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Evaluation of Pr { x t y }  When Both X and Y 
are from Three-Parameter Weibull 

Distributions 
GERALD G. BROWN AND HERBERT C. RUTEMILLER 

Abstract-It is important in many reliability applications to 
determine the probability that the failure time of an element 
from one population will exceed that of an element from a 
second population. In this paper, we present a method for 
computer calculations of Pr {x > y)  where X and Y are each 
from a three-parameter Weibull distriiution. In addition,'we 
provide the moments and the probability density function of 
the difference. Numerical examples are included. 

Reader Aids: 
Purpose: Report of software development 
Special math needed for explanations: Statistics, numerical 

analysis 
Special math needed for results: same 
Results useful to: Statisticians, theoretically inclined reliability 

engineers 

1. INTRODUCTION 

The Weibull cumulative distribution function [8] , 

has been widely used as a model for the failure distribution of 
components under mechanical or electrical loading. A variety 
of techniques is available in the literature for the estimation of 
the three Weibull parameters, a ,  6, 7, froni ordered or unor- 
dered sample observations. Ravenis [7] presents an excellent 
summary of estimation methods based upon completely ran- 
dom samples, while Mam [ S ]  has discussed estimation from 
censored samples. The methods suggested by these authors 
for finding maximum likelihood or moment estimators require 
iterative, computer solutions. Berrettoni [2] and Nelson and 
Thompson [6] suggest a graphical solution through the use of 
special Weibull probability paper. 

Suppose, now, that we have life test data from two distinct 
populations, X and Y, and have estimated Weibull parameters 
(a,O, y) and (a*, p*, y*), respectively. We consider in this pa- 
per the problem of estimating Pr {x > y). This estimator may 
be required in the following circumstances: 

(a) The random variables, X and Y, represent the fatigue 
life, in cycles, for a cyclically stressed component made from 
two alternate materials of construction, say an aluminum 
alloy and a steel alloy. If we simply wish to maximize the re- 
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liability of the component at no cycles, then a choice can be 
niade by calculating 

Ry = exp {-(no - y*)@*/a*), 

and choosing the higher reliability. However, if we want to de- 
sign as long-lived a product as possible, we should calculate, 
instead, Pr {x > y) and choose X or Y when this probability is 
above or below 0.5. 

(b) A second application involves "interference" problems 
where the random variable, X, represents a strength distribu- 
tion and the random variable, Y, the distribution of service 
stress. A failure occurs if Y exceeds X, so, in this instance, 
the reliability of the system is precisely Pr {x > y). 

(c) A complex system with two components in series pos- 
sessing independent Weibull failure. distributions can fail as a 
'consequence of failure of component X or component Y. Sup- 
pose that one is a "safe" mode of failure, and the other a 
"dangerous" mode. For example, in an exhaust fan installa- 
tion, Y might represent failure of the bearing while X might 
represent fatigue failure of a blade. Then Pr {x > y) is the 
probability of a safe mode of failure. 

2. METHODS OF SOLUTION 

If X and Y are statistically independent Weibull variables 
with known, or estimatedparameters, then 

where fy = pdf {y) and R, = 1 - cdf {x). 
This expression cannot be integrated analytically. Possible 

methods for evaluating (1) include the following: 
1. Numerically integrate (1) directly. 
2. Obtain the pdf for the random variable W X - Y by 

fnst performing a transformation from the joint pdf, f(x, y), 
to the joint pdf, h(x, w). Find the marginal pdf for W by in- 
tegration over X, and integrate the marginal pdf of W over 
(0, -1. 

3. Find the Laplace Transform, 

Invert I {w) to obtain pdf {w},  and integrate W over (0, -). 
4. Find. the moments of W in terms of the moments of X 

and Y. Then fit an appropriate pdf for W by the method of 
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moments, and integrate over (0, =). The kth moment of the 
Weibull distribution [4] is: 

For example, the mean and variance of the difference of two 
independent Weibulls are- 

var {w) = a2/P r - + 1 
- r 6 i r 2 ( + + 3 ~  . . 

