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This paper compares two point estimators of fraction defective of a normal distribu- 
tion when both population parameters are unknown; the rflinimum variance unbiased 
estimator, P(z),  and the maximum likelihood estimator, F(x). Using minimum mean 
squared error as a criterion, i t  is shown that the choice of estimator depends upon the 
true value of F(x), and the sample size. In  the domain ,0005 5 F(x) 5 .50, the maximum 
likelihood estimator is generally superior even for small sample sizes, except for F(x) 
less than about 0.01, or greater than 0.25. Furthermore, the bias in the m.1.e. is slight 
over much of the domain where this estimator has smaller mean squared error. 

As a practical solution to the estimation problem. it  is suggested that the m.v.u.e. be 
calculated, and if this estimate is between 0.01 and 0.25, it should be replaced with 
the m.1.e. This combined estimator is shown to be nearly as efficient as the better of the 
m.v.u.e. and m.1.e. throughout the domain of F(x). 
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A common point estimation problem occurs in industrial statistics when manu- 
factured items with some normally distributed property, such as tensile strength, 
are required to meet a minimum specification. A preliminary estimate of the 
proportion of product which will not meet the specification is often required to 
determine 

(a) cost estimates for the manufacturing process, 
(b) the relative efficiency of two or more alternative methods of manufacture. 
A first estimate of fraction defective will usually be based upon a small sample 

of product, and, in the pilot stage of the process, we may assume that the pa- 
rameters (,u, (T) of the normal distribution are both unknown. We are not interested 
in "best" estimates of these parameters, but in an estimate of fraction dcfcctive, 
defined as 

where s, is the minimum specification. 
If a random sample, (s, , 2, , . . . s,) is available, the maximum Zilcelihood esti- 
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mator, p(x,), for fraction defective may be constructed by evaluating the above 
integral with the maximum likelihood estimators, 

and 
i n - - - -  

& = d l / n  (x, - b)' 
, = 1  

inserted in place of j~ and u. 
An alternative estimator for F(xo ; p ,  u), the minimum variance unbiased esti- 

mator, P(xo), was developed by Kolmogorov [4]. The derivation is given in a paper 
by Lieberman and Resnikoff [5]. The estimator is obtained as the symmetrical 
incomplete beta function integral, 

where 

Guenther [I]  has discussed methods of numerically evaluating this integral. 
If unbiasedness is considered absolutely essential for an estimate of fraction 

defective, then the m.v.u.e. should be used. However, a more important con- 
sideration would appear t o  be the avoidance of large estimation errors. We propose 
to compare these two common estimators of fraction defective from this stand- 
point. I t  seems reasonable to assume that the cost associated with an error in 
estimating fraction defective is an increasing nonlinear function of the size of the 
error. For example, the effect of a small error in either direction might well be 
unimportant. A large overestimate of fraction defective might lead to a decision 
not to bid for the right to manufacture the product, while a significant under- 
estimate might lead to extensive cost overruns when large scale manufacturing 
begins. The precise cost-error relationship would be most difficult to specify 
mathematically. We assume herein that cost is a quadratic function of estimation 
error. This quadratic cost function is tractable mathematically, and weights 
larger estimation errors more heavily than small errors. A choice between the 
m.1.e. and m.v.u.e. of fraction defective may then be made on the basis of expected 
cost of estimation error [8]. 

Let F*(x,) bc any estimator of F(s,) and let a loss function be defined as 

L(F*, F)  = C.[F*(x,) - F(x,)lL, 

where C is a positive cost funrtion, possibly dependent on F(s,), but not on F*(x,). 
Then the expected loss from estimation is 

E[L(F*, F)]  = C.E[F*(s,) - F(x,)]'. 

Wc define the mean squared enor eficiewy in our problem as the cxpected loss 
for the m.l.e., E(x0), dividcd by the expected loss for the m.v.u.e., P(x,). When 
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this ratio exceeds unity, the m.v.u.e. is the preferred estimator. Clearly, the 
preference holds for all positive cost functions, C ,  defined as above. 

The squared error of P(s,) or P(s,) is a function of the two statistics, ,ii and 6, 
plus the four parameters, p, U, x, , and n. However, the statistics and parameters 
may be redefined to reduce the squared errors to  a function of two statistics and 
two parameters. Let 

Then 

and 

Taking the expectation of the squared crrors with respect to the random variables, 
z and w, reduces the problem to a two-dimensional exploration of i(c, T I ) ) ,  the 
proposed policy space for choice of estimators. 

