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Abstract

One major issue in the accurate solution of convection-dominated problems
by means of high-order methods is the ability of the solver to maintain
monotonicity. This problem is critical for spectral elements, where Gibbs
oscillations may pollute the solution. However, typical filter-based stabi-
lization techniques used with spectral elements are not monotone. In this
paper, residual-based stabilization methods originally derived for finite ele-
ments are constructed and applied to high-order spectral elements. In par-
ticular, we show that the use of the Variational Multiscale (VMS) method
greatly improves the solution of the transport-diffusion equation by reduc-
ing over- and under-shoots, and can be therefore considered an alternative
to the limitations of filter-based schemes. We also combine these methods
with discontinuity capturing schemes to suppress oscillations that may oc-
cur in proximity of boundary or internal layers. Additional improvement in
the solution is also obtained when p-adaptivity is used in combination with
VMS in the regions where discontinuities occur. The algorithms are assessed
with the solution of classical steady and transient one- and two-dimensional
problems using spectral elements up to order 16.
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1. Introduction

A large number of physical applications relies on the accurate solution
of the transport-diffusion equation

L(q) :=
∂q

∂t
+ u · ∇q − ν∆q = f, (1)

where ν > 0 is a diffusion coefficient, u is a known velocity field, and the un-
known q is the tracer to be transported. The solution of (1) should respect
two significant properties: (i) positivity must be preserved, and (ii) smearing
at internal and boundary layers should not be excessive. These properties
are extremely important in the context of transport in the atmosphere. Both
limited-area and global atmospheric models for weather prediction need
monotonic advection of tracers and moisture variables, otherwise the wrong
amount of precipitation would be forecasted. Simple microphysics schemes,
such as Kessler [1], require three variables (water vapor, cloud water, and
rain), whereas more sophisticated parameterizations include additional vari-
ables such as ice and snow [2]. Similarly, climate models require transport of
hundreds of tracers, each representing a different chemical species. Regard-
less of the physical scales of the model, tracers must remain positive since
the physical parameterizations that govern sub-grid scale processes such
as auto-conversion and sedimentation, implicitly assume such a condition.
These issues have been addressed for both transient and stationary prob-
lems (See, e.g., [3]) and, in the context of finite element methods, so-called
stabilized methods have been an active topic of research since their intro-
duction in the early 1980s with the Streamline-Upwind method of Hughes
and Brooks [4]. In this paper we address the problem of solving (1) by
high-order spectral element methods without losing the ability to approach
a monotone solution to the problem. Higher-order accuracy, in fact, comes
at the price of aliasing phenomena in the solution ([5]), but the anti-aliasing
filters typically used to give a stable spectral element solution do not respect
the two conditions described above. Therefore, to achieve monotonic results
with high-order spectral elements, we consider stabilization methods origi-
nally devised for finite elements, and focus on methods that can be derived
directly from subgrid scale considerations as originally defined in [6] and [7]
in the context of variational multiscale methods. These techniques assure
stability by designing a diffusion-type term that is added to the Galerkin
formulation of the original problem.

The first stabilized schemes based on the addition of a diffusive stabi-
lization term to the Galerkin equation are the Artificial Viscosity methods
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(AV) [8] and the Streamline-Upwind method (SU) [4]. AV, as Hyper-viscosity
(HV), is often used in atmospheric and ocean modeling due to the property
of preserving the correct energy cascade in simulations that involve turbu-
lence. The SU scheme uses the information in the direction of the flow to
add viscosity only in the streamline direction. Both methods use a constant
diffusion coefficient that does not typically change from element to element.
A major improvement came by introducing the residual of the governing
equation in the definition of the stabilization term. When the computed
solution approaches the exact solution, the stabilization term should vanish.
These schemes, which are consistent in that the stabilization terms goes to
zero as the numerical solution approaches, are considered in this paper. The
most commonly used are the Upwind-Streamline/Petrov-Galerkin (SUPG)
and the Galerkin/Least-Squares (GLS), devised in 1982 [9] and 1989 [10],
respectively, as a consistent counterpart to SU. GLS was designed as a gener-
alization of SUPG, but in the limit of pure advection, or for piece-wise linear
elements, the GLS and SUPG methods are equivalent. Stability analysis for
these two methods is detailed in [11, 12, 10]. The Gradient Galerkin/Least-
Squares [13] for advection-diffusion with a reaction term, or the Unusual
Stabilized Finite Element Method (USFEM) [14, 15] are a few examples. In
the framework of high order methods, Petrov-Galerkin stabilization was ap-
plied by Pasquarelli and Quarteroni [16] to stabilize the convection-diffusion
equation with the spectral method. Canuto used bubble functions to address
the same issue [17] (See also [18, 19]).

The analyses of Hughes [6], Hughes and Stewart [20], and Hughes et al.
[7] form the unifying theory of all stabilized finite element methods. Sta-
bilized methods are subgrid scale models where the unresolved scales are
intimately related to the instabilities at the level of the resolved scales, and
thus should be used in the construction of the stabilization term. These
schemes are known as Variational Multiscale (VMS) methods. Details are
given in subsection 2.2.2. VMS methods are all residual-based methods that
improve the stability properties of the solution, and preserve the accuracy
of the underlying numerical scheme [21]. However, Godunov’s theorem [22]
implies that the latter property may be violated in the proximity of discon-
tinuities or strong gradients. As already observed by Hughes, Cottrell, and
Bazilevs in [21], where NURBS were used as high-order basis functions, un-
expected convergence to monotone results were obtained independently of
the order of the polynomials used. Neither SUPG, GLS, nor VMS, however,
preclude the formation of over- and under-shoots in the proximity of sharp
gradients of the solution. For this reason, shock capturing or discontinuity
dissipation techniques, also referred to as Spurious oscillations at layers di-
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minishing methods (SOLD) are used in combination with SUPG and VMS
to introduce an additional term to the stabilized form of the equation. This
issue was treated for the first time in [23], where details on how to build
the stabilization parameter are also given, and in [24] for non-linear prob-
lems. A detailed review of most existing SOLD schemes can be found in
a two-part paper by John and Knobloch [25, 26], where a modification of
the discontinuity-capturing of Codina [27] is presented and is shown to be a
promising option for FE solutions characterized by boundary layers.

