
Operations Research Letters 26 (2000) 117–126
www.elsevier.com/locate/orms

Valid integer polytope (VIP) penalties for branch-and-bound
enumeration

Gerald G. Browna, Robert F. Della ; ∗, Michael P. Olsonb
aOperations Research Department, Naval Postgraduate School, Monterey, CA 93943-5219, USA

bINSIGHT, Inc., Sudley North Business Center, 7960 Donegan Drive, Suite 233, Manassas, VA 20109, USA

Received 1 December 1998; received in revised form 1 October 1999

Abstract

We introduce new penalties, called valid integer polytope (VIP) penalties, that tighten the bound of an integer-linear
program during branch-and-bound enumeration. Early commercial codes for branch and bound commonly employed penal-
ties developed from the dual simplicial lower bound on the cost of restricting fractional integer variables to proximate
integral values. VIP penalties extend and tighten these for ubiquitous k-pack, k-partition, and k-cover constraints. In
real-world problems, VIP penalties occasionally tighten the bound by more than an order of magnitude, but they usually
o�er small bound improvement. Their ease of implementation, speed of execution, and occasional, overwhelming success
make them an attractive addition during branch-and-bound enumeration. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Integer-linear programming; Branch and bound; Penalties

1. Preliminaries

The integer linear program (ILP) is de�ned here as

ILP minimize cx

subject to Ax= b; x¿0; (1)

xj ∈ {0; 1} ∀j ∈ R; (BINARY)

where c and x are n-vectors, b is an m-vector, A is an m×n-matrix, and R is an index set of binary variables.
Let x̃ be an admissible incumbent solution to ILP, i.e., x̃ satis�es (1) and (BINARY), and let v(x̃) ≡ cx̃.

∗ Corresponding author.

0167-6377/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(99)00072 -3

118 G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126

De�ne the continuous relaxation of ILP as

LP minimize cx

subject to Ax= b; x¿0;

xj ∈ [0; 1] ∀j ∈ R; (CSR)

where (CSR) is the continuous simplicial relaxation of (BINARY). Let x̂ be optimal to LP. Thus, v(x̂) ≡
cx̂6v(x̃). Solving LP using the simplex method, we obtain x̂ and a revised representation of LP in nonbasic
variable space:

LPN minimize v(x̂) +
∑
j∈N

ĉjx̂j

subject to xi = x̂i −
∑
j∈N

âijx̂j ∀i 6∈ N;

xj¿0 ∀j;
xj ∈ [0; 1] ∀j ∈ R;

where N is the index set of nonbasic variables, âij is the coe�cient of nonbasic variable xj in the representation
of basic variable xi, and ĉj is the reduced cost of nonbasic variable xj.
For solution x̂ to LP, de�ne F as the index set of variables fractional in LP and restricted by (BINARY)

in ILP: F = {j ∈ R: x̂j ∈ (0; 1)}. If LP yields a solution with 0¡x̂j ¡ 1 for some j (i.e., F 6= ∅), we can use
a simplicial restriction to try to improve our lower bound on v(x̃) by restricting xj to a binary value. De�ne
such a simplicial restriction for j ∈ R:

LPX(�j) minimize cx

subject to Ax= b; x¿0;

xj′ ∈ [0; 1] ∀j′ ∈ R \ {j};
xj = �j;

where �j ∈ {0; 1}. Thus, v(x̂)6min{v(x̂|�j =0); v(x̂|�j =1)}6v(x̃) where x̂|�j indicates an optimal solution
to LPX(�j).
Branch-and-bound enumeration employs restrictions of this sort to �nd admissible ILP solutions, or to

establish an improved lower bound on the solutions to ILP that might be achieved via further restrictions. If
such a lower bound is known to apply to all such restrictions, it improves the lower bound on the best-known
incumbent solution to ILP.
Before solving LPX(�j), we can use remnants of the simplicial solution of LP to conservatively forecast

the penalty of the LPX(�j) restriction (e.g., [4,10]). This forecast improves the lower bound on the best new
incumbent we might �nd by solving LPX(�j), or any additional restrictions beyond those of LPX(�j).
Because solving problems like LPX(�j) can be di�cult, and because there can be many to solve, prior

bounds on such solutions can be of considerable value to the overall success of branch and bound. This helps
motivate the early use of penalties constructed from remnants of the simplicial solution. But, as Nemhauser
and Wolsey [6, p. 360] state in the context of branch selection

They [Penalties] were used in early commercial codes but are not in favor now because they are too costly
to compute relative to the value of the information they give.

