l; 8) be the joint density 
of the first Ic and ( r+ l ) s t  order statistics."' 

If to is the life specified as acceptable, then the probability of passing the 
test after y, has been observed may be estimated as 

m 

pO=S Lg(y1, . . ., yi, yr+l; 8)/g(yl, . . ., yk; 811 dyr+l. 
t 0 

The estimated cost of abandoning the test is 

C,=Po[(to--y,)(Ci+~2) +Cd. 

To estimate the cost of continuation, we require the expected value of 
(yr+l- y,), given that y,+l is less than to: 

We have, then, 
Co= [E(y,+l-yk)l[Cl+C21. 

The decision rule is the same as for Bernoulli trials. 

EXAMPLES 

(a)  Bernoulli trials. 

A computer program designed for a retailer to  detect errors in customer's ac- 
counts is required to  meet the specification that  a random sample of 200 accounts 
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shall have no more than 4 undetected errors. The efficacy of the computer program 
is to be tested by an audit of the 200 accounts. A single individual does the audit- 
ing, and he requires one-half hour per account. His charge is $10 per hour. The 
cost of waiting time for the program to be finished is estimated at  $40 per hour. 
The cost of redesigning the program is estimated as $300. 

The test is initiated and the 60th account examined reveals the second error. 
Should the test be continued? 

We have k=60, i = 2 ,  r=4,  n=200, h=0.5, C1=lO, Cz=40, C3=300, f=2/60= 
0.0333 ; 

Therefore, abandon the test and initiate redesign of the computer program. 
The maximum value of C3 for which the decision remains unchanged is sub- 

stantially above 300 dollars: 0.153[C3(max) +60(0.5)(50)] =$2257.50; Cz(max) = 

$13254.90. 

( b )  Life testing. Evaluation of the cost functions for the life-testing 
model requires, even for relatively simple probability distributions, the 
evaluation of some complicated integrals that cannot always be obtained in 
closed form. For example, using the one-parameter exponential model for 
life distribution, we have 

F ( t ,  0) =1-exp(-t/e). 
Therefore, 

The maximum likelihood &mate for is 

Replacing e by 8 in the density functions and simplifying, we obtain 

Calling t'he integrand in the above expression A ,  we have 
r t n  
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It is clear that, even with the simple one-parameter exponential density 
function, a considerable problen~ exists in the evaluation of and B(y,+,- 
y,). Numerical integration techniques were used in the two examples 
that follow. The details of the method are given in the next section. 

Example I .  An electronic component is required to pass a performance test of 
500 hours. The specification is that 20 randomly selected items shall be placed on 
test simultaneously, and 5 failures or less shall occur during 500 hours. The cost of 
performing the test is $25 per hour. The delay cost of waiting for the design to be 
completed is $80 per hour. The cost of redesign is $5000. Assume that the failure 
distribution follows a one-parameter exponential model. Three failures are ob- 
served a t  80, 220, and 310 hours. Should the test be continued? 

We have 
e= [80+220+310+17(310)]/3=1960 hours; 

I?, =0.79665[(500-310) (25+SO)+5000] =$l9876; 

& (ys-310) = 130.05 hours; Eo = (130.05) (%+SO) =$l3655. 

Therefore, continue the test. 
Example 2.  A numerically more complicated estimation problem is presented by 

the two-parameter Weibull often used as a model in fatigue testing. 
Let j(t; a, P) = ( ~ / a )  t8-'exp[ - ta/a], t 2 0; F(t; a ,  /3) = 1 - esp[ - t8/a]. 

Consider the following problem. X specification for an automotive hood latch 
is that, of 30 items placed on test simultaneously, ten or fewer shall fail during 3000 
cycles of operation. The cost of performing the test is $2.00 per cycle. The delay 
cost of waiting for the design to be completed is $0.50 per cycle. The cost of re- 
design is $8500. Seven failures are observed a t  48, 300, 315, 492, 913, 1108, and 
1480 cycles. Shall the test be continued beyond the 1480th cycle? Assume a 
Weibull density function for failures. 

The integral equations for Po and I?(yll -y7) may be developed by the methods 
of part (b) of the second section, using the above density and distribution functions. 
However, the maximum likelihood estimates of a and P, required in these integrals, 
can only be obtained by iterative methods. 

The appropriate likelihood equations for yl, . . ., yh are 

ari/a,=O= -k/,+ ( I / ~ ~ ) ~ : I !  y t o + [ ( n - k ) / d ] ~ t ' l ~  ~ ( ~ 0 ,  

aL/dp=O=k/B+ Z~I! yi- (I/,) yifllnyi- [(n- k)/a]yh.@lnyii 

The para~neter a may be eli~ninated  fro^; these equations, and the resulting single 
equation rnay be solved iteratively for /3.['1 [If iterative determination of these 
parameters is not desirable, an approximate solutiou for a and P rnay be obtained 
graphically by a method described by  ELSO SON.[^]] Using the Regula-Falsi 
method,I31 we obtain the maximum likelihood solutions 6 =0.9043, 6 =2766.6. 
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In turn, these estimates yield Po =0.25098, E(1111-Y7) =397.6. Then 

Therefore, continue the test. 

COMPUTATION 

IMPLEMENTATION OF the Bernoulli model requires care only in preserving 
accuracy in the summation operations and providing for problen~s with large 
combinatorial terms. 

General use of the life-testing model requires an effective numerical 
integration routine. Several algorithms deserve n~ent ion . [~*~l  

When the underlying life distribution is the exponential used here, an 
analytic solution can be augmented by integration of the power series 
expansion of Po : 

This method of solution has the disadvantage of alternate-sign summa- 
tion, and should be augmented by an ordered addition algorithm. 

With life distributions for which the power-series integration fails, such 
as the Weibull, techniques based upon interpolated polynomial integration 
were rewarding. Representative of these, Romberg, Simpson, and Gaus- 
sian quadrature  formula^[^^" with alteration for interval halving and 
Richardson's extrapolation were compared for speed and accuracy. 'CVith 
exponential-type distributions, all three t,echniques functioned adequately 
(converging to identical solutions), with the Romberg method yielding the 
least satisfactory results because of the number of evaluations required for a 
sufficiently accurate piecewise-linear approximation. This is predicted by 
the crror terms for the methods. 

The most satisfactory general results came with the use of Gaussian 
integration, for example, the Gauss-Chebychev t~vo-point formula, which 
is analogous to and functions a t  least as well as Simpson, and excels a t  
problems that cause instability in the other techniques. Integral conver- 
gence to six decimal places has seldom taken more than iive iterations, or 
z5 interval evaluations. 

For the numerical examples, integration methods were verified for the 
exponential model by comparison of power series, interpolated polynomial, 
and tabulated integration. For the Weibull, application of Simpson, 
Romberg, and Gauss-Chebychev methods agreed to iive decimal places. 
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