All these methods strongly depend on a stabilization parameter that will
be identified by τ throughout the paper. It will be also referred to as in-
trinsic time. A classical result was obtained by Franca, Frey and Hughes in
[28] by error analysis. Their result was reproduced by other authors using
different approaches. Additional expressions for τ were found by Codina in
[29, 30], by Codina, Oñate and Cervera in [31], by Harari and Hughes in
[13], and by Shakib, Hughes and Johan in [32], who based the derivation
on the (discrete) maximum principle. Another expression is due to Franca
and Valentin [15] who based their derivation on convergence and stability
analysis. Starting with the formalization of VMS methods by Hughes [6], τ
has often been derived using Green’s functions, a thorough analysis of which
is done by Hughes and Sangalli in [33]. Recently, Houzeaux, Eguzkitza and
Vázquez [34] proposed a new way to derive the approximate subgrid scale
solution, with results that are comparable to those of Hauke and García-
Olivares in [35]. In [36], Codina builds τ using the Fourier analysis of the
problem; however, the correct choice of τ remains an open problem. For this
reason, we propose τ for higher-order spectral elements and use it to con-
struct an appropriate stabilization method. To further improve the solution,
we combine VMS stabilization with a p-adaptivity algorithm. p-adaptivity
(see, e.g., [37, 38]) adjusts the order of the polynomial interpolation instead
of modifying the computational grid. In this paper we use it in combina-
tion with VMS in those regions where discontinuities cause the high-order
solution to be affected by Gibbs oscillations.

1.1. Main contribution of this paper

The main problem that we want to solve with the work presented here
is that of stabilizing the spectral element solution of advection-dominated
problems by sub-grid scale stabilization techniques (namely, VMS), and im-
prove the solution by reducing the under- and overshoots that would occur
if classical filters were to be used. The definition and implementation of τ
in VMS stabilization may greatly affect the result. We hence adapted the
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method described in [34] to compute τ , and applied it to spectral elements
that use Legendre-Gauss-Lobatto (LGL) nodes, and show that this tech-
nique can be used in problems where spectral element filters fail. We finally
apply polynomial adaptivity (i.e., we lower the order of interpolation by
keeping the computational grid untouched), only where the solution is char-
acterized by a propagating discontinuity. The combination of VMS, shock
capturing and p-adaptive methods will be shown to be an encouraging di-
rection to take for constructing high-order positive-definite spectral element
methods. To assess the algorithm, steady and transient advection-diffusion
problems are solved on one- and two-dimensional domains using spectral
elements up to order 16. We compare the performance of the method using
the VMS against those obtained with previous classical SE schemes.

1.2. Outline of this paper

The remainder of the paper is organized as follows. After this introduc-
tion, the numerical method and the corresponding stabilization are derived
in Sections 2 and 3. Tests to verify the algorithm and a discussion of the
results are presented in Sections 4 and 5, respectively.

2. Numerical method

Given the space L2 of real-valued functions that are square integrable
in a bounded domain Ω ⊂ R

2 with boundary Γ, the Sobolev space H1 of
weakly-differentiable functions will be used. Specifically, W ⊆ H1 represents
the space of trial and basis functions of the Galerkin formulation to follow.
In L2 the inner product is given by (·, ·), and the 2-norm associated with
the space is denoted by ‖ · ‖2. For simplicity, we add the property that the
solution q vanishes on the boundary ∂Ω; under this assumption, W ⊆ H1

0 .
Given a finite element partition Ωh =

⋃nel

i=1Ki of the computational domain
Ω into nel high-order conforming quadrilaterals of characteristic length h,
W h is the finite dimensional set derived from W. The discrete weak form
reduces to the problem of finding the function qh ∈ (W h; 0, t) such that

(ψh,
∂qh

∂t
) + a(ψh, qh) = (ψh, f) ∀ψh ∈ W h (2)

where, after integrating by parts and assuming homogeneous Dirichlet bound-
ary conditions, we define:

(ψh,
∂qh

∂t
) .=

∫

Ωh

ψh∂q
h

∂t
dΩh,
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a(ψh, qh) .=
∫

Ωh

ψhu · ∇qh dΩh +
∫

Ωh

ν∇ψh · ∇qh dΩh,

(ψh, f) .=
∫

Ωh

ψh f dΩh = 0.

Integrals are constructed within a Galerkin framework via

∫

Ωh

(·) dΩh =
nel∑

el=1

∫

Ωel

(·) dΩel
h .

Remark 1: If advection dominates diffusion, unless h < ν or the ex-
act solution is globally smooth, the Galerkin approximation expressed by
(2) is such that qh will suffer from severe/unacceptable oscillations [11, 39].
Furthermore, if the discretization relies on high-order methods, Gibbs os-
cillations may occur regardless of the size of the grid. Different ways to
improve stability will be described in the following sections.

2.1. The spectral element method

The weak form in Eq. (2) is used with quadrilateral elements of order
p, where the element-wise solution qh is approximated by the expansion
∑Np

k=1 Ψk(x) qh
k (t) on Np = (p + 1)2 collocation points within the element.

The expansion functions Ψk are constructed as the tensor product from the
Lagrange polynomials hi(ξ(x)) and hj(η(x)) of order p as:

Ψk(x) = hi(ξ(x)) ⊗ hj(η(x)), ∀ i, j = 1, ..., p+ 1. (4)

hi(ξ(x)) and hj(η(x)) are the polynomials associated with the LGL points
ξi and ηj , respectively. The LGL points are the zeros of

(1 − ξ2)P
′

N (ξ) = 0

where P ′
N is the derivative of the N th-order Legendre polynomial. Quadra-

ture is performed on the reference element Ω̂h = [−1, 1]2 with LGL points
that have quadrature weights ω. Substitution of the expansion

∑Np

k=1 Ψk(x) qh
k (t)

into the weak form (2) yields the semi-discrete (in space) matrix problem

M
∂qh

∂t
+ Aqh + Dqh = 0 (5)
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where qh is the array of the unknowns on the grid points, and M, A, and D

are the global mass, advection, and diffusion matrices, respectively. These
matrices are obtained from the direct stiffness summation (DSS) of the ele-
mental matrices Mel, Ael, and Del given by:

Mel
kl =

∫

Ωel
ΨkΨl dΩel (6a)

Ael
kl =

∫

Ωel
u · ∇Ψk Ψl dΩel (6b)

Del
kl =

∫

Ωel
ν∇Ψk · ∇Ψl dΩel. (6c)

The mass matrix M is diagonal assuming inexact integration.
All the integrals defined above are approximated by the quadrature for-

mula

∫

Ωh
el

(·)dx =
∫ 1

−1

∫ 1

−1
(̂·)|J(ξ, η)|dξ dη ≈

p+1
∑

i=1

p+1
∑

j=1

(̂·)|J(ξ, η)|ωiωj , (7)

where J is the Jacobian matrix associated with the map between the physical
element Ωh(x, y) and the reference element Ω̂h(ξ, η). The integration is exact
up to polynomials of order 2p-1. The p+1 LGL points lie along the edges
and in the interior of the elements. For more on SEM see, e.g., [40, 38].

