Exceptional Paper

Design and Implementation of Large Scale Primal Transshipment Algorithms
Gordon H. Bradley; Gerald G. Brown; Glenn W. Graves

Management Science, Vol. 24, No. 1. (Sep., 1977), pp. 1-34.

Stable URL: http://links.jstor.org/sici?sici=0025-

1909%28197709%2924%3 A1%3C1%3ADAIOLS%3E2.0.CO%3B2-S

Abstract

A complete description is given of the design, implementation and use of a
family of very fast and efficient large scale minimum cost (primal simplex)
network programs. The class of capacitated transshipment problems solved
is the most general of the minimum cost network flow models which include
the capacitated and uncapacitated transportation problems and the classical
assignment problem; these formulations are used for a large number of
diverse applications to determine how (or at what rate) a good should flow
through the arcs of a network to minimize total shipment costs. The
presentation tailors the unified mathematical framework of linear
programming to networks with special emphasis on data structures which are
not only useful for basis representation, basis manipulation, and pricing
mechanisms, but which also seem to be fundamental in general
mathematical programming. A review of pertinent optimization literature
accompanies computational testing of the most promising ideas. Tuning
experiments for the network system, GNET, are reported along with important
extensions such as exploitation of special problem structure, element
generation techniques, postoptimality analysis, operation with problem
generators and external problem files, and a simple noncycling pivot selection

procedure which guarantees finiteness for the algorithm.

Design and Implementation of Large Scale Primal Transshipment
Algorithms

Gordon H. Bradley; Gerald G. Brown; Glenn W. Graves

Management Science, Vol. 24, No. 1 (Sep., 1977), 1-34.

Stable URL:
http://links jstor.org/sici?sici=0025-1909%28197709%2924%3 A1%3C1%3ADAIOLS %3E2.0.CO%3B2-S

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Management Science 1is published by INFORMS. Please contact the publisher for further permissions regarding the
use of this work. Publisher contact information may be obtained at http://www jstor.org/journals/informs.html.

Management Science
©1977 INFORMS

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Thu Sep 4 12:16:38 2003

MANAGEMENT SCIENCE
Vol. 24, No. 1, September 1977
Printed in U.S.A.

xceptional

DESIGN AND IMPLEMENTATION OF LARGE SCALE
PRIMAL TRANSSHIPMENT ALGORITHMS*¥

GORDON H. BRADLEY], GERALD G. BROWNji anD GLENN W. GRAVES§

A complete description is given of the design, implementation and use of a family of very -
fast and efficient large scale minimum cost (primal simplex) network programs. The class of
capacitated transshipment problems solved is the most general of the minimum cost network
flow models which include the capacitated and uncapacitated transportation problems and
the classical assignment problem; these formulations are used for a large number of diverse
applications to determine how (or at what rate) a good should flow through the arcs of a
network to minimize total shipment costs. The presentation tailors the unified mathematical
framework of linear programming to networks with special emphasis on data structures which
are not only useful for basis representation, basis manipulation, and pricing mechanisms, but
which also seem to be fundamental in general mathematical programming. A review of
pertinent optimization literature accompanies computational testing of the most promising
ideas. Tuning experiments for the network system, GNET, are reported along with important
extensions such as exploitation of special problem structure, element generation techniques,
postoptimality analysis, operation with problem generators and external problem files, and a
simple noncycling pivot selection procedure which guarantees finiteness for the algorithm.

Introduction

This paper reports the development of a large scale primal network code that is
possibly the fastest and most efficient program currently available for solving capaci-
tated transshipment problems. The capacitated transshipment problem is the most
general of the minimum cost flow models which include the capacitated and unca-
pacitated transportation problems and the personnel assignment problem. These
models are used for a large number of diverse applications that include transportation
of goods, design of communications and pipeline systems, assignment of men to jobs,
bid evaluation and production planning. For further discussion of these applications
see the survey articles of Bradley [5], Elmaghraby [18] and Fulkerson [22] and the
textbooks of Busacker and Saaty [8], Charnes and Cooper [9], Dantzig [15] and Ford
and Fulkerson [20].

The capacitated transshipment model and its specializations are minimum cost
network flow problems. The goal is to determine how (or-at what rate) a good should
flow through the arcs of a network to minimize shipment costs. The network is a
directed graph defined by a set of nodes, N, and a set of arcs, A, with ordered pairs of
nodes (tail, head) as elements indexed by k. For each arc there is a shipping cost per
unit flow, ¢,, a minimum allowable flow (or lower bound), /, and a maximum
allowable flow (or capacity), .. Each node is either a supply node where units of the
good enter the network, a demand node where units leave, or a transshipment node.
The problem is to minimize total costs with flows, x,, that satisfy the associated Tower

* This paper has been refereed under guidelines for exceptional contributions.

T Accepted by Arthur M. Geoffrion; received November 10, 1976. This paper has been with the authors
13 months, for 1 revision.

¥ Naval Postgraduate School, Monterey.

§ University of California, Los Angeles.

Copyright © 1977, The Institute of Management Sciences

2 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES
bounds and capacities and preserve the conservation of flow at each node:

min Y, ¢, x,

kEA
st X, — > x,=b, i€EN, (D)
k € A with tail i k € A with head i
L < X <y, k€A,

where b, = {supply if / is a supply node; —demand if i/ is a demand node; 0
otherwise}. ‘

We choose this notation to emphasize that data will be stored only for arcs that are
present in the network, and operations are defined only for use with these arcs. The
usual textbook notation with, for instance, 3,3 x; is particularly inappropriate since
for large practical problems it is seldom true that all node pairs are connected by an
arc. Further, our notation allows multiple arcs (connecting any given pair of nodes)
which are common in practical problems. This notation is also consistent with the
input requirements of all contemporary large scale network optimization and linear
programming codes.

These models are widely used because they accurately describe a variety of
important applications. There has been a recent surge of interest in such models
because more efficient computer programs have made possible the economic solution
of problems with more variables than virtually any other optimization technique.
Networks are also popular because they are more readily accepted by nonanalysts
than perhaps any other class of operations research model.

These models can be solved as linear programming problems with a constraint for
each node and a variable for each arc. For large scale problems, contemporary
commercial linear programming codes require 50-200 times as much computer time
and considerably more space for data storage than special purpose network flow
algorithms.

Although many papers have been written in this general area, and significant
computational breakthroughs have been reported, there has not previously been a
single, unified description of a complete implementation, nor have “new generation”
computer programs been made generally available to the academic community. Here
we report the research and computational experiments which have produced GNET,
an extremely efficient yet relatively simple code. An important objective of this paper
is to make these new approaches easily accessible to a wide audience via a clear
mathematical exposition and a concrete example of a highly efficient FORTRAN
program. Further, the availability of the computer program will now make it possible
for other investigators to reproduce and extend the experimental results.

The transportation model was originally proposed by Hitchcock [39] in 1941 and
Koopmans [44] in 1946. Both presented computational methods that would now be
called “primal simplex.” Hitchcock shows that an optimal solution will be an extreme
point solution and shows how to iteratively construct better extreme point solutions.
He notes alternate optimal solutions and degeneracy (all in 6% pages). Koopmans
develops simplex multipliers, or “node potentials” and the optimality criterion and he
shows that an extreme point is equivalent to a tree. Dantzig [14] in 1951 showed how
the transportation problem can be solved by his simplex algorithm; he also developed
a special variant of the simplex algorithm for the transportation problem. Orden [52]
shows that these results can be extended to the transshipment problem.

Approaches other than the primal simplex have been proposed including out-of-
kilter (Fulkerson [21]), primal-dual (Ford and Fulkerson [19]), dual (Balas and

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 3

Hammer [1]), path (Busacker and Gowen [7]), negative cycle (Klein [42]) and scaling
(Edmonds and Karp [17]). Also, special algorithms have been developed for the
assignment, shortest route and maximum flow problems.

The contemporary implementations of the primal simplex network algorithm are
based on compact representation of the basis, determination of the outgoing arc
without trial and error and efficient techniques to update the simplex multipliers at
each pivot. Some of these developments were suggested in the 1960’s. Glicksman, L.
Johnson and Eselson [27] describe a transportation problem with few sources and
many sinks; their data structure may be viewed as storing the basis as an arborescence
and using this structure to efficiently find the outgoing arc. E. Johnson [40] describes
a triple label scheme that represents the basis as an arborescence and allows the
simplex multipliers to be updated efficiently. Johnson describes his work as a
modification of the proposal of Scoins [55].

The proposals of Glicksman, L. Johnson and Eselson [27], Scoins [55] and E.
Johnson [40] for primal algorithms were not immediately pursued; the most widely
known code of that decade is an out-of-kilter implementation by Clasen [12]. The
contemporary work on network algorithms was begun in 1970 by Srinivasan and
Thompson [59], [60] Glover, Karney and Klingman [28] and Glover, Karney, Kling-
man and Napier [29]. This work was a break with the past in that:

1. Primal algorithms were considered despite all the experiments in the 1950’s and
early 1960’s that showed the apparent superiority of the out-of-kilter algorithm.

2. Contemporary computer science tools that had not been available a decade
earlier were used.

3. Computer codes were developed for much larger problems.

Later and independently, McBride [48] and Graves and McBride [34] specialized their
work on factorization of linear programs to transshipment problems. Although their
development is quite different, the network specialization of their data structures is
similar in many respects to data structures that evolved from a graph theoretic view of
networks. Mulvey [49] has developed an efficient large scale primal code at TRW.
Harris [36] has developed a primal algorithm for transportation problems with many
sinks and few sources. Langley, Kennington and Shetty [46] have also developed a
primal transshipment code.

A significant aspect of contemporary network research has been the computational
testing of different algorithms on large standard test problems. One major topic has
been primal algorithms versus out-of-kilter algorithms. Experiments in the 1950’s and
early 1960’s convinced researchers that the out-of-kilter algorithm was superior,
especially for transshipment problems. The most comprehensive recent comparison
has been done by Glover, Karney and Klingman [28] and Barr, Glover and Klingman
[2] who compare the algorithms on a diverse set of test problems [43]. Their primal
code is from 30% (for transshipment) to 40% (for transportation) faster than their
out-of-kilter code. The success of the primal algorithm has been independently
verified by the experiments of others. Most researchers now believe that the primal
algorithm is superior to others including the out-of-kilter algorithm (an exception is
Hatch [38]). Current primal implementations are faster, require less storage, are more
suitable when using secondary storage devices and are compatible as embedded parts
of more general optimization systems.

The Approach

The approach we have used in this research is to study the data structures which
seem to be most fundamental in the sense that they can be applied to many types of
mathematical programming situations. In this context, we view the major advances
over the last thirty years in efficient solution of large linear programming problems

4 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

(for example: revised simplex, product form inverse, bounded variables, generalized
upper bounding, factorization, sparse matrix methods, etc.) as major changes in the
representation of the data accompanied only by necessary modifications of the
simplex procedure to accommodate these new data structures. The computational
breakthroughs in primal network codes are also due to improvements in data
representation and renew our interest in the subtle relationships between the
algorithms and the data structures employed for implementation.

We view networks as an important special case of large scale linear programming.
Historically this has been the perspective; however, in most recent literature, networks
have been treated as a distinct research area with little reference to the notation and
mathematical development of linear programming. This “network approach” is based
on graph theory notation and results. We find this to be a confining view, as
evidenced by the arduous nature of extensions of the graph theoretic basis tree results
to more general mathematical programming models. Our approach is to develop the
framework of a general linear programming problem and then to specialize it to
primal network models. Therefore, it is necessary to build a sufficient mathematical
foundation to answer the question: “What is the capacitated transshipment problem a
specialization of?” rather than, “How can we generalize basis trees?” Thus we invite
the reader to view this paper as drawing from a general theory of large scale
mathematical programming for which the network algorithms are concrete realiza-
tions of a rich algebraic view of a problem with special structure. Although our
approach is different from most recent work, we establish the graph theoretic
interpretation for the pure network problem and thus can easily show the relationship
of our work to that of others. For expository purposes we will draw from both linear
algebra and graph theory using pictures and terminology consistent with past litera-
ture. A companion paper [32] takes a purely algebraic approach that shows via lattice
theory the full generality of the basis permutation triangulation done here only for
pure networks.

