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ABSTRACT 

Military Standard 105D has been almost universally adopted by government and 
private consumers for the lot-by-lot sampling inspection of product which may be inspected 
on 'a dichotomous basis. 

The plan specifies, for each lot size, a random sample size and set of acceptance num- 
bers (maximum allowable number of defectives in each sample). Tlie acceptance numbers 
are based upon the binomial distribution and depend upon the quality required by the 
purchaser. Where several consecutive lots are submitted, a shift to less severe ("reduced") 
inspection or more severe ("tightened") inspection is specified when the ongoing quality 
is very high or low. Further experience permits a return to normal sampling from either 
of these states. 

This paper examines the long range costs of such a sampling scheme. The three 
inspection types are considered as three distinct Markov chains, with periodic transitions 
from chain to chain. The expected sample size and the expected proportion of rejected 
product are determined as a function of the two parameters under control of the manu- 
facturer, lot size and product quality. Some numerical examples are given which illustrate 
how to compute the overall cost of sampling inspection Suggestions are made concerning 
the choice of parameters to minimize this cost. 

1. INTRODUCTION 

One of the major fields of statistical quality control is acceptance sampling. An increasing num- 
ber of private and government purchasers of manufactured products require the sampling inspection 
of each shipment, or lot, and will accept the lot only if a quality standard is passed by the sample. Re- 
jected lots may be returned to the manufacturer, purchased with a price concession, subjected to 100 
percent screening, or scrapped. Clearly, there are costs involved for both the sampling inspection 
and the disposal of rejected lots. In this paper, we examine the cost aspects of sampling inspection 
according to the most widely used plan in the United States- the attributes sampling scheme designated 
Military Standard-105D [6]. -+, 

In attributes sampling plans, a random sample of n individual items is selected from a lot, and 
each item is classified simply as acceptable or unacceptable. The lot is accepted if c or fewer items 
out of n are unacceptable. The conditional probability of acceptance, Pa, given that a proportion, 

p, of the lot is unacceptable, is given approximately by the cumulative binomial probability. 

This assumes that the sample size is small relative to the lot size. 
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The long-run cost contribution of such a sampling plan may be computed as a function of overall t 

product quality, p, as follows: 
Let 
C = cost per manufactured item as a result of sampling inspection; 
CI = cost of inspecting a single item; 
C2 = cost per rejected item for the disposal of rejected lots, e.g., for 100 percent inspection of all 

items in the lot; 
f = fraction of product inspected as sample; 
q = fraction of product rejected; 
N = size of each lot submitted; 

then 
C = CS+ C2q; 

N-n E [C] = ClnlN.+ C2 (T) 

For example, lots of size 500 from a process producing 5-percent defectives are submitted to sampling 
inspection according to the plan n =  20, c = 2. The cost of sampling inspection is $2.00 per item 
and rejected lots must be 100 percent screened also at a cost of $2.00 per item. By using Equation 
(I), binomial probability tables [9] give Pa = 0.925 and 

= $0.224. 

This is the expected cost per manufactured item as a consequence of sampling inspection. 
In practice, most attribute sampling plans have somewhat more complicated rules for their 

application. Dodge and Romig [l] have devised a set of attribute plans based upon minimum cost, 
assuming a desired incoming quality, with specific requirements for consumer protection against very 
bad lots. Hald [3] has greatly expanded this idea, and developed samphg  plans which minimize cost 
for any prior distribution. However, today by far the most popular set of plans is that published by 
the Department of Defense in 1%3, known as MIL-STD-105D. It is estimated that more than 13,000 
industrial plants in the western world are currently involved with this standard, either as vendors 
or purchasers. 

The sampling plans in MIL-STD-1OSD are not based upon the minimum-cost concepts of Hald. 
The plans are indexed by lot size and by a number designated " ~ c c e ~ t a b l e  Quality Level." The AQL 
is always specified by the purchaser, and is defined as the value of p which will lead to a high conditional 
probability of acceptance, Pa. The precise value of Pa corresponding to the AQL varies with lot size 
and AQL. The domain for Pa is about 0.89-0.99. 
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TABLE 1. Some representative sample sizes and acceptance numbers (shown in body dtt&e) from 

MIL-STD-IOSD, Table II-A, for various lot sizes and AQL percent defective. The arrow sign$es . . 
to w e  the plan on the row at the end of the arrow. PLam shown are for general inspection level II 

