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Abstract

A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The

original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-

product of the Legendre–Gauss–Lobatto points. In this work, we construct the high-order Lagrange polynomials

directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics

to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998)

655–676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in

the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707–1720]. These points have good approximation prop-

erties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular

elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can

use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the

accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponen-

tial convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30–60%

fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the

moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does

not yield a diagonal mass matrix.
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1. Introduction

The recent trend towards distributed-memory computers having thousands of commodity processors has

rekindled interest in the development of local high-order methods for the simulation of geophysical fluid

dynamics applications. The most common local high-order method is the spectral element (SE) method.
The SE method can be constructed in modal (spectral) or nodal (physical) space. In addition, the build-

ing-blocks (or element shapes) used for the SE method have been the quadrilateral or the triangle. If quad-

rilaterals are used then the SE method is typically employed in nodal space where the basis functions are

constructed from a tensor-product of the one-dimensional Legendre cardinal functions [16]. However, if

triangles are used then the SE method has been typically employed only in modal space [26]. This was

due to the lack of a good set of nodal points for the triangle.

Using the electrostatics principle, Hesthaven [17] obtained a set of nodal points on the triangle with good

approximation properties for all polynomials of order N < 11. For 11 6 N 6 15, we use the Fekete points
[29] which are only currently available for orders N < 20. Using this nodal set, Warburton et al. [31] showed

exponential convergence for the incompressible Navier–Stokes equations. The success of these results has

inspired us to seek similarly successful applications of this nodal triangular set for the solution of the

shallow water equations on the sphere.

The shallow water equations are a set of first-order nonlinear hyperbolic equations, which contain all of

the horizontal operators found in the primitive atmospheric equations used in numerical weather prediction

(NWP) and climate models. Thus to design a good atmospheric model requires a good shallow water

model. The construction of fast, accurate, and flexible atmospheric models is the ultimate goal of our
research. In this quest, we have successfully developed an exponentially convergent global atmospheric

model using the nodal quadrilateral-based SE method [13,14]. While the accuracy and performance of this

model have been shown to exceed those of operational spectral transform models, developing adaptive

grids for quadrilateral elements may prove too cumbersome to pursue. The existence of numerous adaptive

triangular mesh generation packages [1,8] motivates us to explore nodal triangle-based SE methods.

The rest of the paper is organized as follows. Section 2 describes the governing equations of motion used

to test our numerical method. In Section 3, we describe the discretization of the governing equations. This

includes the spatial discretization by the triangle-based SE method and the time-integrator. In Section 4, we
describe a few of the many possible triangular tessellations of the sphere. Finally, in Section 5, we present

convergence rates of the nodal triangle-based SE method and compare it with the quadrilateral-based SE

method. This then leads to some conclusions about the feasibility of this approach for constructing future

atmospheric models and a discussion on the direction of future work.
2. Shallow water equations

The shallow water equations are a system of first-order nonlinear hyperbolic equations, which govern

the motion of an inviscid incompressible fluid in a shallow depth. The predominant feature of this type

of fluid is that the characteristic length of the fluid is far greater than its depth which is analogous to

the motion of air in the atmosphere and water in the oceans. For this reason, these equations are typically

used as a first step toward the construction of either NWP, climate, or ocean models.

The spherical shallow water equations in Cartesian advective form are
o/
ot

þr � ð/uÞ ¼ 0; ð1Þ

ou

ot
þ u � ru ¼ �f x� uð Þ � r /þ /sð Þ � lx; ð2Þ
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where the nabla operator is defined as $ = (ox, oy, oz)
T, / is the geopotential height (/ = gh, where g is the

gravitational constant and h is the vertical height of the fluid), /s is the surface topography (e.g., moun-

tains), u = (u, v, w)T is the Cartesian wind velocity vector, f = 2xz/a2 is the Coriolis parameter and (x, a)
represent the rotation of the earth and its radius, respectively.

The term lx, where x = (x, y, z)T is the position vector of the grid points, is a fictitious force introduced
to constrain the fluid particles to remain on the surface of the sphere. By switching from spherical (2D) to

Cartesian (3D) coordinates, we have allowed the fluid particles an additional degree of freedom which will

manifest itself in the fluid particles flying off the surface of the sphere. In order to prevent this from

happening, we introduce the Lagrange multiplier l.
The shallow water equations in Cartesian form have received significant attention recently (see

[28,7,9,10,15,11,20]). It should be mentioned that the Cartesian form of the equations introduces no

approximations whatsoever; the equations are completely equivalent to the equations in spherical coordi-

nates as shown by Swarztrauber et al. [28]. The reason for using the Cartesian form of the equations is that
the pole singularity associated with spherical coordinates is avoided and because this form, in conjunction

with the SE mapping described in Section 3.1.2, allows for any curved surface to be discretized by this ap-

proach. For example, we could easily change the shape of the spherical domain to any warped spheroidal.

This will allow for a more realistic representation of the earth and other planets which are not perfect

spheres.
3. Discretization

In this section, we describe the discretization of the shallow water equations. In Section 3.1, we describe

the spatial discretization by the SE method including: the choice of basis functions, integration, and the

filter used to maintain stability. In Section 3.2, we discuss the explicit time-integrator, the time-filter used

to control the computational modes, and the Lagrange multiplier required to constrain the fluid particles

onto the sphere.