We solve the linear system of ordinary differential equations (5) with an
appropriate strong-stability preserving (SSP) time integrator. In particular,
we use a five-stage explicit third-order Runge-Kutta method (RK35) [41].
SSP methods avoid the production of additional oscillations or damping.

From 3rd-order and up, the disposition of the nodes of spectral elements
differ from classical finite elements in the way represented in Figure 1 for a
4th-order element.
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Figure 1: Nodes disposition for 4th-order FE (left), and SE (right).

2.2. Stabilization techniques

Aliasing and Gibbs oscillations render the Galerkin solution of (1) un-
stable since unwanted oscillations will pollute the numerical solution. In
the framework of spectral elements, the common strategy to control these
oscillations is the use of anti-aliasing filters (See, e.g., [42, 43, 44, 38, 45]
and references therein). Filtering, however, suffers from non-positivity that
is unacceptable in most problems that involve transport. A suitable alterna-
tive to filters may be the use of a stabilized spectral element approximation
based on a residual-based diffusion-like term added to the left hand-side
(LHS) of (2). A stabilization technique should have the important property
of consistency (for instance, artificial diffusion stabilizes but is not necessar-
ily consistent). Thus, the additional viscous term should vanish as the size
of the element approaches zero. The stabilized counterpart of (2) is:

(ψh,
∂qh

∂t
) + a(ψh, qh) + b(ψh, qh) = (ψh, f) ∀ψh ∈ Wh, (8)

where b(ψh, qh) is the stabilization term.

A general method for finding τ does not exist, and different choices for
τ dramatically influence the accuracy of the solution. The literature on the
optimal selection of τ is vast, and we refer to [25, 26] for a comprehensive
analysis of different definitions.
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Table 1: Stabilized methods

Method b(ψh, qh) L(ψh)

AV/HV
∫

Ωh

L(ψh)ν̄
[
∇

αqh
]
dΩh L = ∇

αψh

SU
∫

Ωh

L(ψh)ν̄
[
u · ∇qh

]
dΩh L = u · ∇ψh

SUPG
∫

Ωh

L(ψh)τ
[

∂qh

∂t
+ u · ∇qh

− ν∆qh
− f

]

dΩh L = u · ∇ψh

GLS
∫

Ωh

L(ψh)τ
[

∂qh

∂t
+ u · ∇qh

− ν∆qh
− f

]

dΩh L = u · ∇ψh
− ν∆ψh

VMS -
∫

Ωh

L
∗(ψh)τ

[
∂qh

∂t
+ u · ∇qh

− ν∆qh
− f

]

dΩh L
∗ = −u · ∇ψh

− ν∆ψ

In table 1, ν̄ indicates a constant diffusion coefficient, and α = β/2, where
β is a positive even power of the hyper-viscosity operator (β = 2 yields
the usual AV). Although HV is scale-selective (i.e., it damps only higher
frequencies), it is not consistent, nor is it physical. In fact, to maintain
the correct physical dimensions of the hyper-viscous operator, the value of
the diffusivity coefficient ν̄ must be different when different α are used. Its
selection is hence not trivial. Furthermore, as Figure 20-d indicates, the
diffusion is isotropic and spatially homogeneous. The operator does not
incorporate the problem’s physics.

The method of Douglas and Wang (DW) [46] was omitted as it can be
included into the VMS method, although its derivation was specifically done
in the context of Stokes problems rather than scalar advection-diffusion. The
SUPG and VMS will be described in the following subsections.

2.2.1. Streamline-upwind/Petrov-Galerkin (SUPG)

The SUPG method was designed by Brooks and Hughes [9] and was
later generalized for multidimensional problems by Hughes and Mallet [47].
It is a consistent alternative to the artificial diffusion approach or to the
overly diffusive streamline upwind (SU) method. Its use has been ubiquitous
in the solution of transport problems by the finite element method (See,
e.g., [48, 28, 49, 50, 51]). The application of this strategy to higher-order
schemes was first tested for spectral methods by Canuto and coworkers in
[17, 18, 19, 52], and later by Hughes and coworkers in [21] using non-uniform
rational B-splines (NURBS). In this paper we show its properties when used
with high-order spectral elements. SUPG is a Petrov-Galerkin method in
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that it does not assume that the basis and test functions live in the same
space. We introduce the additional space Ψh of test functions wh defined by

Ψh .=
{

wh : wh = ψh + τu · ∇ψh : ψh ∈ W h
}

.

We have the problem of finding the function qh ∈ (W h; 0, t) such that

(ψh+τu·∇ψh,
∂qh

∂t
)+a(ψh+τu·∇ψh, qh) = (ψh+τu·∇ψh, f) ∀ψh ∈ Wh.

(9)

Rearrangement of (9) yields

(ψh,
∂qh

∂t
) + a(ψh, qh) − (ψh, f)

︸ ︷︷ ︸

Galerkin

+b(ψh, qh) = 0 ∀ψh ∈ Wh (10)

where

b(ψh, qh) .=
∫

Ω

[

∂qh

∂t
+ u · ∇qh − ν∆qh − f

]

τ u · ∇ψh dΩh (11)

is the stabilizing term. In (11), ∂tq
h + u · ∇qh − ν∆qh − f is the residual of

the governing equation, and τ ∈ L∞ is the stabilization parameter.

2.2.2. The variational subgrid scale formulation (VMS)

Following [33], we define the idempotent linear projector P such that
Range(P) = W̄ ⊂ W , and such that ψ̄ ∈ W̄ is the projection of ψ ∈ W
given by ψ̄ = Pψ. If we denote W̄ as the space of resolved scales, and
build the space W ′ that completes W̄ in W and that we will call the space
of subgrid scales, we have W = W̄ ⊕ W ′, where ⊕ is the overlapping sum
decomposition of the two spaces. Using the properties of P, the definition
of W, and the linear independence of W̄ and W ′, we decompose the weak
form (2) into

(

ψ̄,
∂q̄

∂t

)

+
(

ψ̄,
∂q′

∂t

)

+ a(ψ̄, q̄) + a(ψ̄, q′) = (ψ̄, f) (12a)

(

ψ′,
∂q̄

∂t

)

+
(

ψ′,
∂q′

∂t

)

+ a(ψ′, q̄) + a(ψ′, q′) = (ψ′, f). (12b)
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We back-integrate by parts the bilinear forms a(·, ·) in (12) that depend on
the subgrid scales, yielding

(

ψ̄,
∂q̄

∂t

)

+
(

ψ̄,
∂q′

∂t

)

+ a(ψ̄, q̄) −
∫

Ωh

q′L∗(ψ̄) dΩh = (ψ̄, f) (13a)

(

ψ′,
∂q̄

∂t

)

+
∫

Ωh

ψ′L(q′) dΩh +
∫

Ωh

ψ′L(q̄) dΩh = (ψ′, f), (13b)

where all the boundary fluxes and subscales vanish on the boundary, and
L∗ := − ∂

∂t −u·∇−ν∆q is the adjoint operator of L. Equating the integrands
in (13b), we obtain:

L(q′) = f − L(q̄), (14)

where the time-dependent contributions are included in L. The solution of
(14) for q′ must be inserted into (13a) to compute the large-scale solution q̄
by means of the finite or spectral element method.

