
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

 
 

Approved for public release; distribution is unlimited 

PSK SHIFT TIMING INFORMATION DETECTION 
USING IMAGE PROCESSING AND A MATCHED FILTER 

 
by 

 
Joseph E. Kramer 

 
September 2009 

 
 Thesis Advisor:   Monique P. Fargues 
 Second Reader: Roberto Cristi 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for 
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2009 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
PSK Shift Timing Information Detection Using Image Processing and a Matched 
Filter 
6. AUTHOR(S)    Kramer, Joseph E. 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES   
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
This thesis investigates the detection of phase shifts contained within a noisy Phase Shift Keyed modulated signal.  
The approach derived in this work applies image-processing techniques including two-dimensional filters, edge 
detection, morphological processing, and a two-dimensional cross-correlation matched filter to detect the phase shifts 
from the angle of the signal temporal correlation function.  Results show the proposed algorithm is robust to additive 
white noise distortions down to SNR levels of 4 dB.  

15. NUMBER OF 
PAGES  

153 

14. SUBJECT TERMS  
Phase Shift Keyed signals, Image Processing, Temporal Correlation Function, Edge Detection, 
Morphological operations, Two-dimensional Matched Filter  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

PSK SHIFT TIMING INFORMATION DETECTION 
USING IMAGE PROCESSING AND A MATCHED FILTER 

 
Joseph E. Kramer 

Lieutenant, United States Navy 
B.S.E.E., University of Oklahoma, 2000 

M.S.E.M., Old Dominion University, 2007 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2009 

 
 
 

Author:   Joseph E. Kramer 
 
 
 

Approved by:  Monique P. Fargues 
Thesis Advisor 

 
 
 

Roberto Cristi 
Second Reader 

 
 
 

Jeffrey B. Knorr 
Chairman 
Department of Electrical and Computer Engineering 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

This thesis investigates the detection of phase shifts contained within a noisy Phase 

Shift Keyed modulated signal.  The approach derived in this work applies image-processing 

techniques including two-dimensional filters, edge detection, morphological processing, and 

a two-dimensional cross-correlation matched filter to detect the phase shifts from the angle of 

the signal temporal correlation function.  Results show the proposed algorithm is robust to 

additive white noise distortions down to SNR levels of 4 dB. 
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EXECUTIVE SUMMARY 

The United States is currently conducting counterinsurgency operations against 

asymmetric combatants in Middle Eastern regions and worldwide.  These combatants use 

unconventional tactics to execute deadly attacks on military and civilian targets 

coordinated through normal communications in a covert manner.  The techniques this 

research proposes will prove beneficial in decoding intercepted communications of 

possible pre-emptive hostile actions.  This matched filter approach to tracking phase 

shifts contained within Quadrature-Phase Shift Keyed (QPSK) signals provides a 

necessary capability to dissect PSK signals so decoding schemes can be employed. 

PSK signal encoding is applied in a number of applications in today’s 

communications industry, including VHF and UHF television, FM radio, terrestrial and 

satellite microwave applications as well as short point-to-point experimental applications 

[1].  Wireless LAN as well as satellite communications require disciplined bandwidth 

conservation and make extensive use of Frequency Shift Keyed (FSK), Amplitude Shift 

Keyed (ASK), and QPSK types of compact signal generation and transmission schemes.  

The QPSK modulation technique was investigated because its bit encoding efficiency is 

commonly used to support modern communication requirements. 

The Temporal Correlation Function (TCF) is a two-dimensional instantaneous 

complex symmetric auto-correlation function used to find the phase shift characteristic on 

a per-data frame basis.  The objectives of this research were the following: 

• Investigate an approach to identify phase shift timing within QPSK signals 

using image processing techniques and the Temporal Correlation Function 

(TCF) phase computation. 

• Develop and test the image processing techniques required to remove noise 

from TCF phase images such that phase shifts are enhanced. 

• Develop, design, and test the resulting phase shift identification scheme. 



 xx

• Develop, design, and test an optional analysis window overlapping technique 

to improve phase shift detection rates in noisy environments. 

The designed phase shift time detection scheme is split into two main phases.  

The first phase computes the initial TCF phase matrix and transforms it through a series 

of pre-processing filters and morphological operations into an image better suited for a 

matched filter solution.  Second, the actual phase shift timing extraction task is conducted 

using a two-dimensional matched filter.  Pre-processing phase steps used are summarized 

in the following flow chart. 

 

 
Same as Figure 8. Start to Finish Image Pre-Processing Flow 

The overall phase shift time extraction phase has two main components:  

• A two-dimensional cross correlation matched filter operation, and  

• An analysis window overlapping option designed to combine decisions 

obtained on separate windows and to improve performances in noisy 

conditions.   

First, target images and structuring elements are defined followed by the TCF 

phase computation for each signal segment.  These TCF phase images are then processed 

to isolate the phase shift timing before the two-dimensional cross-correlation locates the  
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shift time in each window.  Last, final phase shift time decisions are derived, either from 

individual decisions, or by combining multiple decisions when overlapping analysis is 

allowed during processing. 

User-specified parameters are derived for QPSK signals in 6dB SNR 

environments and the resulting phase shift identification algorithm is investigated for 

SNR levels in the range -2dB to 12 dB.  Detection performances are derived for 500 non-

overlapping windows per experiment, where 250 windows include shift and no-shift 

cases, respectively, spread semi-randomly throughout the length of the signal when 

window overlapping is selected.  The no-overlap window case did not use random 

placement to ensure only one shift or no shift per window.  Results show detection 

performances are perfect for SNR levels 6 dB and above, and 95% detection rate are 

obtained between 4 and 6 dB SNR levels.  Specific findings are listed below: 

• Results obtained without overlapping analysis windows showed 99.2% 

accuracy rates at 6 dB. 

• 60% and 90% window overlapping results showed detection performances are 

equal to 100% at the 10% tolerance level for 6 dB SNR level.  

• Results showed the differentiation step implemented using the basic 

difference filter led to better detection performances than using the Savitzky-

Golay (SG) FIR filter because the algorithm was designed for the difference 

filter.  SG filters proved to obtain higher detection rates during high noise 

runs, however, false alarm rates caused by mismatched structuring elements 

during noise removal and phase shift transformation resulted in lower 

accuracy rates than the difference filter test results. 

• Low and high normalized signal carrier frequencies were shown to have no 

direct impact on detection performances. 
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I. INTRODUCTION 

A. BACKGROUND 

Phase Shift Keyed (PSK) signals form an important part of our private and public 

communications infrastructure due to the bandwidth utilization benefits offered by PSK 

modulation schemes.  Increased bandwidth efficiency is not lost on technologies such as 

wireless LAN standards where faster data rates are desired or applications where 

quadrature-PSK and at times eight- or sixteen-PSK are used for increased efficiency.  

Recall that PSK, similar to Frequency Shift Keyed (FSK), Amplitude Shift Keyed (ASK), 

and other modulation schemes, is a modulation technique where binary data is encoded 

from a digital format into an analog format for transmission in a communication system 

[2]. 

B. OBJECTIVE 

The objectives of this research were the following: 

• Investigate an approach to identify phase shift timing within Quadrature Phase 

Shift Keyed (QPSK) signals using image processing techniques and the 

Temporal Correlation Function (TCF) phase computation. 

• Develop and test the image processing techniques required to remove noise 

from TCF phase images such that phase shifts are enhanced. 

• Develop, design, and test the resulting phase shift identification scheme. 

• Develop, design, and test an optional analysis window overlapping technique 

to improve phase shift detection rates in noisy environments. 

C. RELATED WORK 

Previous studies identified hop timing information for FSK modulated signals [3], 

[4].  This research focuses on shift timing identification for PSK modulated signals. 

However, both studies use the two-dimensional Temporal Correlation Function (TCF) as 
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the initial transformation step from which shift timing information is to be extracted.  

Overdyk’s research focused on one-dimensional approaches using the discrete wavelet 

transform to track signal discontinuities within the TCF output [3].  Cheng capitalized on 

the two-dimensional aspects of the TCF by using morphological image processing 

techniques to find image edges that enabled him to identify FSK hop times with some 

success [4].  As a continuation of these ideas, this thesis explores a more advanced 

textural analysis of the TCF output, and resets the shift timing identification task as a 

pattern matching problem by using a 2-dimensional matched filter approach to extract 

shift times present in PSK signals. 

D. APPROACH 

The designed phase shift time detection scheme is split into two main phases.  

The first phase computes the initial TCF phase matrix and transforms it through a series 

of pre-processing filters and morphological operations into an image better suited for a 

matched filter solution.  Second, the actual phase shift timing extraction task is conducted 

using a two-dimensional matched filter. 

The overall phase shift time extraction phase has two main components:  

• A two-dimensional cross correlation matched filter operation, and  

• An analysis window overlapping option designed to combine decisions 

obtained on separate windows and to improve performances in noisy 

conditions.   

Overall, this thesis is composed of seven chapters including the introduction.  

Chapter II introduces the underlying encoding scheme used in PSK signals to understand 

the intent of this research from a user perspective.  Chapter III develops the TCF function 

obtained from PSK signals.  Chapter IV presents the image processing techniques used to 

mitigate noise effects and improve the detection performance of the final algorithm.   

Chapter V details the actual MATLAB/SIMULINK model and algorithm, the threshold 

analysis and decision process.  Finally, results and conclusions are summarized in 

Chapters VI and VII. 
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II. PSK COMMUNICATION SIGNALS 

This section introduces the basic concepts used during this research to simulate 

Quadrature Phase Shift Keyed (QPSK) signals.   

A. SIMULATION SIGNAL 

Phase Shift Keyed (PSK) signal encoding applies to a number of applications in 

today’s communications industry.  PSK applications include VHF and UHF television, 

FM radio, terrestrial and satellite microwave applications as well as short point-to-point 

experimental applications [1].  Wireless LAN as well as satellite communications require 

disciplined bandwidth conservation and make extensive use of Frequency Shift Keyed 

(FSK), Amplitude Shift Keyed (ASK), and PSK types of compact signal generation and 

transmission schemes.  The basic Binary Phase Shift Keyed (BPSK) signal involves 

encoding data using a carrier frequency by changing the signal phase between 0° or 180° 

[2].  Furthermore, QPSK schemes allow the user to double data rates for the same 

bandwidth consumption or halve the bandwidth consumption while still transmitting the 

same data rate by more efficient bit encoding. 

QPSK uses phase differences of 90° to divide the state space into four quadrants.  

Higher M-ary Phase Shift Keying (MPSK) schemes can be defined to conserve more 

bandwidth [2].  QPSK was chosen as the initial test signal for this analysis because of its 

simple yet real world representation of a range of MPSK signals.  Furthermore, the QPSK 

symbol configuration shown below was chosen as a real world representation of actual 

PSK phase shifts for a baseline analysis [2].  The signal model used in this work takes on 

the following mathematical form: 

 �( ) cos(2 ),MQPSK cx t A f tπ θ= +  (2.1) 
 

where A is the amplitude and for QPSK encoding we have, 

 

      � { }, 0,1,2,3 .
4 2

M M Mπ πθ = + =i  (2.2) 
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Equations (2.1) and (2.2) combine to form the analytical QPSK signal where 

�Mθ is restricted to four phase values with a state space as illustrated in Figure 1.   

 
Figure 1.   QPSK constellation diagram, from [2, p. 320].  

B. SIGNAL ASSUMPTIONS 

The goal of this algorithm is to extract phase shift timing information from QPSK 

modulated signals.  The mathematical description discussed in the first part of this 

chapter is the accepted implementation of a QPSK signal, although, in hardware it is 

easier to use two out of phase sine waves to generate the appropriate quadrature phase 

result based on the bit stream being sent [2].  Three signal assumptions are made in this 

work:  

• First, we assume the generated signal is sampled high enough to avoid 

aliasing. 

• Second, we assume a starting phase offset for the signal.  Actual phase 

offsets follow the derivation described in Section II.A above from [2].  

Note that the TCF output discussed in the next chapter shows that the 

quality of the phase shift detection step depends on the difference between 

successive signal phase values not on their individual values. 
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• Third, the minimum bit period although not specifically defined is one 

assumption that will affect the results.  The signal is constructed so that 

phase shifts are semi-randomly distributed between the beginning of the 

second window frame of the signal and the second to last window frame 

of the signal to avoid issues dealing with first and last signal window 

frames.  However, the signal can be initialized so that some phase shifts 

are very close, resulting in two phase shifts in a given analysis frame.  The 

algorithm is intended to address this potential problem by combining 

consecutive decisions obtained over overlapping windows. 

The next section discusses the temporal correlation function and its place in the 

identification algorithm before discussing the details of the algorithm itself. 
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III. TEMPORAL CORRELATION FUNCTION (TCF) 

This section introduces the Temporal Correlation Function (TCF) obtained from 

analytic Quadrature Phase Shift Keyed (QPSK) and Frequency Shift Keyed (FSK) 

signals.  It also describes and discusses the differences observed between the TCF 

functions generated from both modulating schemes. 

A. BASIC DESCRIPTION 

The Temporal Correlation Function (TCF), ( , ),xTCF t τ  is the two-dimensional 

instantaneous auto-correlation function of the signal x(t) defined as: 

 ( , )
2 2xTCF t x t x tτ ττ ∗⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,  (3.1) 

where t represents time and τ is the positive lag value for the computation.  Note that it is 

not necessary to calculate negative lag values of the TCF as it is a complex symmetric 

function.  Additionally, the TCF function is a two-dimensional function which is suitable 

for image manipulation tools.  The TCF was shown to be a useful tool to estimate phase 

changes as the sections below will demonstrate. 

1. FSK Based TCF 

In earlier work, Cheng and Overdyk used the TCF expression for Frequency Shift 

Keyed (FSK) signals as the basic tool to detect FSK hopping times [3, 4].  A basic 

analytic FSK signal with frequency shift at time Tshift is defined around this shift instant 

as: 

  
 1 2(2 ) (2 )( ) ( ) ( ) ( 1) ( ) ,i f t i f t

FSK shift shiftx t e u t u t T e u t T u t Tπ θ π θ+ +⎡ ⎤ ⎡ ⎤= − − + − + − −⎣ ⎦ ⎣ ⎦  (3.2) 
 

where f1 and f2 are frequencies representing two different encoded bits in the FSK scheme 

and the phase jump, θ, is assumed constant.  The analytic FSK expression is derived by 

taking the Hilbert transform of the real valued FSK signal expression.  Equation (3.2) 

uses unit step functions to define the starting points of the respective frequency encoded 
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bits of the FSK signal.  Thus, the unit step functions define the beginning of the signal 

with frequency, f1, at some arbitrary time t, the time of hop from frequency f1 to 

frequency f2 at time Tshift and the end of the signal with frequency f2 at time T. 

Applying the signal in Equation (3.2) to Equation (3.1) yields the following TCF 

expression: 

1

1 2
2 1

2

(2 )

2 ( )
2

(2 )

1 12 2

( ) ( )
2 2

( , ) ( 1) ( )
2 2

( 1) ( )
2 2

( , ) ( , ) (

i f
shift

f f
i f f t

FSK shift shift

i f
shift

e u t u t T

TCF t e u t T u t T

e u t T u t T

TCF t TCF t TCF t

π τ

π τ

π τ

τ τ

τ ττ

τ τ

τ τ

+⎡ ⎤⎛ ⎞− +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎧ ⎡ ⎤− − + −⎪ ⎢ ⎥⎣ ⎦⎪
⎪⎪ ⎡ ⎤= + + − + − − −⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤+ − − + − + −⎪ ⎢ ⎥⎣ ⎦⎪⎩

= + + , ),τ

 (3.3) 

where t andτ are referred to as the time and lag indices, respectively.  Note that the FSK-

based TCF expression shown in Equation (3.3) has a very similar analytic structure to the 

PSK-based version upon which this research focuses.  The TCF function derived for an 

FSK signal has three non-overlapping regions called TCF1, TCF2, and TCF12.  Figure 2 

presents the phase of the TCF expression obtained for such an FSK signal with f1=0.1 Hz 

and f2=0.3 Hz, normalized frequencies respectively, where the center region, TCF12, is 

highlighted by the dashed box.  The two-dimensional TCF phase function output is 

shown with the time parameter on the vertical axis and the lag parameter on the 

horizontal axis allowing us to identify phase shift instants.  It turns out that the phase shift 

time is located at the intersection of the three region boundaries along the time axis. 