3.1. Spatial discretization by the triangle-based spectral element method

3.1.1. Background and motivation

To explain the need for the electrostatics and Fekete points on the triangle a few words regarding inter-

polation theory are required. Let PN denote the space of all polynomials of degree 6N and ni be a collection
of points in PN. In addition, let q be an arbitrary function that we wish to interpolate and IN an unique

function in PN such that IN(q(ni)) = q(ni). Using the usual definition of the L1 norm
kqk ¼ max
n2X

jqðnÞj;

kINk ¼ max
kqk¼1

jIN ðqÞj
we can now quantify the error of approximating q by IN(q) within the triangle X. Assuming the existence of

a function r 2 PN which best approximates q and noting that we can write r = IN(r) we can compute the

interpolation error of q as
kq� IN ðqÞk ¼ kq� r þ IN ðrÞ � IN ðqÞk:

Using the Cauchy–Schwarz inequality yields
kq� IN ðqÞk 6 1þ kINkð Þkq� rk; ð3Þ
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where iINi denotes the Lebesgue constant which must be minimized in order to avoid the well-known

Runge effect [26] typical of monomial expansions of the type nigj | 0 6 i + j 6 N. This is the expansion typ-

ically associated with the standard finite element method where the points (n, g) are equi-spaced within the

triangle. Since it is not known how to compute Lebesgue points (i.e., points which minimize the Lebesgue

constant) we use points computed via an electrostatics analogy or points which maximize the determinant
of the Vandermonde matrix (Fekete points) which indirectly approximate them. On the 1-simplex (the line

�1 6 n 6 1) the points satisfying the electrostatics and Fekete principles are in fact the Legendre–Gauss–

Lobatto (LGL) points. However, on the 2-simplex (the triangle �1 6 n,g 6 1; n + g 6 0) determining which

are the optimal points remains an open question. Nonetheless, attempts have been made to construct nodal

sets which yield LGL points along the edges of the triangle. Both the electrostatics and Fekete points satisfy

this condition and the fact that they have good Lebesgue constants make them suitable choices for con-

structing triangle-based spectral element basis functions. The Fekete and electrostatics points coincide with

the standard equi-spaced points for N 6 2. However, the Lebesgue constant for the Fekete ("N) and
electrostatics points (N < 9) increases proportionally with N while for the standard equi-spaced points

the Lebesgue constant increases exponentially with N.

The term iq � ri in Eq. (3) is minimized if the polynomial space PN is able to approximate the function q.

We use the Proriol–Koornwinder–Dubiner (PKD) polynomials [24,19,5] as they are analogous to the 1D

Legendre polynomials with the properties that they are stably computable and are a conveniently orthog-

onal basis defined on the triangle. The construction of the cardinal functions based on the PKD polynomi-

als is the topic of the next section. In this section, we have only discussed the interpolation properties of

certain nodal sets and bases, however, in order to construct discrete operators requires not only good inter-
polation properties but also good integration properties.

On the 1-simplex, the LGL points happen to be both optimal interpolation and integration points which

results in a diagonal mass matrix since the interpolation and integration points are co-located; having a

diagonal mass matrix is important for achieving efficiency. On the 2-simplex, such points have not yet been

found and thus far one must be content to choose either good interpolation or integration but not both. In

this paper, we choose good interpolation and then use exact numerical integration formulas (cubature)

which, while quite accurate, does not result in a diagonal or lumpable mass matrix, since the interpolation

and integration points are not co-located.
It should be noted that the Fekete points have been used as integration points in previous works

[18,23,30] for linear problems which then results in a diagonal mass matrix; however, the Fekete points only

integrate up to order N polynomials and so for nonlinear terms (quadratics terms such as 2N) this order of

integration is insufficient to achieve exponential convergence. Our results using this approach proved to be

quite dismal. For this reason, we choose to use 2N cubature rules with the ill-effect of having to contend

with a global sparse mass matrix. We should also mention that our initial results with the diagonal mass

matrix nodal set proposed by Mulder [22] have been quite encouraging; however, these points only exist

for N 6 5 and they are not nearly as stable as the approach we present in this manuscript.

3.1.2. Basis functions

To define the local operators which shall be used to construct the global approximation of the solution

we begin by decomposing the spherical domain X into Ne non-overlapping triangular elements Xe such that
X ¼
[Ne

e¼1

Xe:
To perform differentiation and integration operations, we introduce the non-singular mapping x = W(n)

which defines a transformation from the physical Cartesian coordinate system x = (x, y, z)T to the local ref-

erence coordinate system n = (n, g, f)T such that (n, g) lies on the spherical surface tiled by the triangular

elements defined by Xe = {(n, g, f), �1 6 n,g 6 1, n + g 6 0, f = 1}.
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Let us now represent the local element-wise solution q by an Nth order polynomial in n as
qN ðnÞ ¼
XMN

k¼1

LkðnÞqN ðnkÞ;
where nk represents MN = (1/2)(N + 1)(N + 2) grid points and Lk(n) are the associated multivariate

Lagrange polynomials. For the grid points (ni, gj), we choose the nodal set derived from the electrostatics

principle [17] for N < 11 and the Fekete points for 11 6 N 6 15.

We construct the Lagrange polynomials on the reference triangle, Lk(n, g), which are implicitly defined

by their cardinal nature, by reference to an easily constructed orthonormal PKD polynomial basis [24,19,5].
This basis is defined as
wkðn; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þðiþ jþ 1Þ

2

r
P 0;0
i

2nþ gþ 1

1� g

� �
1� g
2

� �i

P 2iþ1;0
j gð Þ; ð4Þ
where P a;b
n ðnÞ represents the nth order Jacobi polynomial in the interval �1 6 n 6 1, k = i + j(N + 1) + 1,

and the indices vary as 0 6 i,j; i + j 6 N, and k = 1, . . .,MN.