Lot size Sample size 

Table 1 shows some typical plans for normal sampling inspection from MIL-STD-105D. Once a 
sampling plan has been selected, the user is required to keep a historical record of lot-by-lot experi- 
ence. Criteria are presented in MIL-STD-1OSD for an alteration of the values of n and c when the 
experience over several lots shows either unusually good or unusudy bad quality. The rules are as 
follows [6]: ' 

1. A switch from the normal values of n and c to "reduced" inspection is permissible when: 
a Ten consecutive lots have been accepted. 
b. The total number of defectives in the 10 lots does not exceed a critical value supplied in Table 

VIII of MIL-STD-lO5D. Some examples of these critical values are shown in Table 2. 
c. Production is continuous. 
d. Reduced inspection is considered desirable by the responsible authority. 

Under reduced inspection, n is substantiall? decreased. Two numbers, c and r ( >  c )  are supplied. 
Lots are accepted if the number of defectives is less than r. However, if a lot has more than c defectives, 
normal inspection must be resumed on the next lot. 3 

2. A switch to "tightened" from normal inspection is required when two of the most recent five 
lots have. been rejected. Under tightened inspection, n is the same as for normal inspection, but c is 
reduced. A return to normal is permitted when five consecutive lots have been accepted. If tightened 

inspection is still in use for 10 consecutive lots, however, sampling inspection must be discontinued 
entirely. 

Hence, in attributes sampling by this scheme, the long run costs will be dependent on the pro- 
portion of lots inspected under normal, reduced, and tightened sampling plans. Koyama [4] has ex- 

' amined the severity of the switching rules in MIL-STD-lOSD, using signal flow graph theory. Mendi- 
zabal [S] has performed some limited Monte Carlo studies in the same area. The Koyama results indi- 
cate that, for lots with consistent AQL quality, the switching rules are severe, with the probability of 
entering tightened inspection relatively high. 
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TABLE 2. Some limit numbers from MIL-STD-IOSD, Table VIII for transfer from normal to reduced 
inspection. Numbers in body of table are maximum number of defectives in most recent 10 lots. 

Number of 
items in last 

10 lots 

20-29 
30-49 
50-79 
80-129 

130-199 
200-319 
320-499 
500-799 
800-1249 

1,250-1.999 
2,000-3,149 
3,1504,999 
5,000-7,999 
8,000-12.499 

12,500-19,999 
20,000-31,499 
31,50049,999 
50,ooO up 

:he present paper, we c kve1op, for MIL-STD-~O~D an expression for expected inspection 
cost as a function of process quality, p, and lot size, N, the two parameters which may be controlled, 
to some extent, by the manufacturer. We consider on-going inspection as a dynamic process, where 
recycling among normal, reduced, and tightened inspection will occur as a large number of lots is 
submitted. The solution produces the expected proportion of lots on normal, reduced, and tightened 
inspection, plus the expected proportion of rejected lots, for each (AQL, p, N) combination. With 
appropriate assumptions on the .disposal of rejected lots and the cost of inspection, the expected 
cost of a MSL-STD-1OSD plan may then be obtained. 

2. THEORY 
We make two assumptions~throughout this section. First, it is assumed that rejected lots incur 

a known cost per item for every item in the lot as a consequence of 100 percent screening. The second 
assumption concerns the re-institution of sampling inspection after j; has been discontinued. MIL- 
STD-IOSD, section 8.4, states "In the event that 10 consecutive lots or batches remain on tightened 
inspection (or such other number as may be specified by the responsible authority), inspection under 
the provisions of this document should be discontinued pending action to improve the quality of sub- 
mitted material" We assume that this cessation is in force for the next 10 lots, which will be screened 
100 percent; normal sampling inspection will be resumed after this screening period. 