Many applications involve networks as an embedded part of a more general
optimization problem. These models, which may involve additional constraints, non-
linear objective functions, decomposition, Lagrangian relaxation, etc., require careful
coordination of the primal variables, dual variables, and bases of the network
problem(s) with those of the general problem. A general linear programming frame-
work and notation gives explicit relationships between the network and the remainder
of the optimization problem. This approach facilitates development of new algorithms
and also provides a unified framework for this work and the authors’ parallel research
on general large scale mathematical programming systems.

We continue with a brief algebraic description of the general bounded variable
simplex algorithm and several commonly used implementation options. The algebraic
specialization of the simplex method for pure network problems is then presented.
After these necessary but somewhat mathematically involved sections, the specific
design decisions and experiments carried out with GNET are described, including
computational evidence which indicates that the code produced by this approach
compares very favorably with other algorithms, primal or otherwise. Several ex-
tensions of GNET are presented, including a noncycling pivot selection procedure,
codes tailored to capacitated and uncapacitated transportation problems, and other
variants to exploit special network structure. Postoptimal and reoptimization proce-
dures using GNET are discusséd. Finally, a review of the literature traces the original
contributions found to be of fundamental importance in this work.

Primal Simplex Algorithm

In this section we briefly review the mathematical underpinnings of the bounded
variable revised simplex method. The notation and well-known results are necessary

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 5

for the network specialization that is described in the next section. In order to
maintain a broad scope, the presentation intentionally avoids tangential issues of
specific methods and implementations. Rather, the class of algebraic algorithms is
characterized with only the briefest indication of options often employed for actual
linear programming codes. Small italic letters will denote column vectors, and a prime
indicates transpose. Large letters denote matrices; superscipts denote columns and
subscripts denote rows.
Consider

min ¢’x s.t. Ax=5b and 0<x<u; 2)

where A4 is viewed for the present as a matrix of technological coefficients.

As a practical matter, lower bounds on the variables in (1) have been eliminated by
transformation.

The upper bounds, u, are most readily accommodated implicitly. Whenever x,
reaches its upper bound, it is logically replaced (reflected) by u, — x,; column k is
logically treated as if its sign has changed and the explicit right-hand side is
transformed to b — A"uk. If a record is kept of each variable that is at its upper
bound, the original problem solution is easily recovered.

By construction (possibly including introduction of unit vectors representing slack
and artificial variables) 4 may be partitioned 4 = (B, N), with B an m X m matrix of
linearly independent columns which is called a basis.

Given a feasible basis there always exists a unique X such that

Bk = b. 3)

0=

In terms of this X there is always a current basic solution x ’5) and, upon

partitioning ¢ in the same manner as A, one has
¢'x0 = (¢}, c&)(ﬁ) = &k,)

Any generic solution x satisfying the constraints can be rewritten in terms of the basic
solution:

Ax=(B,N)(;‘§)=BxB+NxN=b.)

Further, since B is a basis, there exists a unique transformation Z such that
BZ = N. (6)
Multiplying (6) by x, and subtracting from (3) yields
 B(% —Zxy) + Nxy = b, 0)

and subtracting (7) from (5) yields B(xz — [X — Zx,]) = 0. Since the columns of B are
linearly independent, x; = X — Zx,, and the general solution becomes

e ()= (50) o

With this form it is easy to compare the value of x to any current solution x° and
identify an improved solution when one exists. The value of the generic solution (use
(4) and (6)) 1s

P — ’ —_ A (N ’
c'x=cpxp+ cyxy = cg(k —Zxy) + cyXxy

= cgx + (cy — c3Z)xy

cgx + (cy —u'N)xy;)

6 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

where u (often called the dual solution or simplex multipliers) is the solution of
u'B=cp. (10)

From (9) it is clear (since x, > 0) that a necessary condition for an improved solution
is that there exist a column of N, N¥ such that

c —wWN*<O. (11)

With such a column consider a specific vector obtained from (8) by taking all
components of x, zero except x,,

x’=(5c—kak, 0,..., % ...,0). (12)

As a function of x, >0, this vector must by its derivation satisfy the explicit
constraints, Ax = b; feasibility also requires satisfaction of the bounds, 0 < x < u.
For components z,, > 0 this requires X; — z, x, > 0, or

X < X/ 2y (13)
For components z, < 0 this requires X; — z,,x, < u;, or
X < (X — u)/ — zy (14)

In addition, of course, x;, < u.

If the least bound on x, is u,, then x, stays out of the basis but goes to its upper
bound and (5) and (12) yield X = % — Z*u, as a new basic solution with BX =
b— N*u,.

If (13) is the least bound on x,, taking x, = %,/z;, with z,, > 0 in (12) leads to the
exchange of B’ and N* in the partition between basic and nonbasic columns and the
new basic solution

Xr = 5(, - zrk('sci/zik)’ r # l; and
=X/ zy

If (14) is the least bound on x,, taking x, = (; — X,)/ — z; with z, <0 in (12)
requires the basis exchange of B’ and N* and yields %, = %, — z,, (4, — X,)/ — Zy»
r # i,and X; = (4; — X;)/ — z,, as a new basis with x; at its upper bound.

Assume that there is a current basis B, a current solution X to Bx = b, and a current
solution u of u'B = cj. An iteration of the simplex procedure is summarized:

Step S1, Priceout. Select a candidate variable to enter the basis with (¢, — u'N¥)
<0.

Step S2, Ratio Test. Find the greatest bound such that (with BZ k= N*):

(a) Xk < Uy,

) x, < x,/z, forz, >0,

© x, < —x)/—z, forz, <O0.

If the minimum ratio is determined by case (b) or (c), let i be a basis variable for
which the minimum is achieved.

Step S3, Pivot. Update the primal solution: X = % —x,N*. If x, is bounded by
case (a), reflect x, and leave the basis and dual solution unchanged. Otherwise,
change the basis by exchanging B and ¥ k, for case (c) reflect x;. For case (b) or (c)
find the new dual solution to @'B = ¢j.

In executing the simplex algorithm a number of options have customarily been
employed for generating the solution of the linear systems BZ* = N* and u'B = c},.

In general algorithms, the basis inverse Q = B ™' is usually used, stored and
updated in some form. Further, although there is no difficulty in deriving a new
algebraic solution to (10), ' B = €5, as a practical matter i may be directly achieved
from u by simple transformation.

=

PROPOSITION. Tl = u + AQ, where Q, is the ith row of the inverse of B. (15)

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 7

PrOOF. The new basic column N* determines A as UN* =uN* + N(Q,N¥) =
uN* + M(Q;BZ*) = uN* + Az, = ¢, so that A =(c, —uN*)/z,. Exclusive of the
outgoing column B’, WB"=uB "+ NQ,B)=uB"=c, r #i. Q.E.D.

The (pivotal) update of Q after exchange of B’ and N* is easily derived. The most
elementary and explicit procedure is to carry and update (by pivoting) a complete
tableau

ON Ob
(cN —u'N)
The revised simplex procedure generates these elements as needed by access to
columns of N, ¢ and b and use of Q. Most full scale systems employ an additional
refinement by expressing Q as the product of elementary “eta” column vectors, each
representing the pivotal transformations generating @ from an initial basis.
Frequently the history of “eta” columns grows too long for reasonably efficient
generation of Q, or numerical error is propagated and detected, forcing a reinversion
with “eta” column representatives from only the current basis.

Other systems support the solution procedure by using combinations of features
such as an “LU” decomposition of B [3], a Cholesky decomposition of BB’ = LL’
[25], [53], [54], or list representation of nonzero elements of problem components and
coefficient representation by pointers to a table of real values. Hybrid schemes factor
B into partitions with special structure: Generalized Upper Bounding (GUB) identi-
fies an inherent identity matrix for some rows of B [16]; a partial triangulation of B
with an inverse for remaining columns and rows can be used [33], [34]. Whether
systems solve (6) and (10) by triangular substitution, inverse transformation, or some
combination, all are algebraically equivalent simplex implementations differing only
in the structures chosen to support computation for the class of problems at hand.

Primal Network Specialization

A specialization of the simplex algorithm to the transportation problem was de-
veloped by Dantzig [14] in 1951. It is not surprising that the transportation algorithm
was developed immediately after the simplex algorithm, because the works of Hitch-
cock [39], 1941, and Koopmans [44], 1946, on the transportation problem contain
many concepts that presage the simplex algorithm. The interaction of general linear
programming algorithms and transshipment algorithms has a long history that has
enriched the study of both.

Here we establish explicitly the relationship between the general primal simplex
algorithm and the modern implementations of the transshipment algorithms. Our goal
is to understand the algebraic foundations of the modern transshipment implementa-
tions.

The fundamental fact that permits design of efficient primal transshipment
algorithms is the well-known result that any transshipment basis can be put in (upper)
triangular form by a simple permutation triangulation. This inherent triangularity can
be exploited by network specializations of the simplex method by directly solving (6)
by back substitution and (10) by forward substitution. Also, the triangulated basis
simplex algorithms lead to much more efficient network solutions due to other
fortunate simplifications. The most remarkable of these is that the solution update of
Step S3 can be accompanied (in fact aided) by a very simple and efficient dynamic
retriangulation of each new basis.

An initial transshipment basis with full row rank can always be constructed by
introducing for each row in (1) a unit vector with sign matching that of the right-hand
side (negative for demand nodes). With the addition of these artificial vectors, A has
full row rank and each column of 4 has either a single nonzero element 1, or a single
nonzero element — 1, or two nonzero elements (a 1 and a —1).

8 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

THEOREM (E.G., DANTZIG [15]). Any basis B extracted from A for a transshipment
problem can be triangulated by rearranging rows and rearranging columns.

PrOOF. Let B have m rows. Locate a column with a single nonzero entry.
Exchange rows and columns so that the nonzero entry is the first diagonal element.
For the kth step of the construction, rows and columns have already been rearranged

NODE DATA ARC DATA A Basic
Node Supply | From To Cost/ Lower Arc Feasible
City i b; i j unit Bound Capacity Flow

Los Angeles 1 34 2 3 34 0 11 2
New York 2 56 3 4 23 0 6 4
Chicago 3 5 1 5 28 0 10 10
Omaha 4 0 2 6 45 5 25 25
Salt Lake City 5 -5 1 7 57 0 21 18
Atlanta 6 -9 5 8 24 0 5 5
Seattle 7 - 18 1 8 56 0 7 6
Denver 8 - 15 4 8 19 0 9 4
Austin 9 -8 1 9 61 0 5 0
Minneapolis 10 -3 2 9 99 0 12 8
Washington 11 =21 6 9 48 0 3 0
Miami 12 - 16 3 9 53 0 24 0
3 10 26 0 8 3
4 10 20 0 2 0
2 11 14 10 23 21
6 12 34 0 16 16

FiGURE 1. A Single Commodity Transshipment Problem.

Root
®

hJoin (for 1 and 9)

@ é\g
A ‘
e

(19

FIGURE 2. A Transshipment Basis (for Figure 1).

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 9

Row

-1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Transshipment Basis Matrix

|
|
|
|
|
|
|
|
|

L O e

12

|
|
|
|
|
|
|
|
|

10

A Preorder Triangulation
PG)=[8 3 4 8 8 2 1 13 2 3 2 6|
The Basis Predecessor Function
FIGURE 2 (continued)

10 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

so that columns 1, 2, ..., k — 1 have only zeros below the diagonal. Select a column
with a single nonzero entry in rows k, . . ., m. Exchange rows and columns so that the
nonzero element is the kth diagonal element. This construction is well defined only if
there is a column with a’single nonzero element in rows k, ..., m. There must be
such a column, for otherwise each column would have no nonzero elements, or
exactly one +1 and one — 1 in rows k, . . ., m, and the sum of rows k, . . ., m would
be the zero row, which would contradict the assumption that B is a basis. Q.E.D.