. - 
We have chosen the first of these four methods. Method 2 
leads to a numerical integration problem comparable to that 
for direct integration. Method 3 is difficult to apply because 
the Laplace Transform of the Weibull distribution is not avail- 
able in closed form. Numerical inversion, or algebraic inver- 
sion with continued fractions, is necessary, and the method 
leads to more complicated numerical analysis difficulties than 
direct integration. Method 4 provides, at best, a rough ap- 
proximation to the pdf of the difference. The problem is par- 
ticularly difficult because the domain for W is (--, =), and 
the distribution will certainly be asymmetric for most param- 
eter combinations. A detailed examination of the shape of 
this family of distributions would be necessary before selecting 
a suitable function to fit them, as required by Method 4. 

3. SOLUTION 

Selection of a method for direct numerical integration of (1) 
should take advantage of the analytically known integrand but 
recognize the cost of each evaluation of this complicated func- 
tion; the Gauss-Legendre quadrature method [3] was investi- . 
gated because of its accuracy and low computation cost. 
This method [I, Sec. 251 approximates an integration by 

where w and s are, respectively, weights and evaluation base 
points tabulated for interpolation order n = 2,3, - . . . This is 
very easy to program for machine use and has excellent theo- 
retical error terms for exponential forms such as (1). 

Restating (1) in the form of (4) requires either a Jacobian 
transformation, such as 

or selection of a heuristic finite upper integration bound. The 
latter method was found to be superior numerically to the 
former, possibly due to the added demands of the trans- 
formed problem on computational precision. 

The heuristic method was used to restate (1) as 

with 

b = Rjl(.$),= (-a* log .$)'/Pa+ y*, 

5 = reliability arbitrarily close to zero. 

This amounts to directing the attention of the numerical in- 
tegration to an interesting domain where fy # 0. Further, the 
error introduced by such truncation is 

The value of .$ was taken to be loe6. Because of the sensitivity 
of the Weibull pdf to changes in its parameters, especially the 
shape parameter P, this method works very well in practice. 

It is also possible to generate numerically the difference of 
two Weibulls by method 2, where 

y<xQ=, -=<w<=.  

Then the pdf for W is 

where 

w t y * ,  fo rw>y-y*  

7, otherwise. 

As before, a heuristic selection of b was used. 

b max {R;' (e), R;" (.$)I. 

4. NUMERICAL EXAMPLES 

(a) A special case of the Weibull distribution is the two- 
parameter exponential distribution, obtained by setting the 
parameter, p = 1. When P = P* = 1, it is possible to find 
Pr {x > y) analytically by method 2. The solution is 

a *' 
Pr {x > y) = - exp - {(y* - y)/a), if y* Z y. (6) 

& + a *  

If y* < y, interchange the defintion of X and Y. For ex- 
ample, life tests were performed on two alternate designs of an 
electronic circuit, where the distribution of failure times was 
assumed to be 2 - parameter exponential. The MTBF and 
first failure times for designs X and Y were estimated as 
(1800, 0) and (1600, 300) hours respectively. A numerical 
integration using the 20 point Gauss-Legrende Formula indi- 
cated Pr {x > y) = 0 . 4 8  13. Analytically (6) gives as the exact 
solution Pr {x Zy) = 0.44814. The pdf of W obtained by 
similar numerical integration agreed to 5 si@cant digits over 
the domain (-20,20) with the exact solution: 

- exp {- (w - y + y*)/or), for w > 7 - y *; 

exp {(w - y + y *)/a*), otherwise. 
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Fig. 1. Probability density function of X-Y for two-parameter expo- 
nential variates X and Y. 