We next seek an explicit formula for the Lagrange basis by representing them in terms of the reference

basis, i.e.,
Li n; gð Þ ¼
XMN

k¼1

Aikwk n; gð Þ; ð5Þ
where the indices are now defined as i, j, k = 1, . . .,MN. We then use the cardinal property of the Lagrange

polynomials
dij ¼
XMN

k¼1

Aikwk nj; gj
� �

;

where d is the Kronecker delta function, to determine that
Aik ¼ w�1
k ni; gið Þ

� �T
: ð6Þ
We next recognize that
V jk ¼ wk nj; gj
� �

ð7Þ
is a generalized Vandermonde matrix and using Eqs. (5)–(7) we construct the Lagrange polynomials as

follows:
Li n; gð Þ ¼
XMN

k¼1

V �1
� �T

ik
wk n; gð Þ: ð8Þ
We note that, for example, the Vandermonde matrix generated using this basis and the 15th order Fekete

nodes only has a condition number of approximately 116. This good conditioning allows us to use this ap-
proach in contrast to conventional wisdom regarding poor conditioning of the standard monomial-based

Vandermonde.
3.1.3. Filtering the high-frequency waves

Recall that the local element-wise Vandermonde matrix can be written as
V ij ¼ wj ni; gið Þ:
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Thus the function values at each grid point i inside the element Xe can be defined, using a modal (spectral)

expansion, as follows:
qi ¼
XMN

j¼1

wjðni; giÞ~qj; ð9Þ
where ~q represents the expansion coefficients in modal space of the function q. In matrix form, we can write
Eq. (9) as
q ¼ V~q; ð10Þ

which we call the nodal triangle-based SE transform because it allows us to transform from nodal to modal

space. Inverting Eq. (10) yields
~q ¼ V�1
� �T

q;
which yields the amplitudes in the modal representation (amplitude-frequency space). We can then filter

these amplitudes in any manner but here, based on past experience [10,13], we choose the Boyd–Vandeven
transfer function [2] which we denote by �. Applying the filter to the amplitudes and then transforming to

nodal (physical) space is achieved in the following matrix–vector multiply operation
qF ¼ Fq;
where
F ¼ V ^ V�1
� �T ð11Þ
is the MN · MN filter matrix. This filter matrix is applied every 10 time-steps at only 20% strength (see [10]).

3.1.4. Integration

In order to complete the discussion of the local element-wise operations required to construct discrete

spectral element operators, we must lastly describe the integration procedure required by the weak formu-

lation of all Galerkin methods. For any two functions f and g, the integration I proceeds as follows:
I½f ; g� ¼
Z
Xe

f ðxÞgðxÞ dx ¼
XMQ

i¼1

wijJðniÞjf ðniÞgðniÞ;
where MQ is a function of Q which represents the order of the cubature approximation. For wi and ni, we

use the high-order cubature rules for the triangle given in [27,3,21,4] of order 2N. This order is chosen for

two reasons: first, it is a good compromise between accuracy and efficiency; and second, it allows for a fair

comparison of our new triangle-based SE method with the quadrilateral-based SE method which typically

uses order 2N � 1 quadrature rules.
3.1.5. Local element-wise operators

To simplify the description of the numerical algorithm, let us define the following local element opera-

tors: let
Me
ij ¼

Z
Xe

LiðxÞLjðxÞ dx; Ae
ijk ¼

Z
Xe

LiðxÞLjðxÞrLkðxÞ dx; ð12Þ

De
ij ¼

Z
X
LiðxÞrLjðxÞ dx; Ce

ijkl ¼
Z
X
LiðxÞLjðxÞLkðxÞLlðxÞ dx ð13Þ
e e
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represent the mass, advection, differentiation, and Coriolis matrices, where i, j, k, l = 1, . . ., MN. Note that

Ae ¼ ðAe
x;A

e
y ;A

e
zÞ and De ¼ ðDe

x;D
e
y ;D

e
zÞ are vectors of matrices corresponding to the three spatial directions.

3.1.6. Satisfying the equations globally

To satisfy the equations globally requires summing the local element matrices, Eqs. (12) and (13), to
form their global representation. This summation procedure is known as the global assembly or direct stiff-

ness summation. Let us represent this global assembly procedure by the summation operator
N̂ e

e¼1
with the mapping (i, e)! (I), where i = 1, . . ., MN are the local element grid points, e = 1, . . ., Ne are the

spectral elements covering the spherical shell, and I = 1, . . ., Np are the global grid points. Applying the

global assembly operator to the local element matrices results in the following global matrices:
M ¼
N̂ e

e¼1

Me; A ¼
N̂ e

e¼1

Ae; D ¼
N̂ e

e¼1

De; C ¼
N̂ e

e¼1

Ce:
With these operators defined and by denoting the global grid vector for the grid points as x, the geopoten-
tial as /, and the wind velocity as u we can now state the variational form of the problem as: find (/
,uT)T 2 H1(X) "L 2 H1 such that
M
o/
ot

þ A/ð ÞTu ¼ � ATu
� �

/; ð14Þ

M
ou

ot
þ Auð ÞTu ¼ �Cf x� uð Þ �D /þ /sð Þ �MðlxÞ; ð15Þ
where H1(X) is the space of all functions with functions and first derivatives belonging to L2(X) – the space

of all functions that are square integrable over X. For / and u, we choose the polynomial space PN–PN

without violating the inf–sup condition.

