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Abstract: On the surface of a sphere, we take as inputs two points, neither of them contained in any of a number of spherical
polygon obstacles, and quickly find the shortest route connecting these two points while avoiding any obstacle. The WetRoute
method presented here has been adopted by the US Navy for several applications. © 2016 Wiley Periodicals, Inc. Naval Research
Logistics 63: 374–385, 2016
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1. INTRODUCTION

Finding a shortest path (or route) is one of the most com-
monly solved network problems. Arguably, this history starts
with the introduction of graph theory by Euler in 1758 [6] and
continues today, with perhaps the most widely known inter-
mediate result being that of Dijkstra in 1959 [5] for finding
shortest total length paths in a network (i.e., a graph with
numerical attributes, here non-negative edge lengths). The
transitive significance of Dijkstra’s work, and that of oth-
ers in that era, is the formality of specifying an algorithm in
terms of an input and an output, proving its correctness, and
implementing the algorithm on a digital computer.

Our subject here is finding shortest routes, but not on a net-
work. We are given two arbitrary “wet points” X and Y on a
spherical Earth that is cluttered with dry obstacles, and asked
to find the shortest route that does not run over an obstacle.
The wet-dry terminology is due to the motivating applica-
tion where a ship at maritime point X wants to get to some
other maritime point Y, traveling a minimum distance with-
out running aground. Neither X nor Y can be confined to any
predetermined finite set, and therefore cannot be embedded
in any finite network. In spite of this difficulty, these shortest
routes must be found quickly. This is because the actual com-
putational problem given to WetRoute is to find the shortest
distance between every pair of destinations taken from a list
of on the order of 100 of them. WetRoute is fast enough on a
modern computer to find all of these shortest routes in a few
seconds.
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One could, of course, superimpose a mesh of some kind
on the wet part of Earth, compute and store the apparent
shortest route from each node of the mesh to other nodes,
and then move X and Y to their closest nodes in order to
quickly retrieve the approximately shortest route. We do not
argue that doing so would be unreasonable; in fact, the mesh
method has important advantages over the method that we are
about to describe. Chief among these is that the “distance”
measure could actually depend on distance, fuel, time, and
risk, all of which can have different minima in the face of cur-
rents, winds, politics, and storms. We have been tempted by
that method, but ultimately rejected it. The approximations
required in the mesh method would be problematic. Earth’s
oceans cover about 362,000,000 km2. If one were to parti-
tion this region with equilateral triangles with 5 km sides, the
number of triangles required would be about 29,000,000, and
the number of “distances” to be computed and stored would
be the square of that number. Each of those computations
would be a significant task in itself, and the implied storage
requirement exceeds the capability of most computers. One
would be tempted to make the triangles larger, thus making
the approximation worse. The advantage of WetRoute is that
it does not need to begin by artificially moving X and Y to
a node in a pre-established mesh, and therefore avoids the
associated need for approximation.

The motivating application for WetRoute is the US Navy’s
Replenishment at Sea Planner (RASP) [15] that recommends
when and where supply ships should load fuel and stores and
when and where to rendezvous with underway US and coali-
tion partner combatants (customers) for at-sea replenishment.
The track and supply status of each customer is given, with
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RASP advising the activities of the supply ships. RASP’s
problem is to minimize the cost of supplying the customers
over a given time horizon, essentially a multiple traveling
salesman problem with time windows, moving customers and
multiple depots. The customers can be at many locations over
the time horizon, and supply ships may need to travel from
one customer location to another. WetRoute must therefore
calculate thousands of shortest routes prior to RASP doing its
minimization, hence the emphasis on computational speed.

Fuel consumption is a dominant concern. In early devel-
opment of RASP, an approximating route planner introduced
a host of complications, and these were exacerbated when
unanticipated changes to existing schedules were needed.
Planners needed to quickly find a minimal number of events
to reschedule, while still meeting as many prior scheduled
events as possible. To do this, the only degree of freedom was
to speed up the supply ships, and ship fuel consumption is a
strongly increasing function of speed. Quickly dealing with
these revisions based on approximate, tabulated distances, or
on the visual thumb rules of a Navy Lieutenant scheduler,
demonstrated the need for a better distance estimation tool
like WetRoute.

2. INITIAL OBSERVATIONS

2.1. Notation and Terminology

Our abstract Earth is a perfect sphere, has unit radius, and is
cluttered with “obstacles”, each of which is a simple polygon
described by at least three distinct vertex points in clock-
wise order, with an interior that is not empty. A model of
Earth that is reasonably accurate for navigational purposes
will have about 900 vertices (see Fig. 1). For vertex i, we will
use the notation i.next and i.previous for the next and previous
vertex as the obstacle boundary is traversed clockwise.

Each pair of adjacent vertices (i, i.next) is connected by a
segment of a great circle, the length of which is the shortest
distance between the two vertices. Such great circle segments
always have a length in the open interval (0, π ), and will be
referred to simply as “segments” in the following. The ver-
tices of the obstacles are all assumed to be distinct, and we
also assume that the obstacles do not intersect or even touch
each other. All points in the interior of an obstacle or on one of
its boundary segments are “dry”, whereas points that are not
part of any obstacle are “wet”. The interiors of these obstacles
must be avoided in the process of getting from one wet point
to another, but the boundaries can be included in the route.
Wet points like X and Y that are the subject of shortest route
calculations will be referred to as “origins” and “destina-
tions”. Fagerholt, Heimdal and Lotku [7] describes a similar
problem in the plane where the destination is necessarily one
of the obstacle vertices. Here Y, like X, is an arbitrary wet
point—our problem is a “two-point query”.