Parameters 

(b) Weibull distributions were fitted to life test data on two 
competing designs for bearings subjected to a constant radial 
load. With life expressed in millions of cycles, the estimated 
Weibull parameters were- 

Design or 6 Y ---- 
X 210.4 2.85 40.1 
Y 309.4 1.15 0.0 

The integration indicated Pr {x > y )  = 0.232, so that design 
Y should be preferred. We cannot, of course, verify this prob- 
ability analytically. However, one check on the numerical ac- 
curacy of the method is available by reversing the defmition 
of X and Y and performing the integration again on the asym- 
metric complementary argument. Exact results were: 

Sum = 1.0000004. 

Using method 2, the pdf of W was numerically calculated for 
the exponential and Weibull examples. Results are exhibited 
graphically in Figures 1 and 2. 

5. ESTIMATION OF WEIBULL PARAMETERS 

The methods described above require that numerical values 
of all Weibull parameters be available. A convenient method 
for estimating (or, p, y) from sample observations is the 
LLpseudo-least-squares" procedure. Define 

so that 

If the ordered observations in a sample of size n are x(,), . . . 
x(,), then an unbiased estimate of the reliability at time 

Fig. 2. Probability density function of X-Y for three-parameter Weibull 
vuiates X and Y. 

x(i) is i/(n + 1). Estimate ;y^=x(,), and find least squares esti- 
mates, 8 and from (7), using points q,), - - x(,). Then 
search the interval, (0, x(~)) ,  for alternate choices of ?, solving 
(7) each time. Select the set (?, 8, p̂ ) which minimizes the 
squared deviations of p about the regression line. 

A nonparametric method for the estimation of Pr {x 2 y )  
from sample observations is available through the use of the 
Mann-Whitney statistic. Count the number of pairs of values 
in two samples of size n, and ny for which xi > yi, i = 1, . - , 
n,; j = 1, . . , ny. Divide this number by n, ny to obtain an 
unbiased estimate of Pr {x > y}. 

The nonparametric method avoids the necessity of Weibull 
parameter estimation and numerical integration. It is of in- 
terest, therefore, to compare the efficiency of the Mann- 
Whitney estimator with a parametric type. 

No theoretical informath is available on the mathematical 
properties of either competing estimator for the Weibull dis- 
tribution. Therefore, several Monte Carlo simulations were 
performed. In each simulation, one hundred distinct random 
samples, each consisting of ten (x, y) pairs were drawn from 
two Weibull distributions. The ten pairs of observations were 
utilized to estimate (or, P, y) and (or*, P*, y*) by the pseudo- 
least-squares procedure, and then to estimate PI {x > y). The 
Mam-Whitney estimate of PI {x > y} was calculated from the 
same ten pairs. Finally, the mean squared error of the one 
hundred parametric and nonparametric estimates of reliability 
was calculated. The simulation was performed for the two ex- 
amples discussed earlier in the paper, plus five additional 
WeibulI distributions. Then the entire experiment was re- 
peated, with individual samples of twenty, rather than ten, 
(x, y) pairs. Results are shown in Table 1. 

The mean squared error of the parametric estimator was 
about 20 percent smaller for the two examples discussed pre- 
viously. In every one of the fourteen simulations attempted, 
the parametric estimator was superior. 
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TABLE 1 
Relative Mean Squared Error of Parametric and Nonparametric Estimators of Pr {x > y }  

One Hundred Samples 
M.S.E. (Mam-Whitney)/M.S.E. (Parametric) 

n = 10 n = 20 

6. DISCUSSION 

A copy of a FORTRAN program which calculates 
Pr {x  >y), given (a, 0, y) and (a*, p*, y*), using method 1, 
and calculates numerical points on the pdf of X- Y, using 
method 2, is given in the Appendix. The program also com- 
putes the mean and variance of the difference, using method 4. 

The procedures described in this paper can be easily adapted 
to problems where any of the pdf's are other than Weibull. 

APPENDIX 

A FORTRAN program for evaluation of Pr {x Z y )  and or- 
dinates of the pdf of W = X - Y when X and Y are 3-parameter 
Weibull variates. 