3.2. Time-integrator and the Lagrange multiplier

Discretizing the equations in time by the leapfrog method yields
M/nþ1 ¼ M/n�1 � 2Dt A/ð ÞTuþ ATu/
� �n

; ð16Þ

Munþ1 ¼ Mun�1 � 2Dt Auð ÞTuþ Cf ðx� uÞ
� �n

� 2Dt Dð/þ /sÞ þMðlxÞð Þn: ð17Þ
Since we need to ensure that the velocity field remains tangential to the sphere, we require
x � u ¼ 0:
Let us first write Eq. (17) as
unþ1 ¼ M�1Bu � 2Dtlx; ð18Þ
where
Bu ¼ Mun�1 � 2Dt Auð ÞTuþ Cf ðx� uÞ
� �n

� 2Dt Dð/þ /sÞð Þn:
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Taking the scalar product of Eq. (18) with x, and rearranging yields
l ¼ 1

2Dta2
x � ðM�1BuÞ: ð19Þ
Using Eq. (19), we note that we can project any 3D vector q onto the surface of the sphere by applying the

following matrix operator:
Pq ¼ q� 1

a2
ðx � qÞx; ð20Þ
where the projection matrix P is given by
P ¼ 1

a2

a2 � x2 �xy �xz

�xy a2 � y2 �yz

�xz �yz a2 � z2

0
B@

1
CA: ð21Þ
This allows the equations in constrained form to be written as follows:
M/nþ1 ¼ M/n�1 � 2Dt A/ð ÞTuþ ATu/
� �n

; ð22Þ

Munþ1 ¼ PBu: ð23Þ

Since M is a global sparse symmetric matrix, we use the conjugate gradient method with point Jacobi
preconditioning to invert it. Static condensation is used to separate the boundary and interior points of

the elements in order to reduce the computational cost of inverting M.

3.2.1. Time-filter

To complete the discussion of the time-integrator, we must describe the Asselin filter used for the leap-

frog method which otherwise would admit a non-physical mode to propagate in the opposite direction from

the physical mode. This filter is applied as follows:
qn ¼ ~qn þ c ~qnþ1 � 2~qn þ qn�1
� �

; ð24Þ
where the tilde represents the unfiltered solution and c = 0.01 is the filter strength. While it is true that for

c 6¼ 0 the leapfrog method becomes first order, we have used this time-integrator because it is typically used

in atmospheric and shallow water models which will then facilitate comparisons with other methods. For

more suitable time-integrators for the shallow water and atmospheric equations, the reader is referred to

the recent papers [11,12,14] where semi-Lagrangian, operator-integration-factor splitting, and backward

difference methods are discussed.
4. Grid generation on the sphere

The choice of which triangulation to use for the sphere is not obvious. Commonly, grids are chosen

which simplify the construction of the discrete operators. For example, latitude–longitude grids are used

with spectral transform methods because these are the only grids that can be used with this method. The

hexahedral grid (i.e., the cubed-sphere) has been used with finite difference, finite volume, and spectral ele-

ment methods because each of the six faces of the cube map onto a simple Cartesian geometry that allows

for the simple and rapid construction of the discrete operators. Picking one grid and constructing the
discrete operators on a specific grid geometry simplifies matters but it also dictates the algorithm thereby

losing any hope of using other types of grids and adaptive solution strategies.

In our case, the spectral element method is constructed in a very general way such that the model

reads in any grid geometry and then constructs the discrete operators directly on the grid. This allows
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the use of any grid and offers the freedom to choose the best possible grid for specific applications. For

the purposes of validating the triangle-based SE method, we shall use a disjointed set of triangles

formed by the subdivision of the triangular faces of an icosahedron; however, it should be understood

that any triangular grid can be used. We shall compare the triangle-based SE method with the quad-

rilateral-based SE method described in [9,11,13]. With the quadrilateral-based SE method, we used
hexahedral and icosahedral grids. The choice of hexahedral grids is a natural one because it represents

a structured grid that has become quite popular with many newly proposed grid point methods. The

quadrilateral-based icosahedral grid is chosen because it is an unstructured grid and represents a good

comparison for the triangle-based icosahedral grid. Finally, to illustrate the geometric flexibility of the

triangle-based SE method we describe a number of triangular unstructured grids formed by the Dela-

unay triangulation of various point sets.
4.1. Triangle-based icosahedral grids

To construct icosahedral grids, we consider the initial icosahedron and subdivide each of the initial

triangles by a Lagrange polynomial of order nI. Prior to mapping these elements onto the sphere, it is con-

venient to map the triangles onto a gnomonic space. The most unbiased mapping is obtained by mapping

about the centroid of the triangles.

Let (kc, uc) be the centroid of the triangle we wish to map where k represents the zonal (east–west) and u
the meridional (north–south) directions. The gnomonic mapping is then given by
X ¼ a cosu sinðk� kcÞ
sinuc sinuþ cosuc cosu cosðk� kcÞ

;

Y ¼ a cosuc sinu� sinuc cosu cosðk� kcÞ½ �
sinuc sinuþ cosuc cosu cosðk� kcÞ

;

ð25Þ
where X 2 [�1, +1]2 in the equi-distant gnomonic space G. To simplify matters a bit, we first apply a rota-

tion whereby Eq. (25) becomes
X ¼ a tan kR; Y ¼ a tanuR sec kR
in the new coordinate system with the centroid (kc, uc) located at (0, 0). The rotation mapping is given as
kR ¼ arctan
cosu sinðk� kcÞ

sinuc sinuþ cosuc cosu cosðk� kcÞ

� 	
;

uR ¼ arcsin cosuc sinu� sinuc cosu cosðk� kcÞ½ �:
This approach enables the construction of a triangle-based icosahedral grid with the following properties:
Np ¼ 10ðnINÞ2 þ 2; ð26Þ

Ne ¼ 20ðnIÞ2; ð27Þ

where Np and Ne denote the number of points and elements comprising the triangular grid, and nI controls

the number of triangular elements while N denotes the order of the polynomial inside each element. Fig. 1

provide examples of grids for nI = 2 and N = 4, 8 and 16. All the grids illustrated are viewed from the North

Pole where the thick lines denote the elements and the thin lines are the high-order grid points.