One fundamental step in the derivation of the subgrid scales is the ap-
proximation of q′ from Equation (14). In the context of high-order spectral
elements with non-equispaced nodes, we adopt the approach of Houzeaux,
Eguzkitza, and Vázquez [34]), who used bubble functions to approximate q′

in the solution of equation (13b). To do this, we use (14) and re-express
(13b) using the space of bubbles that vanish at the nodes of every element.
We have:

∫

Ωh

ψ′L(q′) dΩh =
∫

Ωh

ψ′R(q̄) dΩh ∀ψ′ ∈ W ′
0, (15)

where R(q̄) = ∂tq
h + u · ∇qh − ν∆qh − f is the residual of the governing

equation, and W ′
0 indicates the space of bubbles (i.e., subgrid-scale functions

that are zero at the element nodes, and hence ensure nodal exactness of the
numerical solution). We omitted the time-dependent terms since we used a
sufficiently small ∆t. (15) implies the strong form

L(q′) = R(q̄), (16)

to be solved for q′ with Dirichlet boundary conditions: q′(0) = 0 and
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q′(h) = 0, on every element of length h. Using the residual-free bubble
b(x) ([53, 54]), we substitute the expression q′(x) = b(x)R(qh) into (15) and
solve for b(x) with boundary conditions b(0) = 0 and b(h) = 0. We have:
L(b(x)R(qh)) dΩh = R(q̄h). To proceed, we assume that R(qh) is constant
(i.e., we can think that R(qh) is always known from the previous time-step),
and take it out of the operator L(·). This yields L(b(x)) = 1, that, for the
one-dimensional steady-state advection-diffusion equation

u bx(x) − ν bxx(x) = 1, (17)

has solution

b(x) =
x

u
+
h

u

1 − exu/ν

ehu/ν
. (18)

For linear elements, h is simply the length of the element. For higher-order
finite elements, h becomes a fraction of the total element size h if the internal
nodes are equispaced. In the case of spectral elements, where the LGL points
are unevenly distributed, (18) is computed by using h as the local distance
between two consecutive points. The distributin of b(x) along the element is
represented in Figure 2. We use the approximation q′ ≈ τR with τ defined
in (23), substitute it into (13a) to find the VMS (or generalized) stabilized
method

(

ψ̄,
∂q̄

∂t

)

+ a(ψ̄, q) −
∫

Ωh

L∗(ψ̄) τ R(q̄)dΩel = (f, ψ̄). (19)

Eq. (19) differs from the weak form in Eq. (2) by the addition of a
stabilization term which models subgrid scales. The additional third term
is the viscous-like contribution that stabilizes the equation.

Observations on time-dependent subgrid-scales: The time-dependent
approximation (13) includes a contribution from the time evolution of the
subscales given by ∂tq

′. This may require tracking of the subscales in
the time integration, unless the hypothesis of quasi-static subscales (i.e.
∂tq

′ ≈ 0) is applied (See [36] for details). Under this hypothesis, the con-
tribution from the subgrid scales only appears in the steady part of the
Galerkin approximation. If a sufficiently small time-step is used with an
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explicit time integrator, we do not lose accuracy with the quasi-static hy-
pothesis. With the use of large time-steps with semi-implicit time integrators
in atmospheric simulations, tracking of the subscales is hence needed. This
issue is reserved for future work by the authors.

Remark 3: It must be pointed out that, for the solution of the scalar
transport equation, the expressions for SUPG and VMS are the same. Any
difference is caused by a different definition of τ .

2.3. The intrinsic time τ

A standard intrinsic time τ for finite elements was derived by Franca,
Frey and Hughes [28]:

τ =
hk

2||u||2
ξ(Pek) (20)

where ξ is a function of the Peclet number Pek which relates the advection
effects with respect to diffusion via:

Pek = mk
hk||u||2

2ν
. (21)

In (21) mk is an algorithmic constant that should contain information re-
garding the interpolating functions. For linear elements, one definition of
ξ was derived using nodal exactness in [9], i.e. the finite element solution
using ξ defined in this way is equivalent to the analytic solution at the nodes
of the finite element mesh of a one dimension problem. In the context of
subgrid scale approximations, this condition is satisfied when the subgrid
scales are zero on the element nodes. We write:

ξ(Pek) = coth(Pek) − 1
Pek

. (22)

A whole set of definitions of ξ appears in the literature: see a review in [34]);
for systems of PDEs, see [55].

2.3.1. τ for spectral elements

It is assessed that for one-dimensional linear elements, a subgrid scale
method gives nodally exact results if hk is the full distance between the
boundary nodes of the element. To derive it in the context of higher-order
spectral elements with non-equispaced nodes, we extend the approach of
Houzeaux, Eguzkitza, and Vázquez [34] developed for quadratic and cubic
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one-dimensional finite elements, using bubble functions in the approximation
of the subgrid scales to solve equation (13b). The stabilization parameter
τ is built inside the element as a function of the bubbles on every segment
delimited by two consecutive nodes. We write:

τ i+1
i =

1
xlgl(i+ 1) − xlgl(i)

∫ xlgl(i+1)

xlgl(i)
b(x) dx, (23)

where xlgl(i + 1) and xlgl(i) are the coordinates of two consecutive LGL
points. Using (23), the stabilization integral is decomposed into a summa-
tion of all the contribution of the subelements [xlgl(i+1)−xlgl(i)]. Uniform
spacing implies uniform τ for each sub-element. The uneven spacing of the
element nodes is the major difference with respect to the definitions derived
in previous studies. In this case the intrinsic time is non-uniform along the
element, as it appears in Figure 2, where bubbles and the corresponding τ
are displayed for an element of order 7. We expand τ using the Galerkin
approximation

τ =
p+1
∑

k=1

τkψk, (24)

where ψk ∈ Ψh are the same basis function previously introduced in the
approximation of the solution by spectral elements. The coefficients τk cor-
respond to the value of τ at node k and whose value is obtained by (23).
This step allows the algorithm to maintain the simplicity similar to linear
elements in that we are using one stabilization integral along the element;
however, the characteristics of the non-uniform grid are incorporated into
the method. Throughout the paper we use τ in (23) for all our simulations.
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Figure 2: Bubbles b(x) and τ for a 7th-order unitary spectral element. The biggest bubble
in the plot is the bubble that a linear element would have.