 Additive white Gaussian noise (AWGN) inserted into the original real valued 

FSK signal prior to the analytic transformation and the TCF computation changes the 

cross-term region considerably, as seen in Figure 2.b. 
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Figure 2.   TCF output following phase computation; a. FSK, Noise free, and b. FSK 
+  AWGN, SNR = 6 dB. 

2. PSK Based TCF 

The analytic PSK signal, xPSK(t), defined around the phase shift instant Tshift is 

defined as:   

 

1 2(2 ) (2 )( ) ( ) ( ) ( 1) ( ) ,i ft i ft
PSK shift shiftx t e u t u t T e u t T u t Tπ θ π θ+ +⎡ ⎤ ⎡ ⎤= − − + − + − −⎣ ⎦ ⎣ ⎦  (3.4) 

 

 where the frequency, f, of the signal is assumed constant and the components before and 

after the phase shift instant Tshift have phases equal to θ1 and θ2, respectively, where θ1 

and θ2 are assumed to be different.  Similar to the FSK case described above, unit step 

functions define the beginning of the signal with phase, θ1, at some arbitrary time, t, the 

time of shift from phase, θ1, to phase, θ2, at time, Tshift, and the end of the signal with 

phase, θ2, at time, T.  Furthermore, Equation (3.4) represents one unique phase shift for a 

generic Mary-Phase Shift Keyed (MPSK) signal, where the actual shift value is 

constrained by the specific MPSK scheme investigated.  In this work, results are 

examined on a per-shift basis and PSK and QPSK terms are used interchangeably 

throughout this section when discussing the QPSK signal used in this research. 
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The PSK signal based TCF output is derived by substituting the PSK signal 

expression in Equation (3.4) into Equation (3.1).  The PSK signal derived TCF phase 

expression looks similar to that obtained using a FSK signal with the exception that 

cross-terms are now composed of a single phase difference instead of sums and 

differences of frequencies [3].  Thus, the TCF expression obtained for a PSK signal, 

xPSK(t), is given as follows:  

2 1

(2 )

(2 ( )

(2 )

1 12 2

( ) ( )
2 2

( , ) ( 1) ( )
2 2

( 1) ( )
2 2

( , ) ( , ) ( , ),

i f
shift

i f
x shift shift

i f
shift

e u t u t T

TCF t e u t T u t T

e u t T u t T

TCF t TCF t TCF t

π τ

π τ θ θ

π τ

τ τ

τ ττ

τ τ

τ τ τ

+ −

⎧ ⎡ ⎤− − + −⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤= + + − + − − −⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤+ − − + − + −⎪ ⎢ ⎥⎣ ⎦⎩

= + +

  (3.5) 

 

where TCF1(t,τ), TCF12(t,τ), and TCF2(t,τ) represent the three non-overlapping regions 

included in Equation (3.5), respectively.  Note that individual regions “one” and “two” 

covered by TCF1 and TCF2 are identical for the PSK case, as phase differences exhibited 

in the FSK case cancel out when f1= f2= f.  Thus, there is no difference in frequency along 

the time and lag axes in these two regions.  As a result, the PSK signal derived TCF 

phase function does not exhibit a change in texture characteristics from region to region 

as was the case for the FSK based TCF phase function.  

Figure 3 plots the phase of a PSK signal derived TCF function.  Note the lack of 

texture change between the three TCF regions for the PSK-based case.  The one 

exploitable quality for the PSK signal case is the fact that the center region, TCF12(t,τ), 

exhibits a shift along the lag axis, forming discontinuities that appear as rough boundary 

edges around that center region.  However, the actual phase shift is only slightly visible 

in a pure analytic signal, as shown in Figure 3.  The phase shift information becomes 

almost invisible when the PSK signal is distorted by AWGN of SNR=6 dB because noise 

artifacts generate edge features similar to phase shift characteristics, as shown in Figure 

3.b.  Thus, image-processing tools need to be applied to clean up noise distortions and 

render a more visible phase shift time. 
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Figure 3.   TCF phase output; a. QPSK No Noise, and b. QPSK + AWGN, SNR = 6 

dB. 

Figures 4 and 5 plot the expressions for the TCF phase output obtained for clean 

and noisy QPSK signals at a fixed lag τ=25 obtained from the TCF phase function shown 

in Figure 3.  Note the zero time index starts at the top left corner of each image.  These 

figures show that the output is equal to zero for time index n<25 due to the triangular 

shape of the TCF function as described above.  Two points are shown in Figure 3 

illustrating this idea.  Figures 4 and 5 also show that the phase shift time information 

contained in the edges of the TCF12(t,τ), located at n=125 and n=175 for a simulated 

phase shift at n=150, become noisier when the signal is noisy, but is still detectable. 

 
 

  n=12, τ=25 
 
  n=52, t=25 
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Figure 4.   TCF phase output for τ=25 in clean QPSK case.  
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Figure 5.   QPSK + AWGN, SNR=6 dB, TCF phase output, τ=25. 

3. FSK and PSK Based TCF Comparisons 

Note that the change from frequency shift to phase shift encoding makes the TCF-

based phase shift time detection scheme less robust to noise distortions.  As mentioned 

earlier, the TCF middle region, denoted by TCF12 in Equation (3.3), shows frequency 

terms along time and lag axes for FSK signals which are different from those observed in 

TCF1 and TCF2 regions.  However, this characteristic does not exist for PSK signals, 

where the same frequency terms are observed along time and lag axes in these two 

regions, and the difference with region TCF12 comes from the offset at the boundaries.   
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As a result, the phase shift time information is contained in the “misalignment” between 

the vertical lines shown in Figure 6, and the PSK phase shift time detection task is likely 

to be more difficult. 

Figure 6 compares clean FSK and QPSK TCF phase outputs to illustrate this 

textural difference.  As noted above, phase shift time information is extracted from the 

transition edges between the three TCF phase regions.  However, noise distortions have a 

significant effect on the results obtained as they make these edges harder to identify and 

extract. 

Lag Index
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Lag Index
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Figure 6.   TCF phase output, noise-free signal cases: a. FSK hop signal, b. QPSK 
phase shift signal. 

B. OVERALL PHASE SHIFT DETECTION 

This section discusses the role the TCF phase function plays in detecting phase 

shift times.  The overall phase shift time detection scheme is split into two main phases. 

The first phase computes the initial TCF phase matrix and transforms it through a series 

of filters and morphological operations into an image better suited for the second phase, 

where the actual phase shift timing extraction task is conducted.  As mentioned earlier, 

edges around the center region of the TCF phase output function contain phase shift time 
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information, and extracting such edge information is the primary focus of this work.  

Figure 7 shows an original TCF phase image for a typical noisy phase shift image 

(SNR=6 dB) and the final image obtained after processing to be used for phase shift time 

detection.   

  Lag (τ)

Ti
m

e 
(n

)

        
Figure 7.   TCF phase output images: Beginning + AWGN, SNR = 6 dB, and Final. 

Figure 8 gives a brief overview of the various steps used to transform the initial 

TCF phase matrix into the final post-processed matrix used to detect the phase shift 

timing information.  Specific details regarding each step are presented later in Chapter V. 

• First, the TCF phase image is obtained using the TCF expressions 

discussed in this chapter. 

• Second, a 15th order one-dimensional median filter applied along the time 

axis is applied to remove noise. 

• Third, a 2nd order difference operation or 1st order derivative filter is 

applied along the time axis to remove most image features leaving only 

the desired phase shift discontinuities.   
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• Fourth, a two-dimensional mean filter is applied to remove excess image 

noise prior to the edge detection stage.   

• Fifth, the Roberts edge detection operation is applied to enhance image 

edges to emphasize phase shift discontinuities.   

• Sixth, morphological operations are applied to further enhance the desired 

edges and remove unwanted noise remnants. At that point, the resulting 

image is ready for phase shift time extraction. 

 
Figure 8.   Start to Finish Image Processing Flow. 

This section first introduced the basic TCF phase function and its resulting 

expression for FSK and PSK signals.  Next, it presented an overview of the various steps 

followed to reduce noise impacts and generate the image used for phase shift timing 

detection.  Specific details regarding each processing step followed in the image 

processing flow are presented next in Chapters IV and V.  Chapter IV focuses on the 

mechanics of each step and its performance within a noisy environment.  Chapter V 

discusses the algorithm implementation of these steps. 
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IV. PRE-PROCESSING TECHNIQUES 

The primary goal of the pre-processing phase is to reduce the effect of noise 

distortions present in the received communication signal prior to phase shift time 

estimation.  This research considers a two-dimensional matched filter approach, where 

the TCF phase image derived from a noisy signal is matched against that of an expected 

signal image to extract the phase shift time information.  First, one-dimensional filters are 

applied to enhance the TCF phase image and enhance the phase shift discontinuity from 

the background noise.  Next, edge detection and morphological operations are applied to 

reduce image noise distortions, as discussed below.  Note, several commonly used 

methods designed to remove salt and pepper noise or to smooth or sharpen images were 

also considered.  However, results showed that they did not improve performance. 

A. NOISE REDUCTION: ONE-DIMENSIONAL FILTERS 

Note that the signal was not filtered prior to computing the TCF phase expression 

because of the loss of information resulting from that step.  First, a one-dimensional filter 

was applied to the TCF phase image in an effort to maintain as much of the original 

signal characteristics as possible due to the statistical sensitivity of a phase shift. 

1. Median Filter 

The one-dimensional median filter is well suited to remove impulsive noise 

without destroying long-term trends, and is applied to the TCF phase output along the 

time axis to reduce noise impacts.  Simulations showed that applying this filter before 

differentiating accented discontinuities present in the TCF phase image that contain the 

phase shift time information.  The one-dimensional mean filter was also investigated but 

not used as it blurred the image discontinuities containing the phase shift timing 

information. 

Simulations showed that image noise needs to be decreased prior to applying the 

differential filter operation, as the difference operation further enhances noise distortions.  
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One-dimensional median and mean filters were applied along the time axis and their 

results compared.  Figure 9 shows the TCF phase image produced from a PSK signal 

with 6dB AWGN filtered along the time axis using 15th order one-dimensional median 

and mean filters, respectively.  Note the phase shift time for all examples is at time 

sample 150, located in the center of the time axis, with a window frame of length 300 

samples.  Thus, edges should appear in the phase image around that time value in Figure 

9.  Both filters remove noise; however, Figure 9 shows that edge information is better 

preserved with the median filter than it is with the mean filter.  Thus, the one-dimensional 

median filter was used in the final algorithm. 

 

    a.  

 

   

b.  

 

  c.  

  
Figure 9.   One-dimensional comparison: a. PSK + AWGN, SNR=6dB signal image, 

b. 15th order Median filter applied along the time axis, c. 15th order Mean filter 
applied along the time axis (Horizontal axis: Time axis – left to right, Vertical 

axis: Lag axis – top to bottom). 

2. Approximate Derivative Filter 

The first filter considered for the derivative operation was the discrete derivative 

used in the MATLAB function diff where differences of neighboring pixels represent the 

differentiation.  The derivative operation is a fast and simple way to accent the 

discontinuities discussed in the previous chapter that characterize the phase shift time 

present in the PSK signal.  However, the columns of the image must first be filtered to 

decrease noise distortions and prevent the differentiation step from smearing the image or 

erasing the desired discontinuity characteristics altogether.   
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3. Savitzky-Golay Smoothing Filter 

The second derivative filter considered was the Savitzky-Golay (SG) smoothing 

filter for a more noise robust solution to the differentiation operation.  The SG filter is a 

one-dimensional kth order Finite Impulse Response (FIR) filter with coefficients 

developed based on the minimum least squares error polynomial fit within each data 

frame [5].  Simulations showed the 1st order derivative SG filter was better than the 0th or 

2nd order filters at adequately removing noise while differentiating the image.  

Specifically, the 2nd order SG filter erased phase shift characteristics while the 0th 

derivative did not accentuate phase shift characteristics enough.  The 1st derivative SG 

filter of filter order N=9 was used in the final algorithm, as simulation trials proved it 

rejected noise in the TCF phase image while maintaining the phase shift characteristics 

better than the basic difference filter did. 

4. One-Dimensional Filter Comparisons 

a. Derivative Filters 

Having completed the second step in the process as shown in Figure 8, the 

discrete derivative along the TCF phase time axis is computed to further isolate the phase 

shift while reducing remaining noise distortions.  Figure 10 shows clean and noisy (6 dB 

SNR) TCF phase images where the phase shift time is located at sample 150 in a window 

length equal to 300 followed by the results of performing the 2nd difference operation and 

the 1st derivative SG noise filter of length 9 along the time axis.  Figures 10.b and 10.c 

show outputs obtained after applying the differentiation operations to the clean TCF 

Phase image.  Results show the phase shift time information is clearly visible and 

horizontal lines contained in the rest of the original image are eliminated.  However, 

Figures 10.e and 10.f show that the phase shift time information is lost when these 

differentiation operations are applied to the TCF phase image obtained from the noisy 

signal.  Simulations showed noise removal is required before applying the differentiation 

step to preserve the shift timing information. 
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a. 

 
b. 

 

c. 

 

d. 

 

e. 

 

f.      

 
Figure 10.   Clean and noisy image difference operations comparisons: a. Clean PSK 

TCF phase image (shift located at sample 150, window length 300), b. After 
applying a 2nd Order difference filter along the time axis to image a, c. After 

applying a 9th Order SG filter along the time axis to image a, d. PSK + AWGN, 
SNR=6 dB, TCF phase image, e. After applying a 2nd Order difference filter along 
the time axis to image d, f. After applying a 1st derivative 9th order SG filter along 
the time axis to image d (Horizontal axis: Time axis – left to right, Vertical axis: 

Lag axis – top to bottom). 

b. Derivative Operation Following One-dimensional Filters 
Application 

Figure 11 shows outputs obtained after first applying 15th order median 

and mean filters to a noisy TCF phase image (SNR=6dB), and second, applying the 1st 

derivative SG filter and 2nd difference filter along the time axis.  Note that some noise 

still remains but will be removed by later two-dimensional filtering and morphological 

operations.  Furthermore, the phase shift characteristic located at time 150 in the center of 

the images is clearly brought out by the median-difference and median-SG combinations 

as shown in Figure 11.b and 11.c, respectively.  Due to the loss of discrete edge values by 

the mean filter (see Figure 9.) there is no visible phase shift remaining following the 

derivative operation.  The noise filtering of the SG filter brought out only minor amounts 
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of the phase shift while leaving a considerable amount of noise as shown in Figure 11.f.  

Overall, the one-dimensional 15th order median filter followed by the 1st order derivative 

SG filter proved the best option for initial noise removal and phase shift isolation. 

 a.  

 

b.  

 

 c.  

 

d.   

 

e.  

 

 f.  

 
Figure 11.   Processed TCF phase images obtained after applying the following filters 

to TCF Phase output shown in Figure 10.d: a. 1-D 15th order Median along the 
time axis, b. 2nd order difference along the time axis on image a, c. 1st Order SG 
filter along the time axis on image a, d. 1-D 15th order Mean along the time axis, 
e. 2nd order difference along the time axis on image d, f. 1st Order SG filter along 
the time axis on image d (Horizontal axis: Time axis – left to right, Vertical axis: 

Lag axis – top to bottom). 