Figure 1. Showing in Google Earth the level of detail one can
achieve with about 900 world-wide vertices. Note that most small
Caribbean islands are not counted as obstacles. [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]

Earth has an important property that we will assume true
of our spherical abstraction. The largest obstacle on Earth
(Eurasia with Africa still attached, which we have named
EurAfrica) can still be contained in a hemisphere; i.e., all
obstacles are “small” in that sense. One can imagine obsta-
cles that are not small, an example being one of the two pieces
of leather that cover a baseball. Such obstacles are not con-
tained in any hemisphere, and therefore cannot be seen in
their entirety from any viewpoint outside the sphere. Nor do
they have convex hulls, unless the entire sphere is taken to
be “the smallest convex region that contains the obstacle”
[9]. Conveniently, there are no such obstacles on Earth. We
will therefore assume that all obstacles are small, and the
word “clockwise” used above should be understood to be
from the point of view of an observer outside the sphere who
is looking at the entire obstacle. For any such obstacle, take
a rubber band and stretch it along the edge of a containing
hemisphere. Start the rubber band shrinking toward the obsta-
cle, but keep it out of the obstacle by marking the obstacle’s
vertices with pins. Just as in the plane, the rubber band will
settle at the convex hull of the obstacle. The convex hull and
the obstacle will share some segments, and these segments
are by definition clockwise in the obstacle if and only if they
are clockwise in the convex hull. For this reason, a clockwise
tour of EurAfrica might appear to be going counterclockwise
after it encounters the Mediterranean at the southern end of
the Straits of Gibraltar.

WetRoute locates points on Earth such as X by giving
their latitude and longitude, symbolically X.lat and X.lon. To
avoid repeated evaluations of sines and cosines, properties of
a point X also include X.slat, X.clat, X.slon, and X.clon, those
four numbers being sin(X.lat), cos(X.lat), sin(X.lon), and
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cos(X.lon), respectively. We say that destination Y is “visible”
from origin X (or vice versa) if the segment connecting X to
Y does not include an interior point from any obstacle. That
connecting segment is unique unless X and Y are antipodes.
Should it happen that X and Y are antipodes, we say that Y is
visible from X if any connecting segment avoids all obstacle
interiors.

2.2. Spherical Mathematics

The need for spherical mathematics is unfortunate, since
visualization, and computation are easier in the plane. How-
ever, because the origin and destination of a ship routing
problem can be thousands of miles apart, the subject can-
not be avoided. Visualization is indeed a difficulty, but the
calculations need not be hindered by the incessant need for
trigonometric calculations as long as points have the prop-
erties specified above. For example, the expression used in
WetRoute for the cosine cd of the distance between X and
Y is

cd = (X.slat)(Y .slat) + (X.clat)(Y .clat)

× ((X.clon)(Y .clon) + (X.slon)(Y .slon)),

an expression that involves only multiplication and addition.
This formula is the Law of Cosines for Sides (e.g., [10]). The
arc cosine function is required if one needs to know the actual
distance, but even this can be avoided if one is merely com-
paring distances, since the arc cosine function is monotonic
on the interval [−1, 1].

The direction from X to Y depends on how angles are
measured. We measure angles in radians clockwise from the
North Pole (NP), and by “direction from X to Y” mean the
angle from the (X, NP) segment to the (X, Y ) segment. This
is the initial course a ship would take in moving along the
(X, Y ) segment. In nautical terms the angle from X to Y is
the “bearing” from X to Y. Like distances, directions can
be computed without extensive use of trigonometric func-
tions. Appendix B includes the details of this and certain
other common calculations.

Most spherical problems have topologically similar pla-
nar counterparts, especially when obstacles are small, which
makes it possible to illustrate them. An exception to this is
any problem that involves antipodes (antipodes are the only
problem—absent the antipode of X, the sphere is topologi-
cally homeomorphic to the plane). A ray from a point does
not extend to infinity on the sphere, but rather to the point’s
antipode on the other side of the sphere; in fact, all rays from
a point go through the point’s antipode. The direction from
a point to its antipode is ill-defined, and there are also some
other inconvenient features that will be addressed later. One
advantage of dealing with obstacles that are small is that the
antipode of any point in a given obstacle cannot be in the

same obstacle. The antipode of a wet point, however, can be
wet.

2.3. Basic Algorithm

If Y is visible from X, then the shortest route is simply the
segment that connects them. If Y is not visible from X, then
the shortest route will go from X to some visible vertex i,
then from vertex to vertex until some vertex j is encountered
from which Y is visible, and finally from j to Y. Vertices i and
j may or may not be the same vertex. A proof of these claims
for the plane can be found in [16]. Since the triangle inequal-
ity holds on the sphere, just as it does in the plane, a similar
proof (omitted here) holds on the sphere. Let SX and SY be
the sets of “candidate” vertices for X and Y, respectively. For
the moment these can be thought of as sets of vertices that are
visible from each of those wet points, although we will later
show that they can be substantially reduced. Neither of these
sets can be empty unless Y is visible from X. Let d(X, Y ) be
the length of the (X,Y ) segment, and let D(X, Y ) be the short-
est distance between X and Y when obstacles are considered.
Then

D(X, Y ) =
{

d(X, Y ) if Y is visible from X, or otherwise

mini∈SX ,j∈Sy
d(X, i) + D(i, j) + d(j , Y )

.

(1)

In WetRoute, the tasks necessary for the determination of
D(X, Y ) are partitioned into “static” and “dynamic”. Sta-
tic tasks are those that do not require knowledge of X or Y,
while dynamic tasks cannot be carried out until X and Y are
specified. The principal static task is the determination of
the inter-vertex distances D(i, j) for all vertex pairs. This
approximately 900 × 900 matrix is computed, stored, and
then recalled whenever (1) is needed to compute D(X, Y ).
The shortest path from i to j can be recovered from a sepa-
rate, identically dimensioned matrix that stores the first vertex
encountered in the optimal path from one vertex to another.
The dynamic task is to determine whether wet point Y is
visible from wet point X, and, if not, to determine the candi-
date sets SX and SY required in (1). The size of these sets is
crucial, since (1) is basically just an exhaustive examination.
The Cursor algorithm described below in Section 3 quickly
determines X-to-Y visibility and the candidate sets SX and SY ,
after which (1) is employed to determine the optimal route
from X to Y.

Although the Cursor algorithm is as applicable to finding
the shortest distances between vertices as it is to general wet
points, there is no need to determine the inter-vertex distances
D(i, j) quickly. That matrix can even involve a generalized
notion of “distance”, a fact that we will take advantage of in
Section 4 when considering passage through the Panama and
Suez canals.
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3. VISIBILITY AND THE CURSOR ALGORITHM

Determining visibility is in most cases trivial for a human
looking at a globe, but is nonetheless a significant compu-
tational task. We are given a point X on the surface of the
sphere that is not on the boundary of any obstacle. We wish
to determine whether X is wet, and, if so, then which vertices
and other wet points are visible from X.