A graph can be defined that represents the transshipment basis. Let I =
{i;, iy, ..., i,} be a row ordering corresponding to a triangulated B. Associate with
each node j, the row number p(i,) of the offdiagonal element in the kth column of the
triangulated basis; if there is no nonzero offdiagonal element, set p(i,) to in + 1.
Define a graph with nodes 1,2, ..., m+ 1 and let (i, p(i), k=1,2,...,m, be
directed arcs from i, to p(i,). Since each node j, is connected to a node p(i,) = i, with
h < k or to node m + 1, there is a directed path from each node to node m + 1. The
graph is called a rooted arborescence [4] with node m + 1 the root. Ignoring the
orientation of the arcs, since the graph is connected and has m + 1 nodes and m arcs
it is a tree (it can be shown [4] that this definition is equivalent to the usual definition
of a tree as a connected graph with no cycles). In the computer science literature (e.g.,
[45]) the term tree is often used instead of rooted arborescence. Figure 1 is an example
of a transshipment problem with a basic feasible solution specified and Figure 2 has
the basis and the associated arborescence. Our pictorial representation with the “root”
at the top rather than at the bottom is fairly standard.

For node i, p(i) is called the predecessor of i and the rooted arborescence is called
the predecessor graph. The predecessor graph is closely related to, but not identical
with, the classical result of Koopmans [44] that the arcs of a transshipment basis form
a tree over the nodes of the problem. The classical tree preserves the orientation of
arcs in the original network and does not include node m + 1.

The predecessor function p() is a well-known compact way to represent trees and
rooted arborescences and has been used in network algorithms for at least 15 years.
The predecessor graph has often been used interchangeably with ‘the classical basis
tree. It is important to distinguish between them because the predecessor graph is a
data structure that supports the computation of the algorithm and the orientation of
the arcs indicates the unique direction to the root rather than a direction in the
network. Furthermore, the predecessor graph can be extended to triangular bases that
have no underlying network [32].

The predecessor function p() can be iterated to construct the unique path from
any node to the root; this path is called a backpath. The immediate successors of a
node, if any, are the first nodes encountered on all paths except the backpath to the
root, and all the nodes on these paths are called the successors. Another characteriza-
tion of the successors of node i is that they are all nodes whose backpath to the root
includes node i. A tree can also be represented by the immediate successors of each
node; however, since the class of trees that arise in network problems is m-ary, the (0
to m) immediate successors of each node are more difficult to maintain dynamically
than the predecessor function which always has a single unique value for each node
except the root.

In general, there are many different triangulations for any given transshipment
basis. (Note that at each step in the construction there may be several choices for the
next column.) However, all such triangulations yield the same predecessor function
and graph (where the ordering of successors right to left for any node is immaterial).
Thus, the predecessor graph does not completely represent a triangulation without
additional information, namely an ordering of the rows. A mathematical development
of these properties and their implications is given in the companion paper [32].

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 11

The relationship between the algebraic view of the simplex algorithm and the graph
theoretic view of much of the network literature can be shown by describing the
operations of the simplex algorithm and the triangulation in terms of the predecessor
graph. A graph theoretic proof of the triangulation theorem identifies a node with
each row and an arc with each column with two nonzero elements. Also included is
the root node; columns with a single — 1 (or 1) are represented as an arc to (from) the
root node. A triangulation and the predecessor graph are constructed by first selecting
the root node. Select any arc with one end the root and add the new node and arc
orienting the arc toward the root. For the kth step of the construction k nodes and
k — 1 arcs are already in the graph. Select an arc with exactly one node already in the
graph, add the new node and the arc to the graph orienting the arc toward the old
node. The resulting triangulation is characterized by the order in which the nodes and
arcs are introduced.

Note that we have used an additional node (the root) to allow a unified treatment
of slack, surplus and artificial vectors. Some other researchers have designated one of
the nodes of the original problem as a “root” and then defined a predecessor
function; the predecessor function is then unique only for a given choice of the “root”
node.

For the network linear program each node is identified with an equality constraint,
and each arc k from node i to node j is identified with a variable with column N*
having a 1 in row i, a — 1 in row j and 0’s elsewhere. For the discussion below it is
assumed that the basis B is in triangular form and to simplify notation it is
momentarily assumed that row i of B corresponds to node i for all i € N. (Renumber
the nodes if necessary so that I = {1, 2,...,m}.) It is further assumed that all the
diagonal elements of B are 1; if B initially has a —1 on the diagonal, the reflection
u, — x, transforms it to a 1. This may be viewed as transforming the basis variables to
make the orientation of arcs in the predecessor graph the same as the orientation in
the Koopmans basis tree.

Step S1, Priceout. Given the vector of simplex multipliers u, the priceout formula
(11) for nonbasic arcs (step S1) simplifies to ¢, — u; + ;. Thus the priceout involves
only addition operations.

Step S2, Ratio Test. For the determination of the arc to leave the basis in step S2
the system of equations BZ* = N* must be solved for Z*. This calculation is
described by showing how to solve BQ’ = e; for Q’ (e; is the jth unit vector and 0’ is
thus the jth column of the inverse of B). Slnce Bis tr1angular @’ can be obtained by
simple backward solution: the m, m — 1, ..., j+ 1 elements of Q’ are seen to be 0,
the jth element is 1. Setting the jth element in the modified right-hand side equal to 0
puts a 1 in the row corresponding to the offdiagonal —1 (if any) in the jth column of
B, this row is p(j). The procedure is then continued until a column of B with no
nonzero offdiagonal is encountered. The resulting @/ is all zeros except for ones in
rows j, p(j), p(p())s ete.

Thus, in terms of the predecessor graph, all arcs traversed on the backpath from
node to the root have an element 1 in Q/; all other elements are 0. Therefore, O’ can
be generated directly from the precedence function p(), which (with I) gives the
substitution rules for the back solution.

The calculation of Z* follows immediately since Z k= Q"— Q/. The element in a
row of Z* is 1 for all rows with a 1 in Q' alone, —1 for all rows with 1 in Q’ alone
and O for all rows with 0 in both or 1 in both. Since the nonzero elements of Z* are 1
or —1, the calculations in step S2 involve only addition and subtraction. Further, the
calculation is usually reduced enormously by the extinguishment of the elements
common to both i and j backpaths.

As an example, consider the triangulated basis in Figure 2 (noting that the nodes

12 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

have not been renumbered) with column N* associated with arc (1, 9), BQ® = ¢°, and
BQO'=¢'.

I={8 1 7 5 4 3 2 11 9 6 12 10),
p()={8 3 4 8 8 2 1 13 2 3 2 6
o'=[1 1 0 0 0 0O O O 0 O 0 0],
°<[1t o o 0 1 1 1 0 1 0 o0 o0J,
Zk=[o 1 0 0-1-1-1 0-1 0 0 0]

Step S3, Pivot. In step S3, the primal solution is updated using Z*. Also, as shown
by (15), the simplex multipliers, u, can be updated rather than calculated at each step.
The algebraic characterization of the update applies the /th row of the inverse of B,
Q,, where the outgoing arc is the /th column of B. The characterization of @/ above
showed that an element of Q/ is nonzero and equal to 1 only if the corresponding
basic arc is traversed on the backpath from node j to the root. It follows that Q, is all
0’s except for 1 in the /th element and a 1 for any element j such that the outgoing arc
is on the backpath from j to the root. In terms of the predecessor graph, Q, is 1 for
node / and each of its successors and 0 elsewhere. Since the nonzero elements of Z*
are 1 and —1, A in (15) is either plus or minus ¢, — u; +u; where k is the incoming
arc. Since Q, is all 0’s and I’s, the update of u is accomplished by adding A to u; and
to the u’s of (only) the successors of node /.

As will be shown in the next section, the simple additive updates of the primal
solution and dual multipliers in step S3 are actually accomplished in a single
integrated process. We will refer to this process as the “pivot” even though in addition
to the usual pivot it simultaneously updates the primal solution and dual multipliers
and retriangulates the new basis.

Implementation

The design of large scale programming codes necessarily involves many significant
decisions which have major impact. The following fundamental principles were used
to resolve design questions in the development of the code reported here.

1. The code should be designed for large scale problems. Even though experi-
mental testing will be confined by economic considerations to problems with some
arbitrary maximum size (say, 10,000 equations), the design decisions should lead to a
code with superior large scale performance.

2. The code should solve the most general capacitated transshipment problem.
While problems with specializations (e.g., uncapacitated, transportation, assignment)
must be solved, the basic code will not be tailored to these special features. In
addition, no special numbering of nodes, extensive preprocessing, or other design
specificity will be required that will limit the capability of the code. Efficient solution
of problems should not require detailed advance knowledge of problem structure (for
instance, a feasible initial solution). Problems with multiple arcs will be accommo-
dated.

3. For practical problems the number of arcs is, in general, much greater than the
number of nodes, m. However, the problems are usually sparse in the sense that the
number of arcs seldom approaches the maximum number m(m — 1) of oriented node
pairs. Thus, it is significantly more expensive to store information associated with
each arc than it is for each node and prohibitively expensive to store a node-arc
incidence matrix. Practical general minimum cost network flow problems are always
heavily capacitated.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 13

4. The code should be machine independent as well as efficient. For example,
machine specific features such as assembly language, use of particular offline mass
storage devices, storage of data using bit string logical vectors, use of other architec-
tural curiosities on particular machines or nonstandard language features will be
avoided. The language used is elementary FORTRAN.

5. Where feasible, speed of execution should be given preference over economy of
space for data storage.

6. Since the program will be used for comparisons of various data structures on a
wide variety of network problems, it should be equipped with effective external tuning
parameters. While some tuning is possible for the pivot mechanism, the pr1c1ng
scheme invites especially close scrutiny for tuning purposes.

Once the design of an efficient network code is chosen, consideration will also be
given to addition of other advanced features such as “in-core/out-of-core” operation,
implicit arc generators, crashed bases, nonlinear costs, postoptimal analysis, and so
forth. These extensions will not be allowed to interfere with the basic design goals, but
they should not be precluded by the basic design decisions.

The description of GNET begins with discussion of arc and node storage represen-
tation. Next, the ratio test is described. The pivot is explained functionally (with a
more extensive algebraic derivation left for the companion paper). Finally, the pricing
mechanism is examined. This order is chosen (steps S2 and S3 followed by S1) to
report faithfully the history of our implementation and to lead smoothly to the
computational performance tests. Hereafter, notation with upper-case Roman letters
indicates a program variable and addition of parentheses denotes an array. For
instance, the predecessor array is referred to as P().

Since there will be many arcs, it is critical to minimize the stored data describing
each arc. A typical input format (for example, SHARE) for each arc is tail, head, cost,
upper bound and lower bound on flow. The lower bounds are removed by transfor-
mation. If the arcs are sorted so that all arcs with the same head are stored in
contiguous space, the list of heads can be replaced by a node-length array whose jth
element is the location of the first arc with head j. Since network models have many
more arcs than nodes, this reduces the storage requirements for the algorithm. Thus,
the network is stored as three arc-length arrays: the tails T(), the costs C() and the
upper bounds (capacities) CP(); also, one node-length array is used, the head entries
H() into T(). Positive capacities are required after transformation of lower bounds
for all arcs—uncapacitated arcs have capacity set to some value greater than the total
supply. Arcs out of the basis at their upper bounds are marked with a sign bit on the
capacity (—CP()); alternatively, the tails could be used for this purpose.

It is natural to associate with each node i (except the root) the unique basic arc that
connects i to its predecessor. It is convenient to have the basic arcs oriented in the
same way as in the predecessor graph, that is, from a node to its predecessor. This is
accomplished by reflecting arcs as necessary. The predecessor array P() is marked
with a minus sign for all arcs that have not been reflected. (Subsequently, when using
P() we will assume for simplicity that it is positive.) The flow on arc (i, P(i)) is stored
in X(7).

In step S2 of the simplex algorithm, it is necessary to compute capacity minus flow
for basic arcs with z; <0. It is convenient to use a node-length array to speed up this
calculation. One approach is to store for each basic arc a pointer to its capacity in the
CP() array. Another technique is to store the capacity rather than the pointer. A
third method is used in GNET. The capacity minus flow is stored in a node-length
array CPX().