Figure 11.c shows that noise distortions still remain in the TCF phase 

image obtained from PSK signals in 6 dB AWGN.  Therefore, two-dimensional filters are 

applied at that point for additional noise removal, as discussed next, followed by phase 

shift edge enhancement, and morphological noise removal techniques to produce the final 

phase shift time image. 
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B. NOISE REDUCTION: TWO-DIMENSIONAL FILTERS 

As discussed in [6], edge detection techniques work reasonably well when images 

are first pre-processed to mitigate noise effects.  Simulations showed that lower order 

one-dimensional median filters removed noise adequately so that the difference operation 

enhanced remaining phase shift discontinuities.  Simulations also showed that higher 

order one-dimensional median filters removed too much of the phase shift discontinuity 

prior to the difference operation.  However, the differentiation operation emphasized 

noise, which was detrimental to the later edge enhancement steps in the TCF phase image 

processing.  Therefore, several two-dimensional pre-processing methods were 

considered, including Laplace, low-pass, median, and mean filters, to further reduce 

image noise levels prior to edge enhancement. 

1. Lowpass Filter 

Lowpass filters, as well as median and mean filters, perform smoothing 

operations to lessen high frequency details.  Note however that we need to preserve long 

term discontinuities present in the TCF phase information.  Equation (4.1) shows two 

example masks for two-dimensional lowpass filtering.  The simplest mask is a matrix of 

ones, while more complex masks take the form of a three-dimensional Gaussian pulse, 

where the amount of smoothing experienced is set by the values used in the masks: 

 
1 1 1 1 2 1
1 1 1 2 4 2
1 1 1 1 2 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (4.1) 

2. Median Filter 

Two-dimensional median filter masks can take on any shape the user wants to 

define but the generic block mask shown in equation (4.1) above is the most common due 

to its simplicity.  The basic mask is simply a matrix of ones where each item within the 

region of the mask is sorted and the median value of the group replaces the center or 

target pixel value.  The entire image is filtered when the mask is translated across the 

image in question performing the median-sort-and-replace operation.  Note the resulting 
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median value tends to be zero when several positive and negative values are collocated.  

As a result, the median two-dimensional filter may tend to erase all traces of the phase 

shift in the TCF phase image.  This definite drawback was confirmed in our simulations, 

which showed the two-dimensional median filter was not as useful as the one-

dimensional median filter was, and was not used in our final scheme. 

3. Mean Filter 

The mean filter averages the neighborhood elements within the region covered by 

the mask resulting in image blurring.  Filter orders were kept small, with mask of 

dimensions 3x3, because the larger the filter order the more blurring and subsequent 

information was removed along with the noise.  Two-dimensional mean filters proved to 

be extremely good at dampening the noise present in the TCF phase images since sharp 

details were not as much of a concern as removing the noise.  Note that the mean filter 

maintained phase shift discontinuity information when compared to the amount of noise 

removed.  Equation (4.2) shows a basic mean filter mask:  

 
1 1 1

1 1 1 1
9

1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.2) 

 

4. Two-Dimensional Filter Comparisons 

The effects of processing by the two-dimensional filters under investigation is 

best seen using a TCF phase output image obtained from a PSK signal (6dB SNR) with 

phase shift at time 150 in the center of a length 300 window previously processed by a 

15th order one-dimensional median filter and the 1st order derivative 9th order SG filter, 

applied along the time axis.  Figure 12.a shows the results of the one-dimensional median 

and SG filters on the noisy image.  Figures 12.b and 12.c show that two-dimensional 

median and mean filters with masks of size 3x3 remove a large amount of noise 

(represented by the isolated noisy pixels) from the image.  However, Figure 12.b shows 

that the median two-dimensional filter removed a portion of the phase shift time 

information along with the noise.  Figure 12.c shows that the two-dimensional mean filter 
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removed similar amounts of noise while better maintaining the phase shift time 

information than the median filter did.  Finally, Figure 12.d shows the lowpass filter 

emphasized unwanted noise that was surrounding the phase shift discontinuity 

significantly, which is a significant drawback with this filter.  Although the phase shift 

information in the original image of Figure 12.a is decreased by both median and mean 

filters, the noisy pixels are also removed.  Simulations showed this step was necessary for 

later successful phase shift detection. 

a.  

 

b.  

 

c.  

 

d.  

 
Figure 12.   Two-dimensional comparison: a. 1-D Median-SG filtered phase shift 

image shift time=150, window size=300 before results of two-dimensional 3x3 b. 
Median, c. Mean, and d. Low pass filters, respectively (Horizontal axis: Time axis 

– left to right, Vertical axis: Lag axis – top to bottom). 

This section discussed specific two-dimensional filters and their definition mask 

as they apply to noise removal within the TCF phase images.  Simulations showed the 

two-dimensional mean filter discussed is important to remove some image noise prior to 

step 5 in the image processing flow of Figure 8.  Simulation showed the two-dimensional 

mean filter of size 3x3 discussed was better at removing noise distortions while 

preserving phase shift time information than the other filters were.  Next, we discuss the 

edge detection operation (step 5 of the processing flow shown in Figure 8).  
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C. EDGE DETECTION 

Edge detection schemes are investigated to isolate the cross-term region 

boundaries discussed in Chapter III.  We specifically consider Laplacian, Roberts, Sobel 

and Prewitt edge operators and variants. 

1. Laplacian Operators 

Two example masks for the Laplacian operator are shown below in Equation (4.3) 

[[6] p. 52,66].  The first effectively sharpens image details while the second is an edge 

detection mask.  In general, these filters sharpen the image well but accentuate image 

noise as well as discussed later.  Note that 3x3 masks are shown below, however, larger 

masks tend to mitigate the effect noise has on the operation: 

 
0 1 0 0 1 0
1 5 1 1 4 1

0 1 0 0 1 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. (4.3) 

2. Roberts Edge Operator 

The Roberts edge operator is a differentiator style operator that compares 

neighboring pixels through a difference of squares comparison.  One expression given in 

[7] is as follows: 

 { }
1

2 2 2
( , ) ( , ) ( 1, 1) ( 1, ) ( , 1) ,g x y f x y f x y f x y f x y⎡ ⎤ ⎡ ⎤= − + + + + − +⎣ ⎦ ⎣ ⎦  (4.4) 

 

where f(x,y) represents the image undergoing the operation with integer pixel coordinates 

(x,y).  Thus, regions where neighboring pixels greatly differ are emphasized more than 

regions with small pixel intensity differences.  While Equation (4.4) is one version of the 

Roberts edge detection operator, as discussed in [6], other versions exist.  For example, 

[6] proposed  a simpler expression of the Roberts edge detection operator defined in 

terms of  absolute values instead of square roots for the same neighboring pixels as in 

Equation (4.4) as follows: 

 ( , ) ( , ) ( 1, 1) ( 1, ) ( , 1)g x y f x y f x y f x y f x y= − + + + + − + . (4.5) 
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3. Sobel Edge Operator 

As discussed above, the Roberts edge operator filters the image by comparing 

neighboring pixels to each other to enhance edges present in the image.  The Sobel edge 

operator uses masks instead to perform a filtering operation based on predefined 

directions.  Thus a Sobel mask is designed to find edges oriented vertically (column 

mask), horizontally (row mask), or diagonally (diagonal mask).  Therefore, the user is 

able to apply specific masks to highlight certain edges vice others.  Note that such a tool 

where edges with known orientations point to the phase shift times of interest may be 

potentially very useful. 

Examples of column, row, and diagonal Sobel operator masks used in this 

research are shown in Equation (4.6).  These masks were extended to higher orders, i.e. 

7x7, to investigate how mask dimensions affect results and will be discussed below in 

Section 5. 

 

COLUMN MASK ROW MASK RIGHT DIAGONAL MASK

0     0     1     0
-1     0     1 -1    -2    -1

0     2     0    -1
-2     0     2   0     0     0

1     0    -2    
-1     0     1   1     2     1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.
 0

0    -1     0     0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.6) 

 

It should be mentioned that the right diagonal mask shown in Equation (4.6) is a 

version of the Robinson compass mask listed here because of the similarity to Sobel 

operators but emphasizing a directionality that the normal Sobel operator does not use 

[6].  Results show the Robinson compass mask shown yields better results for pixels 

oriented at a positive forty-five degree angle, while column and row masks provide better 

results for pixels oriented vertically and horizontally. 

 4. Prewitt Edge Operator 

Prewitt masks are similar to Sobel masks in shape and orientation but use only 

ones and zeros (Equation 4.7).  Sobel masks allow for variations in the coefficient 

magnitudes (Equation 4.6) whereas Prewitt masks do not.  The Prewitt operator is not as 
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drastic an operation as the Sobel operator because the Prewitt operator does not 

emphasize any one pixel within its masks unlike the Sobel operator.  Subsequently, the 

Prewitt operator performed worse than the Sobel in the noisy environment of our 

application. 

 

 COLUMN MASK ROW MASK

-1     0     1 -1    -1    -1
-1     0     1   0     0     0
-1     0     1   1     1     1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (4.7) 

 
 

5. Edge Operator Comparisons 

a. Noisy Phase Shift Example 

Comparing edge operators was somewhat more subjective than other 

comparisons conducted in this study; however, examples show which operators work best 

for this project’s requirements.  Figure 13 illustrates the impact edge detection operators 

have on the TCF phase obtained for a PSK signal imbedded in 6dB SNR level noise after 

the one-dimensional 15th order median and 1st derivative 9th order SG filters discussed 

previously have been applied.  The phase shift is located at time 150 in the window of 

length 300.  Figure 13 also shows that three of the four edge operator schemes have very 

similar results with the Roberts edge detection slightly better than the others.  Sobel and 

Prewitt operators tended to emphasize noise pixels more than the Roberts edge operator 

did, as shown in Figure 13.c and 13.d.  The two-dimensional Laplacian filter did not 

perform well, as shown in Figure 13.b, and was not considered further.  The Roberts edge 

detection operator was selected in our study, as simulations showed it emphasized fewer 

noise pixels than the other edge detection schemes. 
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a.  

 

b.  

 

c.  

 

d.  

 

e.  

 
Figure 13.   Edge Operator Comparisons: a. Processed TCF phase image obtained after 

SG filter operation, filtered image obtained after  b. Laplace, c. Sobel, d. Prewitt, 
and e. Roberts edge detection schemes (Horizontal axis: Time axis – left to right, 

Vertical axis: Lag axis – top to bottom). 

b. Noisy No Phase Shift Example 

All edge detection schemes are sensitive to image noise.  Therefore, the 

no-phase-shift case must also be taken into consideration when deciding which edge 

detection method to use for image enhancement purposes.  Figure 14.a plots the TCF 

phase obtained for a PSK signal without a phase shift imbedded in 6dB SNR. Figures 

14.b through 14.e showed that the Sobel, Prewitt, and Roberts edge detection schemes 

perform similarly in this no-phase shift example.  Overall simulations showed that the 

Roberts edge detection scheme yields smaller noise pixel regions than those obtained 

after applying the Sobel or Prewitt operators and minimize the noise remnants to be 

cleaned later.  As a result, the Roberts operator was selected to emphasize the phase shift 

characteristics prior to the final morphological image transformation phase. 
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a.  

 

b.  

 
c.  

 

d.  

 
e.  

 
Figure 14.   No Phase Shift Edge Comparison: a. Processed TCF phase image obtained 

after the SG filter operation, results of b. Laplace, c. Sobel, d. Prewitt, and e. 
Roberts edge detection schemes (Horizontal axis: Time axis – left to right, 

Vertical axis: Lag axis – top to bottom). 

This section discussed four different edge detection schemes designed to 

enhance region boundaries containing the phase shift timing information (step 5 of Figure 

8).  At this point the TCF phase output image is filtered along the time axis with a 15th 

order one-dimensional median filter, a 2nd order difference or 1st derivative 9th order SG 

filter, and further filtered using a two-dimensional 3x3 mean filter.  Next, the Roberts 

edge detection scheme is applied to emphasize phase shift time information.  Finally, 

morphological operations are applied as a sixth and final pre-processing step, and 

resulting processed image used to extract the phase shift timing information. 

Morphological operations considered in this study are discussed next.  

D. MORPHOLOGICAL OPERATIONS 

The phase shift characteristic is more clearly defined in a phase shift window 

(Figure 13.e) after the edge enhancement step is completed than it originally was in the 

initial TCF phase output image (Figure 9.a).  However, a pixel pattern consistent enough 

to be used for a matched filter approach does not exist at this stage.  Additionally, some 

noise remains in the images following the edge detection step.  This section introduces 
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morphological dilation and erosion techniques and discusses their uses to consistently 

transform the edge enhanced TCF phase image into an image that is exploitable by a 

matched filter approach while eliminating noise remnants. 

1. Dilation and Erosion Basics 

Dilation, erosion and subsequent binary opening and closing operations were 

considered in this study.  Erosion and dilation, as discussed in [8] and [6],  serve as the 

fundamental functions defining opening and closing operations.  Erosion is defined in [6] 

as a logical NOR operation where image pixels covered by the structuring element are 

replaced by taking the logical NOR of all pixels under consideration.  The logical NOR 

of the pattern under the structuring element shrinks the eroded object or pattern when the 

structuring element does not fit inside the object being considered. 

Dilation is defined as a logical OR operation where the region of the object within 

the structuring element object is replaced by the logical OR of the structuring element 

samples unless the origin pixel is a zero [6].  Dilation is the dual of erosion, as explained 

in [8], and has the effect of expanding objects under consideration.  Furthermore, a 

structuring element is a predefined pattern of pixels that must be chosen for each specific 

case in order to provide the desired result.  Thus, these operations are generally very 

subjective and do not lend themselves easily to our specific case.  However, they were 

considered as means to isolate key features of the TCF phase output images to improve 

the phase shift time detection task.  Due to the nature of the processing used these 

operations were considered primarily as a way to remove noise pixels still remaining 

after step 5 of the pre-processing phase shown in Figure 8.   
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Figure 15.   Binary Dilation and Erosion Example: a. Input image, b. Structuring 

element, c. Dilated image, d. Eroded image. 

A simple binary image example using a sample object and sample structuring 

element illustrates dilation and erosion effects for our purposes.  Figure 15 shows the 

results of separate dilation and erosion operations on the white object contained in Figure 

15.a using the upside down ‘T’ structuring element shown.  Note that the structuring 

element in Figure 15.b is said to have dimensions of 4x5 pixels, while the structuring 

element object within the image is 3 pixels along the base and 1 pixel above the base at 

the center.  This distinction between images and the objects they contain is important for 

the current discussion and later chapters.  Note how the dilation effectively expands the 

irregular object, while the erosion operation almost entirely erases the object.  Further 

note that the erosion operation may completely erase the object when the structuring 

element used is too large or does not fit within the object of consideration due to 

geometry or orientation. 

Dilation and erosion methods will be used to our advantage for noise removal as 

well as shaping the TCF phase shift characteristic.  However, the user must be careful 

when choosing structuring elements especially with the erosion operator as phase shift 

features must be preserved.  Too large erosion structuring elements result in missed 

detects, and too small a structuring element results in false alarms.  Considering the 

peculiarities of dilation and erosion techniques and after trial and error, we selected 

specific irregularly shaped structuring elements of different sizes, and cascaded dilation 

and erosion operations to accomplish our dual goals of phase shift characteristic 
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transformation and noise removal.  Although project templates are discussed in detail in 

Chapter V, basic structuring elements are used here to illustrate the dilation and erosion 

process. 