3.1. The Border Function

The WetRoute method for determining visibility involves
a “Border” function B(φ, X) about X, for 0 ≤ φ < 2π . The
meaning of B(φ, X) is “the largest distance at which a point
with bearing angle φ is visible from X”. Given the border
function, visibility to an arbitrary point Y is easily deter-
mined by calculating the distance R and bearing φ of Y from
X; Y is visible from X if and only if R ≤ B(φ, X). In prac-
tice, WetRoute computes an intermediate function Seg(φ, X)

that identifies the visible obstacle segment at angle φ, the
attractive feature of this function being that it is constant
in angular intervals. Distance B(φ, X) is then the distance
from X to Seg(φ, X). It typically takes on the order of 20
angular intervals to store Seg(φ, X) over a complete circle.
Once Seg(φ, X) is known, the visibility from X to any other
point on the sphere, whether destination or vertex, is easily
determined. The initial computation and storage of Seg(φ, X)

amounts to paying a computational setup cost that simplifies
subsequent visibility calculations. The heart of the procedure
for determining Seg(φ, X) is the Cursor algorithm, which
determines the wetness of X in the process. The Cursor algo-
rithm resembles the planar VisibleVertices algorithm of [4]
in being a circular sweep of all the angles surrounding X, but
has different computational goals.

3.2. Obstacle Reduction into Chains

Suppressing X in the notation for brevity, define an angle
A(i) from X to every vertex i in some obstacle as follows:
Arbitrarily select a non-pole starting vertex i0 and let its angle
A(i0) be the bearing angle of i0 from X. Then set i to i0 and go
through the vertices of the obstacle in clockwise order. Let θ

be the clockwise angle from (X, i) to (X, i.next), a number in
the interval (−π , π), and let A(i.next) = A(i) + θ . Applied
iteratively, this relation defines the angles for all vertices in
the obstacle, including finally i0. The meaning of A(i) is in
all cases the bearing from X to i, except that angles are not
confined to any specific interval by modular arithmetic. This
lack of confinement means that the terminal calculation of the
angle at i0 can differ from the initial value. There are three
possibilities:

1) A(i0) may have increased by 2π from its initial value.
If so, X is inside the obstacle.

2) A(i0) may be unchanged from its original value. If so,
then neither X nor its antipode is inside the obstacle.

3) A(i0) may have decreased by 2π . If so, the antipode
of X is inside the obstacle.

Three cases suffice because it is not possible for a point and
its antipode to both be inside an obstacle when obstacles are
small, as we are assuming. Cases 1 and 2 are anticipated by
the study of winding angles in the plane [12]. In case 1 the
Cursor algorithm terminates because X is not wet. We assume
that case 2 holds for the moment. We will return to case 3 in
Section 3.5.

An obstacle may have vertices i where A(i.previous) <

A(i) ≥ A(i.next). Such vertices are by definition “maxima”.
Similarly “minima” are vertices where A(i.previous) ≥
A(i) < A(i.next). As one proceeds clockwise around the
obstacle, a maximum can only be followed by a minimum
(possibly with several intermediate vertices that are not
extremes), and vice versa. The sequence of vertices clockwise
from a maximum to a minimum is a “chain” that includes its
start at the maximum and its end at the minimum. For chain
c, we will use the notation c.start for the starting vertex and
c.end for the ending vertex. Because a vertex cannot be both
a maximum and a minimum, c.start and c.end cannot be
the same vertex. The angles along a chain are always non-
increasing as one proceeds clockwise through the vertices,
and always A(c.start) > A(c.end). The obstacle shown in
Fig. 2 has only a single chain of five vertices that extends
clockwise from max to min along the inner boundary of the
obstacle (recall that the clockwise direction for an obstacle
is the same as the clockwise direction for its convex hull, so
the outer boundary determines direction).

Chains can never intersect with one another because obsta-
cles never intersect with themselves or one another. Maxima,
minima, and chains exist in the same number. All vertices that
are not on chains are invisible to X, so the visible vertices are
a subset of those belonging to chains (Theorem 2 in Appen-
dix A). The set of obstacles thus spawns a set of chains.
The total number of chains depends on X, but is usually a
few hundred in WetRoute when all obstacles are considered.
The collection of obstacles has now been reduced to a col-
lection of monotonic, non-intersecting chains. The obstacles
themselves will play no further role in the Cursor algorithm.

3.3. The Cursor Algorithm Specified

3.3.1. Definitions and Preliminary Considerations

Chain c will be said to “cover” angle φ if A(c.end) <

φ + 2kπ ≤ A(c.start) for at least one integer k. The addi-
tion of k circles to φ is necessary because there are no absolute
limits to the angles of the vertices in a chain. A chain covers
an angular interval if it covers every angle within that interval.
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Figure 2. Illustrating an obstacle with eight vertices where
A(max) and A(min) differ by more than 2π . A(max) is about
0.5 radians, with angles decreasing along the only chain (four
heavy segments) to about -6.4 radians at the min vertex. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

If c covers φ, let L(c, φ) be the length of the segment from X
to the closest intersection point with c at angle φ. Among all
of the chains that cover φ, the dominant chain at that angle
is the one for which L(c, φ) is the minimum, and the mini-
mum value is the border function B(φ, X). It is not possible
to have ties for dominance because chains never intersect, but
it is possible that no chain will cover φ, in which case we say
that the dominant chain at φ is the “White” chain that does
not limit visibility.