The simplex multipliers are stored in a node-length array U(). Figure 3 shows these
arrays for the basis in Figure 2 (the IT() array shown in Figure 3 is defined below).

14 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

After the incoming arc has been chosen in step SI, the outgoing arc is determined
in step S2 and the data structures are updated in step S3. Let k& be the incoming arc
going from node i/ to node j. The possible outgoing arcs correspond to the nonzero
entries in Z*. We have already seen that Z* is zero for all nodes common to both i
and j backpaths. Let the join be the first node on the backpath from i to the root that
is on the backpath from j to the root (the join is the backpath node beyond which all
terms of Z* are zero). The possible outgoing arcs are the arcs on the backpath from i
to the join and the arcs on the backpath from j to the join.

It is critical to identify the backpaths from i and j to the join efficiently. The trial
and error of the classical “stepping stone” methods of most textbooks will clearly not
suffice for any but trivial problems. We discuss four methods to identify the back-
paths from / and j to the join node. Note that only predecessor information is
available to the program at each node and that our data structure has no global view
of the arborescence as does the reader of Figure 2.

The most naive method is to mark in some way all the nodes on the backpath from
i to the root. Then, the first marked node encountered on the backpath from j to the
root is the join. This method is satisfactory for smaller problems, but for larger
problems it is more efficient to avoid the iteration along one complete backpath all
the way to the root by keeping additional information about the tree. Also, in this way
it will not be necessary to unmark the marked nodes before performing the next
simplex pivot.

Arc: kK 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
Tail: T2 3 1 2 1 5 1 4 1 2 6 3 3 4 2 6
Cost: C|34 23 28 45 57 24 56 19 61 99 48 53 26 20 14 34
Capacity: CP|11 6 —-10 20 21 5 7 9 5 12 3 24 8 2 13 16| (“—” indicates arc out

of basis at capacity
Arc-length arrays

Node: i1 2 3 4 5 6 7 8 9 10 11 12 13
Heads: H 0 0 1 2 3 4 5 6 9 13 15 16 17 | (First arc with head i located at k = H(i)
Predecessor: P|-8 -3 -4 -8 -8 2 1 13 2 3 2 6 {“—" gives &rc orientation above node i
Traversal: IT 7 1 2 3 4 12 5 1 6 13 9 10 8
Flow: X 6 2 4 4 5 0 3 9% 4 5 2 0 P(i) < 0— flow is X(¥), otherwise
CPX 1 9 2 5 0 20 18 0 8§ 3 11 16 flow is CPX(i)
Depth: D 2 4 3 2 2 3 1 5 4 5 6 0
Multiplier: Ul s6e 76 42 19 24 31 -1 0 =23 16 62 -3

Node-length arrays, GNET/Depth

Successors: NS 1 4 6 7 0 1 0 11 0 0 0 0 12

Preorder: PD 2 7 6 5 4 10 3 1 9 12 8 11 0

Arrays used by other GNET versions (in lieu of depth)

Priceout arc 159: DF = C(k = arc) — U(i = tail) + U(j = head)
=C(9) - U(1) + U(9)
=61—-56-23
=-18

CP(9): 5
Ratio Test: min{ X() for 1 — backpath: 6 =2 forarc (3, 4)
CPX() for 9 — backpath: 8,9,2,5

FIGURE 3. GNET Arrays (for Basis in Figure 2).f

T Two candidate queue arrays also used by GNET are omitted for clarity. Actual simplex multipliers in
GNET would all be exactly 1,188 units smaller than shown. This difference is the high cost associated with
artificial demand arc 13 — 8, initially computed as BM = Nodes X maximumjcost|.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 15

One efficient method is to store for each node the number of nodes on the backpath
to the root, called the depth of the node, D(), in the tree. With depth information
available it is possible to iterate the backpaths synchronously from i and j to identify
the join without iterating either backpath past the join. Depth is used to indicate
which backpath node is deeper in the tree and should be iterated. When both
backpath nodes have matching depths, the nodes are compared for equality. A match
indicates the join, and a mismatch indicates that both backpaths should be iterated
for another comparison.

Another efficient method similar to the depth approach is to store for each node the
number of nodes in its subtree, called the number of successors, NS(). Starting with
nodes i and j, the backpath node with strictly fewer successors is iterated. When both
backpath nodes have the same number of successors, a match indicates the join and a
mismatch forces iteration of both backpaths. The fourth method will be discussed
below.

The latter three methods for locating the join look only at arcs that are on the
backpaths to the join, thus it is possible to determine the outgoing arc while searching
for the join. As noted above, all the arcs on the backpath from i to the join are the + 1
elements of Z* and all the arcs on the backpath from j to the join are the —1
elements. The ratio test step S2 is then simply

CP(k) the capacity of the incoming arc,
min{ X() for arcs on the backpath from i to the join, (16)
CPX() for arcs on the backpath from j to the join.

The computational simplicity of this ratio test is the rationale for the reflection of
basic arcs and the adoption of CPX().

If the incoming arc is out of the basis at its capacity, then step S2 may be viewed as
increasing flow in a fictitious arc from node j to node / with the same capacity.

A major proportion of the work of each simplex step is S3, the pivot. In this step,
the entering and leaving arcs are exchanged, the flows, X() and CPX(), are updated,
the simplex multipliers, U(), are changed, and the simplex data arrays P() and D()
(using the depth mechanism for example) are modified.

Within this step the coordination and sequencing of operations are critical to the
efficiency of the network algorithm because the manipulation of many nodes and
heavy use of the simplex data structure are involved. If properly done, this step is the
elegant central part of the code that can be executed by a computer quickly; however,
the explanation will be somewhat intricate—this part of the algorithm is considered
by many to be the “secret” part of the fastest codes.

To illustrate a typical pivot, Figure 2 shows the entering arc (i, /), join and leaving
arc (c,d). Call the backpath from j to ¢ the pivot stem. Figure 4 includes the
predecessor graph after the pivot. Notice that the subarborescence with root ¢ is
“rehung” from node i, and that nodes on the pivot stem have their predecessor
relationships reversed. The flows, X() and CPX(), change only on the backpaths
from i and j to the join. The simplex multipliers, U(), and the depth, D(), are
recomputed for all nodes in the subarborescence with root c. i

The most expensive part of the pivot is the update of the simplex multipliers by the
addition of A (15) to the U()’s of node ¢ and all nodes in the subarborescence with
root ¢. With the data structure presented so far, it is not easy to identify all the
(successor) nodes in a subarborescence. The identification of these nodes can be
facilitated by a traversal data structure that begins at the root of the predecessor
graph and exhaustively “walks” through all the nodes in the same sequence that the
nodes occur in a triangulation of the basis. This is done with a node-length array

16 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

®

®
ga(;é\@
N
&

Node: i 1 2 3 4 5 6 7 8 9 10 11 12 13
Predecessor: P|-8 -9 2 -8 -8 2 1 13" I 3 2 6
Traversal: IT 9 11 10 13 4 12 5 1 2 7 6 3 8
Flow: X 4 6 7 6 5 0 39 3 5 2 0

CPX 3 6 4 3 0 20 18 0 2 3 11 16
Depth: D 2 4 5 2 2 5 3 1 3 6 5 6 0
Multiplier: U| 5 94 60 19 24 49 -1 0 -5 86 80 15

GNET/Depth arrays changed by pivot

(Recomputed elements in italics)

o

Successors: NS 8 1 0 0 1 0 11 6 0 0 0 12

Preorder: PD 2 4 8 12 11 6 10 1 3 9 5 7 0

Alternate arrays (for D) after pivot

(Since outgoing arc (3, 4) left basis at its capacity, CP(2) will be marked “—" also.)

Retriangulated Basis

FiGURE 4. GNET Arrays and Basis after Pivot (Figure 2).

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 17

IT() whose ith element is the next node to visit from node i. IT() is thus a different
way to represent the information in /. It is convenient to make this a circular list by
setting the IT() of the last node in the triangulation equal to m + 1.

From the triangulation construction it is clear that a node is added to the
predecessor graph before any of its successors. The construction of the triangulation
can always be modified to add all the successors (if any) of a node before any other
node is considered. For this restricted class of triangulations the corresponding
traversal IT() will visit all the nodes of a subarborescence contiguously, precisely as
is required in the update of the simplex multipliers. This traversal is the obvious
extension to the m-ary case of the preorder (or, equivalently, dynastic order) traversal
in computer science literature. The recursive definition of the preorder traversal given
in the computer science literature [45] reveals precisely its value in updating the
simplex multipliers.

Let us look at the work that must be done in the pivot. The algorithm visits each
node of the subarborescence with root ¢ exactly once. It proceeds up the pivot stem
one node at a time. At each stem node, the successors of the next lower stem node
have already been visited. The unvistited successors of the current stem node can be
divided into two groups: the nodes visited in preorder (by iterating IT()) from the
stem node until the next lower stem node is encountered, called the left successors of
the stem node, and the remaining unvisited nodes in preorder, called the right
successors of the stem node. For example, in Figure 2 the left successor of stem node
2 is 11, and the right successors are 6 and 12. Figure 5 gives a general description of
these operations for the pivot.

We have experimented with three different data arrays that will support the
one-pass pivot computation: depth D(), number of successors NS(), and an addi-

Set first stem
node to visit
Visit stem node

Visit this left successor

Skip previously visited
successor lower on stem

visit this right successor

remains
?

Was
this the last,Yes
stem node
2
No

'Iterate’, up
to next higher

stem node

FIGURE 5. Pivot Traversal Scheme.

18 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

tional structure PD() to be discussed below. We did not compare another, less
efficient two-pass method which marks nodes with sign bits, and later unmarks them,
much like the procedure described for locating the join node. These arrays are used in
the pivot solely to answer the question (Figure 5), “An unvisited right successor
remains?” This question is nontrivial because the node information now available to
us is local in nature.

Figure 6 shows a detailed description of the pivot traversal for the pivot stem and
its successors using depth. The primary purpose of visiting each of these nodes is to
update U(). The pivot also updates the arrays D() and IT(); the update of D() is
omitted for clarity. The arrays P(), X() and CPX() are recomputed for the pivot
stem only. (The straightforward X() and CPX() flow update for backpath nodes not
on the pivot stem is not shown.) The update of IT() is easy because IT() changes
only for the nodes on the pivot stem as well as for the last left successor (if any) and
the last right successor (if any) of each pivot stem node. For nodes on the pivot stem,
D() is updated as the pivot moves up the stem. The right and left successors of each
pivot stem node “inherit” their depth from the pivot stem node—if the depth of the
pivot stem node changes by DADJ, then so do the depths of its right and left
successors.

The number of successors NS(), can also be used as illustrated in Figure 7. The
updating of the number of successors is not shown in the figure. The number of
successors is easy to update because it changes only for the nodes on the backpaths
from i/ and j to the join; thus, this update can also be performed for stem nodes during
the traversal and for the other backpath nodes (beginning with / and d) with the X()
and CPX() flow update.

Degeneracy is a critical issue in transshipment problems. In some of our test
problems more than 90% of the (tens of thousands of) pivots are degenerate. The
search for the join may be aborted when degeneracy is encountered since the only

(i,j) entering, (c,d) leaving

NC + i stem + from j to c

PD (P (NT))

©F > PD(NR)

LR + NR
NR + P(LR)

P(LR) + PF
PF « LR

FIGURE 6. Pivot (Retriangulation) Segment Using Depth (or Preorder Distance).

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 19

purpose of the search is identification of the leaving arc and backpaths for flow
change (zero in the case of degeneracy). Stopping short also tends to make the
number of nodes visited by the pivot smaller. In the depth version, the lowest
degenerate arc can be chosen to leave, while in the version with number of successors
the smallest number of nodes can be chosen for the pivot. But the successors version
must still locate the join to update the number of successors on each backpath (a
relatively easy process) while the depth version requires no further backpath search.

Another data array that can be used in place of depth or number of successors is
position in the triangulation, or equivalently position in IT(). For each node i define
preorder distance PD(i) to be the row number in the triangulation of equation i or
equivalently to be the number of iterations of IT() beginning with the root to get
node i. Set PD(root) = 0.

The search for the join is particularly easy with preorder distance. The following
proposition gives a simple construction that determines the join.