The following additional notation will be needed in this section: 

N = lot size; 
n =.sample size under normal inspection; 
n ~ =  sample size under tightened inspection; 
n~ =!sample size under reduced inspection; 



COST ANALYSIS UNDER 105D 185 
PA,  N =  probability of accepting a lot in normal inspection; 

r* = maximum number of defectives in 10 accepted lots under normal inspection to qualify 
for reduced inspection (Table VIII, MIL-STD-105D); 

Pi, N = probability of meeting, at the first opportunity, the maximum defectives criterion of Table 
VIII for a transfer to reduced inspection, given that the most recent 10 lots are accepted; 

PA, T = probability of accepting a lot in tightened inspection; 

Pi, = probability of accepting a lot in reduced inspection, but with a return to normal required; 
P A , R  = probability of accepting a lot in reduced inspection, with a continuation of reduced inspec- 

tion; --  - -- 

&=;number of adoptions of normal sampling during the inspection of L lots; 
XR= number of adoptions of reduced sampling during inspection of L lots; 

XT= number of adoptions of tightened sampling during inspection of L lots. 
After L lots have been inspected under the MIL-STD-105D scheme, the total number of items 

in these lots will be N*L. Suppose that I, of these lots have been under normal inspection, I, under 

rediced, and It under tightened. Then the fraction of product inspected by sampling will be 

Note that IN + IR + IT s L, in general, since sampling inspection' may be discontinued prior to 
the Lth lot. 

The fraction of product subjected to 100-percent screening will be 

Finally, the expected cost of sampling will be 

(4) E [C] = ClELfl C&[q I IN, IT, IR, XR]. 

Examining f and q, we note that these variables are functions of the parameters N, PA, N, PA,R,  
P i ,R ,  PA, T and are linear functions of the variables IN, ZR, IT, XR. It  remains to find the numerical 
values for the parameters and the expectations of the four random variables. 

Once a lot size, N, AQL, and inspection level have been spezified, MIL-STD-1OSD provides 
both the sample size and acceptance number for normal, tightened, and reduced inspection. When 
product of quality p is supplied, the values of PA, N, P A ,  T, PA, R, Pi, may be computed directly from 
Equation (1) or other appropriate binomial sums. In practice, the Poisson approximation, 

4 

is usually employed, since p is small and n reasonably large. Molina [7] gives extensive tables of these 
Poisson probabilities. In the numerical examples which follow, Poisson probabilities were used in 
place of the binomial. 
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The computation of P i ,  ., the probability that a sequence of 10 accepted lots on normal inspection 
will meet the criterion of Table VIII in MIL-STD-1OSD for a transfer to reduced inspection, can best 
be shown through a numerical example. Suppose that an AQL of 1.5 and lot size of 400 is specified, 
and that material of AQL quality is submitted. The sampling plan is n=50, c=2; P, the limit for trans- 
fer to reduced inspection is 3, or fewer in 10 lots. Now, each of the 10 accepted Jots contains two, 
one, or zero defectives. Hence, a truncated Poisson distribution is appropriate for the distribution of 
defectives in these lots: 

- c Poisson probability Conditional probability -- 

0 0.4724 0.4923 
1 0.3543 0.3692 
2 0.1328 0.1385 

The probabilities in column 3 were obtained by dividing the values in column 2 by their sum. 
Next, P i  ,N is the sum of the following multinomial probabilities: 

Probabilities 

which gives, for this example, Pi,~=0.0890. 
For the general case, let 

be the truncated Poisson probability distribution for lot i, accepted under normal inspection, and 

5 

be the distribution for the total number of defectives in k accepted lots. Then the probability distribu- 
tion for s is the convolution 

' 

glo(s) = f ( ~ 1 )  *f ( ~ 2 )  * . *f (~10); 

while 
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The calculation of PL, , becomes lengthy, particularly for large lots andlor AQL values, where the . 
number of partitions of Zci into 10 sample points is large. However, these cases may be handled with 
a normal approximation, as a consequence of the central limit theorem. If p and v are the parameters 
of a truncated Poisson distribution, then the sum of 10 random observations is approximately normally 
distributed with-parameters lop and a. We have tested this approximation and found it to be ex- - - - -  .- . - -  - - --- 
cellent for large values of the limit numbers in Table VIII. Even for the numerical example above, 
where c and r* are 2 and 3, respectively, the normal approximation is masonably good. The mean 
and standard deviation for the conditional Poisson distribution are 0.6462 and 0.7111. Hence, for 
the sum of 10 such observations, p is 6.462 and u is 2.248. Then-- - - 

while the exact multinomial probability is 0.089. 
Consider, now, the state of the 'system when 10 consecutive lots are accepted under normal 

inspection, but the sum of the number of defectives in the 10 lots exceeds r* in Table VIII. In the 
calculations of the next section, we will require two types of probabilities for these lots. First, the 
probability distribution for the total number of defectives in the 10 lots will be 