2.4. Spurious oscillations at layers diminishing (SOLD) methods

Methods in the form of (19) may produce overshoots and undershoots
in the proximity of an internal or boundary layer. These unwanted oscilla-
tions can be suppressed, without affecting the global solution, by adding an
additional diffusive term of the form

(∇ψh, τ̃∇qh), (25)

where consistency must be respected through a proper construction of τ̃ .
We would like to have a method that does not modify the diffusion in the
streamline direction since that is already accounted for by the stabilization
term, but also avoids overdamping in the crosswind direction. The compre-
hensive set of tests performed by John and Knobloch reveals that Codina’s
[27] is among the best methods that satisfy these conditions when used with
finite elements. In [27], τ̃ is defined by:

τ̃ =
1
2

max

{

0, C − 2ν
|u|||hk

}

hk
|R(qh)|
||∇qh||

(

I − u ⊗ u

|u|2
)

(26)
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where C is a constant, u|| is the velocity component in the streamline direc-
tion, and ⊗ indicates a tensor product. Codina suggests C = 0.7 for linear
and bilinear elements, and C = 0.35 for quadratic and biquadratic elements.
However, for higher order elements using LGL points, we found that the best
results were obtained by setting C = 1, as long as hk is selected properly in
the construction of both τ̃ and τk.

An alternative to (25) comes from Johnson, Schatz, and Wahlbin [56]
who defined the following:

(τ̃u⊥ · ∇ψh,u⊥ · ∇qh) , u⊥ =
(−w, u)

|u| . (27)

In the current work, (27) gives better results than (25), and was then used
throughout. The results obtained with this technique are labeled with DC
for Discontinuity Capturing.

3. p-adaptivity

p-adaptivity is one additional tool that can further help the suppression
of Gibbs oscillations. The concept is simple and is easily coded on structured
grids. It consists of identifying the position of discontinuous solutions, and
dropping the order of discretization to 1st for all the elements that fall
within the discontinuity. The discontinuity is sought with a proper error
estimator. The simple physics of the advection-diffusion problems discussed
below allows for the energy-norm of the gradient of the solution to be a
sufficiently good estimator for the current study. However, more advanced
methods should be considered. Algorithm 1 is a simple implementation of
this concept within our code. The overhead is none because the number of
loop operations does not change with respect to the original case where high-
order elements are used everywhere. Clearly, the algorithm can be easily
optimized, but we present the pseudo-code below for the sake of clarity.
The method was applied to a two-dimensional advection-diffusion problem
with internal and boundary layers in a skew velocity field. Results are shown
in Figure 9.

4. Numerical testing

The algorithms discussed in Section 2 were tested using standard prob-
lems described in the literature of stabilized finite element methods for the
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Algorithm 1 Compute the 1st-order rhs
// Loop over all elements (iel) of the high-order computational grid :
for iel = 1 to nelem do

// Check if the element contains a discontinuity:
if iel is s.t. ||∇qh||2 > ǫ then

// Treat element iel as a grid of (ngl − 1) × (ngl − 1) sub-elements:
for isubel = 1 to maximum number of sub-elements do

Create rhs using 1st-order basis functions and integration rule
end for

else

// Do as usual:
Create rhs for the high-order spectral element.

end if

end for

advection-diffusion (AD) equation:

• 1D Steady-state homogeneous advection-diffusion (St-1D)

• 1D Steady-state advection-diffusion with source (St-1D-S)

• 2D Steady-state advection-diffusion with internal and boundary layers
(St-2D).

• 2D Time-dependent advection-diffusion with “L”-shaped discontinuity
(Tr1-2D).

• 2D Time-dependent advection of a sharp tracer in a doubly periodic
channel (Tr2-2D).

St-1D:. One-dimensional steady-state advection-diffusion. The tracer qh is
propagated with constant velocity u = 1ms−1 and diffusivity ν = 1/512m2 s−1

first on two elements of order p = 10 (Figure 3), and then on four elements
of order p = 12 (Figure 4). The domain is the line segment Ω = [−1, 1] with
Dirichlet boundary conditions qh(−1) = 0 and qh(1) = 1. We compared
the filtered (top row) against the stabilized solution (bottom row) and ob-
serve a decrease of oscillations and undershoots. Also, at higher order and
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finer resolution, the capabilities of the filter are clearly being challenged
by the presence of the boundary layer at x = 1. At the same time, small
oscillations near the nodes of the element by the boundary layer are not
completely suppressed by the stabilized method either; hence, additional
localized smoothing is sought.
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(a) Filter. 2 el, p = 10
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q h

(b) VMS. 2 el, p = 10

Figure 3: St-1D: ν = 1/512m2 s−1. The ex-
act solution is dashed. The circles indicate
the grid points.
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(a) Filter. 4 el, p = 12
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q h

(b) VMS. 4 el, p = 12

Figure 4: St-1D: ν = 1/512m2 s−1. The ex-
act solution is dashed. The circles indicate
the grid points.

St-1D-S:. Steady state advection-diffusion with source term f = 1. qh is
propagated with constant velocity u = 1ms−1 and two different diffusivities:
ν = 5×10−3m2 s−1 and ν = 5×10−2m2 s−1. The domain is the line segment
Ω = [0, 1] and homogeneous Dirichlet boundary conditions are imposed.
The domain is subdivided into two elements of order p = 16 and runs are
compared using filtered SE (top row in Figures 5 and 6), and VMS (bottom
row). We observe a very similar behavior of the solution among the two
different cases in the smooth problem (Figure 5). The results are comparable
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to the ones obtained by Houzeaux et al. with their τ for quadratic and cubic
elements in [34].
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(a) Filter
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(b) VMS

Figure 5: St-1D-S: ν = 5 × 10−3 m2 s−1. 2
16th-order elements. The exact solution is
dashed. The circles indicate the grid points.
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(b) VMS

Figure 6: St-1D-S: ν = 5 × 10−2 m2 s−1. 2
16th-order elements. The exact solution is
dashed. The circles indicate the grid points.

St-2D:. Standard steady advection-diffusion skew to the mesh (e.g., [27]):
a discontinuity is propagated with constant velocity u = (1,−2)ms−1 and
diffusivity ν = 10−8m2 s−1 in the unit square Ω = [0, 1] × [0, 1]. The initial
configuration is shown in Figure 7.
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Figure 7: St-2D: initial configuration of the steady-state problem

Dirichlet boundary conditions are prescribed:

qh =







1 if y = 1,

1 if x = 0 and y ≥ 0.7,

0 otherwise.