Since we use the icosahedral grid to compare the triangle-based SE method with the standard quadrilat-
eral-based SE method on icosahedral and hexahedral grids it is important to compare grids with compa-

rable total grid points. From [13], the number of points for the quad-based icosahedral and hexahedral

grids are given as



(a) (b) (c)

Fig. 1. Triangle-based icosahedral grid for nI = 2 and (a) N = 4, (b) N = 8, and (c) N = 12.
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Np ¼ 60ðnQI NÞ2 þ 2 ð28Þ

and
Np ¼ 6ðnQHNÞ2 þ 2; ð29Þ

where nQI and nQH are parameters which controls the number of elements in the grids. Equating Eqs. (26),

(28), and (29) shows that the triangle-based icosahedral grid has the same number of grid points as the
quadrilateral-based grids for
nI ¼
ffiffiffi
6

p
nQI ¼

ffiffiffiffiffi
6

10

r
nQH ; ð30Þ
which we approximate by nI � 2nQI � 2
3
nQH . Thus n

Q
I ¼ 1; nQH ¼ 3, nI = 2 yield approximately the same num-

ber of grid points.

It should be mentioned that these grid constructions do not actually yield the same number of grid points

and elements. In fact for this set of grid constructions the triangle-based icosahedral grid has 80 triangular

elements while the quadrilateral-based icosahedral and hexahedral grids have 60 and 54, respectively.

Although for a given polynomial order (N) they all span the same polynomial space within each element

they differ greatly in the total number of grid points and in their distribution. In fact, the triangle-based

icosahedral grid has 33% fewer points than the quad-based icosahedral grid and 25% fewer points than
the quad-based hexahedral grid. In addition, the triangle-based grid appears to be far more isotropic than

the quadrilateral grids. In other words, the triangle-based icosahedral grid has no biasing in its orientation

and thereby treats all directions equally. Unlike the quadrilateral-based icosahedral grid, the quadrilateral-

based hexahedral grid is structured and isotropic but only along two directions in each of the six faces of the

hexahedron. Therefore, the hexahedral grid will do quite well for flows which are aligned with these two

directions. We shall see that some of the test cases benefit from this type of grid orientation while others

do not.
4.2. Triangulations based on the platonic solids

In the previous section, we described the construction of triangular grids using the icosahedron. How-

ever, there is nothing special about this Platonic solid; we could have used any of the five Platonic solids.

For example, one could use the tetrahedron (four triangular faces), hexahedron (six quadrilateral faces),

octahedron (eight triangular faces), dodecahedron (12 pentagonal faces), or icosahedron (20 triangular

faces). However, the faces of the hexahedron and dodecahedron need to be subdivided into triangular

elements (24 for the hexahedron and 60 for the dodecahedron). Using the Platonic solids, one can create
a grid with the following properties:



(a) (b) (c)

Fig. 2. Triangulations of the sphere using the (a) octahedron (Ne = 64), (b) icosahedron (Ne = 80), and (c) hexahedron (Ne = 96)

viewed from the North Pole.
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Np ¼
NT

2
ðnNÞ2 þ 2;

Ne ¼ NTn2;
whereNT are the number of initial triangles comprising the Platonic solid and n is the subdivision of each of the
initial triangles. NT = 4, 8, 20, 24, and 60 for the tetrahedron, octahedron, icosahedron, hexahedron, and

dodecahedron, respectively. In Fig. 2, we show equivalent resolution triangulations using the octahedron,

icosahedron, and hexahedron viewed from the North Pole. From Fig. 2, it is evident that the octahedral

and icosahedral grids aremore uniform than the hexahedral grid; this is due to the fact that the initial triangles

of the octahedron and icosahedron are equilateral whereas those for the hexahedron are isosceles. However,

there are hardly any differences between these sets of grids but due to the popularity of icosahedral grids we

shall use this set in Section 5 but it should be understood that all these grids yield similar convergence rates.

4.3. Triangulations based on latitude–longitude

Because triangles are the 2-simplex, this means one can construct an unique triangulation for random

point sets distributed on the surface of the sphere. This then facilitates the construction of triangulations

on the sphere because as long as one can create point sets they can be triangulated quite naturally using

Delaunay triangulation methods. For the latitude–longitude grids, we use the STRIPACK Delaunay trian-

gulation software [25].

In this section, we discuss a few of the many possible triangular grids that can be constructed on the sphere.
We limit the grids to fixed adaptive grids; that is, grids that are constructed at the beginning of the time-

integration and remain fixed for all time. In the future, we shall address the dynamically adaptive approach.

Latitude–longitude grids are perhaps the simplest tessellations for the sphere. In fact, they are popular

for NWP and climate models because these are the only grids that spectral transform methods can use. Fig.

3(a) shows a regular latitude–longitude grid with (Nlon, Nlat) = (40, 20). On each latitude ring (East–West

direction) this grid has the same number of points (Nlon = 40) and the grid spacing becomes smaller as we

approach the poles. This situation is known as the pole problem because there are too many redundant

points near the poles as is illustrated by the lines of constant longitude (vertical) as they curve toward
the poles. In addition, the proximity of adjacent points near the poles severely restricts the maximum

time-step that can be used. One way around this dilemma is to use thin or reduced grids. As we approach

the poles, the number of points on each latitude ring is decreased in order to maintain a constant grid spac-

ing throughout. This type of grid is depicted in Fig. 3(b) where lines of constant longitude no longer curve

toward the poles. Both the regular and thin latitude–longitude grids can be used with the spectral transform

method (without the triangular elements). However, if the discretization method is based on triangles, then



(a) (b) (c)

Fig. 3. Triangulations of the sphere using the following types of latitude–longitude grids: (a) regular (Ne = 1600), (b) thin (Ne = 1044),

and (c) adaptive (Ne = 1844) viewed from (0, 0).
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we can go even further and refine the region of interest and use a coarse grid everywhere else. Fig. 3(c)
shows an adaptive grid where the region of interest is along the Equator. We shall use this grid to show

the advantages that adaptive triangular grids may offer.
5. Numerical experiments

For the numerical experiments, we use the normalized L2 error norm
k/kL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xð/exact � /Þ2 dXR

X /
2
exact dX

vuut
to judge the accuracy of the SE methods. To compute the Courant number, the elements are decomposed

into their high-order (HO) grid points and these grid points form a fine grid which we refer to as the HO

cells. The velocities and grid spacings are then defined at the centers of these cells. Using these definitions,
the Courant number is then defined as
Courant number ¼ max
CDt
Ds

� �e

HO

8e 2 ½1; . . . ;Ne�;
where
C ¼
U for case 1;

U þ
ffiffiffiffi
/

p
for cases 2; 3; 4; 5; and 6;




where C is the characteristic speed, U ¼
ffiffiffiffiffiffiffiffiffi
u � u

p
; and Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2

p
is the grid spacing. For all the

results presented, the Courant number is taken to be 0.5.