Secondly, the probability distribution for the number of defectives in a random lot chosen from the 
10 will depend on the numerical value of st:  

--- Continuing -- the previous numerical example, where n = 50, c = 2,*r* = 3, ind the pio6ess quality 
is 1.5-percent defective, a s s u m e - t h a t ~ ~ * e e ~ c C c c e p e  bbu~,t_ha~-t_hese.!o,@-_- -..-- - 
contain a total of exactly 5 defectives. By using the reasoning which lead to Equations (6) and (9), 
we have 



188 G. G. BROWN AND H. C. RUTEMILLER 

3. MARKOV CHAIN SOLUTION OF THE INSPECTION SCHEME 
The three inspection plans may be separately formulated as finite state, discrete parameter 

Markov chains [8]. Table 3 illustrates the state space and transition probability matrix for normal 
inspection. The entries, pa, represent PA,N, and 

This matrix may be partitioned as indicated into the canonical form . . -- - -. 

The experiencing of a lot rejection during normalinspection forces entry into one of the transition 
states provided for all permutations of one rejection in the most recent j lot inspections, j = l ,  2,3,4. 
Four acceptances subsequent to a rejection cause transition back to the "4A" state. A second failure 
in five, or less, consecutive lot inspections forces absoqkion into tightened inspection. 

Transition states, labeled "KA," represent K consecutive lot acceptances, K= l ,2 ,  . . . 9. From 
state 9A, we have indicated a probability, pz of absorption into reduced inspection. This is the joint 

probability that a tenth lot is accepted and that the limit number of Table VIII is not exceeded: 

From state 9A, we' enter either reduced inspection with probability pz, state AAAR with probability 

p,, or state 10A with probability 1 -pz-pr. State 10A implies 10 consecutive lot acceptances with 

the total defectives in the 10 lots greater than the limit number of Table VIII. 
State 10A is a transient, not an absorbing state, since it is possible &th additional inspections to 

reject a lot (moving to state AAAR) or to reach the limit number, r*, for the 10 most recent lots, moving 
to reduced inspection. These are the only possible exits from state 10A. The probability of emerging to 
reduced inspection has been designated in Table 3 as pz*, and to AAAR, 1 -pz*. 

Calculation of Probabilities For State 1QA 
*3: 

Entrance into state 10A for the first time implies that the total number of defectives in the latest 
10 lots is r*+ 1, r* +2, . . ., 10c. The probability distribution for these states is given by equation (8). 
Now, as a new lot is sampled, 1 of the initial 10 lots containing O,1 ,  . . ., c defectives is replaced with a 
lot containing O , 1 ,  . . ., n defectives. If this new lot has more than c defectives, there is an exit from 

10A to AAAR. This probability is simply p,. Otherwise, the new lot is accepted, and we must examine 
the possible transitions from r* + 1, r* +2, etc., to each other and to reduced inspection. A limited 
number of such transitions are possible, since the total number of defectives cannot change by more 
than 2 c as a single lot is replaced. 

The process of replacing the original 10 lots, 1 by 1, with new lots may be represented as a step-by- 
step alteration of the probabilities in a transition matrix whose columns and rows represent the number 
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of defectives in the "old" and "new" lots. We may illustrate this semi-Markov process with the numeri- 

* i! 
.'cal example presented in section 2 of this paper (n=50, c=2, r*=3, process quality 1.5-percent 
defectiye). Assume that state 10A has just been entered for the first time. Then the possible states are 
4,5, . . ., 20 defectives in the 10 lots. Using exact multinomial probabilities, Equations (6), (7), and (8) 
yield, for those states with probability at least 0.001, 

Number of defectives in 10 old lots 

4 5 6 7 8 9 10 11 12 13 14 
0.117 0.166 0.191 0.182 0.145 0.098 0.056--0.028 0 . 0 1 1  0.004 0.001 

Deletion of a lot randomly chosen from these 10 reduces the total number of defectives by O,11 
or 2, and produces a new probability vector for states 2,3, . . ., 18. To calculate these probabilities, we 
must examine each starting state, 4, 5, . . ., 20 individually, since f (ci), as shown in Equation (9), is 
a function of the exact number of defectives in the 10 lots. For example, using the numerical result 
calculated in section 2 for 5 defectives in 10 lots, we have 

These are precisely the conditional probabilities of moving from state 5 to 5,4, and 3, respectively, 
after one lot has been deleted; when multiplied by 0.166, the prior probability for state 5, we have the 
contribution of prior state 5 to the probability vector for the number of defectives in 9 lots. The.process 
must be repeated for each prior state. 