2. Morphological Comparisons 

Morphological operations, shown as step 6 in the image processing flow, 

transforms the image shown in Figure 13.e into the final image shown in Figure 7.  Since 

the sides of the characteristic phase shift time triangle shown in the final image of Figure 

7 were the desired result of these morphological operations, the following discussions 

illustrate how changing structuring elements may affect the resulting phase shift 

characteristic shown in Figure 13.e.  The final decision to use cascaded dilation-erosion 

operations came after considering the initial images of Figures 13.e and 14.e and the final 

desired image of Figure 7 as well as the simulation results discussed below. 

a. Square Structuring Element Dilation and Erosion 

We applied dilation and erosion operators to TCF phase images obtained 

from PSK signals imbedded in AWGN with SNR=6dB and already pre-processed thru 

step 5 of Figure 8, i.e., including the Roberts edge operator to investigate the impact of 

the operations.  Note that PSK signals with phase shift or no phase shift contained in the 

frame analyzed were considered.  Figure 16 illustrate these operations on a pre-processed 

TCF phase image for a phase shift case.  The morphological operation demonstrated here 

shows that dilation or erosion operations independent of one another do not enhance the 

phase shift information or enhance both phase shift information and noise.  Note the 

structuring element objects for these dilation and erosion operations are 4x4 filled-in 

squares.  Figure 16.b shows that dilation produced amplification of the desired triangular 

phase shift at time 150 but also amplified noise present elsewhere in the image.  

Furthermore, Figure 16.c shows that the erosion operation on Figure 16.a erases the entire 

image due to the characteristic size and shape of noise pixel groups present in this figure.  

Thus, dilation and erosion operations conducted independently are not successful at 

emphasizing phase shift information and noise removal. 
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a. 

 

b. 

 
c. 

 
Figure 16.   Impact of independent dilation and erosion of TCF phase image with, 

phase shift example for PSK signal +AWGN, SNR=6dB (shift time 150, window 
length=300): a. after applying Roberts edge detection, b. after applying dilation 

operation with 4x4 square structuring element on image a, c. after applying 
erosion operation with 4x4 square structuring element on image a (Horizontal 

axis: Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

b. Closing and Cascade Examples 

By definition a closing or opening operation uses the same structuring 

element for both dilation and erosion portions.  However, simulations showed that 

dilation and erosion operations did not remove unwanted noise pixels when using 

identical structuring elements for both operators.  Figure 17 illustrates this problem, 

where the circled region indicates unwanted noise pixels remaining after the two 

operations.  Therefore, specific structuring elements were designed to transform the 

sequences of pixels showing at 45± ° angles into continuous lines along the same 

orientations, as shown in Figure 7.   

a. 

 

b. 

 
c. 

 
Figure 17.   Closing operation example (shift time 150, window length=300): a. pre-

processed TCF phase image (with phase shift, PSK signal + AWGN, SNR=6dB), 
Roberts edge detection output, b. after applying Dilation operator, 4x4 square 
structuring element, c. after applying erosion operator to image b, 4x4 square 

structuring element (Horizontal axis: Time axis – left to right, Vertical axis: Lag 
axis – top to bottom). 
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c. Irregular Structuring Elements 

Two sets of structuring elements were used to clean up noise and preserve 

lines oriented at 45± ° angles that contain the phase shift timing information.  Figures 18 

and 19 show the first and second sets of structuring elements used to accomplish the 

desired final image transformations.  Note that the dilation template called ‘Dilation 1’ is 

12x6 pixels, while each erosion template in Figure 18 is 24x24 pixels.  The final dilation 

and erosion templates are 8x8 and 11x6 pixels respectively, as shown in Figure 19.  The 

size difference between the erosion and dilation structuring elements within each set is 

required to facilitate the noise removal feature of the cascade operation during the both 

operations.  Furthermore, the first set is used to aid the phase shift triangular shape 

construction from the edge detection phase output.  These erosion operations are 

conducted separately then summed together to result in a relatively noise free image with 

the phase shift characteristic more pronounced than that observed before their 

applications, as shown in Figure 20.  The second set of structuring elements was used to 

complete the transformation by fattening the phase shift lines to maximize correlation, 

while at the same time sharpening the phase shift characteristic object and removing 

noise emphasized by the second dilation operation. 

Dilation 1

Erosion 1A Erosion 1B

 
Figure 18.   First irregular structuring element set for Dilation and Erosion (Sizes: 

“Dilation 1”: 12x6, “Erosion 1A” & “1B”: 24x24). 
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Final Dilation

Final Erosion

 
Figure 19.   Final set of irregular structuring elements (Sizes: “Final Dilation”: 8x8, 

“Final Erosion”: 11x6). 

Figure 20 presents results obtained after applying the two structuring 

element sets shown in Figures 18 and 19.  Figure 20.e shows the result of the first set 

where the desired phase shift characteristic remains.  Figure 20.g shows the final 

processed image following the application of the second structuring element set, where 

the phase shift characteristic is enlarged.  Thus, two successive cascaded dilation-erosion 

operations using irregularly shaped structuring elements performed the desired 

transformation and simultaneous noise removal yielding a final image similar to that 

shown in Figure 7.   
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a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

f. 

 

g. 

 
Figure 20.   Cascade morphological example using irregular structuring elements (shift 

time 150, window length=300): a. PSK + AWGN, SNR=6dB, TCF phase-shift 
edge detection output, b. Input dilated using ‘Dilation 1’ structuring element, c. 
Dilated image eroded using structuring element ‘Erosion 1A’, d. Dilated image 

eroded using structuring element ‘Erosion 1B’, e. Eroded images summed to form 
composite processed image f. Set 1 eroded image dilated using ‘Final Dilation’ 

structuring element, g. Final dilated image eroded using ‘Final Erosion’ 
structuring element (Horizontal axis: Time axis – left to right, Vertical axis: Lag 

axis – top to bottom). 

This section investigated dilation, erosion, and binary closing and their 

application to the pre-processed TCF phase output.  We designed specific structuring 

elements, shown in Figures 18 and 19, to enhance the phase shift timing information and 

showed in an example the impact these specific structuring elements have on noise pixels 

and phase shift timing information contained in the TCF phase image. 
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E. CONCLUSIONS 

Several different techniques were considered to clean up the TCF phase matrix 

and enhance the phase shift timing information contained within. First, we applied a one-

dimensional median filter along the time axis to remove image noise without destroying 

the phase shift discontinuity information.  Next, we applied a differentiation step to 

enhance the phase shift discontinuity.  Third, we applied a two-dimensional mean filter of 

dimension 3 3×  to remove remaining noise from the TCF phase image.  Fourth, we used 

the Roberts edge operator to enhance the phase shift time information.  Last, 

morphological feature manipulation techniques including binary dilation and erosion 

were applied to further improve the detection results of the overall algorithm. 

Overall, findings showed that, 

• the one-dimensional median filter removed enough noise from the TCF 

phase image to emphasize any present phase shift discontinuities after the 

differentiation step,   

• the two-dimensional mean filter proved very useful at removing image 

noise following the differentiation step,   

• the Roberts edge detection operator was best at enhancing phase shift 

timing information among the four edge operators investigated,  

• cascaded dilation and erosion operations using irregularly shaped 

structuring elements, as those shown in Figure 18 and 19, can effectively 

remove remaining image noise features while preserving phase shift 

features.  

The basic sequence of operations applied to the TCF phase image to enhance 

phase shift time information is summarized below using a specific PSK noisy signal 

example. The PSK signal considered has a phase shift at time=150 and SNR level equal 

to 6dB.  Figure 21 shows the resulting TCF phase image obtained from that signal.  
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Figure 21.   QPSK + AWGN, SNR=6dB, TCF phase output and phase shift time at 

150 (Horizontal axis: Time axis – left to right, Vertical axis: Lag axis – top to 
bottom). 

(1.) Apply a one-dimensional median filter of length 15 along the time axis to 

mitigate noise affects,  

 
Figure 22.   One-dimensional filtered TCF phase output of Figure 21 (Horizontal axis: 

Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

(2.) Apply a 2nd order difference filter or 1st derivative 9th order SG filter along the 

time axis to emphasize any phase shift discontinuities across the time axis,  

 
Figure 23.   TCF phase Output of Figure 22 following 2nd order difference operation 

along time axis (Horizontal axis: Time axis – left to right, Vertical axis: Lag axis 
– top to bottom). 

(3.) Apply a two-dimensional mean filter of dimension 3 3×  to further remove 

remaining noise while maintaining the phase shift information,  

 
Figure 24.   Figure 23 following two-dimensional mean filter of order 3 (Horizontal 

axis: Time axis – left to right, Vertical axis: Lag axis – top to bottom). 
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(4.) Apply the Roberts edge operator to emphasize any phase shift information.  

Note this step also converts the image from grayscale to binary,  

 
Figure 25.   Figure 24 following Roberts edge detection operation (Horizontal axis: 

Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

(5.) Apply cascaded binary dilation and erosion operations previously discussed 

in Section D.2.c to remove remaining random noise and emphasize phase shift timing 

information. 

 
Figure 26.   Final image following cascaded Dilation and Erosion operations on Figure 

25 (Horizontal axis: Time axis – left to right, Vertical axis: Lag axis – top to 
bottom). 
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V. PHASE SHIFT DETECTION ALGORITHM 

The overall phase shift time detection algorithm can be split into two phases: (1) a 

two-dimensional cross correlation matched filter operation and (2) the optional window 

overlap phase shift decision scheme designed to improve performances in noisy 

conditions.  This section details the algorithm implementation. 

A. PHASE SHIFT DETECTION ALGORITHM IMPLEMENTATION 

Figure 27 presents the overall flow chart of the major steps taken within the phase 

shift detection algorithm designed during this work.  As shown below, first target images 

and structuring elements are defined (Chapter IV) followed by the Temporary Correlation 

Function (TCF) phase computation for each signal segment (Chapter III).  These TCF 

phase images are then processed to isolate the phase shift time (Chapter IV) before the 

two-dimensional cross-correlation locates the phase shift time in each window.  Last, 

final phase shift time decisions are derived, either from individual decisions, or by 

combining multiple decisions when overlapping analysis windows is allowed during 

processing.  Topics that have been previously discussed will refer to earlier sections of 

the text with specific details of the implementation briefly discussed in the following 

section.  The remainder of this section describes in detail each phase not previously 

covered. 
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Figure 27.   Phase Shift Detection Algorithm flow diagram. 

1. Signal Generation 

As stated in Chapter II, this research focuses on identifying phase shift times 

contained in noisy Quadrature Phase Shift Keyed (QPSK) signals.  The signal generation 

was conducted so that it minimizes assumptions about the incoming signal.  Some 

assumptions were inherent such as using normalized frequency less than 0.5 Hz to ensure 

the Nyquist criterion is not violated.  The phase shifts used were of the same magnitudes 

as those discussed in Chapter II, Equation (2.2).   

The last significant assumption that is not addressed for this research is the affect 

of bit periods on this algorithm.  The phase shift insertions are programmed in this 

implementation to allow one, zero, or at most two shifts to be present within each 

analysis frame.  Additionally, the spacing of the phase shifts within the signal is 

dependent on the number of desired test shifts and signal length simulated.  Signal 

lengths and number of shifts within a signal simulation run were calculated to prevent 
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more than one phase shift from occupying the same window during no overlap runs and 

more than two shifts during overlap runs.  Thus, a minimum bit period was not analyzed 

as part of this work.   

2. TCF phase Image Computation 

a. Hilbert Transform 

The TCF phase computation performs a complex transformation on the 

input signal but requires an analytic form of the real signal shown in Equation (2.1).  The 

signal generation for this research is a real cosine signal waveform, as presented in 

Chapter II.  The real signal is transformed into its analytical version using the Hilbert 

transform defined in the frequency domain as: 

   

,  for 0
( ) 0 ,  for 0

,  for 0
sgn( ).

HB

j
H

j
j

ω
ω ω

ω
ω

− >⎧
⎪= =⎨
⎪ <⎩

= −

         (5.1) 

In this study, we apply the MATLAB function hilbert.m to the real signal 

to generate the analytical signal. 

b. TCF Phase Calculation 

The resulting analytic signal obtained after the Hilbert transform step is 

used to compute the two-dimensional TCF phase function previously discussed in 

Chapter III. 

c. Phase Angle Computation 

Raw TCF expressions must have the phase information extracted using a 

phase angle computation.  This work used the MATLAB function angle.m to compute 

the phase angles following the TCF computations. 
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3. Target Image Generation 

Many trials were conducted to find appropriate target templates needed for the 

two-dimensional matched filter operation.  Simulations showed that too small template 

images tended to highly correlate with any bit of remaining image noise, while too large 

template images did not significantly correlate with present phase shift characteristics.  

These correlation issues will be discussed in detail in Section C below.  Final target 

images, shown in Figure 28, were produced in MATLAB using matrices of ones and 

zeros and then stored for recall by the program for each trial run. 
Target 1 Target 2

 
Figure 28.   Target images used during 2-D Cross-correlations (Horizontal Axis – 

Time Axis, Vertical Axis – Lag Axis). 

Target images have dimensions 60x30 pixels along the time axis and lag axis, 

respectively, white target objects thickness equal to 7 pixels.  These two target images 

were selected as pre-processed TCF phase images obtained after filtering and 

morphological operations reflected similar structures: triangular shape with closed (as for 

target 1) or open tip (as for target 2) portions. 

Further, note that the thickness of the triangle object present in both target images 

is indirectly a result of the size and shape of the structuring elements used in the 

morphological operations. We noted that this specific thickness parameter could 

adversely affect the two-dimensional matched filter results if not chosen properly.  We 

selected the specific 7-pixel object thickness empirically after varying this parameter and 

observing resulting phase shift and noisy no-phase shift correlation values. 

4. Signal Image Pre-Processing Details 

Throughout this section, the sample TCF phase shift image shown in Figure 29 

obtained from a 6 dB noisy QPSK signal is used to illustrate each processing step.  The 

length of data in this window segment is 364 samples to illustrate the final windowing 
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method used in the algorithm.  The TCF phase image dimensions are 364 pixels long by 

182 pixels wide before processing begins.  The phase shift time in this example is located 

at time 150, as indicated in Figure 29.  Note the phase shift is not visible form the initial 

TCF phase image.   

 
Figure 29.   PSK + AWGN, SNR=6dB, TCF phase shift image prior to image 

processing (arrow indicates shift time=150, for window length=364) (Horizontal 
axis: Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

a. Signal Segmentation 

Detection results are directly impacted by the signal segmentation process, 

and the TCF generation (Chapter III).  The following comments can be made. 

• Simulations showed that phase shifts located towards signal extremities 

were more difficult to extract, as a result of the pre-processing steps 

implemented to decrease noise and emphasize phase shift timing 

information. 

• The TCF phase function displays information for signal times less than or 

equal to the lags calculated, thus resulting in the triangular shape observed 

in Figure 29, i.e., leaving a portion of each end of the time axis blank, and 

generating outside edges in the TCF phase image.  These TCF outside 

boundaries do not contain phase shift timing information, and are removed 

by masking the first and last 32 pixels on either end of the TCF phase 

output image to eliminate them.  However, such masking also results in  
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the detection algorithm un-ability to detect potential phase shift 

information contained within these time segments, as illustrated in Figure 

30.   

Two different segments options were considered in this work: 

• Segmentation Option A: Segment the PSK signal using the desired 

window length or frame size, as shown in Figure 30.  This approach is 

simple but leaves a segment of the data un-analyzed, thereby missing any 

phase shift contained within these end regions. 

• Segmentation Option B: Expand the PSK window length by 32 samples 

on either side of the frame to compensate for the masking operation of the 

same width, also illustrated in Figure 30.  The additional 32 samples added 

on either side ensure all portions of the signal are visible in the cross-

correlation computation and no segment of the signal is left un-analyzed.   