Six test cases are used to judge the performance of the triangle-based SE method. Cases 1, 2, 3, 5, and 6

correspond to the Williamson et al. standard test case suite [32]. Case 4 was recently proposed by Galewsky

et al. for testing shallow water models [6]. This case presents a more challenging test than those in the Wil-

liamson et al. test suite because if the resolution is not sufficiently high then the numerics will not be able to
sustain the steady zonal jet with steep vorticity gradient. If the method cannot sustain the jet then the accu-

racy declines rapidly. Case 1 involves the geopotential equation (passive advection) only whereas the

remainder of the test cases concern the full nonlinear shallow water equations. In addition, cases 1, 2, 3,

and 4 have analytic solutions whereas cases 5 and 6 do not and are only used to determine the accuracy

of the triangle-based SE method qualitatively. These last two test cases have been run by a vast community

and the results are well-documented for comparison.
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5.1. Description of the test cases

5.1.1. Case 1: Passive advection of a cosine wave

Case 1 concerns the solid body rotation of a cosine wave. The velocity field remains unchanged through-

out the computation. Williamson et al. [32] recommend that the error be computed after 12 days of inte-
gration which corresponds to one complete revolution of the cosine wave.

5.1.2. Case 2: Steady-state nonlinear zonal geostrophic flow

This case is a steady-state solution to the nonlinear shallow water equations. The equations are

geostrophically balanced and remain so for the duration of the integration where the velocity field remains

constant throughout the computation. The geopotential height / undergoes a solid body rotation but since

the initial height field is given as a constant band in the zonal direction and the flow field is purely zonal,

then the solution remains unchanged throughout the time-integration. The velocity field is the same as that
used in case 1. Williamson et al. [32] recommend that the error be computed after 5 days of integration.

5.1.3. Case 3: Steady-state nonlinear zonal geostrophic flow with compact support

This case is another steady-state solution to the nonlinear shallow water equations where the equations

remain geostrophically balanced for the duration of the integration. The initial velocity field is zero every-

where except in a very small isolated region. This isolated region, or jet, encapsulates the flow and confines

the geopotential height field to remain within a localized circular region. The results are reported for a

5-day integration as suggested in [32].

5.1.4. Case 4: Galewsky et al. zonal dynamics

This test case consists of a zonal jet and an unperturbed balanced initial geopotential height field. The

balanced initial field should be maintained indefinitely but Galewsky et al. [6] suggest running the case for 5

days. This is a rather stringent test of shallow water models because if the accuracy and/or the resolution is

not sufficiently high then the model will not be able to sustain the balanced initial field and the error will

increase quite rapidly, unlike cases 1, 2, and 3 which are much more forgiving. In addition, because the jet is

zonally positioned, then any grid that is not aligned with the zonal direction will have much more difficulty
maintaining the jet.

5.1.5. Case 5: Zonal flow over an isolated mountain

This case uses the same initial conditions as case 2 with the addition of a conical mountain at (k,
u) = (180, 30). Due to the zonal flow impinging on the mountain, various wave structures form and prop-

agate throughout the sphere. This test is run for 15 days as suggested in [32].

5.1.6. Case 6: Rossby–Haurwitz wave

Although Rossby–Haurwitz waves are not analytic solutions to the shallow water equations, they have

become a de facto test case. In a non-divergent barotropic model, the initial geopotential height field under-

goes a solid body rotation in a counterclockwise direction when viewed from the North Pole. Although this

case does not have an analytic solution, it is well-known that the initial wave structure of the Rossby–

Haurwitz wave should remain intact for the duration of the time-integration.

5.2. Results on the test case suite

5.2.1. Convergence rate of the triangle-based SE method

Before analyzing the behavior of the triangle-based SE method on the standard test case suite or delving

into comparisons between the triangle-based SE method with the quadrilateral-based method it is
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important to quantify the convergence rate of themethod. For this study, we use case 2 and show convergence

rates in Fig. 4 for N 6 14. The order of convergence shown in Fig. 4 is computed as an average convergence

rate computed over all the grid refinements where at each grid refinement the convergence rate is defined as
Fig. 5.

diagon
rate ¼ log errornIþ1=errornI½ �
log nI=ðnI þ 1Þ½ � :
This figure shows that the expected spectral accuracy is achieved for all values of N, that is,
error / OðDxNþ1Þ;

which states that the error decreases exponentially with increasing N.

In [18,30,23], the Fekete points are used as both interpolation and integration points. The advantage of

this strategy is that the triangle-based SE method yields a diagonal mass matrix. An obvious question to ask
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is why have we chosen a different approach, that is, to use the Fekete/Electrostatics points for interpolation

and the high-order cubature rules from [27,3,21,4] for integration which then no longer yields a diagonal

mass matrix. To answer this question, we run case 2 for the icosahedral grid nI = 2 and N = 8 for 30 days.

The results of this simulation are shown in Fig. 5, where it is clear that the 2N cubature rule which we use

throughout this paper is far more accurate and stable for long time-integrations than the N cubature rule.
Thus, while the N cubature rule may be appropriate for steady-state problems or linear time-dependent

problems it is not appropriate for nonlinear problems with long time-integrations such as those typical

in geophysical fluid dynamics applications.