ProPOSITION (MCBRIDE [48], GRAVES AND MCBRIDE [34]). Given a basis with a
preorder triangulation, for any two nodes i and j such that PD(j) > PD(i) the first node h
on the backpath from j with PD(h) < PD(i) is the join.

ProOF. The construction always determines a node since PD(root) = 0. The join is
the first node on the backpath from one node, say j, that is also on the backpath from
the other node i. Thus we need to show that ; is either 4 or a successor of 4 and that i
is not a successor of any other node on the backpath from j to 4. In any triangulation
PD(k) > PD(P(k)) for any node k, thus by construction 4 is the only node on the
backpath from j to 4 that could be the join. In a preorder triangulation, the successors
of any node k have contiguous PD() numbers beginning with PD(k) + 1. Since
PD(h) < PD(i) < PD(}), i either equals A or is a successor of h. Therefore, A is the
join of i and j. Q.E.D.

S (i,j) entering, (c,d) leaving
NC + i Stem from j to c

NR + j

LR + IT(j)

NT + LR

NSV + 0

IT(NC) + NR

NC + NR

NST + NS (NR) - NSV
NSV + NSV + NST+ 1

NC + IT(NC)
NST + NST-1

IT(NC) + NT

LR + NR
NR + P (LR)
P(LR) + PF
PF + LR

FiGure 7. Pivot (Retriangulation) Segment Using Number of Successo1

20 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

Using PD() the outgoing arc can be determined simultaneously with the search for
the join, and if degeneracy is discovered, the search for the join can be stopped.

The question in the pivot, “An unvisited right successor remains?” in Figure 5 is
equivalent to “PD(P(NT)) > PD(NR)?” and the flowchart for preorder distance is
equivalent to Figure 6 with “D(NT) > D(NR)” replaced. PD() is recomputed for all
nodes in the subarborescence with root ¢ and some additional nodes.

Pricing Mechanism

The pricing operation of step S1 in the simplex algorithm requires a great deal of
computational effort. As in other large scale mathematical programming problems,
network codes can spend more than half of their execution time selecting incoming
variables by pricing. Thus, the pricing mechanism is crucial to overall performance
and must also provide the flexible, broad and effective external controls necessary to
permit tuning of the code for network problems with special or even bizarre structure.

Choice of pricing strategy is truly an art for large scale mathematical programming
codes. It is based on intuition, experience and empirical experiments with the class of
problems to be solved. Although simplex pricing has received very little exclusive
attention in the literature, fast primal codes all employ some form of multiple or
partial pricing of subsets of the variables at each pivot [51].

Examination of many problem trajectories suggests that pricing be performed in
three major phases—an opening gambit, a middle game and an end game. Initially, a
feasible solution is being constructed and pricing must select incoming variables
carefully among many available choices with the view of satisfying violated con-
straints. Later, normal gains toward optimality seldom justify extensive competition
among candidates. Finally, a favorable candidate becomes quite rare and thus has
considerable value since eventually all variables must be exhaustively priced to verify
optimality.

GNET performs pricing by selectively using a general scan mechanism and keeps a
set of good pivot information in a candidate queue. For a given head node, the scan
selects the single incident arc (if any) pricing most favorably (for eich tail examined
incident to a particular head node only one addition and one comparison are
required) and places it on the candidate queue. The candidate queue is a varying
length cyclic list of “interesting node” and “good arc” information. Each entry
includes a head node and either a tail pointer specifying the location of a good
candidate arc or a null pointer indicating an interesting node which has not yet been
priced. The candidate queue mechanism provides for user control of network solu-
tions. Although there are many special uses for these controls, for example, basis
crashing, it is even more important to provide robust automatic procedures for
initialization, selection of incoming arcs, and queue maintenance for the most general
class of transshipment problems.

Since GNET is designed for general capacitated transshipment problems, heuristics
for advanced feasible starting solutions are not employed. These heuristics are usually
designed for problem specializations, and we do not find the cost of their use to be
clearly justified for large problems. GNET uses an initial basis of artificial arcs
connected to the root node with initial flows equal to supplies and demands and a
high cost attached to each artificial arc incident to a demand node. The candidate
queue is initially loaded with all these demand nodes.

For each pivot, the incoming arc is selected from the candidate queue by examining
entries in a block of specified size (“number examined” NNE): each candidate arc
encountered is individually repriced; each interesting node is priced out by the
general scan. The most favorable arc found in the block (if any) is chosen to enter the
basis. Also, all arcs pricing favorably are returned to the candidate queue.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 21

The opening gambit is designed to accelerate the achievement of feasibility. For this
sequence of (“number starting” NNS) pivots the high cost of infeasibility is likely to
be the cause for arcs to price favorably. These pivots essentially build chains from
demand nodes to supply nodes. Accordingly, GNET stimulates such early chain-
building by placing on the candidate queue the head and the tail of each incoming
basic arc. Thus, the relatively costly general scan mechanism is subsequently directed
to price out arcs connected to these two interesting nodes probably representing
infeasible problem constraints. This “demand driven” scheme works particularly well
on problems with relatively large numbers of demand nodes and actual structural
chains. It also motivates the arc list organization by head node rather than the usual
tail ordering.

During the opening gambit, if no favorable arc is discovered after examining a
block on the candidate queue, another block of entries is accessed, and so forth, until
an incoming arc is discovered or the candidate queue is completely emptied. An
exhausted queue is refreshed by directing the general scan to a specified number
(“page” IPG) of head nodes.

After the opening gambit, the nodes of each incoming arc are no longer inserted in
the candidate queue. After each complete cycle around the queue it is refreshed by a
general scan of IPG nodes. Each of these scans begins where the previous scan has
ended and thus moves cyclically down through the arc list, pricing arcs in contiguous
storage locations. When managed by these procedures, the candidate queue generally
grows during and just after the opening gambit and then shrinks finally to a few good
candidates. The end game is played by concentrating on these last few candidate arcs.

A major portion of the experimentation with sample problems has been devoted to
tuning the three pricing parameters NNE, NNS, and IPG with the objective of
estimating optimal settings as simple functions of solution progress and easily mea-
sured problem characteristics such as number of nodes, arcs, supply and demand
nodes, degree of capacitation, cost range, and so forth. Also, the sensitivity of
performance to problem structure has been investigated.

High resolution internal computation timing is often difficult to carry out on
contemporary multiprogramming computer systems. The computer timing routines
often take longer to execute than the network algorithm coding segments under study.
Therefore, in order to isolate times of pricing and pivots, a special experiment was
designed to minimize relative timing error. Sample problems were run to completion
by GNET under fixed parameter settings, each producing a single gross solution time
and number of pivots. Next, histories of the entering arcs for the solutions were fed to
a specially modified code, essentially eliminating the pricing mechanism; these solu-
tion times represent almost exclusively pivot time. Also, nontiming runs were made
with another code with extensive internal data collection for detailed performance
analysis.

Pricing schemes were tried ranging from “first negative” (terrible) to “most nega-
tive” (worse). Optimal intermediate settings of NNE and IPG lead to a nearly equal
distribution of time between pricing and pivoting. As the length of the opening
gambit, NNS, is increased, solution time is greatly reduced; however, beyond some
point, times again go up as the candidate queue becomes clogged with bad nodes
inserted by the pivots. The size of the candidate queue swells, and then declines as
predicted, with the maximum size a complicated function of all three parameters. As
expected, several complete cyclic sweeps of the entire arc list in blocks of IPG head
entries always occur late in the end game, but the candidate queue focuses attention
on the best remaining candidates. The total number of pivots is very sensitive to
NNE. However, total solution time is relatively stable as NNE and the other tuning
parameters are varied from reasonably good default settings. Experiments to change

22 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

NNE dynamically during solution progress have not improved performance. In fact,
many dynamic tuning schemes have been tried without much success.

Hundreds of such calibration runs have been performed in an attempt to determine
empirically the form of the response surface of execution time as a function of the
pricing parameters. To date, the best general automatic default settings for
transshipment problems are

NNE = 32 entries examined in each candidate queue block,
NNS =3m/4 pivots in the opening gambit,
IPG=m/10+ 1 head nodes priced to refresh the candidate queue in
each page of the general scan.

These suggested settings are surprisingly robust for a wide variety of problems.
However, for particular classes of problems sharing uricommon structure, specific
tuning can achieve remarkable further improvements.

Computational Experience

The family of GNET codes first presented at the Spring 1975 ORSA /TIMS
meeting represents the state of the art in fast large scale minimum cost network flow
systems. Tables 1 and 6 report GNET solution times and numbers of pivots for a set
of standard test problems [from NETGEN, 43] that have also been solved by other
contemporary codes. The additional problems labelled NPS and XNI1 are generated
(using the same random number seed) to exhibit structure common to many practical
applications—all arcs are capacitated, and there are few sources and many sinks.
These solution times are achieved by GNET with the pricing parameters set at their
default values. Thus, our experiments are completely reproducible by other re-
searchers. Benchmarks on various machines (see Table 2, for instance) generally agree

TABLE 1
GNET / Depth Performance on Several Transshipment Examples (Default*Tuning)

Percent IBM 360/67

Problem Nodes Sources Sinks Arcs Cap’d Seconds Pivots
NG27 400 4 12 2,676 80 2.3 607
NG36 8,000 200 1,000 15,000 0 212 13,012
NG37 5,000 150 800 23,000 0 138 11,610
NG38 3,000 125 500 35,000 0 97 10,637
NG39 5,000 180 700 15,000 0.7 113 9,553
NG40 3,000 100 300 23,000 0.7 67 6,409
NPS 10,000 50 5,000 21,000 100 441 22,153
XN1 5,000 100 4,800 40,000 100 290 12,111

Generated with NETGEN [43]; cost ranges are 1-1000 (XN1) and 1-100 (others).

TABLE 2

GNET / Depth Performance on “NG27”°—Calibration
with a Highly Capacitated Transshipment Problem

Machine Solution Seconds
CDC 7600 0.3
IBM 370/168 0.5
CDC 6600 0.6
TI ASC 0.7
IBM 360/91 0.8
UNI 1108 2.2

IBM 360/67 23

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 23

with standard hardware comparisons of computer performance and show that the
times in Tables 1 and 6 are superior to all published times of which we are aware.
However, we cannot verify published reports of machine, compiler and installation
performance variations. In any case, future codes produced by incorporating fresh
research ideas will undoubtedly make current performance records obsolete. We do
not hold that primal network codes are anywhere near an asymptotic efficiency level.

The GNET family presently includes GNET/Depth, GNET /Successors and
GNET /Preorder-distance as described above, as well as other variants to be dis-
cussed below. The three basic versions of GNET have been tested on a suite of
randomly generated problems and real formulations to determine which version is
best. Experiments on smaller problems (less than 500 nodes and 5,000 arcs) show that
all three are remarkably close with the depth version a narrow favorite for sheer
speed. Although preorder distance may be preferable for mathematical reasons when
extending the data structures to nonnetwork problems, large scale testing has been
limited to depth and number of successors versions. GNET/Successors execution
times differ from the GNET/Depth times by at most 2 percent on the problems in
Table 1.

All versions have a read and edit routine and an arc list sort to create the
compressed arc arrays; supplies and demands are determined for each node and the
candidate queue is initially loaded with the demand nodes. Simplex pricing via the
candidate queue mechanism is used to reduce artificial flows to zero rather than a
Phase I-Phase Il approach (used in earlier GNET versions). The high cost for
artificial arcs is computed as the product of the number of nodes (maximum path
length) and the maximum absolute arc cost, thus guaranteeing that a feasible problem
will have no flow on artificial arcs in a final basis. The cost is attached only to
artificial arcs incident to demand nodes; experiments attaching the cost to arcs
incident to supply nodes alone, and to both supplies and demands have not improved
preformance. GNET is tuned to exploit a node numbering convention (which is not a
strict requirement) ascending from supply through transshipment to demand nodes. A
related underlying assumption is that problems will normally have many more sinks
than sources. Problems with more sources than sinks or erratic node numbering can
usually be easily reformulated to our preference if solution speed is of prime
importance; with large scale models this is a minor undertaking in the problem
generator software.