The deleted lot will be replaced with a new unconditional lot with probability distribution 

C - Poisson probability 
0 0.4724 
1 0.3543 
2 0.1328 

(Reject) 0.0405 
* 

Since the probability distributions for defecti;es in this new.lot and.in the nine old lots are independent, 
we may multiply them to form a transition matrix A portion of the resulting matrix is shown below: 

Defectives Defectives in 9 old lots 
in new lot 

2 3 4 5 6 7 8 9 10 11 ,---..---- -------- 
0 : 0.003 0.018; 0.067 0.090 0.096 0.083 0.058 0.032 0.015 0.005 

I ?----a 

1 i 0.002( 0.016 0.050 0.067 0.072 0.062 0.043 0.024 0.011 0.004 
L ----.--- A 

2 0.001 0.006 0.019 0.025 0.027 0.023 0.016 0.009 0.004 0.001 

(Reject) (sum of this row = 0.0405) 
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The events enclosed by the broken Iine will lead to a transfer to reduced inspection, while the entire 
last row will lead to a transfer to normal inspection state'AAAR. 

We may now use the remainder of the transition matrix' as a new prior state, delete a second old 
lot and add a second new lot. For elements in each column, recalculation of f (ci) is necessary using 

gs(s' - ci) , etc. The row probabilities are altered by applying unconditional Poisson probabilities for a 
single lot. For example, the prior state (1,qE) can transfer to (1,4), (1,3), (1, Z), (2,4), (2,3), (2,2), (3,4), 
(3,3) (3,2), the six states representing O,1,  or 2 deletions, and 0 , l ,  or 2 additions. 

The next matrix will have the appearance: 
- - 

Defectives Defectives in 8 old lots 

1 i (Reduced) r-- 
2 ; '  

7----,- 
4 

(Reject) 

In general, the dimensionality of this matrix will begin at 1 .by 10c + 1, change to c + 1 by 9c + 1, 

2c+ 1 by 8c+ 1, etc., until the tenth deletion yields a 1Ocf 1 by 1 array. After 10 deletions, this final 
column vector will represent the probability of states r* + 1, r*+ 2, . . ., 10c for the beginning of a 
second cycle of deletions and additions. Calculations will be identical to those for the first cycle, except 
for the initial probability vector. Recycling may be continued until the initial probability vector for 
states r* + 1, . . .,. 10c contains negligible elements. At that point, the total probability of transfer to 
reduced inspection and to normal state AAAR will be available for insertion into the normal transition 
matrix (Table 3). 

The expected number of lots processed per entry into state 10A may be readily computed from the 
probabilities of exiting to reduced inspection and normal state AAAR at each stage of deletion and 
addition. Thus, state 10A in Table 3 may be treated exactly the same as the other transient states ' 

in the normal transition matrix, except that, in any analysis of the expected number of lots processed 
under each transient state, we must multiply the number of entries into state 10A by the expected 
number of lots under "10A" inspection per entry. 4 

Analysis of the Canonical Matrix 

m he expected transitions, vr,j, for m y  starting state i and transient state j may be found by forming 
the fundamental matrix [8] 

It may be shown that 
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and that the expected number of lots insp@gniiuring a single adoption of normal inspection is 
9 

d: a. 

When departure from nornial inspection occurs, the probabilities, bt,r, of absorption into state j, given 
starting state i ,  are found by 

For normal inspection, the probability of eventual absorption into reduced inspection is 

and the probability of absorption into tightened inspection is 

a N , T = l - a N , R .  

TABLE 4. Tightened inspection 

States Transition probabilities 

1 2 3 4 5 6  

Normal 1 

4A 2  
3A 3 
2A 4 
1A 5  

Start 6  

Table 4 shows the state space and transition probability matrix for tightened inspection. pa repre- 
sents PA,*, 

States are provided for K consecutive lot acceptances, K = 0, 1, . . .: 5, with K = 5 a n  absorption 
back to normal inspection, and K = 0 the starting state. 