The random variable, z, has a unit normal distribution, while K has a chi-square 
distribution with parameter (n - 1). Furthermor~, z and tc arc stochastically 
independent, so their joint density is the product of the unit normal and chi- 
square, or 

The mean squared error efficiency of the m.v.u.e. relative to the m.1.e. is 

I I [P(x,) - F(z,)]2h(z, tc) dz dzu 

It was necessary to  evaluate these integrals by numerical mcthods. 
Common multiple numerical quadrature methods include thc Monte Carlo, 

Newton Cotes, and Gaussian techniques. Thr~ Monte Carlo method cxccls a t  
integration of unruly, but analytically given integrands of several variables [B]. 
Iterated Newton Cotes mcthods, notably Simpson's Rule, provide good rrsults 
for the evenly spaced base points of tabulated functions [2]. Gaussian quadrature, 
formulas, especially Gauss-Legendre, produce superior r c d t s  for smooth intc- 
grands given analytically [9]. A comparison of thrse mcthods [3, 71 indicatm thc 
superiority of Gaussian quadraturr~ methods for thc problcm a t  hand. 

Integration of the mean squared error efficiency of the m.v.u.e. was performed 
with the Gauss-Legendrc formula over a square lattice with vcrticcs (hl, ~ 1 ) .  
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Transformations of variables of integration to this domain involved replacement 
of infinite bounds by heuristic limits derived from the density functions of h, 
and z.  All computations were performed with ten decimal digit accuracy, except 
for summation operations which carried fourteen. As checks of the accuracy and 
appropriateness of the method, the 16, 20, and 32-point Gauss-Legendre formulas 
were used for integration, and the expectation of the m.v.u.e, was evaluated for 
unbiasedness with agreement to five decimal digits. 

5. RESULTS 

Mean squared errors were determined for n = 5(5)30, 50, and 100. At each value 
of n, c was assigned eighteen values from the unit normal table corresponding 
to fraction defective of .0005, .001, .002, ,004, .005, .008, .010, .020, .O5(.05) .SO. 
The mean squared error ratio is shown in Table 1. For fraction defectives above 
0.50, the symmetry of the normal distribution permits use of 1 - F(x0) in place 
of F(x,) to determine mean squared error. 

I t  is clear from Table 1 that, unless the fraction defective is anticipated to be 
extremely small (below about .010), or extremely large (above about 0.25) the 
m.1.e. provides a smaller mean squared error over all the values of 72. Further- 
more, convergence with increasing 7z is slow, and even a t  sample sizes of 20 or 
more, the efficiency of the m.v.u.e. may be below 0.9. For very small fraction 
defectives, the advantage of the m.v.u.e. is substantial, and again, is maintained 
even with relatively large samples. 

Table 2 shows the root mean square error of the m.1.e. as a ratio to F(xo), while 
Table 3 shows the percentage bias in the m.1.e. An entry in this table of zero 
would indicate unbiasedness, an entry of +17 would indicate that the m.1.e. 
is expected to overestimate fraction defective by 17 percent, etc. 

The bias in the m.1.e. tends to be positive over the domain F(z,) < .05 and 
negative in the domain .05 - .50. The greatest bias in the m.1.e. occurs for small 
fraction defective, where the m.v.u.e. is preferable. For large fraction defective, 

TABLE 1 

Mean Squared Error Ratio-M.L.E. to M.V.U.E. Enclosed Region Indicates Superiority of M.L.E. 
Sample Size n 5 10 15 20 25 30 50 100 

Frac t ion  Defect ive 

.0005 1.81 2.04 1.98 1.89 1.80 1.72 1.51 1.30 

.001 1.43 1.65 1.63 1.57 1.52 1.47 1.34 1.20 

,002 1.15 1.34 1.35 1.33 1.30 1.28 1.20 1.12 

.004 

,005 

.008 

.01 

.02 

.05 

.10 

.15 

.20 

1.15 1.15 1.14 1.13 1.10 1.06 

.89 1.09 1.10 1.09 1.09 1.07 1.04 

1.02 1.02 1.01 

.76 .91 .96 .98 .99 .99 1.00 1.00 

.68 .82 .88 .91 .92 .93 -96 .98 

.66 .79 .84 .88 .90 .91 .95 .97 

.73 .83 .88 .91 .93 .94 .96 .98 

.82 .90 -93 .95 .96 .97 .98 .99 

.91 .96 .97 .98 .99 .99 .99 1 .OO 
.25 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.00 
.30 1.07 1.06 1.04 1.03 1.03 1.03 1.02 1.01 
-35 1.13 1.09 1.07 1.05 1.04 1.04 1.02 1.01 
.40 1.18 1.12 1.09 1.06 1.05 1.04 1.03 1.01 
.45 1.20 1.14 1.10 1.07 1.06 1.05 1.03 1.01 
.50 1.21 1.14 1.10 1.07 1.06 1.05 1.03 1.01 
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TABLE 2 