In Figures 8-12 we illustrate the run of the same case with different number
of elements and order of the interpolating polynomials. For direct compari-
son of our solution with the ones in the existing literature of finite elements,
we first run the test with linear elements (p = 1), and present the results in
Figure 8. The multiscale solution of this problem (see Figure 8a) shows im-
portant boundary and internal layers that are damped with the discontinu-
ity capturing techniques of Section 2.4. The application of the discontinuity
capturing (DC) scheme greatly improves the solution and yields monotonic-
ity (see Figure 8b). In Figure 9 we maintained the same number of nodes
of the previous run, but increased to 4th the order of interpolation to as-
sess the algorithm in the context of this paper (i.e. 50 elements of order
4 were used instead of 200 elements of order 1). The similar behavior of
the solution with respect to the 1st-order polynomial run suggests that the
residual-based methods as implemented in this study may not be sensitive to
the distribution of the interpolation nodes within the elements edges. As it
appears in Figures 9c, the behavior is completely analogous to the previous
run. However, monotonicity is lost in two singular nodes: with reference
to Figure 9c, the 4th-order solution is smooth and monotone everywhere
except for the nodes represented as points A and B in Figure 7. This is
not surprising: at A and B the tracer is leaving the boundary with a skew
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angle; an incorrect imposition of boundary conditions at these nodes may
be causing the problem. The numerical singularity at this points should
be addressed but it will not be done in the current work. These are fully
suppressed by applying the p-adaptivity algorithm described above, as it is
shown in Figure 9d.

Decreasing the number of computational nodes by doubling the order
from 4 to 8 and setting the number of elements to 10 in x and z, even with a
discontinuity capturing term, the solution starts to lose monotonicity. This
appears in Figures 11 and 12, where extrema get larger than in the previous
cases. This problem shows that the construction of the stabilizing parameter
τ should include information on the order of the interpolating polynomial.

For a better view of the problem, in Figures 10 and 12 we present a ver-
tical slice of the solution. The boundary layers are evident. Their damping,
however, is clear if VMS +DC, and possibly p-adaptivity, are applied.

(a) VMS (b) VMS + DC

Figure 8: St-2D: steady-state solution on 200×200 1st-order elements. (For plotting only,
the data are interpolated to a 50 × 50 node grid using Octave [57]).
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(a) Filter (b) VMS

(c) VMS + DC (d) VMS + DC + p-adaptivity

Figure 9: St-2D: steady-state solution on 50×50 4th-order elements.
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Figure 10: St-2D: steady-state solution on 50×50 4th-order elements. Vertical slice at
z = 0.3
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(a) Filter (b) VMS

(c) VMS + DC (d) VMS + DC + p-adaptivity

Figure 11: St-2D: steady-state solution on 10×10 8th-order elements.
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Figure 12: St-2D: steady-state solution on 10×10 8th-order elements. Vertical slice at
z = 0.3

Tr1-2D:. Transient advection-diffusion of an L-shaped discontinuity in a
flow where ν = 10−6m2 s−1 and the velocity u of magnitude |u| = 0.5

√
2ms−1

is at 45o with respect to the axis (x, z). The initial configuration is shown
in Figure 13.

Figure 13: Tr1-2D: initial configuration of the L-shaped problem

The convex shape of the sharp discontinuity makes this problem more
challenging than the previous case [58], and is chosen to analyze robustness
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and accuracy of the algorithm. Runs were performed at two different reso-
lutions and two different orders of interpolating polynomials. In particular
we have: approx. 100 points per side using 25×25 4th −order elements (Fig-
ure 14), and 12×12 8th-order elements (Figure 15); and approx. 200 points
per side using 50×50 4th-order (Figure 17), and 25×25 8th-order (Figure
17). In the figures, Filter means that the SEM solution was filtered at every
time-step. VMS and/or DC indicate that the SEM solution is stabilized by
the VMS with or without a discontinuity capturing term (DC). VMS + DC
+ p-adaptivity indicates the contribution of p-adaptivity as well. Positiv-
ity is not preserved in the solution obtained with a filter. The sharp front,
in fact, makes the filter inappropriate. However, similarly to the steady
advection-diffusion test St-2D, the VMS-stabilized solution of this problem
is characterized as well by the formation of internal layers that run along the
edges of the tracer in the direction of the flow (See, e.g., Figure 14b), and
VMS is not sufficient to preserve monotonicity unless it is supplemented by
the additional DC term defined in (27). This effect is displayed in Figures
14,15,16, and 17.

The consideration made for problem St-2D on the singular peaks that
form at the nodes where the tracer leaves the boundary at an angle, applies
here at nodes A and B of Figure 13. This is visible in Figure 18 obtained
by slicing the tracer along z = 0 in Figures 16 and 17, respectively. The
problem is solved by the application of p-adaptivity.

As the order of interpolation is increased from 4th to 8th, the smooth
solution begins to lose positivity. As interpreted for St-2D, the solution is
clearly being affected when the interpolation nodes are densely clustered
towards the boundaries of the elements, as is the case for higher order.
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(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + p-adaptivity

Figure 14: Tr1-2D: 4th
− order 25×25. t =

0.25 s.

(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + p-adaptivity

Figure 15: Tr1-2D: 8th
− order 12×12. t =

0.25 s.
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(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + p-adaptivity

Figure 16: Tr1-2D: 4th
− order 50×50. t =

0.25 s.

(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + p-adaptivity

Figure 17: Tr1-2D: 8th
− order 25×25. t =

0.25 s.
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− order 50×50
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(b) 8th
− order 25×25

Figure 18: Tr1-2D: Vertical slice at z = 0.0.

Tr2-2D:. Linear advection of a 2D square wave along x in the periodic
domain Ω = [0, 1] × [0, 1]: the tracer is transported with velocity u =
(1/2, 0)ms−1 for one periodic revolution along x. The initial concentration
qh = 1 is centered at (xc, zc) = (0.5, 0.5) (Figure 19). The computational
finite domain consists of 11 × 11 quadrilaterals of order 11.

Figure 19: Tr2-2D: initial configuration of the pure advection problem.

As in the steady case, Figures 20-22 display improvement of the solution
in terms of monotonicity when the VMS method is used instead of the
filter. The combination of VMS and filtering is not recommended (result
not shown); although VMS alone controls the over- and under-shootings
along the streamlines, the addition of the filter at the end of every time step
degrades positivity in the neighborhood of large gradients.

In Figures 21 and 22 we present the streamline and crosswind sections of
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the solution obtained by slicing the tracer along z = 0.5 and x = 0.5, respec-
tively. Unlike the previous problems characterized by internal and boundary
layers, for pure advection the VMS preserves the maximum and minimum
concentrations qh

max = 1, and qh
min = 0 and is free of spurious oscillations.

