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Applications in operations research often employ models which contain linear functions. 
These linear functions may have some components (coefficients and variables) which are 
random. (For instance, linear functions in mathematical programming often represent models 
of processes which exhibit randomness in resource availability, consumption rates, and 
activity levels.) Even when the linearity assumptions of these models is unquestioned, the 
effects of the randomness in the functions is of concern. Methods to accomodate, or at least 
estimate for a linear function the implications of randomness in its components typically 
make several simplifying assumptions. Unfortunately, when components are known to be 
random in a general, multivariate dependent fashion, concise specification of the randomness 
exhibited by the linear function is, at best, extremely complicated, usually requiring severe, 
unrealistic restrictions on the density functions of the random components. Frequent stipula- 
tions include assertion of normality, or of independence-yet, observed data, accepted collat- 
eral theory and common sense may dictate that a symmetric distribution with infinite domain 
limits is inappropriate, or that a dependent structure is definitely present. (For example, 
random resource levels may be highly correlated due to economic conditions, and non- 
negative for physical reasons.) Often, an investigation is performed by discretizing the 
random components at point quantile levels, or by replacing the random components by their 
means-methods which give a deterministic "equivalent" model with constant terms, but 
possibly very misleading results. Outright simulation can be used, but requires considerable 
time investment for setup and debugging (especially for generation of dependent sequences of 
pseudorandom variates) and gives results with high parametric specificity and computation 
cost. This paper shows how to use elementary methods to estimate the mean and variance of 
a linear function with arbitrary multivariate randomness in its components. Expressions are 
given for the mean and variance and are used to make Tchebycheff-type probability state- 
ments which can accomodate and exploit stochastic dependence. Simple estimation examples 
are given which lead to illustrative applications with (dependent-) stochastic programming 
models. 

1. Introduction 

Mathematical models in operations research often require the calculation of 
quantities which are sums of products of random variables. (For example, see the 
realistic view of stochastic linear programming taken by Tintner [15].) Sums of 
products of random variables are the generic structural elements fundamental to 
linear models exhibiting complex randomness. 

In the interest of tractable mathematics, it is commonly assumed either that the 
random variables may be treated as constants, or replaced by their expectations. Even 
where these simplifying assumptions are not made, severe parametric assumptions, 
e.g., normality, painvise independence, etc., are usually required to achieve analytic 
probability statements concerning the function of interest. Other approaches use 
weighted sums of uniform, exponential or other variates in approximation schemes, or 
use characteristic functions of component densities to carry out the indicated trans- 
formation and attempt inversion of the result. Finally, Monte Carlo solutions to this 
problem may be achieved, but are of limited value due to the parametric specificity 
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and high cost of results. For excellent examples of these methods see Jagannathan [7], 
King, Sampson and Simms [8], Miller and Wagner [lo], Searle [12], and Sengupta [13], 
[141. 

This paper addresses the problem of determining the mean and variance of sums of 
products of random variables in the most general linear case, i.e., arbitrary correlated 
multivariate densities for all components in the model. The results obtained are useful 
for making nonparametric Tchebycheff-type probability statements. Particular ex- 
amples are given which use these probability statements as chance constraints in 
stochastic linear programming. 

Simplifications of this model for moments of weighted sums of random variables 
have been presented by several authors. For instance, the highly successful heuristic 
given by Graves and Whinston [5] for the quadratic assignment problem is based on 
such a derivation. 

2. Notation and Development 

Let b and c be two random n-element column vectors. We denote the expectation 
of these vectors as 

The symbols b and Z. will indicate the deviation of each random vector from its 
expectation. The variance-covariance matrix will be signified by 

while the symbol Z* will signify this matrix with b and c interchanged. 
Let q be a random scalar variable, defined as the inner product of these random 

vectors: 

q = b'c. (I) 

Expressions for the mean, E(q), and variance, V(q), in terms of the moments of b 
and c are derived in the Appendix. They are: 

where Tr Z,, indicates the trace, or sum of the diagonal elements of Z,,; 

~ ( q )  = $Z*p  + ~ & E ( Z . Z . ' ~  ) + 2 & ~ ( b b ' ~ . )  + E ( ~ ' z . z . ' ~ )  - (Tr x,,)'. (3) 

(2) and (3) represent the most general outcome, where any element of b may be 
correlated with any other elements of b or c. Two special cases occur frequently. First, 
suppose that the elements of b are correlated with one another, the elements of c are 
correlated with one another, but that b and c are stochastically independent. Then 