The program is written in Fortran IV and should be accept- 
able for IBM, CDC, Burroughs, etc. machines. The integration 
subroutine, XINT, may reference any acceptable library quad- 
rature method; a FORTRAN IV function for Legendre quad- 
rature is given in [3, ~ 1 0 9 1 .  The interval-halving [3, p90] 
should be used for the more unruly Weibull distributions, e.g., 
large 0. 

COMMON AXrBXsCX* AVsRYrCYr W 
INTEGER OUTPUT 
EXTERNIL P. M 
INPUT = 5 
OUTPUT 1 6 

C 

C X l N T  I S  LIBRARY INTEGR4TION FUNCTION 
C G 4 W A  1s LIBRARY G4MM4 FUNCTION 
t TOL IS 'HEURISTIC ZERO LEVEL 
C 

1 0 L  = 0.000001 
1 0  R E 4 O ( I M P U ~ ~ Z O l  ~ X ~ B X I C X I  IY~BYICY. NU, Z 
20  FORMIT I  6FS.0, IS,  F5.0 I 

I F 1  AX .LEV 0.0 .OR. 4Y .LE. 0.0 t STOP 
I F 1  BX .GT. 10.0 .OR. RY .GI. 10.0 ) STOP 

C MOMENTS OF OENSITIESI DENSITY OF OIJFCRENCE 
e 

C F INO I N * /  OUDIN4TES OF OEYSITY FRO16 /-Z/  TO / r Z /  STAND4RO DEVIITIOYS 
C 

UB . MIITOL. 4:.RX.CXl 
UUB = Y I ITOL,  rYrRY.CYl 

LOGIC = I 
I F 1  BX .EUm 1.0 .*NO. BY .EO. 1.0 1 
I F 1  LUGIC mEU. 0 ) r l R I T E l O l l T P J T ~ 6 0 1  
FORMATI 1 H r t  541. ~1nEXPONCNTIAL  I 
0 0  1 1 0  I s l t N u  
U = V M l h  (1-11 rSTEP 
I F I U  .GT. CX - CYI EL = w r CY 
ORO = X ~ N T I  BL,UB, HI T O L ~  
I F 1  LUGIC .HE. 0 I GO TO l o 0  
I F 1  W .GI. CX - CY 1 GO TO 70 
EXPO a I I .O / lA I *4Y) l *EXP( (  W-CXICY) 
GU TO a0 

LOGIC = 0 

1 6 1 1  

7 0  EXPO = ~~.~/IAX.AY) )*EXPI  (-W+CX-CYI/AXl 
1 0  ~RITEIOUTPUTIPO) WI  ORO. EXPO 
9 0  FORMAT I 5X. 3F20.6 I 

GO TO 1 1 0  
1 0 0  U R I l E l O U T P U T ~ 9 0 1  W. OR0 
1 1 0  CONTINUE 

GO T O  1 0  
END 
FUNCTLON m i x ,  A. B. c I 

c 
C OROINATk FOR IUWEE PARA*ETER UEIBULL UENSITY FUNCTION 
t 

EN0 FUNCTION RIX. 4. 8. C 1 

t- 

R E L I I B I L I T Y  FUNCTION FOR THREE P4RAMETER #EXBULL DENSlTY FUNCf IUh  

R = 1.0 
I F (  X .LC. C 1 GO TO 
R = EXPFI-1%-C) **814 
WLTUHN 
EN0 
FUNCTION P I X )  

C INTCGW4TIUN ARGUYEYT FOR O€TEQrtl*14TIOn OF P I  1 .GE. V 
c 

CONMON 4X.BX.CXt 4Y.SY.CY 
P r F N l X *  AY.lYrCY) Y I X  ArrRX.CX1 
UETUWN % 
EN0 
FUNCTION n i x )  

C 
C INTEGRATION ARGUMEMT FOU DEHSITY'OF V r X - Y 
C 

C INVERSE OF THREE PAR4METER m t I r J L L  R E L l A d l L l T Y  FUNCTIUN 

5 
C SET 4bSULUTE UPPER BOlJuO FOR lFXPF/  PnGaJMEhTS I N  /fN/ AND / u /  
C 
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