As a ray from X moves through the vertices of a chain from
start to end, its bearing angle will move counterclockwise—
as the vertices of a chain are examined in clockwise order
(from the viewpoint of the host obstacle), the angle from
a wet point to those vertices moves counterclockwise. All
chains have a counterclockwise successor. Imagine sitting at
X shining a laser at the end of chain c. If you move the laser
slightly counterclockwise, the beam will no longer illuminate
the end of c. The chain that it does illuminate is the successor
of c. Mathematically, the successor of c is the eligible chain
x that has the smallest score L(x, φ) at angle φ = A(c.end).
All chains that do not cover φ are ineligible. With one excep-
tion, all chains x for which (A(x.end) − φ)mod 2π = 0 are
also ineligible; these are the chains that end at the same angle
as c. The exception is that c itself can be eligible if its angular
length exceeds 2π—this would be the case in Fig. 2 if there
were no other obstacles, since the first segment of the only
chain is dominant for angles just counterclockwise of the ray
from X to min. In addition, all chains that cover φ are eligible
as long as they do not end at the same angle as c. If and only
if there are no eligible chains, the successor is White—the

laser beam will go all the way to the antipode of X. White
chains also have a successor, as will be made clear in the next
section.

3.3.2. The Algorithm

The object of the Cursor algorithm is to find the dominant
chain at every angle in the interval [0, 2π), and in the process
to quantify the border function. Angles for which c is domi-
nant are described as “marked” with c. If there are no chains
except for White, then all angles are marked White and the
algorithm terminates with the border function being π every-
where (the whole sphere is visible). Otherwise the algorithm
begins by selecting an arbitrary non-White “clock” chain C0

and subtracting A(C0.start) from all angles in all chains,
thus rotating the angular frame of reference so that the start-
ing angle of C0 is 0. For each chain, the starting angle is
then adjusted to be in the interval (0, 2π] by adding some
integer multiple of 2π , and the same adjustment is made to
all other angles in the chain, thereby preserving angular dif-
ferences within each chain. The notation c.next will be used
for the chain following c in counterclockwise order of their
starting angles (if multiple chains happen to have the same
starting angle, the ordering among them can be arbitrary).
The chain C designated as the clock chain will change as the
algorithm proceeds, with the starting angle of C being called
“cursor”. Cursor decreases monotonically from 2π to 0 as
the algorithm proceeds. The initial dominant chain D0 can-
not be White because C0 itself covers 2π , but D0 could be
C0. Like the clock chain, the dominant chain D will vary its
identity as the algorithm proceeds.

The Cursor algorithm also involves an angle whisker that
starts at 2π and follows cursor. Basically, cursor jumps coun-
terclockwise from one clock chain start angle to the next,
creating an angular gap between whisker and cursor on each
occasion, and then whisker reduces the gap to 0 by catch-
ing up to cursor, marking angles as it moves. When whisker
catches up, cursor moves again until cursor has decreased to
0 and whisker has caught up to it, at which point the algorithm
terminates.

Figure 3 is a flowchart of the Cursor algorithm. The flow-
chart uses brief titles, so some notes are in order about exactly
what is meant:

1. The algorithm starts at the topmost box, where
whisker and cursor are both set to 2π .

2. The ← symbol means that the left-hand side is
updated by the right-hand side.

3. All tests are binary, with “Y” or “N” marking the exit
where the answer is true or false.

4. Cursor jumps in the box labeled “C← C.next”,
where it is set to the start of the next clock chain
in counterclockwise order.
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Figure 3. Flow diagram for the heart of the Cursor algorithm.

5. All three “Mark” boxes move whisker counterclock-
wise to the stated limit, marking all angles with D
and reducing the gap.

6. “Mark to cursor” moves whisker to cursor and
reduces the gap to a single point, where it will remain
until the algorithm stops or the clock chain is again
updated.

7. The test labeled “D cov gap?” asks whether chain D
covers the gap.

8. “Get new D” replaces dominant chain D with its
successor.

9. The test labeled “D dom?” asks whether chain D
dominates chain C at whisker (or at cursor, since
both are equal at this point).

Figure 4 shows one stage in the application of the flow-
chart where cursor has advanced after D has been reset in the
box labeled “D←C”. Whisker will move counterclockwise
to cursor in two steps to close the pictured gap. The next
marking will be in the “Mark to D.end” box, after which the
dominant chain will be White.

Figure 4. Cursor has just advanced from the position now occu-
pied by whisker. Chain D will be marked to its end, thus partially
filling the gap. Next the White chain will be found dominant up to
cursor, after which the gap will be closed and cursor will move
again. Previously marked parts of chains are shown heavy. The ini-
tial chain is not shown, but starts far out on the ray from X to NP.
The chain pictured crossing that ray is the initial dominant chain
D0, which is partially marked. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

3.3.3. Convergence, Completeness and Correctness

All “Mark” boxes in Fig. 3 result in marking a positive
part of the gap by definition of dominance, so no infinite loop
can involve “D cov gap”. Clock chains never repeat until C0

is encountered again, which terminates the algorithm. Thus
convergence is assured.

All gaps are completely marked as they occur, and the gaps
that occur when cursor moves cover a complete circle, so
every angle in (0, 2π] is marked. The Border function is there-
fore defined for all angles in that interval. For completeness
take B(0, X) = B(2π , X).

If chain c is dominant at angle θ and if φ > 0, then c will
also be dominant in (θ − φ, θ ] unless it ends in that angu-
lar interval, as long as no other chain starts in that interval.
This is because chains cannot cross each other. In the algo-
rithm, cursor jumps counterclockwise from one chain start
to the next in decreasing order of chain starts, so there are
no chain starts between jumps. Between jumps, any chain
that becomes dominant will therefore remain dominant until
it either ends or covers cursor. This is exactly what happens
during whisker movements, including movements that cor-
respond to the White chain. Therefore all angles are marked
correctly with the dominant chain.
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3.3.4. Storing and Using the Border Function

Given X, the interval [0, 2π] can be partitioned using the
Cursor algorithm into K +1 intervals, in each of which a sin-
gle chain is dominant. Call this partition P. The intervals of P
can be described by pairs (Dk , ψk), with angle ψk .next being
the next angle in a cyclic counterclockwise ordering. Chain
Dk is dominant in the angular interval (ψk .next , ψk]; k =
0, . . . , K . The closed end of each interval is determined by
the whisker position when chain Dk is discovered to be domi-
nant in the “Get new D” box, and the open end by the whisker
position when Dk either ends in “Mark to D.end” or loses to
another chain in box “ D ← C”. Angle ψ0.next is the first
angle defined (the angle at which the dominance of D0 ends),
and ψ0 is the last and smallest angle defined. The first inter-
val should be understood to include all angles φ ∈ [0, 2π] for
which either φ > ψ0.next or φ ≤ ψ0; otherwise the open
end of each interval is smaller than the closed end.