   

 
Figure 30.   Segmentation Options A and B. 
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Figure 31.   Signal Segmentation and Masking. 

b. Image Construction 

The TCF transformation is applied to each signal frame to obtain the TCF 

phase output image.  The resultant size for a window length of 300 samples using 

segmentation option B is 364 pixels long by 182 pixels wide, as the TCF phase image 

length is dictated by the overall signal frame length.  The width of the signal image is 

dictated by the TCF function itself and is equal to half the total signal length used in the 

TCF transformation operation.  The TCF computation performs the temporal correlation 

for positive lag values only, as the function is complex symmetric.   

c. Image Cropping 

Simulations showed the processed TCF phase images could not be 

processed successfully using the default TCF image size because the target images 

matched the signal images at multiple locations, as illustrated in Figure 32.  Note that 
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Figure 32 shows the processed TCF phase output obtained after filtering and 

morphological operations were applied to the raw TCF phase shown in Figure 29.  

Further, note that the phase shift time information is clearly visible at that point.  This 

problem stemmed primarily from the Target image correlating with features of the signal 

image that closely but incorrectly matched the actual phase shift characteristic, as 

described in point number 3 of Figure 32.  Therefore, the processed TCF phase images 

were resized to the same width as that of the target images, i.e., signal images were 

cropped to a width of 30 pixels as selected target images had dimension 60 by 30 pixels 

to avoid such errors. 

The primary focus of the phase shift time estimation algorithm is to find 

the shift time characteristic “tip” of the triangle located along the time axis.  This desired 

triangular feature is what the target images discussed in Section 3.a were based upon.  

Smaller target images better focused on this key phase shift characteristic negating the 

need for larger images.  Significant computational savings were realized through 

reduction of the signal image size, thereby limiting the two-dimensional cross-correlation 

computation to one pass down the image vice 182 passes for the un-cropped version, as 

shown in Figure 32.  Also, larger target images provided fewer correlation values during 

the cross-correlation process because only those values that resulted from the correlation 

of the full target image inside the signal image were accepted.  Thus, larger target images 

were shown through simulation to increase the number of missed phase shifts for a given 

window length and unnecessarily increase the computational load. 
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Figure 32.   2-D Cross-Correlation Example: 1.) Processed TCF phase image before 

and after cropping, 2.) Showing correlation process using Target image (All 
images: Vertical axis: Time axis – top to bottom, Horizontal axis: Lag axis – left 

to right). 

Figure 32 shows the original un-cropped and cropped versions of the TCF 

phase image.  Note that image sizes indicated within the figure illustrate changes in 

image size resulting from the image cropping step.  Specifically, the image cropping step 

converts the processed TCF image from 364x182 pixels to 332x30 pixels by removing a 

rectangular block containing the first 32 points along the time domain in the processed 

TCF image.  The trailing 32 pixels time-domain pixels are masked to allow the two-

dimensional cross-correlation step a longer scan of the signal image, as explained in 

Section 4.j.  Figure 33 shows the results of the cropping operation illustrated in Figure 29.   

 

Figure 33.   Example cropped TCF phase output image for QPSK signal + AWGN, 
SNR=6dB (Horizontal axis: Time axis – left to right, Vertical axis: Lag axis – top 

to bottom).  
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d. One-dimensional Median Filter 

At that point, the one-dimensional median filter is applied along the time 

axis of the signal images to smooth the TCF phase output information prior to the 

differentiation operation, as described in Chapter IV.A.  A separate function was written 

to scan the image down the desired axis using the MATLAB function medfilt1.m.  Figure 

34 shows the results of the one-dimensional median filter on the TCF phase output image 

shown in Figure 33.   

 
Figure 34.   1-D Median filtered output of TCF phase output in Figure 33 (Horizontal 

axis: Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

e. Derivative Filter 

Two methods were investigated, as previously discussed in Chapter IV.  

First, the time axis difference was conducted using a 2nd order difference filter from the 

MATLAB function diff.m.  Second, a differentiation filter known as the Savitzky-Golay 

(SG) Finite Impulse Response (FIR) smoothing filter was selected as this filter removes 

noise while performing the differentiation operation.  This differentiation operation was 

implemented in the function diffsg.m with the MATLAB function sgolay.m, and is 

included in Appendix A.  While both the difference filter and SG filter are shown in 

Figure 35 for illustration purposes, only SG and segmentation option B are displayed for 

the remainder of these examples. 
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a.

  

b. 

 
Figure 35.   Figure 34 filtered by: a. 1st derivative, 9th order SG filter down time axis 

using segmentation option B, b. 2nd order difference filter down time axis using 
segmentation option A (Horizontal axis: Time axis – left to right, Vertical axis: 

Lag axis – top to bottom) 

f. Rounding Operation 

The 9th order SG filter implementation of the 1st order derivative 

emphasized minor amounts of noise in images that needed removal as the noise level of 

the QPSK signals increased.  As a result, the MATLAB round.m function was applied to 

prepare these remaining noise pixel values for removal by the two-dimensional 3x3 mean 

filter prior to its application.  As mentioned in Chapter IV, noise overwhelmed the edge 

detection process in low SNR levels when the two-dimensional mean filter was not 

applied, while at the same time a high-order two-dimensional mean filter resulted in 

erasing phase shift timing information.  Thus, the rounding operation provided a simple 

way to keep the smaller two-dimensional mean filter performing adequate noise removal 

while ensuring phase shifts were not removed as well.  Figure 36 provides the results 

obtained after the rounding operation applied to Figure 35.   

 
Figure 36.   Rounding of SG results of Figure 35 (Horizontal axis: Time axis – left to 

right, Vertical axis: Lag axis – top to bottom). 
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g. Two-dimensional Mean Filter 

The 3x3 two-dimensional mean (Chapter IV, Section B.3) filter removed 

noise left by the differentiation step, whereas phase shift information was not erased.  

Figure 37 shows the two-dimensional mean filter of image in Figure 36.   

 
Figure 37.   Two-dimensional 3x3 mean filter results of Figure 36 (Horizontal axis: 

Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

h. Roberts Edge Detection 

The Roberts edge detection method in the MATLAB function edge.m was 

used to provide this edge enhancement operation.  Figure 39 shows the Roberts edge 

detection operation on the two-dimensional mean filtered output of Figure 37.   

 
Figure 38.   Roberts edge detection on two-dimensional 3x3 mean filter of Figure 37 

(Horizontal axis: Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

i. Morphological Processing 

MATLAB functions imdilate.m and imerode.m were used to perform the 

morphological operations during the image processing phase.  Details of these operations 

can be found in Chapter IV Section D.  The final image before masking is shown in 

Figure 39.   

 
Figure 39.   Results of final erosion on Figure 38 (Horizontal axis: Time axis – left to 

right, Vertical axis: Lag axis – top to bottom). 
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j. Image Masking Operation 

Simulations showed that a boundary condition problem remained no 

matter which segmentation option was used.  However, this problem was decreased by 

selecting segmentation option B.  The TCF computation boundaries result in edges 

oriented in the same direction as the phase shift characteristic.  Thus, the leading and 

trailing 32 samples of signal information are removed from the image to eliminate these 

edge boundaries, which do not carry phase shift time information.  Masking was 

conducted by replacing the last 32x30 pixel region of each signal window with zeros, 

resulting in removing TCF created edges contained within this region from consideration.  

Figure 40 shows the final processed output image after performing the masking operation 

on Figure 39.   

 
Figure 40.   Final image - results of masking operation on Figure 39 (Horizontal axis: 

Time axis – left to right, Vertical axis: Lag axis – top to bottom). 

B. 2-D MATCHED FILTER IMPLEMENTATION 

1. Matched Filter Introduction 

The matched filter correlates a noisy signal with a desired signal characteristic to 

track the occurrence of that characteristic in time or position.  Our two-dimensional 

matched filter uses images to track phase shift occurrences contained in the processed 

TCF phase matrix.  This process was implemented using SIMULINK in MATLAB and 

specifically made use of the 2-D Correlation block in the Video and Image Processing 

blockset.  The 2-dimensional correlation output between the processed TCF phase image 

A of size MaxNa and the target image B of size MbxNb is given as:  
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where the size of matrix A is larger than that of matrix B and 

0 1 and 0 1.i Ma Mb j Ma Mb≤ < + − ≤ < + −  

Note that the default normalization option of the 2-D Correlation block gave poor 

correlation values when dealing with noisy signals.  Thus, we implemented a different 

normalization factor to give maximum cross-correlation values when the target object fit 

inside the triangular shape in the processed TCF phase image and is given by: 

 1 1

0 0

1 ,
( , )

norm I J

i j

K
B i j

− −

= =

=

∑∑
 (5.2) 

where B is the target image of size MbxNb. 

  

2. SIMULINK Implementation 

Figure 41 presents the SIMULINK model, patmatch.mdl, designed to extract 

phase shift time information.  The figure shows: 

• One signal image block, Signal A, which contains the processed and 

masked TCF phase image obtained after filtering and morphological 

operations, of size 332*30, 

• Target image blocks, Tgt Image A and Tgt Image B, shown earlier in 

Figure 28, and their corresponding normalization factors, Norm A and 

Norm B, described in Equation (5.2),   

• Two 2-D XCORR blocks which perform the two-dimensional cross-

correlation operations in parallel,  

• Two max location blocks which compute the index for the location of the 

maximum correlation value,   

• The Window Time Correction block corrects for: 1) the 2D XCORR block 

reference frame offset from the center of the target triangle along the time 

axis and 2) for the 32 pixels cropped from the top of the signal image 

(time axis).   
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• The Noshift Time Correction block simplifies programming when a no-

shift decision has been made. 

 
Figure 41.   2-D Matched Filter SIMULINK implementation, patmatch.mdl. 

3. Patmatch.mdl Model Results 

Figure 42 illustrates results obtained using a processed and cropped TCF phase 

image both for one-shift (Figure 42.a) and no-shift cases (Figure 42.b) for QPSK signals 

with 6dB SNR levels.  In both cases, the combination of image cropping and internal 



 56

program processing give the resulting TCF phase images dimensions of 328 pixels long 

by 30 pixels wide in preparation for the matched filter operation.  Note how the phase 

shift stands out following the image pre-processing steps while in the no-shift case image 

noise is completely erased.  This visual separation of the phase shift and no-shift case 

permits the use of a two-dimensional matched filter approach in extracting phase shift 

times. 

a.

  

b. 

 
Figure 42.   Processed and Cropped TCF Phase images from PSK signal + AWGN, 

SNR=6dB; a. one-shift located at time 150, b. no-shift (Horizontal axis: Time axis 
– left to right, Vertical axis: Lag axis – top to bottom). 

In this matched filter scheme, the desired phase shift information is contained in 

the white triangular object shown in Figure 42.a.  The matched filter uses the target 

image to “scan” processed TCF phase images obtained from noisy PSK signals.  By 

using appropriate target images, such as those shown in Figure 28, and repeated in Figure 

43, cross-correlation output values are expected to be high when a phase shift is present 

at the shift time location and low when there is no phase shift in the analysis window. 

Target 1

 

Target 2

 
Figure 43.   Target Images of size 60x30; same as Figure 28 (Horizontal axis: Time 

axis – left to right, Vertical axis: Lag axis – top to bottom). 

Figures 44 and 45 show the two-dimensional cross-correlation output obtained for 

the two target images defined in Figure 43 applied to images contained in Figure 42.  The 
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2-D XCORR block stops scanning 60 pixels before the end of the signal image due to the 

size of the target images, resulting in 268 possible correlation values corresponding to 

scan positions, as shown in Figure 44.  This scan results in the maximum correlation 

value located at position index 90 along the time axis.  The phase shift is found at 

location 152, after taking into account the 30 pixel offset due to the target image length 

and 32 pixel offset resulting from the cropping stage.  Figure 45 shows that the cross-

correlation values are equal to 0 for the no phase shift case, as the processed TCF phase 

image was completely blank.  Next, we discuss the two-dimensional matched filter 

threshold determination. 
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Figure 44.   Output of 2-D Cross-correlation blocks for target images 1 and 2 and 

Figure 42.a phase shift input image. 



 58

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2-D Cross-correlation Value

Frame Index (k)

R
xy2D

(k
)

 

 
Tgt1
Tgt2

 
Figure 45.   Output of 2-D Cross-correlation Blocks for target images 1 and 2 and 

Figure 42.b no-shift input image. 

C. THRESHOLD DETERMINATION 

The matched filter output provides correlation values between target and 

processed TCF phase images. These correlation values characterize the quality of the 

match between these objects within the images and indicate where the best match occurs 

in the TCF phase image.  Thus, the next step lies in the identification of a threshold value 

above which the user decides the match is high enough to say there is a phase shift within 

the analysis frame and identify its specific time location. The detection algorithm uses a 

threshold value determined experimentally for a range of SNR levels.  The normalized 

cross-correlation range between zero and one requires that our image processing 

maximize the difference between the phase shift and no-shift cases.  Histogram plots of 

the maximum cross-correlation values for successive phase shift and no-shift trials were 

used to find specific threshold gaps in the resulting correlation value groupings.  Noise 

SNR levels of 12, 9, 6, 4, 2, and 0 dB were investigated with tests of 500 phase shift and 

500 no-shift scenarios where the maximum correlation values were recorded separately 

for each. 

A few comments can be made on results observed: 
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• Simulations showed that the threshold value could easily be determined for 

signals with SNR levels down to 6dB or higher.  Figure 46 plots results obtained for a 

9dB SNR case.  Down to that 6dB SNR level, filtering and morphological operations 

applied to the TCF phase image clean the image well, resulting in the non-overlapping 

cross-correlation values observed for no-shift and one-shift signal cases.  Simulations 

showed that a cross-correlation value threshold equal to 0.28 worked well down to 6dB.  

Appendix B includes results obtained for additional SNR values.  
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Figure 46.   Cross-correlation values for QPSK signal + AWGN, SNR=9dB, phase 
shift and no-shift cases. 

• Simulations showed that results degrade quickly when the SNR level falls 

below 4dB.  Figure 47 shows cross-correlation values obtained for one-

shift and no-shift signal cases for PSK signals at 4 dB SNR. At that level, 

we selected a threshold value equal to 0.45 to limit the number of false 

alarms and maximize the number of phase shifts detected. 
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• Additional simulations were used to obtain updated threshold values when 

the SG filter was selected for the differentiation step.  Note, the algorithm 

was not optimized for the SG filter or its noise removal capabilities, 

resulting in the compressed range of threshold values listed in Table 1.   

. 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350
No Hop/Hop Counts 4 dB

 

 
Hop
No Hop

 
Figure 47.   Cross-correlation values for QPSK signal at 4 dB SNR, phase shift and 

no-shift cases. 

 
SNR (dB) 12 9 6 4 2 0 -2 
Difference 

filter 
0.28 0.28 0.28 0.45 0.5 0.8 0.98 

SG filter 0.42 0.42 0.2 0.2 0.1 0.01 0.01 

Table 1.   Difference filter and SG filter Simulation Threshold Values per SNR 
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D. OVERLAPPING WINDOW IMPLEMENTATION 

In attempting to improve detection performances in noisy environments, we 

investigated a window overlapping scheme designed to provide multiple looks of the 

same phase shift timing information, as illustrated in Figure 48.  The overlap method 

allows the user to first reach a separate phase shift decision in each analysis frame and 

then combine decisions, as appropriate.  This section discusses the decision method 

followed when dealing with overlapping windows.  Simulations showed the overlapping 

window implementation helped in cases where phase shifts appeared in edges in the no 

overlap case and in cases where noise levels were high causing many false alarms. 

 
Figure 48.   Signal Segmentation for 60% Overlap. 
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Figure 49 shows the general program flow for the window overlapping method.  

Two decision factors were defined to adjust the sensitivity of the scheme.  First, the No-

shift factor (Z) controls the maximum number of allowed individual no-shift decisions in 

a group of overlapping windows.  Second, the Decision (D) factor specifies the minimum 

number of overlapping windows that must agree, up to a tolerance level, for a phase shift 

time to be confirmed. 

 
Figure 49.   Window Crosscheck Function Flow. 
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Table 2 summarizes the various options for varying overlap cases.  “Group size” 

refers to the number of overlapping windows obtained for a specific overlap rate.  Note 

that the no-shift factor and decision factor do not apply for the zero overlap case, as final 

decisions are based on one individual decision only.  