Secondly, we note that, if all elements of both matrices are stochastically indepen- 
dent, Z is a diagonal matrix, and computation of (5) is greatly simplified. 
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An assumption frequently made is that elements of vectors b and c have a 
multivariate normal distribution. If we adopt this parametric condition, then, even in 
the general case where b and c are correlated, (3) is greatly simplified. For mul- 
tivariate normal distributions, ~(bb'Z.) = E(?Z.'~) = 0, and all higher moments are 
expressible in terms of the first two moments [l, p.381. (3) becomes 

3. An Estimation Example 

A job shop is bidding on the manufacture of units which will consume two raw 
materials and skilled labor. Let b be the vector of material and labor requirements per 
unit of product, and c the vector of respective costs per unit of 6.  Then the total 
manufacturing cost per unit, q, may be computed with (1). Due to unknown factors in 
the manufacturing process ( e g ,  proportion of scrap units produced) the elements of b 
are random variables. Further, although the skilled labor cost is fixed by contract, 
other elements of c are random variables dependent upon commodity prices and other 
factors. 

Historical cost accounting data are available for similar products in the form of job 
orders and associated material requisitions and labor charges, and are used as prior 
information to determine the means and variance-covariance matrices of b and c as 
follows: 

4.2 units of I 
6.8 units of I1 1 , 
4.8 hours of labor J 

$2.15 per unit of I 
$1 S O  per unit of I1 
$6.20 per hour 

0.7 0.8 0.2 
0.8 1.2 0.3 , 
0.2 0.3 0.5 ! 

Prices of the two raw materials are positively correlated, as are the amounts 
consumed and the labor expended. In this example, there is no correlation between 
commodity prices and quantities consumed during manufacture, so (4) and (5) are the 
appropriate equations. 

Hence, the expected cost for one completed unit is $48.99 with a standard deviation 
of $8.22. 

The (unknown) probability distribution of q depends upon the mathematical form 
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of the multivariate density functions of b and c, and the transformation, (1). However, 
the moments calculated above are exact, and we may use them to make nonpara- 
metric statements about the distribution of q. Two illustrations follow. 

Tchebycheff's Inequality 

Regardless of the underlying distributions, at least 1 - l /k2  of the observations of 
q will be within k standard deviations of E(q);  e.g., there is a 75 percent probability 
that the price will lie in the interval $32.55-65.43. 

Camp- Meidell Inequality 

Some mild assumptions about the distribution of q lead to much tighter bounds [2]. 
If we assume that the distribution is unimodal, with the mode occurring at E(q), then 
at least 1 - 1/2.25k2 of the observations will lie within k standard deviations of the 
mean; e.g., there is an 89 percent probability that the price will lie in the interval 
$32.55-65.43. 

For more general treatments of Tchebycheff-type bounds, see [4] and [9]. 

4. Linear Programming Applications 

The chance constrained programming model of Charnes and Cooper [3] presents 
interesting applications of these techniques. A deterministic linear program may be 
stated 

Max c 'x ,  s.t. Ax < b, (7) 

with A  an m x n constant matfix of technological coefficients, c a vector of constant 
prices and b a vector of constant resource levels. If we change the sense of b to that of 
a vector of resource levels realized from a multivariate density function, f(b),  then a 
reformulation of (7) yields 

Max c 'x ,  s.t. Pr[Ax < b ]  > a ,  PI 
where a is a set of probabilities of individually satisfying each of the m constraints. 
This problem may be solved by using the density function asserted for b to find a set 
of bounds, P(a,  f(b)),  such that Pr[b > P ]  > a ,  and, if f (b)  is free of terms involving x ,  
reformulating (8) to the "deterministic equivalent" form 

Max c'x,  s t .  Ax < p. (9) 

Alternatively, let & be the scalar joint probability that solutions of (9) will ultimately 
prove simultaneously feasible for all constraints. If the variates b are independent, 
& =nm a- ,  but if the terms in b are correlated, extraction of & from f (b )  may, or may 

/ = I  J 
not, be possible or practical depending on the mathematical form of f(b),  the 
dimensionality of b,  and so forth. 