As a term of comparison, we present the result of classical artificial-viscosity
in Figures 20-22d. The exact solution of this test at the final time t = 2
corresponds to the initial condition. The normalized L1, L2 and L∞ errors
of the computed solution with respect to the exact solution were computed
on different grids to obtain the convergence curves for different orders of in-
terpolation. Figure 23 shows a log-log plot of the L∞ error against the grid
size ∆(x, z) = 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625 (nel = 5×5, ..., 160×160),
where each curve represents the error obtained with different orders of in-
terpolation (p = 4, ..., 10). At a given p, the ∆t was decreased to maintain a
constant Courant number for all resolutions. At a given p, the slope of the
curves increases at increasing resolution. This is expected by the spectral
element solution in that the error reduces exponentially. However, as p is
increased, the slope tends to straighten (See Figure 24), indicating that the
larger number of nodes due to the increased p contributes to setting the
convergence rate of the method in the same extent as high h-resolution does
when p is lower. The data used to generate the plots are reported in Table
2.
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(a) Galerkin (b) Filter

(c) VMS (d) AD/HV ν = 0.001m2 s−1

Figure 20: Tr2-2D: Surface plot of the concentration field: ∆t = 0.001 s (except for HV:
∆t = 0.0002 s), 11×11 elements with 11th order polynomials. Results at t = 2.0 s (after
1 periodic revolution along x).
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(c) VMS
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Figure 21: Tr2-2D: Streamline cut at 0.5 m in the y-direction. ∆t = 0.001 s, 11×11
elements with 11th order polynomials. Results at t = 2 s (after 1 periodic revolution
along x). Solid line indicates the computed solution. The dashed line is the analytic
solution.
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(c) VMS
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Figure 22: Tr2-2D: Crosswind cut at 0.5 m in the x-direction. ∆t = 0.001 s, 11×11
elements with 11th order polynomials. Results at t = 2 s (after 1 periodic revolution
along x). Solid line indicates the computed solution. The dashed line is the analytic
solution.
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Figure 23: Tr2-2D: Log-log plot of the L∞ norm error vs. h for polynomials p 4,6,8,10.
Original tabled data are reported in Appendix B.
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Table 2: Tr2-2D: Maximum and minimum values of concentration and errors in different
norms after 1 full periodic revolution (t = 2 s). ∆t = 0.001 s, 11×11 elements of 11th

order.
Run qmin qmax L1 L2 L∞ L∞min

FILTER -0.1951E+00 1.1010 0.13969 0.1732 0.10134E+00 0.10134E+00
VMS -0.7010E-06 1.0000 0.16581 0.2379 0.10965E-05 0.10965E-05

Figure 24: Tr2-2D: Log-log plots of the L1,L2, and L∞ norm errors vs. h. The original
data are reported in Appendix B.

Remark on the use of filters in the previous results: In the current
work, filtering was applied in the usual way that has been used previously in
SE models (see, e.g., [44, 59, 60, 61]). That is, the filtering coefficients were
defined at the beginning of the simulation and applied after every time-step
using the same filter matrix for all elements. It may be possible to obtain
better results with filters if they are constructed in a specific way (e.g., each
element uses a different filter matrix that is constructed dynamically) but
a clear approach on how to do this remains an open topic since this can be
viewed as a classical limiter but for Spectral Elements (see, e.g., [62]).
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5. Discussion and conclusions

5.1. Conclusions

In this paper, we proposed the use of the Variational Multiscale method
(VMS) to stabilize advection-dominated problems solved with spectral el-
ements. The stabilization parameter τ that appears in the VMS scheme
was computed to include the characteristics of high-order spectral elements
with (non-equispaced) LGL nodes. Numerically, we demonstrated that this
approach is a possible alternative to the standard filters used in the sta-
bilization of the spectral element solvers if the suppression of unwanted
under- and over-shoots is the main concern. In the presence of internal and
boundary layers, VMS was coupled with appropriate discontinuity-capturing
techniques to damp any oscillations in the proximity of such discontinuities.
Stabilization by these methods is obtained by introducing a diffusion-like
term that, unlike hyper-viscosity, only acts in the regions where oscilla-
tions occur (i.e. large gradients); the solution is not affected in smooth
regions. Where needed, the combined action of VMS and polynomial adap-
tivity yields encouraging results for high-order spectral elements. The al-
gorithms were evaluated on a set of standard tests of increasing difficulty.
A significant improvement was observed in the performance of the spectral
element solver as far as the control of maxima and minima is concerned,
both in the purely advective and in the advective-diffusive regimes. The
most important features of this new approach are:

• Unlike hyper-viscosity, the subgrid-scale diffusion only affects regions
of the flow where stabilization is required.

• Under- and over-shoots are greatly suppressed relative to traditional
filters.

• The method does not depend on a free-parameter assigned by the user.

5.2. Application to atmospheric modeling in climate and weather prediction,
and future work

In [63], we implemented a Kessler microphysics scheme [1] within a spec-
tral element framework, that requires the advection of three moisture vari-
ables (vapor, cloud, and rain mixing ratios). This microphysics scheme will
be implemented in our Nonhydrostatic Unified Model for the Atmosphere
(NUMA) [64] in order to simulate both mesoscale and synoptic-scale at-
mospheric phenomena. As is well-known, Galerkin-based methods yield
1) higher-order accuracy and 2) excellent dispersion properties, which are
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both desirable for advection schemes; however, the resulting Gibbs oscil-
lations produce strong gradients that must be remedied in some fashion.
At present, a simple-minded “fixer” is applied whereby negative values of
the moisture variables are set equal to zero. This fixer acts as an effective
mass source, thus violating the conservation properties of the model. In
addition, this fixer violates the function space that the spectral element so-
lution inhabits. For these reasons, monotonic advection of tracer variables
is essential for any atmospheric model. The proposed VMS scheme is an ex-
cellent candidate since it 1) preserves monotonicity better than the standard
filter approach, 2) does not significantly increase the cost of the spatial dis-
cretization scheme, and 3) is completely local in nature (i.e., no additional
communications are required in a parallel environment), which is necessary
for scaling on modern distributed and hierarchical memory environments.
In future work, we will report on the application of VMS to NUMA using
realistic mesoscale test cases.
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Appendix A. Expression for τ

In this appendix we explicitly derive the expression for τ defined between
two consecutive LGL points [xlgl(i), xlgl(i+ 1)]. The bubble obtained from
the integration of (17) with boundary conditions b(xlgl(i)) = 0 and b(xlgl(i+
1)) = 0 has expression:

b(x) =
x

u
− x(i+ 1) − x(i)
u(eux(i+1)/ν − eux(i)/ν)

eux/ν − x(i)eux(i+1)/ν − x(i+ 1)eux(i)/ν

u(eux(i+1)/ν − eux(i)/ν)
.