Overlap (%) Group Size Zero Factor Decision Factor 
0 1 NA NA 
50 2 1 2 
60 3 2 2 
80 5 3 3 
90 10 5 4 

Table 2.   Window Verification Factors based on Overlap. 

First, individual phase shift decisions are made, based on the decision threshold 

value alone, and the accompanying phase shift time or a zero, when a no-shift decision is 

reached, are stored in the TIMES vector.  Next, a specific number of windows 

represented here as “Group Size,” and directly linked to the overlap rate are examined as 

a group as follows (Figure 50 illustrates this process): 

• If the group of overlapping windows contain greater than or equal to Z 

numbers of zero (no-shift) decisions, the TIMES index is incremented by 

one, resulting in a no-shift decision for that group.  Otherwise the program 

compares individual window groups, as follows. 

• When fewer than Z windows return a no-shift decision, and greater than or 

equal to D windows agree that a phase shift exists within a user-specified 

time range, as defined by the COMP parameter, the “best” shift time is 

chosen and stored.  For example, estimated shift times found within 30 

samples of each other are taken into account for final phase shift decisions 

for a window length of 300 samples and a 10% tolerance level.  At that 

point, the final phase shift time is obtained from the group of potential 

values following the process illustrated in Figure 50.   

• When fewer than Z windows return a no-shift decision, and fewer than D 

windows agree that a phase shift exists within a specific time range, the 
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TIMES index is incremented by one, resulting in a global no-shift decision 

for that group.  This process continues until all individual windows have 

been scanned. 

 For example, a specific signal time location can be observed by three 

consecutive windows for the 60% window overlapping case.  Parameters are set 

such that there can be no more than one no-shift in the group and two of the 

windows lead to estimated phase shift times differing by less than a user specified 

amount for an overall phase shift decision to be reached.  The global phase shift 

decision process derived for the overlapping window case is further described by 

the flow chart included in Figure 49 and illustrated with the example contained in 

Figure 50.   
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Figure 50.   Phase shift Time Selection Process, 60% Overlap, 10% Tolerance, Frame 

Size 300. 

E. CONCLUSIONS 

This chapter provided an overview of the phase shift detection algorithm, 

described the two-dimensional matched filter implementation, threshold determination 

and a window overlapping algorithm implemented to identify phase shift timing found in 

noisy QPSK signals.  MATLAB files and data plots not included in this chapter are 

included in Appendices A and B.  The next chapter presents results obtained.  
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VI. TESTING AND SIMULATION RESULTS 

This section presents detection performance results obtained for the PSK phase 

shift time identification scheme considered in this study.  The implementation involves 

the selection of several user-defined parameters and images such as the analysis frame 

length and overlap amount, structuring element shapes and sizes, target images used for 

the matched filter implementation, and threshold values for the phase shift versus no-shift 

decision.  As a result, various combinations of parameter values were considered during 

the study in an effort to estimate a “best” set of parameters, where “best” was evaluated 

in terms of resulting probability of accurate detection of the phase shift time information, 

probability of accuracy, and probability of false alarm.  

The overall phase shift timing identification algorithm involves a differentiation 

step, as shown earlier in Figure 35.  Chapter IV discussed two different implementations 

of this differentiation step: a basic differentiation filter, and a noise robust 

implementation using the SG differentiation filter.  This section presents results obtained 

using both differentiation operators.  First, we present identification performances 

derived with the difference filter differentiation step.  Specific structuring elements 

shapes and sizes, and threshold values were investigated and the “best” combinations 

selected for that specific differentiation operator.  Next, we present performance results 

obtained when the SG differentiation filter is selected in the differentiation step. 

A. SIMULATION OVERVIEW 

We generated QPSK signals distorted by AWGN in SNR levels between 12 and -

2 dB.  Testing was accomplished using 500 non-overlapping windows per experiment.  

Two-hundred fifty windows contained either a phase shift or no-shifts, with shifts spread 

semi-randomly throughout the length of the signal when window overlapping was 

investigated.  The no-overlap case did not use random placement to ensure only one shift 

or no shift per window.  The scenarios used window lengths of 256 and 300 to investigate 

window length impacts on the resulting detection algorithm.  Windows of length 300 

were used for all other testing. 
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Performance results are presented in terms of the probability of correct detects 

(PCD), false alarms, accuracy (PACC), and error rates (PERR).  The probability of correct 

detection is defined as the probability of deciding there is a phase shift in the signal and 

its estimated location is within a given range specified by the COMP parameter 

introduced in Chapter V.  The probability of false alarm is defined as the probability of 

detecting a phase shift when there is no actual phase shift.  PACC and PERR are defined 

below in Equation(6.1): 

 (0 | 0) (1 |1) and (1 | 0) (0 |1),ACC ERRP P P P P P= + = +  (6.1) 

where respective probabilities were defined as follows: 

(0 | 0) Probability of correctly detecting no phase shift,
(1 |1) Probability of correctly detecting a phase shift,
(1 | 0) Probability of detecting a phase shift when no shift is present, and
(0 |1) Probab

P
P
P
P

=
=
=
= ility of deciding no phase shift when there is a shift present.

(6.2) 

Probability quantities derived in this section are expressed on a 0 to 1 scale, where 

1 represents 100%.  This program was optimized for the difference differentiation step 

and an expected signal noise level of 6 dB SNR, however, final tests considered noise 

levels ranging from -2 dB to 12 dB SNR levels.   

B. DIFFERENCE FILTER OPTION RESULTS 

1. Difference Filter Simulation Settings 

Table 3 below shows settings for the difference filter algorithm test runs.  

Segmentation B runs use an edge offset of 32 samples appended to each end of the 

desired frame size. 

Threshold Analysis window 
Overlap amount (%) 

Phase Shift time Accuracy 
Tolerance (% of window length) Frame Size (n) 

See Table 1. 0, 60, 90 5, 10, 15 256, 300 

Table 3.   Difference filter simulation parameter settings using segmentation options A and 
B. 
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2. Segmentation Results 

The Segmentation B method described earlier in Section V.A.4.a, insured that no 

sections of the signal were missed during the phase shift identification process.  Figures 

51 and 52 present the probability of correct detection obtained for the no-overlap, 60% 

and 90% window overlap implementations. Figures 53 and 54 present the probability of 

false alarms obtained for the same configurations. A few comments can be made: 

• Results show no significant difference for the probability of correct 

detection and the probability of false alarms between the two segmentation 

methods down to 4dB SNR and both degrade significantly below that 

SNR level.  This similarity is to be expected as all shifts are inserted 

around window centers for the no-overlap implementation to prevent two 

shifts from being located in a single window, and to avoid locating shifts 

close to window edges, where they would be masked during pre-

processing steps. Note that no such shift placement constraint is imposed 

for the window overlap case, resulting in phase shifts potentially located 

towards edges of the analysis window where they may be masked and 

result in missed phase shifts, resulting in degraded performances. 

• Results show that a higher overlap percentage results in a slightly higher 

probability of correct detection and lower probability of false alarms down 

to 4dB SNR.  

• False alarm results obtained for SNR levels below 4dB show the 

identification is no longer useable for the set of user-specified parameters 

selected in this work. 
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Figure 51.   Segmentation A Probability of Correct Detection, signal carrier frequency 

= 0.1Hz, 10% accuracy detection tolerance. 
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Figure 52.   Segmentation B Probability of Correct Detection, signal carrier frequency 

= 0.1Hz, 10% accuracy detection tolerance. 
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Figure 53.   Segmentation A Probability of False Alarms, signal carrier frequency = 

0.1Hz, 10% accuracy detection tolerance. 
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Figure 54.   Segmentation B Probability of False Alarms, signal carrier frequency = 

0.1Hz, 10% accuracy detection tolerance. 
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Figures 55 and 56 present the probability of accuracy, which takes into account 

both accurate shift and no-shift detections, for both segmentation schemes, while Figures 

57 and 58 show the probability of error.  These two probability quantities provide an 

overall metric on the success of each method.  Accuracy and error plots show similar 

trends for the three overlap cases considered down to 4dB SNR. Again, performances 

degrade significantly below that SNR level. 
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Figure 55.   Segmentation A probability of accuracy, signal carrier frequency = 0.1Hz, 

10% accuracy detection tolerance. 
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Figure 56.   Segmentation B probability of accuracy, signal carrier frequency = 0.1Hz, 

10% accuracy detection tolerance. 
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Figure 57.   Segmentation A Probability of error, signal carrier frequency = 0.1Hz, 

10% accuracy detection tolerance. 
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Figure 58.   Segmentation B Probability of error, signal carrier frequency = 0.1Hz, 

10% accuracy detection tolerance. 

The remainder of the chapter presents performance results obtained for the 

Segmentation B option only, as it is designed to cover the entire signal length. 

3. Overlap Results 

Simulations showed that overlapping analysis windows to provide multiple looks 

of the same time ranges was beneficial for SNR levels between 2 and 4dB as it reduced 

the probability of error and increased the probability of correct detection (see Figures 52 

to 58).  Results also show perfect detection and null false alarm rate for SNR levels above 

6dB. 

Note that the 90% window overlap configuration leads to a higher rate of false 

alarms than the 60% configuration does.  This result is due to the decision rule 

implemented in the study, and a different overall decision rate may be obtained by 

changing it. 



 75

4. Window Length Results 

Two different window lengths were considered in the study to evaluate window 

length impact on resulting performances; windows of lengths 256 and 300.  Figures 59 

and 60 present performance results obtained for the segmentation B option, 10% 

detection accuracy tolerance, signal carrier frequency at 0.1 Hz, no window overlap and 

60% overlap rates.  A few comments can be made: 

Results show that overall accuracy and error rates obtained for 0% overlap and 

60% overlap are similar for both window lengths at a given overlap rate down to 4dB 

SNR levels.  Again, performances degrade significantly below that level.  These results 

are to be expected, as no section of the signal is lost during the pre-processing phase. 

Window lengths equal to 300 samples are used for the remainder of testing. 
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Figure 59.   Difference filter probability of accuracy with window lengths of 256 and 

300 samples at 0% and 60% overlap. 
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Figure 60.   Difference filter probability of error with window lengths of 256 and 300 

samples at 0% and 60% overlap. 

5. Frequency Results 

Next, we investigated the impact of signal carrier frequency on resulting 

performances by comparing results obtained for a low (0.1Hz) and high (0.4Hz) 

normalized carrier frequencies.  Note that signal frequency information is contained in 

the lines of the TCF phase output images.  However, such information got completely 

removed by the differentiation step for noise-free signals.  Therefore, carrier frequency 

variation was expected to have little impact on performances in medium to high SNR 

levels.  Figures 61 and 62 plot the probability of accuracy and error for the two signal 

carrier frequencies considered, no-overlap and 60% overlap configurations, and 10% 

tolerance levels.  Results show similar performances are obtained for both carrier 

frequencies considered down to 4dB.  Performance becomes different for SNR levels 

below 4dB, likely a result of the TCF phase information degradations resulting from 

noise distortions. 
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Figure 61.   Difference filter algorithm probability of accuracy, normalized signal 

carrier frequency =  0.1 Hz, 0.4 Hz, no-overlap and 60% window overlap, 10% 
accuracy detection tolerance. 

Further results consider the signal normalized frequency equal to 0.1 Hz only. 
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Figure 62.   Difference filter algorithm probability of error, normalized signal carrier 

frequency =  0.1 Hz, 0.4 Hz, no-overlap and 60% window overlap, 10% accuracy 
detection tolerance. 

6. Tolerance Results 

The detection accuracy tolerance parameter is one of the more sensitive user-

specified parameters, as it specifies how much error is to be allowed between true and 

estimated phase shift locations.  All initial simulations conducted to select parameters 

needed during the pre-processing phase such as morphological operators, filter orders, 

etc… used a 10% tolerance level.  Next, additional tolerance levels equal to of 5%, 10%, 

and 15% were considered using these parameters. 

Recall that the parameter COMP is the maximum allowable phase shift time 

deviation for a shift decision and is based on tolerance level and window size as set by 
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the user.  Thus, a 15% tolerance case permits 45± samples around the actual phase shift 

time to be considered a valid shift for a 300-sample window length. 
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Figure 63.   Difference filter algorithm PCD, signal normalized frequency = 0.1 Hz, no 

window overlap,  5%, 10%, and 15% accuracy detection tolerance. 

Figure 63 and 64 present the probabilities of correct detection and false alarms  

obtained for 5, 10 and 15% tolerance levels for a normalized signal carrier frequency 

equal to 0.1Hz in SNR levels between -2 and 12dB.  Results show the probability of 

correct detection is the same for SNR levels above 4 dB for the three tolerance levels 

investigated.  Results also show detection performances degrade as the tolerance level 

decreases for SNR levels below 4dB.  False alarm rates show similar performances for 

the three tolerance levels considered. 
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Figure 64.   Difference filter algorithm probability of false alarm, signal normalized 

frequency = 0.1 Hz, no window overlap, 5%, 10%, and 15% accuracy detection 
tolerance. 

This section discussed performances obtained when the difference filter algorithm 

is used in the differentiation step, compared segmentation options, and discussed the 

algorithm sensitivity to overlap, signal carrier frequency, window length, and tolerance 

levels.  Recall that one of the algorithm fundamental steps is the differentiation step (Step 

3 shown in Figure 8, and discussed in Section IV.A.2).  Next we discuss whether 

replacing the basic differentiation operator with the SG filter in the differentiation step 

improves resulting performance results. 
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C. SG-BASED DIFFERENTIATION RESULTS 

This section investigates the impact the SG filter has when applied as a 

differentiation operator in step 3 of the pre-processing phase (Step 3 shown in Figure 8, 

and discussed in Section IV.A.3). 

1. SG Filter Differentiation Simulation Settings 

Table 4 shows parameter values selected during these tests.  Table 1 shows the 

threshold values taken from the histogram plots in Chapter V, Section B used at each 

noise level for the primary testing.  Threshold values were 0.42 for SNR levels of 12 and 

9 dB, 0.2 for 6 and 4 dB, 0.1 for 2 dB, and 0.01 for 0 and -2 dB, respectively.  

Furthermore items that were discussed in the previous section did not affect the SG filter 

differentiation results and are not discussed further. 

Threshold Analysis window 
Overlap amount 

(%) 

Phase Shift time Accuracy Tolerance 
(% of window length) 

Frame 
Size (n) 

See Table 2. 0, 60 5, 10, 15 300 

Table 4.   SG filter differentiation trial run parameter settings segmentation method B. 

2. Difference Filter Differentiation Versus SG Filter Results 

Figures 65 and 66 show correct phase shift detection rates obtained for no overlap 

and 60% window overlapping configurations when the SG filter is used to implement the 

differentiation step.  Comparing these results against those obtained when the basic 

difference operator is used to implement that step (Figures 52 and 63) shows that 

applying the SG filter leads to better detection rates between -2 and 6dB SNR at which 

point both implementations return a 100% correct shift detection rate.  This improvement 

is due to the adaptive noise cancelation aspect of the SG differentiation filter.  At lower 

noise levels (i.e., 4 dB and above) the filter does not have much noise to remove, and the 

improvement is difficult to notice. 
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Figure 65.   Probability of correct detection obtained for the SG filter differentiation 

operator, signal normalized carrier frequency = 0.1 Hz, no window overlap, 5% 
10% 15% accuracy detection tolerance levels. 
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Figure 66.   Probability of correct detection obtained for the SG filter differentiation 

operator, signal normalized carrier frequency = 0.1 Hz, 60% window overlap, 5% 
10% 15% accuracy detection tolerance levels. 
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Figure 67 shows that false alarm probabilities significantly degrade for SNR 

levels equal to 4dB or lower.  Results also show that SG filter implementation leads to 

higher false alarm rates than the difference filter method at higher noise levels (by 

comparing Figures 67 and 68 to Figures 54 and 64).  These plots show that the SG filter 

differentiation method reached a false alarm rate equal to 0.9969 at 0 Db, whereas the 

difference filter method reached 0.9488 false alarm rate at 0 dB, for 10% tolerance, and 

no-overlapping windows configurations.  These results indicate that the implementation 

is limited to SNR levels above 4 dB SNR.  Two reasons exist for the SG filter 

implementation poor performance.  First, recall that the algorithm was specifically 

designed for the difference filter differentiation step; target images and structuring 

element definitions were not redefined when the SG filter implementation was 

investigated.  Second, the SG filter was shown to remove phase information as the SNR 

level decreases, resulting in performance degradations with this implementation in low 

SNR levels.  However, better performance results may be obtained if user-specified 

parameters were redefined for the SG filter implementation.  This investigation is left for 

future work. 
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Figure 67.   Probability of false alarm obtained for the SG filter differentiation 

operator, signal normalized carrier frequency = 0.1 Hz, no window overlap, 5% 
10% 15% accuracy detection tolerance levels. 