Calculating the distance to a chain will invariably be
reduced to calculating the distance to one of its segments
(the last computation in Appendix B). This is accomplished
by further subdividing the intervals of P into subintervals
where obstacle segments are dominant, rather than chains,
thus obtaining the function Seg(X, φ) mentioned above in
Section 2.3.

3.4. Qualification of Vertices

Once the Border function from either X or Y is determined,
it can be easily determined whether X can see Y. If so, then
the shortest route is direct. If not, then the shortest route will
involve first going directly to some “transit point” i, a vertex
that is visible from X. On account of the Interior theorem
(Theorem 1 in Appendix A), there exists an optimal route
where i is either a maximum or a minimum of some chain.
The only vertices that qualify as transit points are thus the
start and end of each chain. All other vertices on the chain,
even if visible, can be eliminated from the candidate sets.
This vertex elimination is in fact one of the main motivations
for obstacle reduction in the first place. The same observation
about optimal paths in the plane is made by [16].

3.5. The Antipode Issue

We now return to case 3 of Section 3.1 where the antipode
of X is in the interior of the obstacle, a circumstance that does
not have a counterpart in the plane. For example, imagine that
the only obstacle is a convex polar cap surrounding the North
Pole, and that X is the South Pole. The cap will spawn no
chains because there are no maxima or minima—the angle
function A() simply decreases as one moves clockwise around
the cap. Therefore none of the cap’s vertices will be found
visible in the cursor algorithm. In fact all of them are visible,

but finding them invisible is harmless because they can all be
eliminated by the corollary to the Interior theorem (Appen-
dix A). In the example above, the polar cap cannot interfere
with the shortest path between X and any other wet point.
Therefore the Cursor algorithm as described above does not
need to be modified to deal with the possibility that an obsta-
cle spawns no chains, even though that possibility is a real
one. If there are no maxima or minima, then all vertices on
the obstacle are eliminated as transit points by the Interior
theorem, and this happens automatically when there are no
chains.

The antipode issue also potentially arises in the process of
determining visibility to vertices, since the antipode of a wet
point might be a vertex. However, all antipode vertices can
be safely disqualified as transit points. Although it is possible
that an optimal route from X might begin by going directly
to its antipode j, in that case there will always be some vertex
i that can see both X and j. The total length of the segments
(X, i) and (i, j) will be π , so the initial segment can as well
be (X, i).

3.6. Computational Experience and Potential for
Improvement

All of the run times in this section are for an implementa-
tion in Microsoft Excel ™ using VBA macros on a Lenovo
ThinkPad Carbon X1 laptop.

The static computation of the vertex routing matrix D(i, j)

must be completed and saved before the dynamic computa-
tion of routes between wet points can be undertaken. The
static computations are made in two stages. In the first stage
the Cursor algorithm (slightly modified to deal with “wet
points” that are vertices) is used to determine inter-vertex vis-
ibility. This takes about one second when there are n = 900
vertices. The second stage uses a label-correcting dequeue
network shortest path algorithm [1] to compute D(i, j), and
takes about 2 seconds. We have not experimented with larger
values of n because 900 vertices suffice for our purpose, but
would expect the time for the first stage to increase quadrati-
cally with n and soon overtake the time for the second stage.
This overtaking is because the number of qualified vertices
in the second stage (Section 3.4) will be bounded above if
the increasing number of vertices is simply used to define a
fixed number of obstacles more precisely. Readers who are
disappointed with the large-scale performance of the Cursor
algorithm for the first stage should consult the computational
geometry literature, where algorithms that theoretically scale
better with n will be discovered. The “visibility graph” of
computational geometry is computationally equivalent to the
output of the Cursor algorithm, for example, and has been
much studied in the plane [8].

In the process of applying the Cursor algorithm to calcu-
late the static routing matrix, a border for each vertex is also
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computed. Since a vertex border suffices to determine visi-
bility to wet points, as well as to other vertices, one might
suppose that saving and later recalling those borders would
obviate the need to later compute wet point borders in the
dynamic computations. The flaw in that argument is that ver-
tex borders cannot be used to determine visibility between
wet points, so a border for each wet point (except for one,
since visibility is symmetric) will still need to be computed.
Since the Cursor algorithm must still be applied anyway at
almost all wet points to determine inter-wet-point visibility,
there is little utility in storing vertex borders once the static
calculations are complete.

The motivating RASP application provides a list of m pos-
sible destinations to WetRoute, requiring the shortest route
between all possible pairs as output. The number of desti-
nations on RASP’s list is on the order of 100, but varies
significantly between instances. Our main concern has been
with WetRoute’s performance on these dynamic computa-
tions. WetRoute begins the dynamic task by recalling the
previously computed static vertex routing matrix D(i, j), so
the time required to compute that matrix is not included in
the times quoted in the rest of this section.

The total time for a dynamic RASP call to WetRoute can
be roughly partitioned into (a) the constant time required to
load the static vertex routing matrix, (b) the time required
to run the Cursor algorithm m times and make the ensuing
visibility determinations, and (c) the quadratic time required
to accomplish Eq. (1) for every pair of wet points. Time c
is quadratic in m because the number of combinations of m
things taken two at a time is quadratic in m. Time a is about
0.3 seconds when there are 900 vertices. This dominates the
other two times when m is small. When 200 destinations are
chosen randomly on the globe, the three times are approx-
imately (a, b, c) = (0.3, 0.3, 0.5) seconds, depending on
exactly which destinations are chosen, and when m = 1000
the three times are (0.3, 3.0, 12.1), again for randomly cho-
sen destinations. The quadratic time c becomes dominant as
m increases, but is nonetheless minimized because the can-
didate sets SX and SY have been made as small as possible
in the process of running the Cursor algorithm. For lists of
the size provided by RASP, the total time never exceeds a
few seconds. The times encountered in practice are usually
smaller than those quoted above because the typical destina-
tion list includes many that can see each other in what the
Navy calls an “area of operations,” whereas that is unlikely
when destinations are chosen randomly.