Use of random test problems in tuning network codes has its pitfalls. GNET solves
real network models much faster than random NETGEN problems of nominally
comparable size and structure; this suggests that much remains to be learned from
further investigation of special problem structure. Large random test problems are
very expensive to generate with NETGEN, requiring about five times more computer
time than the associated GNET optimization (but much less region). However, the
reproducibility of the experiments and results is so important that it justifies the
expense. Also, the cost and awkwardness of distributing and using magnetic tapes
with standard problem libraries is avoided. Unfortunately, large NETGEN problems
can vary slightly between computers with the length of the real mantissa (this is due to
a random number generator which simulates 35 bit integer arithmetic, normalization
of the integer result to a real 0-1 variable on the host machine and subsequent
transformation back to a uniform integer with the desired range). NETGEN puts
capacities of +1 on all arcs in assignment problems, needlessly complicating their
solution by a general capacitated network code. Negative demands can also be
generated. These and other minor NETGEN problems are overcome by a few
program modifications. It also would be worthwhile to add the capability to generate
multiple arcs and special problem structures.

24 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

GNET execution times do not show much sensitivity to cost ranges, contrary to
past reports [60]. Experiments have been performed in which individual problems are
solved repeatedly with only the costs modified either by low order digit truncation or
addition of uniform random low order digits as necessary to provide the desired cost
range. Solution times are very insensitive to cost ranges thus produced, seldom
varying by more than 15 percent. The outcome of one such experiment is shown in
Table 3. This surprising result appears to be attributable to the candidate queue
pricing mechanism.

TABLE 3

GNET / Depth Performance for “NG40” with Varied Ranges
for Random Uniform Costs (Original Range 1-100)

IBM 360/67
Cost Range Seconds Pivots
1-10 84 6,726*
1-100 76 6,933
1-1,000 74 6,921F
1-10,000 74 6,958F

* Low order digit truncated from original prob-
lem costs.

T Low order digits generated by RANDU and
concatenated with original problem costs.

Uncapacitated transshipment problems are presented to GNET with upper bounds
on each arc exceeding total problem supplies. Minor modifications of GNET can
reduce solution times by about 10 percent for strictly uncapacitated problems; a more
important issue is the potential elimination of the arc-length array of capacities. This
space economy may also be realized on lightly capacitated problems by modification
of the capacity array or by problem reformulation. One section of a report by Cheong
[11] includes a catalog of problem transformations useful in network-models and gives
results of experiments with several large, lightly. capacitated transshipment problems.
Two special versions of GNET/Depth were prepared which utilize a well-known
transformation to replace each capacitated arc by a pair of uncapacitated arcs and a
new node. One modification performs the transformation to the arc list before
solution. The other carries out the transformation “on-the-fly” as arcs with capacities
are introduced into the basis. Table 4 gives an example of performance for the codes,
with the modifications each using one third less space for the arc arrays with little
speed degradation. As the proportion of capacitated arcs increases, the space-time
tradeoff becomes much less favorable.

TABLE 4

Lightly Capacitated Transshipment Problems— Performance of GNET / Depth and Modifications
Solving the Equivalent, Reformulated Uncapacitated Problems [11]

NT39 NT40
IBM 360/67 IBM 360/67
Seconds Pivots Seconds Pivots
GNET (depth) 113 9,553 67 6,409
Preprocess 113 9,615 71 7,511
Transform on-the-fly 114 9,652 65 6,733

Recently, Cunningham [13] has developed a rule to break ties in the ratio test that
guarantees finite convergence for the primal capacitated transshipment problem. For -

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 25

each pivot either the value of the objective function strictly decreases or the A (15) is
strictly negative, causing a strict decrease in the sum of the dual variables. Thus no
basis can repeat. Because of our convention orienting the arcs toward the root, the
two cases in [13] reduce to one. Ties in the “min” operation of (16) are resolved in the
following order (a) if CP(k) is involved in the tie, the incoming arc is chosen to be the
outgoing arc, (b) if any arcs on the X() backpath are involved in the tie, the deepest
is chosen as the outgoing arc, (c¢) otherwise, the tied arc with least depth from the
CPX() backpath to the join is chosen as the outgoing arc. Experiments with a
modified GNET/Depth (2 FORTRAN statements changed) on the large test prob-
lems show different pivot trajectories but virtually equal times and numbers of pivots.
Further analysis reveals that the unmodified GNET has a negative A on over 90% of
the degenerate pivots; this helps explain why the unmodified GNET has never cycled
and why Cunningham’s modification does not degrade solution times. Since GNET
uses exact integer arithmetic, the noncycling modification guarantees finiteness.

Postoptimal Analysis and Reoptimization

In some applications, analysis of the sensitivity of the optimal solution to modifica-
tions in the supplies, demands and cost coefficients is desirable. All the postoptimal
analysis for linear programming problems can be done with primal transshipment
codes. The data structures described above support efficient techniques for this
analysis. Ranging [51] of problem coefficients traditionally requires information from
the inverse of the optimal basis; columns are required for ranging of supplies.and
demands, rows are required for ranging of costs of basic arcs. As described above, the
predecessor function can generate columns of the inverse and the traversal
mechanism can generate rows. Note that while the ranging of cost coefficients of
basic arcs is simple in principle and much faster than for linear programming systems,
for applications with many arcs it can be time consuming relative to the time to
construct the optimal solution.

A more important issue, especially for applications that have a network embedded
in a larger problem, is the reoptimization of a problem after modifications to the
problem coefficients. The case for primal-dual or dual algorithms is often based on
the reputed ease of reoptimization; although reoptimization is conceptually easier
than for primal algorithms, this does not imply that primal-dual or dual algorithms
reoptimize more quickly. There have not been comparisons of primal and nonprimal
algorithms for reoptimization of large scale problems (indeed, it is not clear what
types of problems would constitute a fair comparison). In any case, the computer
storage advantage of primal algorithms is still maintained since reoptimization re-
quires no additional data arrays.

The following design considerations were used for a GNET reoptimization proce-
dure: (1) there would be no modifications to the primal optimization segments of
GNET; (2) no new arcs would be inserted into the arc list; and (3) the initial basis for
the reoptimization would include as much of the previous optimal basis as possible.
Algebraically, the changes to the supplies, demands, lower bounds and upper bounds
are translated into a vector of changes, d, to be added to the original right-hand side
vector b. Using the previous optimal basis B, the set of equations Bx = b + d is solved
with artificial arcs introduced into the basis as necessary to avoid an infeasible X.
Since the previous optimal solution X is available (b is not), Bx = d is solved and then
added to x to get x.

The vector d originates from coefficient modifications by: (1) changes in supplies
and demands, (2) a change of A in the upper bound of an arc (7,) out of the basis at
this upper bound (A is added to d; and subtracted from d)), and (3) a change of A in
the lower bound of an arc (7, j) out of the basis at zero (A is subtracted from d4; and

26 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

added to d). A traversal mechanism for back substitution of the basis is provided by a
single pass through the IT() array. The vector X is constructed by backsolving with
the predecessor array P(), at each step %, is computed as X; + X,. If %, is nonnegative
and less than or equal to its capacity, the backsolving continues. Otherwise, an
artificial vector from the node to the root is introduced to replace the arc which leaves
the basis at zero (if X; <0) or its capacity (if X, > capacity). The artificial arc is
oriented so that its flow is positive and it is assigned the large cost. The exchange of
an arc and an artificial arc involves “rehanging” the node and all its successors; this is
accomplished with only three changes in the preorder traversal IT() by inserting
these nodes at the end of IT(). Arcs removed from the basis are placed in the
candidate queue. The backsolving continues until the whole basis is restored. If any
artificial arcs have been introduced it is necessary to recompute the simplex mul-
tipliers. The problem is then reoptimized by GNET.

If cost coefficient changes involve only nonbasic arcs, reoptmization is necessary
only if one or more of these arcs now price favorably (such arcs are added to the
candidate queue). If cost coefficients change for basic arcs it is necessary to recom-
pute the simplex multipliers and then reoptimize with GNET.

Since GNET is so fast, experience indicates that if there are many coefficient
changes it may be more efficient to begin with an all artificial basis with the previous
optimal basis arcs preloaded in the candidate queue. On the other hand, applications
often require many particular, recurring reoptimizations of some special type which
permit more efficient (and problem specific) methods to be applied.

Further Refinements and Applications

One -of the major ideas of mathematical programming is that elements of the
simplex tableau may be generated as needed rather than stored and updated at each
pivot. For example, as described above, in GNET the columns of the basis inverse are
generated when needed to determine the outgoing arc by iterating the predecessor
function. However, the basic flows and simplex multipliers are explicitly stored and
those that change are updated during each pivot. Analysis of computational experi-
ments shows that the major portion of the calculations in the pivot (step S3) is to
update the simplex multipliers U(), depth D() and the preorder traversal array IT()
(note that IT() is maintained solely to allow efficient update of the multipliers). The
authors were thus led to consider modifications to GNET that would allow some or
all of the multipliers to be generated as needed.

It follows immediately from (10) that for basis arc k£ from node i to j: C(k) —
U(i) + U(j) = 0. Arbitrarily setting U(root) =0, it is possible to solve for all the
U()’s by forward substitution with the triangulated basis, that is, solve for U()’s in
the order IT(root), IT(IT(root)), etc. To compute a particular U(4) it is necessary only
to calculate some of the other U()’s, namely those for the nodes on the backpath
from A to the root. If k is the arc joining node A4 to its predecessor P(#), then
U(h) = U(P(h)) = C(k) with “+” if the arc is oriented from 4 to P(h) and “—"
otherwise. Since there are many nodes in large problems and only a relatively few
multipliers change from pivot to pivot, it does not seem worthwhile to generate all
multipliers at each pivot. Rather, we choose to store explicitly enough of the
multipliers so that for each node i either U() is stored explicitly or U(P(?)) is stored
explicitly. In the latter case a single addition generates the multiplier only when it is
needed.

The impetus for this approach comes from consideration of the capacitated trans-
portation problem with many demand nodes (sinks) and relatively few supply nodes
(sources). This is an important special case of the minimum cost network model that

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 27

has many applications. A typical model is a distribution system with a few plants and
many warehouses or a few centralized warehouses and many customers. This is the
type of problem most often encountered in multicommodity distribution problems,
e.g. [23]. Another application that requires the repeated solution of many such
problems is the traffic assignment problem.

A special version of GNET/Depth called TNET has been developed for this
problem. The multipliers are explicitly kept only for the relatively few sources of the
problem. Since in the (bipartite) transportation problem arcs only join sources to
sinks, the predecessor of each sink node must be a source and thus the multiplier for
each sink is computed by a single addition (also, the pricing mechanism loads only
sinks as interesting nodes during the opening gambit). The GNET arc storage is ideal
for this calculation since all the arcs with sink node j are stored contiguously; thus in
the general scan all are priced out together and only a single calculation of the sink
multiplier is required.

Since the traversal array I'T() is maintained solely for the purpose of updating the
multipliers, IT() and D() need to be maintained only for the relatively few source
nodes. It is also convenient to include in IT() the relatively few sinks that have a
successor. An alternate description is that IT() is maintained only for the smallest
possible subarborescence that includes all the sources; this is easy to do since at each
pivot the only possible nodes that can join the subarborescence are the two ends of
the incoming arc, and the only possible nodes to leave are the two ends of the
outgoing arc. No additional storage is required, the U(7) for sink i is used to store the
cost of the arc from P(i) to i, and the sinks not in the subarborescence are marked
with 0 in D(). The predecessor array P() is maintained exactly as before and the
determination of the backpaths and outgoing arc is the same.

Experiments (see Table 5) show that TNET is significantly faster than GNET for
transportation problems with many more sinks than sources. The pivot choice is the
same in both the original and modified versions so that with the same value of the
pricing parameters the same sequence of pivots is generated. For NNE = 32, the
reduction in time for TNET is due solely to savings in the update of U(), IT(), and
D() in step S3 (step S2 is identical and step Sl is slightly slower for TNET).
Experiments with six smaller problems show that GNET spends roughly half its time
in step S1; with TNET there is 80% less time for S3 and 5% more time in S1. Since the
pivot step S3 is so much faster in the modification it is not worthwhile to select the
incoming arc as carefully as in GNET; experiments show that NNE =8 is a good
setting for TNET. Table 5 shows that with NNE = 8 there are significantly more
pivots than with NNE = 32, but total solution time is reduced.