The expected number of lots inspected in an adoption of tightened inspection, E[mt] ,  may be 
found for the maximum of 10 lots inspected on this plan by borrowing notation from the normal inspec- 
tion model and determining 
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The probability of return to normal inspection is 

The probability of discontinuation of inspection is 

TABLE 5. Reduced inspection -- . 

. . .  
Transition 

States probabilities 

1 2 3  

Normal/Accept 1 
Normal/ Reject 2 

Start 3 

Reduced inspection transition probabilities and state space are shown in Table 5. pa represents 

PA,R,  pi is P:,R9 and 

Using theory equivalent to that for normal inspection, the expected number of lots inspected for 
each adoption of reduced inspection may be simply determined as 

The probability of return to normal inspection with a rejected lot is 

For the duration of a MIL-STD-IOSD inspection scheme, the expected number of adoptions of 
normal, tightened, and reduced inspection may be obtained from the "meta" transition matrix shown 
in Table 6. Solution of this canonical matrix yields (assuming a start on normal inspection): 

TABLE 6. Meta-transition matrix 

. . Discontinue I I ' 1 1 
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* 

Expected number of adoptions of Equation 

Reduced E [XR] = a ~ ,  R/ ( 1  - aN, R - aN, WT.  N )  

Tightened E[XTI = U N , T / ( ~  - ~ N , R  - ~ N , T ( C T , N )  
Normal E[XN] = 1/(1 - UN,R - UN,TUT,N). 

Then 

4. SOME NUMERICAL RESULTS 
Table 7 shows, for several AQL values and lot sizes, the results of submitting lots of consistent 

AQL quality to the MIL-STD-105D inspection scheme. We note from the Markov chain analysis 
that the probability of eventual discontinuation of sampling inspection is 1.0 if p > 0.0 since this is 
the 6nal absorbing state in the Markov chiins. The expected number of lots to absorption, the propor- 

T m t ~  7. Some representative results from Markov sotution of MIL-STD-IOSD inspection schemes 
when lots of AQL quality are submitted. Percentages shown are for the lots inspected up to the 
discontinuation point. 

Lot size percentage of 
lots rejected 

11.1 '14.1 
33.3 

Expected Expected number 
of lots before 

discontinuation 

107 
204 
763 

104 
198 
671 

1,324 
5,465 

107 
198 
666 

1,324 
5,465 

'12,921 

110 
179 
671 

1,125 
5,465 
8,623 

Expected percentage of lots on- 

Normal 

74.2 
' 76.3 

63.5 

73.4 
76.3 
65.2 
86.0 
85.1 

74.2 
-76.3 
65.2 
86.0 
85.1 
84.3 . 

75.0 
76.1 
65.2 
82.1 
85.1 
86.6 

Tight 

25.8 
12.6 
3.2 

z .6 
12.6 
3.6 
2.9 
0.6 

25.8 
12.6 
3.6 
2.9 
0.6 
0.5 

25.0 
13.9 
3.6 
3.2 
0.6 
0.6 
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tion of lots on normal, reduced, and tightened inspection, and the proportion of rejected lots has been 
indicated for each lot size. The results confirm the observation by Koyama [41 that switching rules in 
MIL-STD-lOSD are severe. Tightened inspection is frequent for s m d  lot sizes, and the bulk o ~ A Q L -  
quality lots wiU undergo normal, rather than reduced, inspection. 

A curious feature of MIL-STD-1OSD is that for some AQL's the proportion on reduced inspection 
tends to be higher for small lots than for large lots. This is primarily a consequence of more stringent 
requirements to remain on reduced inspection. For example, Table IIC of MIL-STD-105~ shows 
that, at AQL = 1.0, lots of size 1,200 require one or less defectives in 32 observations, while lots of size 
3,200 require one or less defectives in 50 observations to remain-on reduced inspection. 

Table 8 shows the impact of incoming quality on the proportion of lots under normal, tightened, 
and reduced inspection for a particular (AQL, N) combination. The table reveals that more than one-half 
of the lots wiU be rejected, and sampling inspection will be discontinued in short order if p is twice 
the AQL. If p is half the AQL value, nearly all lots will be under reduced inspection, with virtually no 
rejections. 