As mentioned above, the time complexity of the dynamic
problem is O(m2). For problems where m is very large, the
coefficient of m2 might be made smaller than it is when (1)
is repetitively employed as in WetRoute. That coefficient
depends on the algorithm in use as well as the number of
vertices. There are efficient (O(n log n)) methods for cal-
culating a “shortest path map” (SPM) that determines the

shortest route from X to any other wet point. Implementations
of these methods have been planar, but might be adapted to the
sphere. Given the SPM for X, the shortest route from X to any
specific wet point can be retrieved in a time that is O(log n)

[11]. One way of dealing with our two-point query problem
would be to compute an SPM for every wet point (except for
one), thus making the coefficient of m2 be O(log n). There
are other promising possibilities. See [2] for a description of
one of them, or [8] for a survey.

4. EXPERIENCE IN ROUTING NAVY SHIPS

4.1. Canals

The Panama and Suez canals are problematic because
the effective speed of a ship decreases dramatically upon
entrance. Most ships are more concerned about time (and fuel
consumption) than distance, and a route that goes through a
canal in order to minimize distance may not minimize time.
There are two tempting approaches. Using the Panama Canal
as an illustration, approach A is to separate America into its
north and south parts with a narrow wet gap between the
two obstacles. Method B keeps America as one obstacle, but
introduces Atlantic and Pacific canal entrances as intervisible
vertices v1 and v2. In making the static calculations, the “dis-
tance” between v1 and v2 is initially set to the time required
to navigate the canal (an input) multiplied by the open-ocean
speed of the ship (another input), thus artificially increas-
ing the geographic distance between the two canal entrances.
For example, a ship whose open-ocean speed is 15 knots
and expects to take 9 hours to transit the canal would set
the “distance” between v1 and v2 to be 135 nautical miles
(the actual distance is about a third of that). The Suez Canal
would be handled similarly. Method B is more complicated
than method A, but nonetheless is employed in the software
supporting RASP.

4.2. Oceanic Routing Service

The US Navy has an official way to approve routing a ship
from X to Y. This involves sending a naval message to one
of two Fleet Weather Centers, which will reply after sev-
eral hours with a route that considers currents, winds, fuel
consumption and other important things that are ignored in
WetRoute [13]. Such routes are surely better than those pro-
vided by WetRoute, but the associated time delay can be
onerous, especially if the ship is testing multiple destina-
tions. The desire for a fast routing (and rerouting) method,
even at the cost of some accuracy, has led to an imple-
mentation of WetRoute in an application called the Oceanic
Routing Service (ORS), a component of the Navy’s Mar-
itime Tactical Command and Control (MTC2) system [14].
That software is not publicly available, but the interested
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Figure 5. Showing the WetRoute digital interface (left) and map (right). [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

reader can download a similar spreadsheet WetRoute.xlsm
from the Excel Spreadsheets section of the Downloads link
at http://faculty.nps.edu/awashburn. Figure 5 shows the user
interface from WetRoute.xlsm, together with a map of an opti-
mal route created by exporting it to Google Earth™. Both
applications use method A for dealing with canals.

4.3. Dry Points

Any attempt to approximate actual obstacles with simple
polygons will include some wet points inside the polygons
that are actually dry, as well as exclude some dry points that
are actually wet. The latter mistake risks having ships run
aground while following “optimal” routes, and the former
mistake risks sarcastic comments from ships that are certain
that they are afloat. As an inspection of Fig. 1 will reveal,
the WetRoute obstacle database is biased to avoid running
aground. Some provision must therefore be made to deal with
destinations that are apparently dry. The provision in ORS or
WetRoute.xlsm is null—the user will simply be informed that
the point is dry and invited to try again. We have experimented
with two other methods for use in the software supporting
RASP. Method 1 simply moves a “dry” ship location to the
nearest wet point. This is simple to implement, but has the
drawback that the truly wet ship will see an initial arbitrary leg
to the supposedly “optimal” route. Method 2 is to temporar-
ily modify the offending obstacle so that the dry destination
becomes wet, “temporarily” because other destinations will
still see the original obstacle. Imagine dragging an obsta-
cle vertex over to the dry destination. Method 2 is harder to
implement, but is more in accord with the idea that reported
ship positions are always truly wet. We use method 2 in the
software supporting RASP, but method 1 also works. What
doesn’t work is to inform the captain of a US Navy ship that
he is aground.

4.4. Submarines, etc.

Submarines also face shortest route calculations, albeit
with an obstacle database that includes larger and more
numerous obstacles because of the requirement to stay sub-
merged. Work on developing an analog of ORS for sub-
marines is ongoing, but the only essential difference is that
the obstacle database has to change. One can also imagine
applications for aircraft who are forbidden to fly over certain
regions.

APPENDIX A: THEOREMS

THEOREM 1 (Interior Theorem): Assume that X and Y are both points
that are neither inside nor on the border of any obstacle (wet points). In
an optimal path from wet point X to wet point Y, if any segment has an
endpoint on the boundary of an obstacle, then the extension of that seg-
ment beyond the endpoint will not immediately enter the interior of the
obstacle.

PROOF: Figure 6 shows an obstacle and part of an optimal path that
includes sequential segments (S,O) and (O,T ), with point O being on the
boundary of the obstacle. Suppose that the forward extension of segment
(S,O) enters the interior of the obstacle, as shown by the dashed extension
from point O (a similar proof applies if the backward extension of (O,T )
enters the interior of the obstacle). If O is at a corner of the obstacle, as
illustrated, let CW and CCW be the obstacle segments clockwise and coun-
terclockwise from point O. Otherwise let CW and CCW be the clockwise
and counterclockwise parts of the obstacle segment that includes point O.
In either case CW and CCW must lie on opposite sides of the unique great
circle that includes (S,O), and (O,T ) must lie entirely on one side of the
other, except for endpoint O. Suppose that (O,T ) lies on the CW side, as
illustrated (a similar proof applies if (O,T ) lies on the CCW side). The angle
SOT (shown as A in Fig. 6) must be smaller than π because segment (O,T ),
which cannot contact the interior of the obstacle, must lie angularly between
CW and (S,O). Since SOT < π , a spherical triangle with sides a, b, and c
can be formed by introducing a small shortcut from (S,O) to (O,T ) (the
dashed arrow shown in Fig. 6). Because obstacles do not touch each other,
this shortcut will not contact any other obstacle if it is small enough. Since
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Figure 6. A path from S to T contacting an obstacle bounded by
five segments. Point O (not illustrated to avoid clutter) is at the apex
of angle A.