 84

-2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 F

al
se

 A
la

rm
 (P

FA
)

SNR (dB)

Tolerance False Alarms at 0.1 Hz - 60% Overlap

 

 

Tolerance 5%
Tolerance 10%
Tolerance 15%

 
Figure 68.   Probability of false alarm obtained for the SG filter differentiation 

operator, signal normalized carrier frequency = 0.1 Hz, 60% window overlap, 5% 
10% 15% accuracy detection tolerance levels. 

Figures 69 and 70 present accuracy results obtained for no overlap and window 

overlapping configurations when using the SG filter implementation of the differentiation 

operator.  Figures 71 and 72 present error rates obtained for the same combinations.  

Comparing results obtained for the SG filter and the difference filter implementation of 

the differentiation step show that there are no overall significant improvements by one 

differentiation implementation over the other. 
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Figure 69.   Probability of accuracy obtained for the SG filter differentiation operator, 

signal normalized carrier frequency = 0.1 Hz, no window overlap, 5% 10% 15% 
accuracy detection tolerance levels. 
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Figure 70.   Probability of accuracy obtained for the SG filter differentiation operator, 

signal normalized carrier frequency = 0.1 Hz, 60% window overlap, 5% 10% 
15% accuracy detection tolerance levels. 



 86

 
 
 
 
 
 
 

-2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 E

rro
r (

P ER
R)

SNR (dB)

Tolerance Error at 0.1 Hz - No overlap

 

 

5% Tolerance
10% Tolerance
15% Tolerance

 
Figure 71.   Probability of error obtained for the SG filter differentiation operator, 

signal normalized carrier frequency = 0.1 Hz, no window overlap, 5% 10% 15% 
accuracy detection tolerance levels. 
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Figure 72.   Probability of error obtained for the SG filter differentiation operator, 

signal normalized carrier frequency = 0.1 Hz, 60% window overlap, 5% 10% 
15% accuracy detection tolerance levels. 

This section presented detection performance results obtained for the two 

segmentation and differentiation implementations schemes considered in the study.  We 

also presented results obtained using three different window overlapping ranges, 

accuracy levels, and for low and high normalized signal carrier frequencies. Overall 

results show that: 

• A data segmentation which leaves no masked data segment leads to better 

performance results, as to be expected,  

• Overlapping windows allow multiple looks of the same data segments, 

which lead to increase correct detection rates in medium to high overlap 

ranges,  

• Similar results were obtained for the two window lengths investigated,  
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• The normalized signal carrier frequency had no significant impact on 

performance results, as a result of the differentiation step (step 3 of the 

algorithm),  

• Results obtained for 5%, 10% and 15% phase shift estimate results were 

similar for the range of SNR considered,  

• The SG implementation of the differentiation filter did not clearly improve 

performance results over those obtained with the difference filter 

differentiation step, as user-specified parameters such as filter lengths, 

structuring masks and threshold values were not optimized for that 

operator. 

D. OPERATING CHARACTERISTIC CURVES 

Operating characteristic curves were developed to investigate the sensitivity of the 

algorithm to threshold changes at specific noise levels.  Such curves are useful when 

interested in selecting “best” thresholds for a desired probability of false alarm and 

correct detection.  Figures 73 to 75 show the operating characteristic for SNR levels of 4, 

2 and 0 dB SNR, 10% detection accuracy tolerance, and a no overlapping window 

configuration using the SG filter implementation of the differentiation step.  Plots were 

generated by increasing the phase shift decision level from 0.05 through 0.95 in 0.05 

increments.  Figure 73 shows that the optimum threshold for the 4 dB SNR case is in the 

range between 0.5 and 0.4.  In addition, Figure 73 shows that both false alarm and correct 

detection rates decrease as the threshold value increases.  Results also show that the false 

alarm rate increase and the decision threshold sensitivity increases as the SNR level 

decreases. 

Finally, the trend as noise level increases is shown by all three plots.  The 

operator curve moves from the top-left corner in the 4 dB SNR plot towards the lower-

right corner in the 2 dB SNR plot.  The sensitivity to threshold values causes the operator 

curves to spread out as SNR decreases when comparing all figures.  Additional plots and 

results are presented in Appendix B. 
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Figure 73.   Operating Characteristic Curve, QPSK + AWGN, SNR=4dB, SG filter 

implementation. 
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Figure 74.   Operating Characteristic Curve, QPSK + AWGN, SNR=2dB, SG filter 

implementation. 
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Figure 75.   Operating Characteristic Curve, QPSK + AWGN, SNR=0dB, SG filter 

implementation. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis investigated the detection of phase shifts contained in Phase Shift 

Keyed (PSK) signals using textural image processing and a two-dimensional matched 

filter approach.  The algorithm designed in this work used the information provided by 

the signal Temporal Correlation Function (TCF) phase to detect the potential presence 

and location of phase shift times within each frame.  One-dimensional filters, 

differentiation techniques, two-dimensional filters and edge detection schemes performed 

preliminary image cleaning and isolated the phase shift features of interest.  

Morphological operators were applied to enhance the phase shift location and a two-

dimensional matched filter applied to isolate its location.  Results show the proposed 

scheme performs well down to SNR levels equal to 4dB, with detection and false alarm 

rates around 1.0 and 0.0841, respectively.  Results also show performances degrade 

significantly below SNR levels less than and equal to 2 dB.  Results showed the overall 

scheme may be quite sensitive to specific selection of parameters and operators used in 

the pre-processing stage.  

The main results are summarized below. 

• Results showed that the detection algorithm implemented using the difference 

filter in the differentiation step has a 100% detection accuracy rate for 10% 

detection accuracy tolerance level for 60% and 90% window overlapping 

configurations at 6dB SNR and above. Results also show that a 99.6% 

detection accuracy rate is obtained when the SG filter is used for the 

differentiation step and all other parameters stay the same. 

• The Segmentation B method resulted in improved performances, as expected 

as it insured no signal segment was masked during processing.  In fact, a 7.6% 

detection rate increase was noted for SNR levels equal to 4 dB, when using a  
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60% window overlapping configuration, and 10% detection accuracy 

tolerance.  This improvement is to be expected as it insures there are no signal 

blind spots. 

• Normalized signal carrier frequency values of 0.1 Hz and 0.4 Hz were tested 

and results showed no noticeable differences, as detection rates were within a 

few percentage points of each other throughout the range of SNRs tested. 

• Shorter window lengths had lower probability of detect and lower false alarm 

rates for the segmentation option A with no noticeable affect on segmentation 

option B. 

• Adding a window overlapping capability to the decision step proved to be 

beneficial as it reduced the false alarm rates.  This overlapping windows 

option prevented missed detections for phase shifts located close to the 

analysis windows ends.  Results showed a 96.6% detection rate at 4 dB SNR, 

for 90% window overlapping configuration, and 10% tolerance, exceeding the 

identical no-overlap case results equaling 0.954 accuracy rate. 

• Results showed that the algorithm yielded higher detection and false alarm 

rates, as tolerance level was increased from 5% to 15%.   

Overall, the phase shift detection and tracking algorithm proved successful and 

adaptable to various circumstances.  The algorithm gives latitude within its programming 

framework for the user to adjust target images and structuring elements and other factors 

to enable higher detection rates at higher noise levels as desired for specific 

circumstances.  
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B. RECOMMENDATIONS AND FUTURE STUDY 

Recommended improvements include the following: 

• Mask both ends of the signal image analysis windows prior to the edge 

detection enhancement phase in order to minimize false alarms from 

spurious noise bits remaining following the two-dimensional mean filter 

noise removal step.   

• Mask the top 32x30 pixels of the final signal image vice cropping to 

permit further scanning by the 2-D cross-correlation process further 

increasing detection rates. 

• Note that target images and morphological structuring elements were 

optimized for 6 dB SNR noise level while using the difference derivative 

approximation.  Significant improvement may be realized by optimizing 

the program at a higher noise level (e.g. 4 dB) and using the SG filter in 

the differentiation stage of the algorithm because of its noise removal 

capabilities. 

• Investigate adapting this algorithm for use with FSK vice PSK schemes 

and investigate resulting detection performances. 

• Investigate minimum bit encoding period restrictions on this algorithm. 

• And, ultimately, test the algorithm in a hardware implementation where 

actual analog PSK or FSK signals are analyzed. 
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APPENDIX A – MATLAB SOURCE CODE 

The MATLAB code for the phase shift detection algorithm is listed below in 

hierarchical order including the final SIMULINK model.  The model and code presented 

use segmentation option B and the difference filter algorithm settings, however, the SG 

filter function diffsg.m is listed below to permit its use in place of the diff.m MATLAB 

function for differentiation step.  Functions referenced in the code but not shown below 

are basic MATLAB internal functions or contained in the Communications, Signal 

Processing, or Image Processing Toolboxes [9]. 

 

A.   MAIN SIMULATION PROGRAM – WINDOW MATCH 
 
%% MAIN PROGRAM - WINDOW MATCH 
% PURPOSE: PSK DETECTION SCHEME USING 2D CROSS-CORRELATION MATCHED FILTER 
%   This simulation program was designed to allow the user to set up the 
%   number of runs desired as well as specify parameters. 
%   Details of the input parameters are listed below next to the variables themselves. 
%   INPUTS(Defined in Variable initialization section): 
%       SNR - Desired signal-to-noise-ratio for simulated QPSK signal in dB. 
%       THRESHOLD - 2D cross-correlation threshold value (Rx>Thresh => Shift, Rx<Thresh => No 
Shift). 
%       POVLP - Amount of window that overlaps previous window in % (0 or >=50% possible, common 
values are 0,50%,60%,80%,90%). 
%       SLEN - Desired length of simulated QPSK signal. 
%       NOSH - Desired number of phase shifts for this simulation. 
%       WLEN_U - User desired window length. 
%       ERTOL - Error tolerance in percent (values tested were 5,10,& 15%). 
%       FSIG - Normalized frequency for simulated QPSK signal in Hz (between 0 and 0.5 Hz). 
%   OUTPUTS: 
%       POUT - vector of final program shift times (Program Output) 
%       POUTF - vector of false alarm times (Program False Output) 
%       AGREED - array, column one is binary yes or no if POUT time agrees 
%       with AST by +/-COMP, column two shows the AST value for those POUTs 
%       that agree with AST. 
%       AGREEDF - array, column one is binary yes or no if POUTF time does 
%       not agree with AST by +/-COMP, column two shows the corresponding 
%       POUTF value.  
%       ERRSTATS - Listing of run statistics..(see ERRSTAT.M).    
% 
%   USES: PATMATCH.MDL, SIGNALGEN, TCF, DTRUTH, ERRSTAT, DIFFSG (AS 
%   APPLICABLE), MEANFILT, MATCHFILES.MAT. 
% 
%   Filename: windowmatch.m 
% 
%                       LT Joseph Kramer, REVISION DATE: 25AUG2009 
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 format compact 
%% Variable Initialization 
snrt = [12 9 6 4 2 0 -2]'; 
tau=[.28 .28 .28 .45 .5 .8 .98];   
load tablet     % Loads a list file for long testruns called 'table'. 
load matchfiles % Stores program target images and structuring elements. 
for item=1:1    % Outer loop used to run tests from a list called 'table', loaded from 'tablet'. 
   ck = [];     % Track noshiftck runs 
   ph = [];     % Track mxval through runs 
   out = [];    % Track output data 
   stout=[];    % Track error statistic data 
   finstat=[];  % Track complete run data 
    for run=1:length(snrt)        % Inner loop where SNR is varied for sets of other test parameters in 'table'. 
        snr = snrt(run,1);        % Test Signal SNR in dB (VARIABLE) 
        temp = find(snrt==snr);   % Look up appropriate threshold per SNR when not called from 'table'. 
        sensval = tau(temp);      % No Shift Image Decision Threshold (VARIABLE) 
        thresh = sensval; 
        povlp = 0;                % Percent of overlap: [overlap = povlp*wlen] (VARIABLE) 
        slen = 6000;              % Simulated Signal length in discrete time units (VARIABLE) 
        nosh = 5;                 % Simulated Signal Number of Phase Shifts spread throughout signal length 
(VARIABLE) 
        wlen_u = 300;             % Program window length (VARIABLE) set by user. 
        edg_offset=64;            % Window edge offset length. 
        indexoff=60;              % Timing index for SIMULINK model - Change when changing segmentation 
modes. (30 SEG A, 60 SEG B) 
        wlen=wlen_u+edg_offset;   % Program frame size accounting for any edge offset.  
        offset2 = round((wlen-wlen_u)/2)-1;  % Endcap offset minus one for indexing purposes. 
        nwolp = round(1/(1-povlp));          % Number of overlapping windows that can see a given shift time. 
        ertol = .1;               % Error Tolerance - used to compute COMP based on window length 
(VARIABLE) 
        fsig = 0.1;               % Simulated Signal Normalized Frequency (Hz)(VARIABLE) 
        comp = wlen_u*ertol;      % number of time units on either side of actual that are acceptable. 
%% PSK Test Signal Generation. 
[inputsig ast phdat] = signalgen(snr,fsig,slen,nosh,povlp,wlen,offset2+1);     %Simulated PSK Signal 
generation 
%% Parsing Segment: Parse input signal taking into account the overlap and segmentation method. 
seg = [];          % Segmentation Vector Initialization 
% Find window starting point step value based on overlap and desired window length (wlen_u). 
if nwolp==1 
    owvlp = 0; 
    st=wlen_u;   % Window Starting Point Step Value 
else 
ovlp = round(wlen_u/nwolp); %150 pixels for window length 300 at 50% Overlap. 
st = ovlp;       % Window Starting Point Step Value 
end 
  
% Parsing and Truth vector Loop 
truth=[];          % Truth vector based on overlap. 
stad=[];           % Start addressing vector for use in time indexing later. 
nolp=0;            % Count Number of Overlap Periods  
for k = 1:st:slen   
    if (k+wlen-1)>slen  % Stop if end of window exceeds signal length. 
        break 
    else 
    seg = cat(2,seg,inputsig(k:k+wlen-1));  % Pull segment from signal and store in 'seg'. 
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    ext = 0; 
    for r=1:length(ast)     % Establish truth vector based on overlaps. 
    if (k+offset2-1<=ast(r))&&(ast(r)<=k+wlen-offset2) 
        truth = cat(1,truth,1); 
        ext = 1; 
        break 
    end 
    end 
    if ext==0               % If a shift does not exist in a time frame store a 0 in 'truth' vector. 
       truth = cat(1,truth,0); 
    end 
    stad = cat(1,stad,k);   % Store the starting point of each window segment used during analysis. 
    nolp=nolp+1; 
    end 
end 
  