If f ( b )  is unknown or mathematically uncooperative we may use the moments of 
the vector b to specify P nonparametrically with Tchebycheff's inequalities. For 
instance 

Also, a frequent and reasonable simplification is k,  = . . . = k, = k. 
Further, we can specify a bound for & by using a multivariate Tchebycheff 

inequality. 
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or, for k, = . . . = km = k 

Here, (diag 2)'/' denotes .a column vector with components ( u ~ ~ ) ' / ~ .  
Another Techebycheff inequality presented by Olkin and Pratt [I I] can be used to 

specify a bound for &. If we use II to represent the correlation matrix of b so that 
II,, = u~~/(u~,u,,) ' /~, and simplify the presentation by choosing the constants k ,  
- - . . .  = km = k, then 

2 

< (k2m2)I[(p) ' / '  + \km2  - p)(m - I)'/' ] , with (12) 

p = e'IIe, where e is a vector of 1's. 

5. A Linear Programming Example 

To illustrate, using b from the example in $3, 

1 - Li: < 2.62/k2 by use of (12). We note that this is a better bound than the 3 /k2  
produced by (1 I). 

For k = 3 we find 

If (7) is further generalized to allow both b and c to be random vectors, possibly 
sorrelated, we can easily incorporate the expectation of the objection function in a 
deterministic equivalent. Alternately, following the development of [3], x = Db, with 
D an n X m matrix, we reformulate (7) to 

Max ~ [ c ' x ] ,  s.t. Pr[Ax < b] > a ,  x = Db, (I3) 

which by substitution becomes 

Max E[c'Db], s.t. Pr[ADb < b] > a. 

Using the notation and results of $2, we derive for the objective function: E[cfDb] 
= yLDpb + Tr{DEbc). The constraint set may be restated 

Thus, using the moments of b it follows [l ,  p. 241 that the vectors of expectations and 
variances are 

E[(AD - ~ ) b ]  = (AD - I)y,, = 8(D) ;  

V[(AD - ~ ) b ]  = diag{(AD - I)Zbb(AD - I ) ' )  
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The procedure, then, is as follows: 
(I) Specify an acceptable aj, the probability of feasibility for each constraint. 
(2) Use (lo), (1 l), or (12) to generate the set of k's and &. A set of slack variables, v, 

is introduced. Adopting the symbol "*" to represent congruent multiplication of two 
commensurate matrices [6, p. 549 ff.], the deterministic equivalent programming 
model for (13) becomes 

Finally, a solution, D*, to this problem can be used to make nonparametric interval 
estimates for the value of the optimal objective function using (3) or simplifications 
(5) or (6), much as in the numerical example in the preceding section. 

This variance can be used as the objective function in another model proposed by 

[31 

Min V [ c f x ]  s.t. Pr[Ax < b ]  > a ,  x = Db, 

and its deterministic equivalent which follows the development of (14). 
A "partitioned" stochastic programming model considers the problem 

Max c'x + d'y ,  s.t. A x  + By < b;  

where y is a set of external, uncontrollable prior random variables, d a vector of 
random prices, and B a random technological coefficient matrix. By using the 
moments of y, d, B, and b, the problem may be restated 

Max c'x + c,, s.t. A x  < b,. 

with the moments of b, and c, specified exactly, and solved as previously shown. 

6. Conclusion 

Estimation of stochastic vector, or matrix, products may be virtually impossible by 
use of multivariate density functions and statistical transformations without severe 
and unrealistic simplifying assumptions about the random variates involved. Simula- 
tion can lead to approximations for a given problem, but at high computation cost 
and specificity for results. 

However, an approach using multivariate moments, which are available from either 
empirical data or analytic densities, leads to exact statements about the mean and 
variance of the vector products and useful Tchebycheff-type probability estimates. 
These estimates are very helpful in generalizing the mathematical models of opera- 
tions research. 

Appendix 

Derivation of Expressions for the Mean and Variance of the Inner Product of Two 
Vectors 

q = b'c; q = (6 + pb)'(i. + p ~ ;  q = i?i. + 2hrK + 2p;i. + p;pc. 

Noting that ~ ( 6 )  = E(E) = 0; 
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In terms of moments about the mean, 

We note that 

E(i.i.') = Z,,; ~ ( 6 6 ' )  = Z,,; ~ ( b ' i . )  = T r  Z,,; ~ ( b )  = E ( E )  = 0. 

Hence, 

We have 

V ( q )  = E(b'i. i . 'b) + p l Z * p  + 2p;E(bb' i . )  + 2p;E(E?'b)  - ( T r  2,)'. 
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