5. EXAMPLE OF COST CALCULATIONS 

Consider the following problem. A manufacturer produces metal castings. The quality characteris- 
tic to be examined is the presence, or absence, of hot cracks to be fluoroscopicdy detected. Production 
is continuous and the manufacturer has some control, through negotiations with the purchaser, over 
lot size, which may vary from 50 to 550 castings. 

The purchaser has specified MIL-STD-1OSD sampling with an Acceptable Quality. Level of 4.0 
percent defectives. Sampling inspection costs are estimated at $1.50 per casting inspected. Rejected 
lots must be subjected to 100 percent screening, also at a cost of $1.50 per casting. 

The purchaser specifies that if sampling inspection is discontinued, the manufacturer must subject 
10 subsequent lots tb 100 percent screening in order to resume normal inspection again. 

Suppose, for example, that the manufacturer produces material at the AQL level of quality (4.0 
percent defectives), and submits lots of size 150. From MIL-STD-105D, the appropriate sampling 
plans are: 

Type of sampling - n - c - r - r* 

Normal 2 0 2  - 4  
Reduced 8 1  3 - 
Tightened 2 0 1  - -  

TABLE 8. Some results from Markm solution of MIL-STD-IOSD inspection with lot size at 150 and 
AQL at 4.0. Percentages shown are for the lots inspected up to the discontinuation point. 

Incoming quality, 
percent defective 
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s The Markov chain analysis revealed that 671 lots are expected to be examined before discontinu- 
ation of sampling inspection, and that 

431 lots are expected to be on normal inspection, 
24 lots are expected to be on tightened inspection, 

206 lots are expected to be on reduced inspection. 

The expected number of rejected lots is 37. Hence, 47 lots out of 671 will be expected to be given 
100 percent screening. 

When these expected values are used, Equations (2), (3), and-(4)-yield: -- 

E (q) = 0.053; 

E(c) = l.SO(O.lO7) + l.SO(O.OS?l) 

= $0.24 per casting. 

Figure 1 shows the average inspection cost per unit, E(C), as a function of lot size, N. The dis- 
continuities in cost occur at the lot sizes where a new acceptance number and sample size take effect. 

LOT SIZE 

FIGURE 1. cost  per manufactured item as a function of lot size, AQL= 4.0, p=AQL.  
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COST ANALYSIS UNDER 105D 

These critical lot sizes are shown in Table 1 and are the same for normal, tightened, and reduced 
inspection in MIL-STD-1OSD. 

Figure 1 shows that the set of interesting alternatives occurs in the vicinity of lot sizes equal to 
the upper boundaries -shown in Table-1,namely-SO, 90,_1_50,280,500. The manufacturer should produce 
in lots of 500, and the cost per casting will be $0.14. Small lot sizes, say 60, could result in a cost per 
casting more than triple this figure. 

Table 9 shows average cost per unit as a function of incoming quality, at a lot size of 150. Costs 
are extremely sensitive to p. Submission of 5 percent defective material, rather than 4 percent, to a 
4.0 percent AQL plan'causes a 67 percent increase in inspection-wstsi- - - 

TABLE 9. Cost per Unit for Sampling Inspection with Lot Size 150 AQL = 4.0. Calculations assume that 
rejected lots 'are screened 100 percept and that discontinuation of sampling requires screening of 
10 lots. 

6. CONCLUSION 

percent per unit 
defective 

Analysis of these inspection schemes over realistic domains for AQL, p, and N reveals that the 
solution set will always occur in the vicinity of critical lot sizes as in the example. Thus, having estimated 
the costs of inspection for a product, a manufacturer need only perform this analysis for feasible lot 
sizes from the set 50,90,150, . . ., and in cases for which the maximum feasible lot size is not a critical 
lot size, this maximum should be examined as well. 

The cost of inspection is very sensitive to lot quality, principally because to achieve and remain on 
reduced inspection very high quality lots must be submitted. Even when consistent AQL quality material 
is submitted to a MIL-STD-1OSD inspection scheme, a substantial number of lots may be subjected - - - - - -_ - .  _ _ _ _ _ _ _ _  
to tightened inspection when lot sizes-are-sind. Thisimplies .that thewitching rules-in the document .- - - -.---.,. 
may be too severe, as suggested by other authors. 
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