Figure 7. Illustrating a polygon with the interior shaded, three
local minima (−), three local maxima(+), and the clockwise direc-
tion indicated. The two cursor positions (straight arrows from point
P) bound a pair of CI segments that go from a minimum to the next
clockwise maximum.

a < b + c in a spherical triangle, a feasible path that follows the shortcut
will be shorter than the path that includes O, contradicting the assumption
that the latter path is optimal. �

COROLLARY: Suppose that an obstacle produces no chains. Then,
regardless of Y, the optimal path from X to Y will not begin by contacting
the obstacle.

PROOF: An obstacle can produce no chains only if the antipode of X is
in the interior of the obstacle, and if obstacle reduction produces no maxima
nor minima. Any segment from X to such an obstacle, if extended, will go
through the antipode (in fact all great circles through X will go through the
antipode). Since the antipode is in the interior of the obstacle and there are no
maxima or minima, the extension of the segment from X to the obstacle must
immediately enter the interior of the obstacle. According to the theorem, this
cannot happen if the path from X to Y is optimal. QED

We first prove the next theorem on the two-dimensional plane, rather than
on a sphere. Consider a clockwise planar polygon with boundary S, and an
exterior point P. A ray from P to any point on S (the “cursor”) has an angle A
that is measured clockwise from some fixed direction (see Fig. 7). A segment

Figure 8. Illustrating a CI segment from X to Y. Try to complete
the polygon in a clockwise manner without enclosing point P or
crossing part b of the line. The dashed line shows a counterclock-
wise way of doing it where A = 2, B = 1, and C = 3. According to
Theorem 2, there is no clockwise way.

(X, Y ) of S is by definition “clockwise increasing” (CI) if the angle of a ray
from P to X does not exceed the angle of a ray from P to Y. �

THEOREM 2: All CI segments (X, Y ) of S are “invisible” in the sense
that the cursor to any point I in the interior of such a segment will include
some other point on S that is closer than I to the exterior point P.

PROOF: It is possible that the cursor to I will include an endpoint of
the segment containing I. In that case the endpoint is closer to P than is I,
which concludes the proof. The only other possibility is that the angle strictly
increases as the cursor moves from X to Y, which we assume in the follow-
ing. Figure 8 shows a CI segment from X to Y, together with a ray from P to
an arbitrary point I in the interior of the segment. The line L containing the
ray is partitioned into three parts separated by points P and I (the two heavy
dots in Fig. 8). Part a extends from P to infinity without including point I,
part c extends from I to infinity without including point P. Part b is the rest
of the line, a segment whose endpoints are P and I. Consider an arbitrary
clockwise completion of the (X, Y ) segment into a polygon for which P is
exterior. Let the boundary of the polygon be S, and let A, B, and C be the
number of times that S crosses parts a, b, and c, respectively. Since I is in
b, B ≥ 1. If any segment of S lies entirely in L, then it must also lie entirely
in either a, b, or c, and the number of crossings of that part is counted as 0
if the preceding and succeeding segments are both on the same side of L, or
otherwise 1. None of these crossings can be at P because P is exterior, and
exactly one will be at I because S is non self-intersecting. All interior points
of b are closer to P than is I. We will show that B cannot be 1; that is, we
will show that I cannot be the closest point of S to P. It will suffice to show
that B must be an even number.

The total number of line crossings A + B + C must be an even number
because L is a complete line and S is a simple polygon. Furthermore, since a
is an unbounded ray from exterior point P, A must be an even number because
any ray from an exterior point will intersect a polygon an even number of
times [3]. We will show that C must also be even. The direction from X to
Y is clockwise if and only if points immediately to the left of I are exterior
(unlike the counterclockwise S of the illustration, where points immediately
left of I as one moves from X to Y are interior instead of exterior). Since
the direction is clockwise by assumption, we can introduce an exterior test
point I ′ within c that is so close to I that there are no line crossings between
I and I ′. Let C′ be the number of times S crosses the ray from I ′ away from
P to infinity. Then C′ must be an even number because I ′ is exterior, and
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Table 1. Computation times of various operations in nanoseconds

Addition or subtraction 2.7

Multiplication 4.1
Division 5.1
Square root 6.2
Sine or cosine 13.2
Arcsine or arccosine 14.0
Atn2 19.2

C′ = C. Since A and C must both be even, B also has to be even, and the
theorem follows. �

COROLLARY: As one moves clockwise around S, there will be an
alternating sequence of maxima and minima of the cursor angle. All seg-
ments of the curve from any minimum to the next clockwise maximum are
invisible to P.

Spherical Generalization

Theorem 2 remains true if P and the polygon are on a sphere, rather than
the plane, as long as the boundary S does not include P ′, the antipode of P
(the angle A is not well defined at P ′). A sketch of the proof follows. The
“line” L becomes the unique great circle that includes both P and I. Part a
is the half of L between P and P ′ that does not include I, part c is the part of
L between I and P ′ that does not include P, and part b is the rest of L. Great
circle L must be crossed an even number of times by S, as in the plane. The
relevant topological fact here is that the sphere, absent the antipode of P, is
homeomorphic to the plane.

APPENDIX B: SOME COMPUTATIONAL
OBSERVATIONS

All of these observations are based on the idea that every spherical point
of interest has properties that include the sines and cosines of latitude and
longitude, the time for computing of which will be ignored. Otherwise, the
following table will be used to calculate the total time in nanoseconds on a
Lenovo W530 laptop using one 64-bit processor. These are merely examples
that influence how we compute the numerical results we seek. Graphical
processing units and special computer enhancements will yield different
results.