TABLE 5
Transportation Problems with Relatively Few Sources
IBM 360/67 Seconds

Problem Sources Sinks Arcs NNE TNET GNET Pivots
TN7 100 4900 40,000 32 127 274 11,909

8 99 17,583

TN8 250 4,750 40,000 32 142 285 12,910

8 135 19,759

TN 10 4,990 40,000 32 104 261 9,574

8 79 12,327

Generated with NETGEN [43]; all arcs are capacitated; cost ranges are 1-100 (TN7)
and 1-1000 (TN8, TN9).

28 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

Although TNET is designed for transportation problems with many sinks and
relatively few sources, it does well (about the same as GNET) on problems with an
equal number of sources and sinks. TNET handles problems with many sources and
few sinks by a minor modification in the input that reverses the orientation of the
arcs.

The same idea is extended to the general minimum cost network problem in a
program called XNET. The multipliers are explicitly kept only for nodes that have
successors in the predecessor graph. For example, in Figure 2 IT() is maintained only
for nodes 13, 8, 1, 4, 3, 2, and 6, in that order. The U() and D() arrays for nodes
with no successors are used as in TNET. In order to (dynamically) keep the
multipliers only for the nodes with successors, it is necessary in these (nonbipaitite)
problems to maintain an array that records for a node the number of its successors
that do not currently have explicit multipliers (“aggregated successors” A()). In this
way, one can distinguish between a node with no successors and a node with none of
its successors currently in the IT() array.

The results in Table 6 indicate that XNET is faster than GNET on all problems
and significantly faster on problems with relatively many sinks. XNET is only slightly
slower than TNET on the problems that TNET is tailored for, but the loss on these
problems is balanced by its generality and by its dominance of GNET. XNET is
successful because the predecessor graphs have many nodes with no successors. In
many practical problems known to the authors, most nodes are pure sinks; since the
successor in the predecessor graph of a pure sink must be a node that is not a pure
sink, many pure sink nodes have no successors.

TABLE 6
XNET/ Depth Performance with NNE = 8
IBM 360/67 IBM 360/67

Problem Seconds Pivots Problem Seconds Pivots
NG27 2.7 964 NPS 265 29,045
NG36 111 17,993 XN1 136 19,726
NG37 110 18,195
NG38 94 13,124 TN7 112 17,583
NG39 76 14,809 TN8 148 19,759
NG40 59 11,002 TN9 92 12,327

TNET and XNET are refinements of GNET/Depth; number of successors or
preorder distance can also be used for such modifications.

A modified version of XNET is also being used on a set of large, 100-percent dense
problems. The network models are uncapacitated single commodity transportation
problems embedded in a recent implementation of a multicommodity, multiple time
period econometric model described in [37]. A prototype problem size is 200 sources
and 300 sinks (and thus 60,000 arcs) with a matrix of region-to-region bulk transport
costs. The XNET modification is stripped of arc-length arrays, list references are
modified for the cost matrix and several capacitated features removed. Also,- the
candidate queue is modified to access only sink nodes and to price a restricted menu
of the few (ultimately 5) cheapest sources for each sink during the opening gambit.
Optimization from a cold start requires 8.6 seconds (2350 pivots) on an IBM 370/168.
Tuning of pricing parameters produces surprisingly little improvement. Reoptimiza-
tion procedures are employed to exploit period-to-period similarity of optimal bases
(despite significant temporal variations in problem structure). A typical reoptimization
time from a crashed basis is 1.2 seconds.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 29

A similar modification of XNET is imbedded in a ship scheduling system described
by Sibre [56]. The system is an enhanced large scale implementation of the production
scheduling model of Geoffrion and Graves [24] which requires solution of a large
scale (Koopmans-Beckman) quadratic assignment problem. Sibre develops a new
quadratic assignment method which builds upon the work of Graves and Whinston
[35] by using as an advanced starting solution a large embedded network formulation
of the fixed charge portion of the problem. '

A typical prototype assignment problem for this scheduling model has 1,720 nodes
(860 sources and sinks) and 739,600 arcs. Full optimization requires 9,602 pivots in
121.3 compute seconds (2.1 minutes) on an IBM 370/168. Since the ratio tests and
pivoting account for less than 5 percent of this solution time, no modifications have
been made to the code for exploiting the special (bipartite) basis structure of the
assignment problem. Based on benchmark tests, the original Graves-Whinston
method is estimated to require about 5,143 seconds (1.4 hours) for this portion of the
problem, and is not expected to produce as good a global solution.

Historical Perspective

Although the authors have not had access to any other primal transshipment
computer programs, it is possible to identify some of the major ideas from papers and
presentations [10], [28]-[31], [34], [49], [50], [59], [60]. The major design decisions and
important coding specifics may vary widely in these systems, but all the successful
contemporary large scale codes seem to be based on a few key ideas. Notwithstanding
our limited knowledge of specific techniques used by others, we trace the development
of these ideas as best we can.

The major ideas underlying all contemporary primal network codes are the repre-
sentation of the basis as a predecessor graph, a traversal mechanism to update simplex
multipliers, the use of depth or number of successors or preorder distance to
determine the outgoing arc and to facilitate the update of the simplex multipliers, the
use of a pricing mechanism such as the candidate queue, and generation of simplex
multipliers.

The predecessor array is used in all the codes. This construction in primal network
codes goes back at least to Glicksman, L. Johnson and Eselson [27], 1960, and goes
back further in other disciplines. It is a standard approach in many research areas.

Srinivasan and Thompson [59], 1972, have proposed the use of depth to identify the
backpaths and to determine the outgoing arc. This has been adopted by Glover,
Karney and Klingman [28], 1974, Mulvey [49], 1974, [50], 1975, and GNET /Depth
[6], 1975. The method [59] for identifying the join of the backpaths is exactly as
described for GNET; however, the update of depth at each pivot in that paper is a
more involved approach that does not aid in the pivot as described here.

Preorder traversal has been used in transshipment codes by Glover, Klingman and
Stutz [31], 1974, who call it the augmented threaded index method. They show that it
is more efficient than the triple labeling scheme of E. Johnson [40]. Independently,
McBride [48], 1973, and Graves and McBride [34], 1973, have developed the zero-to-
right triangulation of network bases which has since been shown to be equivalent to
preorder. Preorder has been used in the computer science literature for at least 20
years and has been used in contemporary shortest path algorithms [26], 1973. Preorder
has been adopted by Srinivasan and Thompson and Mulvey, and it is used in all
versions of GNET. As discussed above and shown in Figure 6, depth makes possible a
one-pass update of the simplex multipliers that simultaneously updates the preorder
and depth (or number of successors, or preorder distance). Since the pivot takes much
more time than the determination of the outgoing arc, the use of depth in the update
of the simplex multipliers is more critical to the success of GNET than its use to find

30 GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

the outgoing arc. We do not know the pivot details or the use of depth (if any) in
other codes nor do we know if any others have a one-pass update.

Srinivasan and Thompson [59], 1972, have proposed number of successors to be
used with depth to determine how many nodes are in the subarborescence that is
rehung in the pivot. If the subarborescence has less than half the nodes of the
problem, they propose moving the root and performing the pivot on the smaller part
of the predecessor graph. Our experiments show that the subarborescence can always
be expected to have significantly less than half the nodes, so we have rejected the idea
of moving the root. However, we have discovered that number of successors can be
used in a way not envisaged by Srinivasan and Thompson. As described above it can
replace depth to support the determination of the outgoing arc and the one-pass
update of the simplex multipliers. We have also noted that the number of successors
for nodes in the pivot subarborescence changes only for nodes on the pivot stem
avoiding the update indicated in [59]. Subsequent to our presentation of GNET /Suc-
cessors, Glover and Klingman [30], 1975, have proposed a number-of-successors
version of their algorithm. They describe a one-pass update of the simplex multipliers
that uses an additional node length array to store for each node the last successor
ranked by preorder. They conjecture [30, p. 7] that a code based on this approach will
dominate their previous codes. This may be true for their codes, but as discussed
above this is not our experience in comparing our one-pass depth version against our
one-pass number of successors version. Also, as indicated in Figure 7, GNET /Suc-
cessors accomplishes a one-pass update without an additional array to store and
manipulate.

Preorder distance is used by McBride [48], 1973, and Graves and McBride [34],
1973. They develop the zero-to-right property and establish the proposition stated
above to find the join.

Mulvey [49] uses a candidate list of arcs that corresponds to the “partial subop-
timization” that is used in commercial linear programming systems [51]. His candidate
list is controlled by two parameters: x, and x,. In our terminology, general scans of
nodes are done until there are x, arcs on the candidate list, then up to x, pivots are
performed by choosing arcs from the candidate list. The candidate list is then
discarded and the process begins again. As noted in [10], Mulvey’s approach has been
adopted by Glover and Klingman.

The candidate queue used in GNET has evolved from similar mechanisms devel-
oped by Graves for more general mathematical programming systems. It is unique in
that it contains both nodes and arcs, it is used cyclically and arcs are never removed
as long as they continue to price out favorably.

The Srinivasan and Thompson code [60] and the Harris code [36] are for dense
uncapacitated transportation problems; all other contemporary codes known to the
authors solve the capacitated transshipment problem with a sparse representation of
the network similar to that described here.

Development of a version with an in-core, out-of-core arc list is reported by Karney
and Klingman [41].

Harris [36], 1976, describes a code for dense uncapacitated transportation problems
that have few sources and many sinks. The brief description indicates that the simplex
multipliers are not stored for the sinks but there are no details on the handling of the
pivot nor on the use of a traversal mechanism. (In a recent private communication,
Harris indicates that his code uses depth and a preorder traversal.) Independently, the
authors have developed TNET for the sparse capacitated transportation problem and
have subsequently developed XNET for the general capacitated transshipment prob-
lem. TNET and XNET are specific examples of the generation of simplex multipliers;
other refinements that generate more (or all) the multipliers are possible.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 31

There is considerable literature on postoptimal analysis and parametric program-
ming for transportation and transshipment problems (e.g. [9], [57], [58)).

Conclusion

The GNET programs are small, fast and easy to modify. They integrate many
well-known techniques from mathematical optimization and computer science. It is
important, however, to discriminate carefully between the underlying ideas of
mathematical programming and the computer science topics applied to their imple-
mentation. The computer science literature has contributed a great deal to the local
representation of global information in trees and graphs, and has given valuable
recursive methods for manipulating data structures; many of these techniques can be
applied to the basic arborescence. But some, such as rerooting, pruning, balancing
and even conversion to an equivalent binary tree with extra dummy nodes and arcs,
do not work well for many network problems. In these cases, the mathematical
interpretation implies (as does the experimental evidence) that these devices are
needless complications that increase solution expense or introduce superfluous equa-
tions and variables.

In our experience large scale problems are always created from source data by
problem generator programs. The problem generator may occupy significantly less
computer storage than the file of coefficients produced. Thus, is can be worthwhile to
generate the data as needed rather than store it explicitly. Such generators are easily
incorporated in GNET. (This approach does not entirely avoid arc length information
for capacitated problems since a record must be maintained for each arc out of the
basis at its upper bound.) These advantages also invite development and use of a
random problem generator subroutine to replace the cumbersome problem files and
cost of using NETGEN [43] to generate very large problems. The design of GNET is
also consistent with the use of explicit arc arrays stored in peripheral devices.

Perhaps the most important potential for the pure network solution speed of GNET
lies in more general large scale models with embedded networks in their structure.
The multicommodity distribution system design code of Geoffrion and Graves [23]
has been revised to incorporate GNET to repeatedly solve the (numerous) network
subproblems. A goal programming code for network problems with quadratic objec-
tive functions has been successfully built by the authors, with GNET used as the key
subroutine.