While we do not disagree that exact penalties serve as a poor criterion for branch choice, we contend that exact
penalties can be valuable for improving lower bounds for di�cult ILPs, and conjecture that some commercial

G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126 119

codes do employ penalties to improve lower bounds on incumbent solutions. We lament that such details are
proprietary secrets for most current commercial codes. We show that these penalties can be specialized and
strengthened in the presence of k-pack, k-cover, and k-partition constraints, and are not costly to compute
relative to their occasional stunning bound improvements.

2. VIP penalties for k-pack, k-cover, and k-partition

De�ne �j (�j6v(x̂|�j = 0)−v(x̂)) as the “simplicial down-penalty” associated with j ∈ R and ��j (��j6v(x̂|�j
= 1) − v(x̂)) as the “simplicial up-penalty”. These “up and down” penalties derive from the simplicial rep-
resentation of a solution to LP, and are readily computable from computational remnants of that solution.
Tomlin [10] calculates these penalties for i ∈ R as

� i = 0 for x̂i = 0; � i = min
j∈N; âij¿0



ĉj

(
max

{
1;
x̂i
âij

})
if j ∈ R;

ĉj

({
x̂i
âij

})
if j 6∈ R



for 0¡x̂i61;

�� i = ĉi for i ∈ N; �� i = min
j∈N; âij¡0



ĉj

(
max

{
1;
1− x̂i
−âij

})
if j ∈ R;

ĉj

({
1− x̂i
−âij

})
if j 6∈ R;



for i 6∈ N; 06x̂i ¡ 1;

and �� i = 0 for x̂i = 1.
A valid-integer-polytope (VIP) constraint is a valid inequality on the ILP integer polytope. The VIP con-

straints 06xj61 for j ∈ R improve v(x̂) by min{�j; ��j} (e.g., see [4, p. 120]). Because each variable j ∈ F
must be restricted to zero or one to satisfy (BINARY) in ILP, the collective improvement is

�(CSR) = max
j∈R

{min{�j; ��j}}=maxj∈F
{min{�j; ��j}}: (2)

We strengthen the penalty o�ered by (2) for k-pack, k-cover, and k-partition constraints (original ILP
constraints or valid inequalities to ILP). Tomlin [10] also strengthens the penalty o�ered by (2); he presents
penalties deduced from the observation that the fractional source variable in a Gomory cut induces movement
in the other variables from which a penalty can be derived (e.g., [7, pp. 192–193]). Because our development
requires that we associate speci�c up and down penalties with particular variables, we cannot apply this
result.
To motivate our development, we start with a simple pairwise 1-pack VIP constraint:

xj + xj′61; {j; j′}= R′ ⊆R:

Here, we see that either xj or xj′ must be restricted to zero in ILP. Thus, we know besides the contribution of
these two variables to �(CSR), the smaller of their two down penalties (min{�j; �j′}) also applies. Combined
with (2), we obtain

max{min{�j; �j′};max{min{�j; ��j};min{�j′ ; ��j′}}}: (3)

120 G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126

To generalize this observation, de�ne [l]d ([l]u) as the index j ∈ R′ (j′ ∈ R′) corresponding to the lth as-
cending down-penalty (ascending up-penalty) in the set R′ ⊆R and let r′=|R′|. That is, R′={[1]d ; [2]d ; : : : ; [r′]d}
= {[1]u ; [2]u ; : : : ; [r′]u} where �[1]d6�[2]d6 · · ·6�[r′]d and ��[1]u6

��[2]u6 · · ·6 ��[r′]u . Also de�ne the ordered
subsets of R′; R′kd = {[1]d ; [2]d ; : : : ; [k]d} and R′ku = {[1]u ; [2]u ; : : : ; [k]u}.
Using this notation, we know �[1]d6�[2]d and �[1]d¿min{�[1]d ; ��[1]d} so (3) becomes
max{�[1]d ;min{�[2]d ; ��[2]d}}:

Property 1. A general k-pack VIP constraint with r′¿k:∑
j∈R′

xj6k; (k-pack)

o�ers improvement of v(x̂) by

�(k-pack) = max

{
�[r′−k]d ; max

j∈R′\R′
(r′−k)d

{min{�j; ��j}}
}
: (4)

Proof. The term �[r′−k]d arises from the r′−k variables in set R′ that must have value zero in ILP. The latter
term derives from (2) and the result that

�[r′−k]d¿ max
j∈R′

(r′−k)d

{min{�j; ��j}}:

Property 2. A k-cover VIP constraint with r′¿k:∑
j∈R′

xj¿k; (k-cover)

o�ers improvement of v(x̂) by

�(k-cover) = max

{
��[k]u ; maxj∈R′\R′ku

{min{�j; ��j}}
}
: (5)

Proof. The term ��[k]u is justi�ed because at least k variables in set R
′ must have value one in ILP. The latter

term derives from (2) and the result that

��[k]u¿max
j∈R′ku

{min{�j; ��j}}:

Property 3. A k-partition VIP constraint with r′¿k:∑
j∈R′

xj = k; (k-partition)

o�ers improvement to v(x̂) by the maximum of the k-pack and k-cover VIP penalties:

�(k-partition) = max{�(k-pack); �(k-cover)}: (6)

3. Pack and cover symmetry

There is a symmetry between the pack and cover VIP constraints and the associated VIP penalties presented
here. Consider the k-pack constraint

∑
j∈R′ xj6k and let xj = 1 − x′j (a complement re
ection) ∀j ∈ R′.

G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126 121

Then

((k-pack) in x)⇔
∑
j∈R′

xj6k ⇔
∑
j∈R′

(1− x′j)6k ⇔
∑
j∈R′

x′j¿r
′ − k ⇔ ((r′ − k-cover) in x′):

Because �j= ��
′
j, and ��j=�

′
j, the VIP penalty for the k-pack is identical to that of the complement r

′−k-cover:

�(k-pack) = max

{
�[r′−k]d ; max

j∈R′\R′
(r′−k)d

{min{�j; ��j}}
}
;

�(r′ − k-cover) = max
{
��
′
[r′−k]u ; max

j∈R′\R′
(r′−k)u

{min{�′j; ��
′
j}}

}
:

4. When VIP �(k-pack) and �(k-cover) can be stronger than �(CSR)

The following establishes necessary conditions for which the VIP penalties �(k-pack) or �(k-cover) can be
stronger than the conventional �(CSR) penalty.
De�ne R′ = {j ∈ R′: x̂j = 0}(�R′ = {j ∈ R′: x̂j = 1}) as the set of variables restricted (Binary) in ILP and

equal to zero (one) in LP. Also de�ne F ′ = {j ∈ R′: x̂j ∈ (0; 1)}; r′ = |R′|; �r′ = | �R′|, and f′ = |F ′|. (Note:
R′ = R′ ∪ �R

′ ∪ F ′ and r′ = r′ + �r′ + f′.)
Clearly, if F ′= ∅ then �(CSR)= �(k-pack)= �(k-cover)= 0 in (2), (4), and (5) (i.e., the bounds provided

by (2), (4), and (5) can be nonzero only when f′¿1).
From the de�nition of R′; �R

′
; �[r′−k]d , and

��[k]u it follows that the value of �(k-pack) (�(k-cover)) can
exceed the value of �(CSR) only if r′6r′ − (k + 1) in k-pack (�r ′6k − 1 in k-cover).

Property 4. The relationship between r′; �r ′; and f′.

• r′6r′ − (k + 1) in k-pack (�r ′6k − 1 in k-cover) implies f′¿1.

Proof. r′ = r′ + �r ′ + f′ or f′ = r′ − r′ − �r ′ and �r ′6k in k-pack (r′6r′ − k in k-cover) providing f′¿r′ −
r′ − (k + 1)− k(f′¿r′ − (r′ − k)− (k − 1)) or f′¿1.

• f′¿1 does not necessarily imply r′6r′− (k+1) in k-pack (�r ′6k− 1 in k-cover) when k¿2 (k6r′− 2).
For example; x1 + x2 + x362 with x̂1 = 0; x̂2 = x̂3 = 0:5 provides r′ = 1 and f′ = 2 (x1 + x2 + x3¿1 with
x̂1 = 1; x̂2 = x̂3 = 0:5 provides �r ′ = 1 and f′ = 2).