5.2.2. Case 1: Passive advection of a cosine wave

Fig. 6 shows that the SE method on triangles and quadrilaterals converge algebraically regardless of the

structure of the grid. Exponential convergence is not expected for this case because the derivative at the

base of the cosine hill is non-smooth. Note that the triangle- and quadrilateral-based SE converge at
approximately the same rate with the quadrilateral-based method being slightly better than the triangle-

based method.

5.2.3. Case 2: Steady-state nonlinear zonal geostrophic flow

Fig. 7 illustrates that the triangle- and quadrilateral-based SE methods yield exponential convergence.

The quadrilateral-based hexahedral grid yields the best results with the triangle-based icosahedral grid

giving better results than the quadrilateral-based icosahedral grid. The hexahedral grid will be very difficult

to beat for this test case because it is aligned with the direction of the flow. For this reason, it is expected
that a latitude–longitude grid would also do extremely well for this test case.

5.2.4. Case 3: Steady-state nonlinear zonal geostrophic flow with compact support

Fig. 8 shows that the triangle- and quadrilateral-based SE methods, again, yield exponential conver-

gence; however, the triangle-based SE method is slightly better than the quadrilateral-based SE methods.

Unlike case 2, this case represents a more localized flow problem. The circular region where the geopoten-

tial is confined is not aligned with any of the grids and so the isotropy of the grid becomes an important
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Fig. 6. Case 1. The normalized / L2 error as a function of polynomial order, N, after 12 days using 80, 60, and 54 elements for the
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Fig. 8. Case 3. The normalized / L2 error as a function of polynomial order, N, after 5 days using 80, 60, and 54 elements for the

icosahedral triangle-based (Ico Tri), icosahedral quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad)
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factor. This explains why the triangle-based SE method on the icosahedral grid yields better accuracy than

the quadrilateral-based methods.

5.2.5. Case 4: Galewsky et al. zonal dynamics

Fig. 9 illustrates the convergence rates of the triangle- and quadrilateral-based SE methods as a function

of total number of grid points, Np, with 8th order polynomials. This figure shows that triangle- and quad-

rilateral-based SE methods yield high-order convergence and that the triangle-based SE method is superior

to the quadrilateral-based SE methods. Once again, the absence of grid alignment with the flow has hin-

dered the quadrilateral-based SE methods from resolving the physics of the problem as well as the more

isotropic triangle-based icosahedral grid.



0 1 2 3 4 5 6 7

x 10
4

10

10

10

10

10

10

10

 Number of Grid Points (N
p
)

 N
or

m
al

iz
ed

 L
2 E

rr
or

Ico Tri
Ico Quad
Hex Quad

Fig. 9. Case 4. The normalized / L2 error as a function of grid points, Np after 5 days using N = 8 for the icosahedral triangle-based

(Ico Tri), icosahedral quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad) spectral elements.

F.X. Giraldo, T. Warburton / Journal of Computational Physics 207 (2005) 129–150 145
Figs. 10 and 11 show snapshots of the grid, geopotential (/), and zonal velocity (us) after a 5-day inte-

gration for the triangle- and quadrilateral-based SE methods with various grid resolutions using 8th order
polynomials. The view of the figures is from the North Pole. In Fig. 10, it is observed that the resolutions

nI = 4 (Np = 10,242) and below are not capable of maintaining the jet. The formation of wave number 5

structures begin to emerge due to the lack of symmetry in the grid near the initial points of the icosahedron

(which form a pentagon around the pole). For nI = 5 (Np = 16,002) the balanced initial state is maintained

where the jet is visibly intact. Similarly, Fig. 11 shows that the quadrilateral-based SE method on the hexa-

hedral grid cannot maintain the jet for resolutions Np < 38,402. Thus the triangle-based SE method on

icosahedral grids can maintain the jet with 58% fewer points than the quadrilateral-based SE method on

hexahedral grids.
(a)

(b)

Fig. 10. Case 4. Contours of the grid (left), / (center), and us (right) for the triangle-based SE method after 5 days for N = 8 and (a)

nI = 4 (Np = 10,242) and (b) nI = 5 (Np = 16,002) viewed from the North Pole.



(a)

(b)

Fig. 11. Case 4. Contours of the grid (left), / (center), and us (right) for the quadrilateral-based SE method after 5 days for N = 8 and

(a) nQH ¼ 9 (Np = 31,106) and (b) nQH ¼ 10 (Np = 38,402) viewed from the North Pole.
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5.2.6. Case 5: Zonal flow over an isolated mountain

Fig. 12 shows snapshots of the fields after a 15-day integration for the triangle-based SE method with

nI = 6 and N = 8 and the quad-based SE with nH = 8 and N = 8. The view of the figures is from (k,
u) = (180, 0). Note that the number of grid points between the two methods is approximately equal. In fact,

the results using either quadrilaterals or triangles are virtually indistinguishable. All grid resolutions beyond

this one yield the correct wave structures for both methods with little or no differences obtained with

increased resolution.

5.2.7. Case 6: Rossby–Haurwitz wave

Fig. 13 shows snapshots of the fields after a 14-day integration for the triangle-based SE method with

nI = 6 and N = 8 and the quad-based SE with nH = 8 and N = 8. The view of the figures is from the North
Pole. Once again, the results of the triangle and quadrilateral based SE methods are identical. Furthermore,

all grid resolutions beyond this one yield the correct wave structures for both methods with minor differ-

ences obtained with increased resolution.
(a)

(b)

Fig. 12. Case 5. Contours of / (left), us (center), and vs (right) after 15 days for (a) the triangle-based SE method with nI = 6 and N = 8

(Np = 23,042) and (b) the quadrilateral-based SE method with nH = 8 and N = 8 (Np = 24,578) viewed from (180, 0) which is in the

vicinity of the mountain.