The evaluation of the integral (23)
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τ i+1
i =

1
xlgl(i+ 1) − xlgl(i)

∫ xlgl(i+1)

xlgl(i)
b(x) dx

yields the expression:

τ
x(i+1)
x(i) =

1
x(i+ 1) − x(i)

[

x(i) − x(i+ 1)
u

(
ν

u
+
x(i+ 1) − x(i)

2

)

− eux(i+1)/ν(x(i) − x(i+ 1))2

eux(i)/ν − eux(i+1)/ν

]

.

When x(i) = 0 and x(i+ 1) = h, we have that

τh
0 = − ν

u2
− h

2u
+

heuh/ν

euh/ν − 1
,

from which, after little algebra, expression (20) is recovered:

τ =
h

2u

(

coth(Pek) − 1
Pek

)

.

Appendix B. Error tables

In this Appendix we report the data of error estimates from which the
curves of Figures 23 and 24 were generated.

Table B.3: Tr2-2D: Convergence results for the transport problem using the VMS: p=4.
∆t = 0.001 for all the runs.

Nelements L1 L2 L∞ L∞min
qmax qmin

5 × 5 0.30786 0.2583 0.9662E-01 0.1209E+00 1.0970 -0.6290E-01
10 × 10 0.19662 0.2127 0.4701E-01 0.4770E-01 1.0430 -0.2850E-01
20 × 20 0.13288 0.1845 0.8739E-02 0.8737E-02 1.0090 -0.6960E-02
40 × 40 0.87334E-01 0.1546 0.1714E-02 0.1714E-02 1.0020 -0.1793E-02
80 × 80 0.61619E-01 0.1323 0.4408E-04 0.4408E-04 1.0000 -0.4756E-04

160 × 160 0.44715E-01 0.1146 0.2650E-07 0.2649E-07 1.0000 -0.4116E-07
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Table B.4: Tr2-2D: Convergence results for the transport problem using the VMS: p=4.
Variable ∆t for all the runs: CFL≃0.01025

Nelements ∆t L1 L2 L∞ L∞min
qmax qmin Mloss

5 × 5 0.0100E-01 0.3079 0.2583 0.9662E-01 0.1209E+00 1.0970 -0.6290E-01 0.180E-12
10 × 10 0.0500E-02 0.1966 0.2127 0.4701E-01 0.4770E-01 1.0430 -0.2850E-01 0.182E-12
20 × 20 0.0250E-02 0.1329 0.1845 0.8739E-02 0.8737E-02 1.0090 -0.6960E-02 0.350E-12
40 × 40 0.1250E-03 0.8733E-01 0.1546 0.1714E-02 0.1714E-02 1.0020 -0.1793E-02 0.730E-12
80 × 80 0.6250E-03 0.6162E-01 0.1323 0.4408E-04 0.4408E-04 1.0000 -0.4756E-04 0.147E-11

160 × 160 0.3125E-04 0.4470E-01 0.1136 0.3661E-07 0.3661E-07 1.0000 -0.5370E-07 0.603E-11

Table B.5: Tr2-2D: Convergence results for the transport problem using the VMS: p=6.
Variable ∆t for all the runs: CFL≃0.0208

Nelements ∆t L1 L2 L∞ L∞min
qmax qmin Mloss

5 × 5 0.0100E-01 0.2186 0.2348 0.9349E-02 0.9349E-02 1.0090 -0.8514E-02 0.9084E-12
10 × 10 0.0500E-02 0.1159 0.1662 0.3126E-02 0.3126E-02 1.0030 -0.2680E-02 0.1810E-11
20 × 20 0.0250E-02 0.1098 0.1810 0.8451E-03 0.8451E-03 1.0010 -0.5194E-03 0.3642E-11
40 × 40 0.1250E-03 0.6983E-01 0.1357 0.7971E-04 0.7971E-04 1.0000 -0.9405E-04 0.7241E-11
80 × 80 0.6250E-03 0.5206E-01 0.1246 0.2599E-05 0.2599E-05 1.0000 -0.2007E-05 0.1454E-10

160 × 160 0.3125E-04 0.3630E-01 0.1018 0.1276E-08 0.1276E-08 1.0000 -0.1172E-08 0.2904E-10

Table B.6: Tr2-2D: Convergence results for the transport problem using the VMS: p=8.
Variable ∆t for all the runs: CFL≃0.0352

Nelements ∆t L1 L2 L∞ L∞min
qmax qmin Mloss

5 × 5 0.0100E-01 0.1415 0.18180 0.2970E-02 0.2970E-02 1.0030 -0.7465E-02 0.9053E-12
10 × 10 0.0500E-02 0.9237E-01 0.15087 0.1852E-02 0.1852E-02 1.0020 -0.1610E-02 0.1816E-11
20 × 20 0.0250E-02 0.9162E-01 0.15879 0.7905E-04 0.7905E-04 1.0000 -0.1115E-03 0.3612E-11
40 × 40 0.1250E-03 0.5929E-01 0.12320 0.2979E-05 0.2979E-05 1.0000 -0.4298E-05 0.7325E-11
80 × 80 0.6250E-03 0.4432E-01 0.11340 0.4332E-07 0.4332E-07 1.0000 -0.1031E-06 0.1436E-10

160 × 160 0.3125E-04 0.3129E-01 0.9399E-01 0.1418E-09 0.1418E-09 1.0000 -0.7009E-10 0.2854E-10

Table B.7: Tr2-2D: Convergence results for the transport problem using the VMS: p=10.
Variable ∆t for all the runs: CFL≃0.0536

Nelements ∆t L1 L2 L∞ L∞min
qmax qmin Mloss

5 × 5 0.0100E00 0.1647 0.2034 0.3855E-02 0.3855E-02 1.0040 -0.5317E-02 0.9069E-12
10 × 10 0.0500E-01 0.7786E-01 0.1415 0.2796E-03 0.2796E-04 1.0000 -0.2022E-03 0.1820E-11
20 × 20 0.0250E-01 0.8875E-01 0.1622 0.7076E-05 0.7076E-05 1.0000 -0.1081E-04 0.3651E-11
40 × 40 0.1250E-02 0.5183E-01 0.1142 0.1937E-06 0.1937E-06 1.0000 -0.7324E-07 0.7298E-11
80 × 80 0.6250E-03 0.4083E-01 0.1115 0.3612E-08 0.3612E-08 1.0000 -0.1089E-07 0.1455E-10

160 × 160 0.3125E-04 0.2785E-01 0.8815E-01 0.4936E-10 0.4936E-10 1.0000 -0.1127E-10 0.2842E-10
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