• When k61 (k¿r′ − 1); f′¿ 1 implies r′6r′ − (k + 1) (�r ′6k − 1) in k-pack (k-cover).

Proof. For k-pack, assume r′¿r′ − (k + 1)¿r′ − 2 or 2¿r′ − r′ implying (since f′ = r′ − r′ − �r ′) the
contradiction f′61. For k-cover, assume �r ′¿k − 1¿r′ − 2 or 2¿r′ − �r ′ implying, again, the contradiction
f′61.

It is therefore necessary for r′6r′ − (k + 1) in k-pack (�r ′6k − 1 in k-cover) for the value of �(k-pack)
(�(k-cover)) to exceed the value of �(CSR). When f′¿ 1 this necessary condition is satis�ed for k61 in
k-pack (k¿r′ − 1 in k-cover) but not for arbitrary k.

122 G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126

5. VIP opportunities abound in real-world models

Pack, cover, and partition constraints abound in real-world models. Generalized upper bound (GUB) con-
straints [3] are often present in large numbers (see e.g. [1] and references therein). We submit that GUB
constraints often apply to sets of binary variables, and that the coe�cients of these constraints are often one,
or can be rendered so by scaling and re
ection. Other row-factorizations (e.g., pure network rows) also exhibit
such structure. Furthermore, the right-hand side of such integer forms can be tightened to some integer k after
scaling and re
ection of row coe�cients. The most frequent value of k is one.
A special ordered set (SOS) constraint of Type I [9] is a 1-pack constraint,

∑
j∈R′ xj61. Tomlin suggests

branching by partitioning the variables in R′ into two subsets, each of which is alternately forced to zero,
inducing a 0-pack constraint (

∑
j∈R1 xj60 for R1⊂R′).

Both GUB and SOS constraints are potential sources for VIP penalties when their incident binary variables
are fractional.
A “simple variable upper bound constraint” or “SVUB constraint” has the form

xj6xj′ ; {j; j′}⊆R; (SVUB)

and is a simple example of a variable upper bound [8]. SVUB can be used to control binary xj with binary
xj′ : “j only if j′.” Such constraints occur frequently, and when a model exhibits SVUBs, it often contains
many of them.

Proposition 5. Using the SVUB constraint; v(x̂) may be improved by

�(SVUB) = min{max{�j; �j′};max{ ��j′ ;min{�j; ��j}}}: (7)

Proof. If xj′ =0 then xj =0 and max{�j; �j′} is a valid bound. If xj′ = 1 then xj = 0 or 1 and max{ ��j′ ;
min{�j; ��j}} is a valid bound. Because xj′ may take on the value zero or one, we must take the minimum of
these two bounds.

Although not immediately obvious, (7) is equivalent to the result obtained when a SVUB constraint is
transformed to an equivalent 1-pack constraint by complementing xj′ :

xj6xj′ ⇔ xj61− x′j′ ⇔ xj + x′j′61;

providing under (4)

max{min{�j; �′j′ = ��j′};max{min{�j; ��j};min{�j′ ; ��j′}}}
or

xj6xj′ ⇔ 1− x′j6xj′ ⇔ x′j + xj′¿1;

providing the same improvement under (5)

max{min{ ��′j = �j; ��j′};max{min{�j; ��j};min{�j′ ; ��j′}}}: (8)

Proposition 6. Eqs. (7) and (8) are equivalent.

Proof. We establish the equivalence by looking at all partial orderings of �j; ��j; �j′ , and ��j′ . All partial
orderings must have �j6�j′ (if xj′ becomes zero, then xj must become zero) and ��j¿ ��j′ (if xj becomes
one, then xj′ must become one). The following is an exhaustive list of remaining partial orders and the result
obtained in both (7) and (8):