The theme of GNET is replacement of arithmetic primal simplex computations by
simple but equivalent logical tests. This is reminiscent of the motives for generalized
upper bounding and suggests that network factorization may prove to be a viable
competitor for GUB in general linear programming systems [33], [34], [48].

Lee [47] indicates that truly huge models may be solved by mathematical aggrega-
tion and develops a wide class of network aggregation methods producing surrogate
problems that are pure networks which are smaller in size and which preserve and
exploit special global structure in the original problem. This approach is intriguing
due to the curious general improvement in performance encountered when solving
real models rather than random test problems of equivalent size.

The FORTRAN program GNET /Depth [6], 1975, is distributed to researchers for
a nominal handling charge on an exclusive use basis. For further information write
Professor Glenn Graves at the Western Management Science Institute, Graduate
School of Management, University of California, Los Angeles, California 90024.!

! The research for this Exceptional Paper has been partially supported by the National Science
Foundation and the Office of Naval Research.

32

el

10.

11.

12.

13.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

References

BaLas, E. AND HAMMER, P. L., “On the Transportation Problem—Part 1,” Cahiers du Centre d’Etudes
de Recherche Operationelle, Vol. 4, No. 2 (1962), p. 98.

BARR, R. S., GLOVER, F. AND KLINGMAN, D., “An Improved Version of the Out-of-kilter Method and
a Comparative Study of Computer Codes,” Mathematical Programming, Vol. 7, No. 1 (August 1974),
p. 60.

BARTELS, R: H. AND GoLuB, G. H., “The Simplex Method of Linear Programming Using LU
Decomposition,” Communications of the Association for Computing Machinery, Vol. 12, No. 5 (May
1970), p. 266.

BERGE, C., The Theory of Graphs and its Applications, translated by A. Doig, John Wiley and Sons,
New York, 1962.

BrRADLEY, G. H., “Survey of Deterministic Networks,” AIIE Transactions, Vol. 7, No. 3 (September
1975), p. 222.

, BROWN, G. G. AND GRAVES, G. W., “GNET, A Primal Capacitated Network Program,”
Copyright 1975, 1977.

BUSACKER, R. G. AND GoweN, P. J., “A Procedure for Determining a Family of Minimum-Cost
Network Flow Patterns,” ORO Technical Report 15, Operations Research Office, Johns Hopkins
University (1961).

AND SAATY, T., Finite Graphs and Networks, McGraw-Hill, New York, 1965.

CHARNES, A. AND COOPER, W. W., Management Models and Industrial Applications of Linear Program-
ming, Volumes I and II, John Wiley and Sons, New York, 1961.

, GLOVER, F., KARNEY, D., KLINGMAN, D. aAND StuTtz, J., “Past, Present and Future of Large
Scale Transshipment Computer Codes and Applications,” Research Report CS 131, Center for
Cybernetic Studies, The University of Texas, Austin (July 1973, revised October 1974).

CHEONG, Y. P, “Network Transformations and Some Applications,” MS Thesis, Naval Postgraduate
School (December 1975).

CLasEN, R. J,, “The Numerical Solution of Network Problems Using the Out-of-kilter Algorithm,”
RAND Memorandum RM-5456-PR, Santa Monica, California (March 1968).

CuUNNINGHAM, W. H., “A Network Simplex Method,” Mathematical Programming, Vol. 11, No. 2
(October 1976), p. 105.

DanrtziG, G. B., “Application of the Simplex Method to a Transportation Problem,” in Activity
Analysis of Production and Allocation, T. C. Koopmans, ed., John Wiley and Sons, New York, 1951.

, Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.

AND VAN SLYKE, R. M,, “Generalized Upper Bounding Techniques for Linear Programming,”
Journal of Computer and System Sciences, Vol. 1, No. 3 (October 1967), p. 213,

EpMonDs, J. AND KARP, R. M., “Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems,” Journal of the Association for Computing Machinery, Vol. 19, No. 2 (April 1972), p.
248.

ELMAGHRABY, S., Some Network Models in Operations Research, Springer-Verlag, New York, 1970.

Forp, L. R. AND FULKERsON, D. R., “A Primal-Dual Algorithm for the Capacitated Hitchcock
Problem,” Naval Research Logistics Quarterly, Vol. 4, No. 1 (March 1957), p. 47.

AND , Flows in Networks, Princeton University Press, Princeton, New Jersey, 1962.

FULKERSON, D. R., “An Out-of-Kilter Method for Minimal-Cost Flow Problems,” SIAM Journal of
Applied Mathematics, Vol. 9, No. 1 (March 1961), p. 18.

, “Flow Networks and Combinatorial Operations Research,” American Mathematical Monthly,
Vol. 73, No. 2 (February 1966), p. 115.

GEOFFRION, A. M. AND GRAVES, G. W., “Multicommodity Distribution System Design by Benders
Decomposition,” Management Science, Vol. 20, No. 5 (January 1974), p. 822.

AND , “Scheduling Parallel Production Lines with Changeover Costs: Practical Applica-
tion of a Quadratic Assignment/LP Approach,” Operations Research, Vol. 24, No. 4 (July 1976), p.
59s.

GiLL, P. E. AND MURRAY, W., “A Numerically Stable Form of the Simplex Algorithm,” Journal of
Linear Algebra and its Applications, Vol. 6 (1973), p. 99.

GILSINN, J. AND WITZGALL, C., “A Performance Comparison of Labeling Algorithms for Calcylating
Shortest Path Trees,” Technical Note 772, National Bureau of Standards, Washington, D.C. (May
1973).

GLICKSMAN, S., JOHNSON, L. AND ESELsON, L., “Coding the Transportation Problem,” Naval Research
Logistics Quarterly, Vol. 7, No. 2 (June 1960), p. 169.

GLOVER, F., KARNEY, D. AND KLINGMAN, D., “Implementation and Computational Comparisons of
Primal, Dual and Primal-Dual Computer Codes for Minimum Cost Network Flow Problems,”
Networks, Vol. 4, No. 3 (1974), p. 191.

DESIGN, IMPLEMENTATION OF LARGE SCALE PRIMAL TRANSSHIPMENT ALGORITHMS 33

29.

30.

3L

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

X AND NAPIER, A., “A Computational Study on Start Procedures, Basis Change
Crlterla and Solution Algorithms for Transportation Problems,” Management Science, Vol. 20, No. 5
(January 1974), p. 793.
AND KLINGMAN, D., “Improved Labeling of L. P. Bases in Networks,” Research Report CCS
218, Center for Cybernetic Studies, The University of Texas, Austin (August 1974, revised October
1975).

AND STUTZ, J., “Augmented Threaded Index Method for Network Optimization,”
INFOR Vol. 12, No. 3 (October 1974), p. 293.

GRAVES, G. W, “Theory of Permutation Triangulation with Application to Network Flow Problems,”
Working Paper No. 267, Western Management Science Institute, UCLA (May 1977).

AND MCBRIDE, R. D., “The Factorization Approach to Large-Scale Linear Programming,”

Eighth International Symposium on Mathematical Programming, Stanford University, August 1973

(also in Mathematical Programming, Vol. 10, No. 1 (February 1976) p. 91).

AND , “A Factorization Algorithm for Network Problems with Side Constraints,” 44th

National ORSA Meeting, San Diego (Fall 1973).

AND WHINSTON, A. B., “An Algorithm for the Quadratic Assignment Problem,” Management
Science, Vol. 17, No. 7 (March 1970), p. 453.

Harris, B., “A Code for the Transportation Problem of Linear Programming,” Journal of the
Association for Computing Machinery, Vol. 23, No. 1 (January 1976), p. 155.

Harris, C. C. aND Hopkins, F. E., Locational Analysis—An Interregional Econometric Model of
Agriculture, Mining, Manufacturing, and Services, Lexington Books, Lexington, Massachusetts, 1972.

HatcH, R. S., “Bench Marks Comparing Transportation Codes based on Primal Simplex and
Primal-Dual Algorithms,” Operations Research, Vol. 23, No. 6 (November 1975), p. 1167.

HitcHcock, F. L., “The Distribution of a Product from Several Sources to Numerous Localities,”
Journal of Mathematics and Physics, Vol. 20, No. 2 (April 1941), p. 224.

JounsoN, E. L., “Networks and Basic Solutions,” Operations Research, Vol. 14, No. 4 (August 1966),
p. 619.

KARNEY, D. AND KLINGMAN, D., “Implementation and Computational Study on an In-Core, Out-of-
Core Primal Network Code,” Operations Research, Vol. 24, No. 6 (December 1976), p. 1056.

KLEIN, M., “A Primal Method for Minimal Cost Flows with Application to the Assignment and
Transportation Problems,” Management Science, Vol. 14, No. 3 (November 1967), p. 205.

KLINGMAN, D., NAPIER, A. AND STUTZ, J., “NETGEN—A Program for Generating Large Scale (Un)
Capacitated Assignment, Transportation and Minimum Cost Flow Network Problems,” Manage-
ment Science, Vol. 20, No. 5 (January 1974), p. 814.

KoopMans, T. C., “Optimum Utilization of the Transportation System,” Proceedings of the Interna-
tional Statistical Conferences, Washington, D.C. (1947), published in Volume 5 (1949), p. 136. (Also
in Scientific Papers of Tjalling C. Koopmans, Springer-Verlag, New York (1970), p. 184.)

KNutH, D. E., The Art of Computer Programming, Volume 1 (Fundamental Algorithms), Addison-
Wesley, Reading, Massachusetts, 1968.

LANGLEY, R. W., KENNINGTON, J. AND SHETTY, C. M., “Efficient Computational Devices for the
Capacitated Transportation Problem,” Naval Research Logistics Quarterly, Vol. 21, No. 4 (December
1974), p. 637.

LEE, S., “Surrogate Programming by Aggregation,” Ph.D. dissertation, UCLA (September 1975).

MCBRIDE, R., “Factorization in Large-Scale Linear Programming,” Working Paper No. 200 (also
Ph.D. dissertation), Western Management Science Institute, UCLA (June 1973).

MULVEY, J., “Column Weighting Factors and Other Enhancements to the Augmented Threaded Index
Method for Network Optimization,” Joint National Meeting of ORSA/TIMS, San Juan, Puerto
Rico (Fall 1974).

, “Special Structure in Network Models and Associated Applications,” Ph.D. dissertation,
UCLA (August 1975).

ORCHARD-HAYs, W., Advanced Linear-Programming Computing Techniques, McGraw-Hill, New York,
1968.

ORDEN, A., “The Transshipment Problem,” Management Science, Vol. 2, No. 3 (April 1956).

SAUNDERS, M. A., “Large Scale Linear Programming using the Cholesky Factorization,” Technical
Report CS-72-252, Computer Science Department, Stanford University (1972).

, “Product Form of the Cholesky Factorization for Large-Scale Linear Programming,” Techni-
cal Report CS-72-301, Computer Science Department, Stanford University (1972).

Scoins, H. 1., “The Compact Representation of a Rooted Tree and the Transportation Problem,”
International Symposium on Mathematical Programming, London (1964).

SiBRE, C. E., “A Ship Scheduling Model for the United States Coast Guard: a Quadratic Assign-
ment/Linear Programming Approach,” MS Thesis, Naval Postgraduate School (June 1977).

34

57.

58.

59.

60.

GORDON H. BRADLEY, GERALD G. BROWN AND GLENN W. GRAVES

SRINIVASAN, V. AND THOMPSON, G. L., “An Operator Theory for the Transportation Problem—I,”
Naval Research Logistics Quarterly, Vol. 19, No. 2 (June 1972), p. 205.

AND , “An Operator Theory for the Transportation Problem—II,” Naval Research

Logistics Quarterly, Vol. 19, No. 2 (June 1972), p. 227.

AND , “Accelerated Algorithms for Labeling and Relabeling of Trees with Application

for Distribution Problems,” Journal of the Association for Computing Machinery, Vol. 19, No. 4

(October 1972), p. 712.

AND , “Benefit-Cost Analysis of Coding Techniques for the Primal Transportation

Algorithm,” Journal of the Association for Computing Machinery, Vol. 20, No. 2 (April 1973), p. 194.

	Exceptional Paper.pdf
	Abstract