The two-argument arctangent function Atn2() is required for some of the
computations described below. This function is sometimes defined so that
Atn2(1, 0) = 0, and sometimes so that Atn2(0, 1) = 0. We use the former
definition, and always −π ≤ Atn2(x, y) < π .

Distance and Direction

Our formula for the cosine of the distance cd between X and Y is recorded
in Section 2.2. According to that formula and the times in Table 1, computa-
tion of cd requires 39.9 nanoseconds. The final use of the arc-cosine function
to find d(X, Y ) would require an additional 14 nanoseconds. Using double-
precision arithmetic, we have found the given expression for cd to be accurate
to within 10−9, which corresponds to distances of less than a centimeter on
the physical, spherical Earth. We therefore make no use of other formulas
that are known to be more accurate for small distances [17].

The direction C(X, Y ) from X to Y is defined as in Section 2.2—the initial
course in radians clockwise from the North Pole (NP). To compute C(X, Y ),
define

Figure 9. Showing the lune formed by two intersecting great cir-
cles, one determined by points 1 and 2, the other by points 3 and 4.
The segment formed by points 1 and 3 completes a spherical triangle
with interior angles A, B, and C. As pictured, segments (1, 2) and
(3, 4) do not intersect.

den = (X.clat)(Y .slat) − (X.slat)(Y .clat)((X.clon)(Y .clon)

+ (X.slon)(Y .slon))

num = (Y .clat)((Y .slon)(X.clon) − (Y .clon)(X.slon)), and then

C(X, Y ) = Atn2(den, num) .

The derivation involves the observation that the points X, Y, and the North
Pole form a spherical triangle. Variables den(num) are proportional to the
cosine(sine) of C(X, Y ), the proportionality constant in each case being
the sine of the distance between X and Y. After counting operations and
using Table 1, the time required to calculate C(X, Y ) is 60.1 nanoseconds
(32.8 + 8.1 + 19.2 = 60.1). If only the sine and cosine of C(X, Y ) are needed,
as is always the case in WetRoute, then the call to Atn2() can be replaced by
a square root and two divisions.

If X is the South Pole, the angle returned will be Y .lon − X.lon. One
might argue that the correct answer in this case is 0, since all courses from
the South Pole go north, with a similar observation holding at the North Pole.
[18], for example, makes exceptions for the poles. We do not make those
exceptions. Our primary justification is that using our formula without the
polar exceptions gives the correct answer in problems that involve turning
at a pole, as in the next problem considered below (the irrelevant longitude
of the pole cancels in that calculation). A secondary justification is that say-
ing “go north” to someone at the South Pole is not sufficient guidance for
motion, since it leaves open the question of which meridian to follow.

Determining Whether Two Great-Circle
Segments Intersect

The two segments connect point pairs (1, 2) and (3, 4). “Intersect” means
that there is a unique point that is interior and common to both segments;
that is, the two segments cross in the manner of an “X”. Two segments do
not thus intersect if any pair of the four endpoints are identical, so we will
assume all four points are distinct in the sequel. Let dij be the length of
the segment connecting point i to point j. If either d12 = π or d34 = π ,
the corresponding segment is not unique because it connects antipodes, and
can always be chosen so that there is no intersection. We therefore assume
0 < d12 < π and 0 < d34 < π . First compute cd12 ≡ cos(d12) and
cd34 ≡ cos(d34). Given the above assumptions, each pair of points uniquely
determines a great circle. If the great circles determined by (1,2) and (3,4)
are identical, then the segments do not have a unique interior intersection.
Otherwise the two great circles will intersect at two points x and y that are
antipodes of each other and the apexes of a spherical lune, as shown in Fig. 9.

Let θijk be the angle from segment (j,i) to segment (j,k), measured clock-
wise. As long as sin(θ134) > 0, angle B is θ134 as pictured in Fig. 9. Similarly
angle A is θ213 as long as sin(θ213) > 0. No Atn2() calls are required to find
the sines and cosines of A and B. For the moment, assume that both of the
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sines are positive, as in the figure. In that case we can use the law of cosines
for the spherical triangle x-1-3 to obtain

cos(C) = sin(A) sin(B)cd13 − cos(A) cos(B).

The sine of C is necessarily nonnegative, and can be obtained with another
square root. We can then use the law of cosines again to obtain

cd1x = cos(B) + cos(A) cos(C)

sin(A) sin(C)
and cd3x = cos(A) + cos(B) cos(C)

sin(B) sin(C)
.

An intersection occurs if and only if d1x < d12 and d3x < d34. Since
the inverse cosine function is monotonic, this criterion is equivalent to
cd1x > cd12 and cd3x > cd34. This completes the computation in the case
where sin(θ134) and sin(θ213) are both positive.

Should it happen that sin(θ134) and sin(θ213) differ in sign, the meaning
is that points 2 and 4 lie on opposite sides of the great circle determined by
points 1 and 3. In that case intersection is impossible. An “X” intersection is
also impossible if one of the sines is 0. If both are negative, then points 2 and
4 lie towards y, rather than towards x. The analysis in that case is similar. The
important point here is that expensive calls to trigonometric functions are
not required as long as the sines and cosines of the input points are already
available.

Intersection of a Ray with a Segment

At what distance d does a ray from point A intersect the great circle deter-
mined by segment (B,C)? The three points form a spherical triangle. Let a,
b, and c be the cosines of the opposite side lengths, all assumed smaller than
1 in absolute value, let φ be the clockwise angular distance in radians from
(A,C) to the ray, with 0 < |φ| < π , and let s1 and c1 be the sine and cosine
of φ. The following will calculate cd ≡ cos(d) efficiently:

c2 ≡ (c − ab)/
√

(1 − a2)(1 − b2)

s2 ≡
√

(1 − c2
2)

c3 ≡ bs2s1 − c2c1

s3 ≡
√

(1 − c3
2)

cd ≡ (c2 + c3c1)/(s3s1) .

Parameters c2 and c3 are less than 1 when squared because they are the sine
and cosine of an angle in a spherical triangle. Given that the initial sines
and cosines are already available, the total time required is not quite 100
nanoseconds.
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