G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126 123

• �j6 ��j; �j6 ��j′ ; �j′6 ��j; �j′6 ��j′ yielding �j′ ,
• �j6 ��j; �j6 ��j′ ; �j′6 ��j; �j′¿ ��j′ yielding ��j′ ,
• �j6 ��j; �j6 ��j′ ; �j′¿ ��j; �j′6 ��j′ yielding �j′ ,
• �j6 ��j; �j6 ��j′ ; �j′¿ ��j; �j′¿ ��j′ yielding ��j′ ,
• �j6 ��j; �j¿ ��j′ ; �j′6 ��j; �j′6 ��j′ yielding �j; �j′ , or ��j′

because �j′6 ��j′6�j (but �j′¿�j) or �j′ = ��j′ = �j,
• �j6 ��j; �j¿ ��j′ ; �j′6 ��j; �j′¿ ��j′ yielding �j,
• �j6 ��j; �j¿ ��j′ ; �j′¿ ��j; �j′6 ��j′ yielding �j; ��j; �j′ , or ��j′

because ��j′6�j6 ��j6�j′6 ��j′ or �j = ��j = �j′ = ��j′ ,
• �j6 ��j; �j¿ ��j′ ; �j′¿ ��j; �j′¿ ��j′ yielding �j,
• �j¿ ��j; �j6 ��j′ ; �j′6 ��j; �j′6 ��j′ yielding �j; �j′ ; ��j
because �j′6 ��j6�j (but �j′¿�j) so �j′ = ��j = �j,

• �j¿ ��j; �j6 ��j′ ; �j′6 ��j; �j′¿ ��j′ yielding �j; ��j; �j′ , or ��j′

because ��j6�j6 ��j′6�j′6 ��j or �j = ��j = �j′ = ��j′ ,
• �j¿ ��j; �j6 ��j′ ; �j′¿ ��j; �j′6 ��j′ yielding �j; ��j; �j′ , or ��j′

because ��j6�j′6 ��j′ and ��j6�j6 ��j′ (but ��j¿ ��j′) so �j = ��j = �j′ = ��j′ ,
• �j¿ ��j; �j6 ��j′ ; �j′¿ ��j; �j′¿ ��j′ yielding ��j; �j′ , or ��j′

because ��j6�j6 ��j′ (but ��j¿ ��j′) so ��j = �j = ��j′ ,
• �j¿ ��j; �j¿ ��j′ ; �j′6 ��j; �j′6 ��j′ yielding �j; ��j; �j′ , or ��j′

because �j′6 ��j′6�j and �j′6 ��j6�j (but �j′¿�j) so �j = ��j = �j′ = ��j′ ,
• �j¿ ��j; �j¿ ��j′ ; �j′6 ��j; �j′¿ ��j′ yielding �j; ��j, or �j′
because �j′6 ��j6�j (but �j′¿�j) so �j′ = ��j = �j,

• �j¿ ��j; �j¿ ��j′ ; �j′¿ ��j; �j′6 ��j′ yielding �j; ��j; �j′ or ��j′

because ��j6�j′6 ��j′6�j (but �j′¿�j and ��j¿ ��j′) so �j = �j′ = ��j = ��j′ ,
• �j¿ ��j; �j¿ ��j′ ; �j′¿ ��j; �j′¿ ��j′ yielding ��j.

Consider a more general form of the SVUB constraint:∑
j∈R′

xj6k xj′ ; (k-VUB)

where k¿|R′|, and consider its equivalent form
xj6xj′ ∀j ∈ R′: (VUBS)

“k-cardinality” constraints such as these appear frequently in real-world models.
We know (7) is valid for each j ∈ R′ in VUBS, providing
max
j∈R′

{min{max{�j; �j′};max{ ��j′ ;min{�j; ��j}}}}:

Since �j6�j′ , for all j ∈ R′, this becomes
max
j∈R′

{min{�j′ ;max{ ��j′ ;min{�j; ��j}}}}
or

min
{
�j′ ;max

{
��j′ ;max

j∈R′
{min{�j; ��j}}

}}
: (9)

124 G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126

Table 1

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 RHS
z 0 0 0 −1 −1 −1 −1 −1 −1 0 3.0

x1 1 0 0 1 0 0 −0:5 0.5 −0:5 0 0.5
x2 0 1 0 0 1 0 −0:5 −0:5 0.5 0 0.5
x3 0 0 1 0 0 1 0.5 −0:5 −0:5 0 0.5
s4 0 0 0 1 1 1 −0:5 −0:5 −0:5 1 0.5