Root Mean Squared Error of M.L.E. as a Proportion of Fraction Defective Being Estimated 

Sample S ize  n 5 10 15 20 25 30 50 100 

F r a c t i o n  D e f e c t i v e  

.0005 14.0 7.5 5.3 4.0 3.5 2.8 1.9 1.1 

.001 9.3 5.4 3.9 3.0 2.4 2.2 1.4 1 .O 

.002 6.3 3.8 2.8 2.3 1.9 1.7 1.2 0.9 

.004 4.3 2.8 2.1 1 .8  1.5 1.3 1 .O 0.7 

.005 3.8 2.5 1.9 1.6 1.4 1.2 0.9 0.6 

.008 3.0 2.0 1.6 1.3 1.2 1.1 0.8 0.6 

.01 2.7 1 .8 1.4 1.2 1.1 1 .O 0.8 0.5 

.02 1.9 1.3 1.1 1 .O 0.9 0.8 0.6 0.4 

.05 1.3 0.9 0.8 0.7 0.6 0.6 0.4 0.3 

.10 1 .O 0.7 0.6 0.5 0.5 0.4 0.3 0.2 

.15 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.2 

.20 0.7 0.5 0.4 0.4 0.3 0.3 0.2 0.2 

.25 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.1 

.30 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.1 

.35 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.1 

.40 0.5 0.3 0.3 0.2 0.2 0.2 0.1 0.1 

.45 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.1 

.50 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 

the bias is virtually always below - 10 percent. The m.1.e. is partciularly superior 
in the vicinity of 5 percent defective, where there is virtually no bias, and a notice- 
able mean squared error advantage. 

Since each of the two estimators is superior over part of the domain of F(x0), 
we might consider, as a practical solution to the estimation problem, using the 
m.1.e. in others. For example, use the m.v.u.e. to obtain an unbiased estimate 
of F(x0). If this estimate is in the domain .O1 < P(z,) < .25, replace i t  with E'(xo). 
Table 4 shows the mean squared error efficiency of this combined estimator relative 
to the better of the m.v.u.e. and m.1.e. at each combination of [n, F(zo)]. There 

T.\BLE 3 

Percentage Bias of M .  L. E. 

Sample S ize  n 5 10 15 20 25 30 50 100 

F r a c t i o n  D e f e c t i v e  

.0005 

.001 

,002 

.004 

.005 

.008 

.010 

,020 

,050 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 
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TABLE 4 

Nean Squared Error Ratio-Smaller of (M.L. E., M.V. U. E. ) to Combined Estimator. Enclosed 
Region Indicates Comparison to M.L.E., Remaining Region Conzparison to M.V. U.E. 

Sample Size n 5 10 15 20 25 30 50 100 

Frac t ion  Defect ive 

.0005 1.02 .72 .81 .88 .94 .97 .99 1.00 

are 128 combinations of fraction defective and sample size tabulated, arid the 
combined estimator is a t  least 93 pcrccnt efficient in 108 of the 128 cases. Lower 
efficiencies are restricted almost entirely to very small sample sizes and/or fraction 
defectives. We also examined the bias of this combined estimator (Table 5). 
Comparison with Table 3 reveals a substantial improvement over the m.1.e. 
in this respect. 

Since this paper was completed, Zacks and Milton [lo] have published some 
rcsults on the same topic; mean squarcd errors were calculated for 3 sample sizes 

T.\HLE 5 

Percentage Bias of Combined Estimator 
Sample S i z e  n 5 10 15 20 25 30 50 100 

F r a c t i o n  De fec t i ve  

.0005 

.001 

.004 

.008 

.O1 

.02 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 
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( n  = 6, 12, 18) and F(x,) in the domain .025 - .50. Their mean squared error 
ratios agree closely with those in this paper. However, these authors conclude 
erroneously that the m.1.e. is preferred for all values of F(x,) below 0.20. In fact, 
Tables 1 and 2 of the present paper show that the m.1.e. is especially poor for 
very small values of F(x,),  being highly biased and having large mean squared 
error relative to the m.v.u.e. 
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