(a)

(b)

Fig. 13. Case 6. Contours of / (left), us (center), and vs (right) after 14 days for (a) the triangle-based SE method with nI = 6 and N = 8

(Np = 23,042) and (b) the quadrilateral-based SE method with nH = 8 and N = 8 (Np = 24,578) viewed from the North Pole.
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5.2.8. The advantages of using adaptive grids

To show the advantages that adaptive grids may offer, we first revisit case 1. For this test case, the quad-

rilateral-based hexahedral grid yielded a superior convergence rate to the triangle-based SE method on
icosahedral grids. It was conjectured that the alignment of the hexahedral grid with the direction of the flow

accounted for this difference in convergence rates. Therefore, let us now compute the convergence rate for

the triangle-based SE method on an adaptive grid aligned with the flow direction. Fig. 14 shows the grid

(with N = 8) and the contours of / after one revolution. Fig. 15 shows that the the convergence rate for

the triangle-based SE method on the adaptive grid is now superior to that of the quadrilateral-based SE

method on both the hexahedral and icosahedral grids. It should be mentioned that all three grids have

approximately the same number of grid points. Constructing this type of grid with the quadrilateral-based

SE method is not possible.
As a second example of the advantages of adaptive grids, we revisit case 4. Recall that with the isotropic

icosahedral grid it required 16,000 grid points in order to maintain the jet for the duration of the 5-day

integration. In Fig. 16, we show the grid, /, and u contours for an adaptive grid with only 11,000 grid

points. More importantly, the polynomial order is N = 6. Thus with less grid points and with a lower poly-

nomial order the adaptive grid solution is able to capture and maintain the jet.

As a final example of adaptive grids, we revisit case 5. Recall that with the isotropic icosahedral grid it re-

quired 23,000 grid points in order to achieve a converged solution for the duration of the 15-day integration.

In Fig. 17, we show the grid, /, u, and v contours for an adaptive grid with only 18,000 grid points. More
importantly, the polynomial order is N = 4. Thus with less grid points and with a lower polynomial order

the adaptive grid solution is once again able to obtain the proper wave structure. The adaptive grid is con-

structed in the Northern Hemisphere thereby handling the wave structure quite well in this region. Note,
Fig. 14. Case 1. The grid (left) and contours of / (right) for the triangle-based SE method for N = 8.
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Fig. 15. Case 1. The normalized / L2 error as a function of polynomial order, N, after 12 days using 92, 60, and 54 elements for the
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Fig. 16. Case 4. Contours of the grid (left), / (center), and us (right) for the triangle-based SE method after 5 days for N = 6 using an

adaptive grid with Ne = 614 (Np = 11,054) viewed from the North Pole.

Fig. 17. Case 5. Contours of the grid (left), / (left-center), us (right-center), and vs (right) for the triangle-based SE method after 15

days for N = 4 using an adaptive grid with Ne = 2308 (Np = 18,466) viewed from (180, 0).

148 F.X. Giraldo, T. Warburton / Journal of Computational Physics 207 (2005) 129–150
however, that due to the coarser grid in the Southern Hemisphere some of the wave structures are under-

resolved.
6. Conclusions

The newly proposed triangle-based SE method exhibited its expected exponential convergence.

Furthermore, the triangle-based SE method was shown to be superior to the quadrilateral-based
methods for three of the four cases having analytic solutions. Cases 5 and 6 have been typically used
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to represent challenging cases but the triangle-based SE method was capable of representing the under-

lying physics of these problems with a modest grid resolution. However, case 4 showed that for crude

resolutions, the wave structure collapses therefore representing a good addition to the Williamson et al.

shallow water test case suite. For cases 1 and 2, the quadrilateral-based SE method on hexahedral grids

was shown to be superior to the triangle-based SE method on icosahedral grids. These cases, however,
represent flows which are aligned with the hexahedral grid and for this reason it is difficult to compete

with the quadrilateral-based SE method. However, with the assistance of an adaptive grid, the triangle-

based SE method proved to be superior. Cases 3 and 4 have strong local characteristics whereby the

geopotential height is confined within a small circular region encapsulated by a jet. For these cases,

the hexahedral grid is no longer aligned with the predominant features of the flow. It is conjectured

that the isotropy of the triangle-based SE method on the icosahedral grid is what allows the trian-

gle-based SE method to achieve a better convergence rate than the quadrilateral-based SE methods.

The success of the triangle-based SE method for these two test cases are encouraging because it implies
that while the method can accurately handle flows with strong global features it is much better suited

for handling flows with significant local characteristics. It is therefore a good candidate for use with

adaptive grids as was shown for cases 1, 4, and 5.

It should be mentioned that we have not shown performance comparisons between the triangle- and

quadrilateral-based methods. At the present, the quadrilateral-based SE method is at a far more mature

stage than its triangle-based counterpart. Unlike the quadrilateral-based SE method, the triangle-based

SE method does not give rise to a diagonal mass matrix, M, and thereby requires inverting a sparse

global matrix at each time step. Even though the triangle-based SE method requires 30–60% fewer grid
points than its quadrilateral-based counterpart to achieve the same accuracy, the inversion of a global

matrix significantly reduces the efficiency of the triangle-based method. In this paper, we have only pre-

sented the triangle-based SE method in its continuous form, in the future we shall explore this method

in its discontinuous form which obviates the need to invert a global matrix. We will also consider more

efficient domain decomposition techniques as well as co-located interpolation and integration points

which will improve the apparent inefficiency in the current approach. The exponential accuracy and

geometric flexibility of the triangle-based SE method merits further investigations into its use in all

realms of geophysical fluid dynamics.
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