For the basic k-VUB constraint,∑
j∈R′

xj6k xj′ ⇔
∑
j∈R′

xj6k (1− x′j′)⇔
∑
j∈R′

xj + k x′j′6k:

If x′j′ =1 (xj′ =0), then
∑

j∈R′ xj =0 and the resulting bound is max{�j′ ; �[k]d}= �j′ . If x′j′ =0 (xj′ =1) then
xj = 0 or 1 ∀j ∈ R′ and the resulting bound is max{ ��j′ ;maxj∈R′{min{�j; ��j}}}. Since xj′ can have either
value 0 or 1, the resulting bound (equivalent to (9)) is

min
{
�j′ ;max

{
��j′ ;max

j∈R′
{min{�j; ��j}}

}}
:

6. An illustrative example

Consider a simple ILP

minimize z = 2x1 + 2x2 + 2x3 + 3x4 + 3x5 + 3x6

subject to x1 + x2 + x4 + x5¿1;

x2 + x3 + x5 + x6¿1;

x1 + x3 + x4 + x6¿1;

x1 + x2 + x3¿1;

x1; x2; x3 ∈ {0; 1} x4; x5; x6¿0:

An optimal solution is x̃1 = x̃2 = 1 with z = 4.
The explicit simplicial remnants of LP are given in Table 1. LP provides a lower bound on admissible z

of 3.
Using the information in Table 1, we compute the down-penalties (e.g., [7, p. 191]) �1 = �2 = �3 = 0:5 and

the up-penalties ��1 = ��2 = ��3 = 1. For example, x̂1 = 0:5− x̂4 + 0:5ŝ1 − 0:5ŝ2 + 0:5ŝ3 so

�1 = min
{
0:5(1)
1

;
0:5(1)
0:5

}
= 0:5

because the minimum penalty for lowering x̂1 to zero can be achieved by either increasing x̂4 by 0.5
(a penalty of 0:5(1)=1) or increasing ŝ2 by 1.0 (a penalty of 0:5(1)=0:5).

��1 = min
{
0:5(1)
0:5

;
0:5(1)
0:5

}
= 1

because the minimum penalty for raising x̂1 to one can be achieved by either increasing ŝ1 or ŝ3 by 1.0
(a penalty of 0:5(1)=0:5).

G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126 125

�(CSR) (Eq. (2)) is 0.5. Thus, without VIP penalties, the lower bound on admissible z is 3.5.
Apply (4) to the original 1-cover constraint x1 + x2 + x3¿1 and �(1-cover)= 1; this 1-cover VIP penalty

raises the lower bound on z to 4, closing the integrality gap completely.

7. Implementation and anecdotal computational experience

We developed VIP penalties to help solve real-world, large-scale mixed-integer problems. We qualify their
success with two caveats: the existing design of our solver (the X-system, e.g., [1]) in
uences our imple-
mentation, and our experience is limited to problems we frequently solve. Pursuant to our caveats, we do not
clutter this paper with tables of our benchmarks because they would hardly constitute reproducible scienti�c
experiments with other solvers.
Predominantly, we deal with binary set partitions, and with mixed-integer logistic network design problems

(“supply chain models”) with dominant special structure, such as embedded networks.
During branch-and-bound enumeration of large, di�cult problems, we have found that it is preferable to

make a considerable investment in computation before committing to solve another linear program. In this
setting, VIP penalties require an inconsequential amount of additional code and computation.
There are two sources of VIP penalties: those based on existing model constraints, and those derived from

valid integer polyhedral constraints.
We constantly monitor restricted simplicial problem structure during enumeration to identify and to isolate

candidate rows for constraint-based branching. Thus, identi�cation of existing restricted source constraints
(e.g., a 1-cover with two or more binary variables with fractional values) is trivial.
We also seek violated integer polyhedral cuts during enumeration (e.g., [2,5]). Most such candidate cuts

are of a form useful for VIP penalties. The VIP penalty for a violated cut o�ers a lower bound on the value
of the cut as a simplicial restriction.
VIP penalties are additive across independent simplicial components that are often created by a sequence

of restrictions within branch and bound. We use breadth-�rst search to label and isolate disjoint simplicial
components; VIP penalties are easily computed and accumulated across these. Our set partitioning problems
commonly break into 50–100 disjoint components during nontrivial enumerations, while supply chain problems
seldom exhibit more than �ve.
VIP penalties are computed in polynomial time for k-pack, k-cover, k-partition and k-VUB constraints,

with computational e�ort proportional to k log k. Our experiments suggest that limiting k to 1 minimizes
computational overhead with little loss in e�ectiveness.
So, the good news is that VIP penalties are easy to compute. The bad news is that we never know the

extent to which they will help.
With almost all models, VIP penalties improve the lower bound by a nonzero amount. However, most

improvements are small – a fraction of a percent reduction in the integrality gap is typical. However, if we
eliminate trivial enumeration problems, say, those that render the desired integrality gap within 20 branches,
the remaining models are more likely to be improved by VIP.
An example of an outlier we came across is a set partition with 1,200 rows, 36,400 binary columns, and an

average of 50 nonzero coe�cients per column. Here, a stubborn residual integrality gap of 18% is suddenly
reduced to zero by the sum of VIP penalties dominated by two of 23 extant disjoint simplicial components.
The consequent fathom soon resolves the problem. The key source rows are a pair of simple 1-partitions in the
signal restriction, with the two dominating penalties each deriving from the 1-cover case (5). Repeating the
exercise many times, varying enumeration strategy to suppress various accompanying features (including, in
particular, integer polyhedral cuts), we �nd a number of similar “VIP events”, but no discernable explanatory
pattern. Across these experiments, VIP frequently plays a key role in resolving an otherwise interminable
enumeration.

126 G.G. Brown et al. / Operations Research Letters 26 (2000) 117–126

Not surprisingly, VIP penalties are more valuable if not competing with aggressive generation of polyhedral
cuts. Comparatively, the cuts are more powerful and reliable, but much more expensive to �nd and apply.
We have retained both as options, suggesting them as defaults when a model is dominated by set-partitioning
constraints.
Another signi�cant “VIP event” arises in the Benders master problem of a decomposed supply-chain model.

The original master problem has 513 rows and 32,110 binary columns, but a single 1-cover (5) isolated in
a restriction reduces an integrality gap of 8% to less than 1%. At the point that this restriction is generated,
there are only two disjoint components, and no discovered polyhedral cuts. Without VIP penalties, the time
to resolve this master problem increases by an order of magnitude, and then another decomposition iteration
of comparable di�culty is required.
Sometimes, you really want to close the integrality gap completely, rather than just to some moderate

tolerance. In these cases, VIP penalties frequently appear to signi�cantly reduce the exhaustive enumeration
e�ort.
We have adopted VIP penalties as a default enumeration feature in our ILP applications.

Acknowledgements

We thank Naval Postgraduate School Professors Kevin Wood, Alexandra Newman, and Alan Washburn for
their reviews.

References

[1] G.G. Brown, M.P. Olson, Dynamic factorization in large-scale optimization, Math. Programming 64 (1994) 17–51.
[2] H. Crowder, E.L. Johnson, M. Padberg, Solving large scale zero-one linear programming problems, Oper. Res. 31 (1983) 803–834.
[3] G.B. Dantzig, R.M. Van Slyke, Generalized upper bounding techniques, J. Comput. System Sci. 1 (1967) 213–226.
[4] R.S. Gar�nkel, G.L. Nemhauser, Integer Programming, Wiley, New York, 1972.
[5] K.L. Ho�man, M. Padberg, Solving airline crew scheduling problems by branch-and-cut, Management Sci. 39 (1993) 657–682.
[6] G.L. Nemhauser, L.A. Wolsey, Integer and combinatorial optimization, Wiley, New York, 1988.
[7] R.G. Parker, R.L. Rardin, Discrete Optimization, Academic Press, New York, 1988.
[8] L. Schrage, Implicit representation of variable upper bounds in linear programming, Math. Programming 4 (1975) 118–132.
[9] J.A. Tomlin, Branch and bound methods for integer and non-convex programming, in: J. Abadie (Ed.), Integer and Nonlinear

Programming, American Elsevier, 1970, pp. 437–450.
[10] J.A. Tomlin, An improved branch and bound method for integer programming, Oper. Res. 19 (1971) 1070–1075.