%% Image Processing and 2-D Cross-Correlation Portion 
% Cropping masks for Signal Image 
if wlen-wlen_u==0 
    coordim = [1, 1, 29, wlen-1];                  % Segmentation A is used - crop to width of 30 pixels but do not 
crop the ends off the image. 
else 
    coordim = [1, offset2+1, 29, wlen-offset2+1];  % Segmentation B is used - crop to width of 30 pixels and 
crop the leading end off the image. 
end 
    maskends = zeros(32,30);                       % Zero mask to remove trailing boundary condition from signal 
images. 
%% Target Images and Image Processing Structuring Elements. 
  % Define target images used for 2-D cross-correlation. 
    tgt = setri4b;              % Target 1 
    ima = sum(sum(tgt));        % IMA used for Croxx-correlation Normalization Factor in SIMULINK 
    tgt2 = setri4d;             % Target 2 
    imb = sum(sum(tgt2));       % IMA used for Croxx-correlation Normalization Factor in SIMULINK 
  % Define various Dilation and Erosion templates used in processing.  
    sz = 24; 
    sz2 = 12; 
    sed = strel(e2); 
    se1 = strel(diag(ones(sz,1))); 
    se2 = strel(fliplr(diag(ones(sz,1)))); 
    se = strel(ones(8)); 
    se3 = strel(w); 
%% Find Window Shift Times by Call to SIMULINK model 
  % Track various SIMULINK model outputs defined below. 
    shft=[]; mxval=[]; mxtgta=[]; mxtgtb=[]; 
    imsto1 = []; imstomn = []; c1=[]; p1=[]; point=[]; 
for m=1:wlen:length(seg)             % Scan each window segment 
    [im pyo] = tcf(seg(m:m+wlen-1)); % Computes TCF per window segment. 
  % Signal image noise removal and phase shift transformation portion. 
    im = imcrop(im,coordim);         % Crop signal image to Mx30 dimensions (M = WLEN for SEG A, or 
=WLEN-32 for SEG B). 
    im = medfilt1(im,15);            % One-dimensional MEDIAN filter along time axis (N=15th Order). 
    im=diff(im,2,1);                 % Differentiation step using DIFF.M for difference filter algorithm or 
diffsg(im,8,9) for SG filter; 
    im=round(im);                     
    im=meanfilt(im,3);               % Two-dimensional MEAN filter dimensions (3x3). 
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    [im] = edge(im,'roberts',[0.1],'nothinning');   % Roberts edge detection operation 
  % Cascade dilation/erosion set 1: First, noise removal and phase shift transformation step. 
    im = imdilate(im,sed);      % Dilation operation.  
    im1 = imerode(im,se1);      % Erosion operations. 
    im2 = imerode(im,se2); 
    im=sign(im1+im2);           % Superposition of both individual erosions. 
  % Cascade dilation/erosion set 2: Second, detailed noise removal step. 
    im = imdilate(im,se);       % Dilation operation. 
    im = imerode(im,se3);       % Erosion operation. 
  % Masking operation. 
    im(length(im)-32+1:length(im),:)=maskends; 
    sim('patmatch');            % Call to SIMULINK model. 
    shft=cat(1,shft,simout);    % Relative window phase shift time from SIMULINK model 
    point=cat(1,point,pointer+1);  % Flag the image that gave max correlation from SIMULINK model 
    c1=cat(4,c1,corn1);         % Raw cross-correlation values prior to normalization from SIMULINK model 
    p1=cat(4,p1,corn);          % Raw cross-correlation values prior to normalization from SIMULINK model 
    mxval=cat(1,mxval,mxvalout); % Final MAX cross-correlation value from SIMULINK model 
    mxtgta=cat(1,mxtgta,mxtgt);  % Target 1's MAX cross-correlation value from SIMULINK model 
    mxtgtb=cat(1,mxtgtb,mxtgt2); % Target 2's MAX cross-correlation value from SIMULINK model 
end 
%% Apply No-Shift threshold following call to SIMULINK model. 
zer = shft>0;                % Threshold shifts are assigned 1, no shifts are assigned 0. 
final = (shft+stad).*zer;    % Program shift times after adjusting for window positions. 
[pout poutf agreed agreedf]=dtruth(final,truth,stad,wlen_u,nwolp,ast,comp);  % Performs final program 
decision and overlapping rules as applicable. 
%% ERROR STATS PORTION OF PROGRAM - THIS IS FOLLOWING ALL PROGRAM OUTPUT.  
% This portion is only for testing and analysis purposes. 
%% Trial Info Summary: Tolerance and Data Dump for various parameters. 
sprintf('Run tolerance: %0.2g%%',ertol*100)                      % Display the tolerance level of the current run. 
[errstats] = errstat(ast,agreed(:,1),agreedf(:,1),slen,wlen_u);  % Calculates accuracy and error statistics for 
current run. 
disp('   %H   %Pfa   %M   %Pdet  %Pacc  %Perr')                  % Display these accuracy and error statistics 
for current run.  
disp('                                                    ') 
disp(errstats) 
%% Data Collection section - Save applicable data run header and information.... 
% Saves name and appends SNR level to each file name - ensure SNR changes 
% or change naming convention so you don't overwrite. 
nm = ['filename_goes_here',num2str(snr)]; 
rundat = [snr, thresh, nosh, slen/wlen, round(nwolp), errstats]; 
finstat = [finstat; rundat]; 
    end 
    save(nm,'finstat'); 
end 
 
 
 
B.   CALL SIMULATION GENERATION PROGRAM 
 
%% FUNCTION [Y S PHDAT]=SIGNALGEN(SNR,F,TOTLEN,NOS,POVLP,WLEN,OFST) 
%% PURPOSE: GENERATES A SIGNAL OF SIGNIFICANT LENGTH 
%% WITH VARIOUS PHASE SHIFT OCCURRENCES FOR TESTING 
%   INPUTS: 
%       SNR - vector of possible shift times from windowmatch.m 
%       F - binary vector representing no shifts based on correlation 
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%       threshold 
%       TOTLEN - scalar number showing number of windows that overlap given shift time. 
%       NOS - vector of actual shift times generated during windowmatch 
%   OUTPUTS: 
%       Y - vector of final program shift times (Program Output) 
%       S - array, column one is binary yes or no if POUT time agrees 
% 
%   Filename: signalgen.m 
%                       LT Joseph Kramer, Revision Date: 20AUG2009 
function [y s phdat]=signalgen(snr,f,totlen,nos,povlp,wlen,ofst) 
[y s phdat] = PSKgen(f,totlen,nos,povlp,wlen,ofst); 
y=awgn(y,snr); 
 
C.   PSK GENERATION FUNCTION 
 
%% FUNCTION [X ST PHDAT]=PSKGEN(F,N,NUMSH,POVLP,WLEN,OFST) 
% Signal Generator for Frequency Shift Signal 
% [x]=PSKgen(n,nosh,t)  
% Generate a Binary Phase Shift Keying signal length n with normalized f [0 to .5]. 
% nosh is number of shifts within the signal... 
% t sets the time index the phase shift occurs. 
% ps = phase shift. 
%        LT Joseph Kramer 22JAN2009 
function [x st phdat]=PSKgen(f,n,numsh,povlp,wlen,ofst) 
nosh=numsh; 
A = sqrt(2);  % Input signal is normalized to 1 watt/0dbw. 
if nosh==0    % If no shifts inserted. 
    ti = [0:1:n-1]; 
    x = A*cos(2*pi*f*ti); 
    st=0; 
    phdat=0; 
    return 
elseif nosh<10 
    base = 380; 
else 
    base = round(wlen);        % Range of available shift spacings. 
end 
  
for k = 1:nosh                 % Generates semi-random shift times 
    num = rand(1);              
    frac = num-mod(num,0.1);    
    if k==1 
    st(k,:) = round(base*.89); 
    else 
    st(k,:) = round(st(k-1)+2*(base-2*ofst)); 
    end 
end 
  
if povlp==0                 % Code added to ensure no overlap runs allow correct results. 
    if n/nosh<wlen          % If using zero overlap make sure the shifts will fit 1 to a window. 
        disp('Invalid number of shifts for signal length and window length.') 
        disp('Number of shifts adjusted to signal length divided by window length.') 
        clear st 
        nosh=floor(n/wlen); 
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    end 
   for k=1:nosh            % With no overlap can have only 1 shift per window and no edge shifts. 
        if k==1 
            st(k) = round(wlen*.5); 
        else 
            st(k) = st(k-1)+2*(wlen-2*ofst);    % Adjust spacing with offset in mind. 
        end 
   end 
end 
Ts=1; 
x =[]; 
phdat=phrand(); 
for g = 2:nosh+1        % Generate QPSK shift magnitudes. 
    int = phrand(); 
    while int==phdat(g-1)   % Ensure there is a shift when inserted. 
        int = phrand(); 
    end 
    phdat(g,1)=int; 
end 
% Use phase shifts and shift times to generate a QPSK signal. 
for m=1:length(st) 
    if m==1     % First time vector (odd + phase)... 
        ti = [m-1:Ts:st(m)]; 
        ps = phdat(m); 
        a = A*cos(2*pi*f*ti+ps); 
        x = cat(2,x,a); 
    elseif rem(m,2)==1      % ODD +phase intermediate time vectors... 
        ti = [st(m-1)+1:Ts:st(m)]; 
        ps = phdat(m); 
        a = A*cos(2*pi*f*ti+ps); 
        x = cat(2,x,a); 
    elseif rem(m,2)==0      % EVEN (no phase) int. vectors... 
        ti = [st(m-1)+1:Ts:st(m)]; 
        ps = phdat(m); 
        a = A*cos(2*pi*f*ti+ps); 
        x = cat(2,x,a); 
    end 
end 
% Complete vector to length n using appropriate phase. 
if rem(m+1,2)==1    % Last time vector... 
   ti = [st(m)+1:Ts:n-1]; 
   ps = phdat(m+1); 
   a = A*cos(2*pi*f*ti+ps); 
   x = cat(2,x,a); 
elseif rem(m+1,2)==0 
   ti = [st(m)+1:Ts:n-1]; 
   ps = phdat(m+1); 
   a = A*cos(2*pi*f*ti+ps); 
   x = cat(2,x,a); 
end 
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D.   TEMPORAL CORRELATION FUNCTION 
 
%% FUNCTION [Y PY]=TCF(X); 
%% PURPOSE: PRODUCE TCF OUTPUT MATRIX (IMAGE) GIVEN PORTION OF SIGNAL. 
%   INPUTS: 
%       X - Signal in vector format Nx1 dimension. 
%   OUTPUTS: 
%       Y - TCF Output image dimensions NxN/2.  Output will have time axis 
%       on Y-axis of length N and Lags along X-axis of length N/2. 
%       PY - Raw TCF output prior to phase computation. 
%   Filename: tcf.m 
%                       LT Joseph Kramer, Revision Date: 1MAY2009 
function [y py]=tcf(x) 
sc=hilbert(x);                                  % complex shift signal 
Rx=zeros(length(sc),round(length(sc)/2)-1);     % preallocation Rx 
for tau=0:1:(length(sc)/2-1)   % tau index 
    for t=1:length(sc)         % time index 
        if (t-tau) >0 && (t+tau)<= length(sc)   % (t-tau/2) >0 since causal 
                                                % (t+tau/2)<= length(sc) 
                                                % index cannot be over 
                                                % data range                                                   
            Rx(t,tau+1)=sc(t+tau)*conj(sc(t-tau)); 
        else 
            Rx(t,tau+1)=0; 
        end 
    end 
end 
py = Rx; 
y=angle(Rx); 
 
 
E.   DIFFERENTIATION USING SAVITZKY-GOLAY FIR FILTER  
 
%% FUNCTION [Y1 B G]=DIFFSG(IMIN,N,F) 
%% PURPOSE: Differential Smoothing Function using SGOLAY MATLAB function... 
%   This function uses sgolay.m to generate the polynomial filter size N 
%   of frame size F and applies the selected derivative to the image IMIN. 
%  INPUTS: 
%           IMIN - Image file of dimensions (RxC) 
%           N - Polynomial order for filter strength. (SCALAR). 
%           F - Frame size for filter. (SCALAR: NOTE F>N) 
%  OUTPUTS: 
%           Y1 - Output image. (RxC) 
%           B - Filter weights (NxN). 
%           G - Filter coeficients (NxN). 
% 
%   Filename: diffsg.m 
%                       LT Joseph Kramer, REVISION DATE: 7AUG2009 
function [y1 b g]=diffsg(imin,N,F) 
[b,g] = sgolay(N,F);   % Calculate S-G coefficients 
y0=[]; y1=[]; y2=[]; 
[r c]=size(imin); 
HalfWin  = ((F+1)/2) -1; 
for j=1:c 
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    y = imin(:,j); 
    ti=length(y); 
for n = (F+1)/2:ti-(F+1)/2 
% 1st differential 
  SG1(n) =   dot(g(:,2), y(n - HalfWin: n + HalfWin)); 
end 
   y1 = [y1 SG1']; 
end 
 
 
 
F.   2-D MEAN FILTER 
 
%% FUNCTION [IM]=MEANFILT(Y,S) 
%% PURPOSE: 2-D REGION MEAN FILTER FOR NOISE REMOVAL 
%   INPUTS: 
%       Y - input image size (RxC) 
%       S - odd size of filter (ie.. 3x3 or 5x5) 
%   OUTPUT: 
%       IM - filtered image buffered to RxC size with row/col of zeros 
function [imo]=meanfilt(y,s) 
m = (s-1)/2;    % Solve for index variable M 
[r c]=size(y);  % Find dimensions of the image 
box = ones(s)/(s^2);  % Use a square operator to perform the 2D mean operation. 
for k=m+1:r-m 
    for j=m+1:c-m 
        imo(k,j)=sum(sum(y(k-m:k+m,j-m:j+m).*box)); 
    end 
end 
[r2 c2]=size(imo); 
if r2~=r 
    imo(r2+(r-r2),:)=zeros(1,c2);  % Pad last row with zeros for edge discontinuities. 
end 
if c2~=c 
    imo(:,c2+(c-c2))=zeros(r,1);   % Pad last column with zeros for edge discontinuities. 
end 
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G.   SIMULINK MODEL 
 
 
 
 
 

 

Figure 76.   Full Two-dimensional Matched Filter Simulink Model Block Diagram. 
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H.   DECISION MODULE AND OVERLAP IMPLEMENTATION 
 
%% FUNCTION [POUT POUTF1 AGREED AGREEDF]= 
%    DTRUTH(FINAL,TRUTH,STAD,WLEN,NWOLP,AST,COMP) 
%% PURPOSE: OVERLAPPING WINDOW SEARCH & VERIFICATION OF SHIFT TIMES 
%   This function uses overlapping windows as primary decision rule 
%   regarding perceived program shift times. 
%   INPUTS: 
%       FINAL - vector of possible shift times from windowmatch.m 
%       TRUTH - binary vector developed in Windowmatch.m to show where shifts were inserted. 
%       NWOLP - scalar number showing number of windows that overlap given shift time. 
%       AST - vector of actual shift times generated during windowmatch call to signalgen.m 
%       COMP - scalar value equal to tolerance*window length. 
%   OUTPUTS: 
%       POUT - vector of final program shift times (Program Output) 
%       POUTF1 - vector of false alarm times (~Program Output) 
%       AGREED - array, column one is binary yes or no if POUT time agrees 
%       with AST by +/-COMP, column two shows the AST value for those POUTs 
%       that agree with AST. 
%       AGREEDF - array, column one is binary yes or no if POUTF time does 
%       not agree with AST by +/-COMP, column two shows the corresponding POUTF value.  
% 
%   Filename: dtruth.m 
%                       LT Joseph Kramer, REVISION DATE: 25AUG2009 
function [pout poutf1 agreed agreedf]=dtruth(final,truth,stad,wlen,nwolp,ast,comp) 
%% Set step size and zero selectivity based on the NWOLP... 
if nwolp==2 
    nwolp=2; 
    d=1;                % zero selectivity setting - if >=d zeros are in a comparison frame - that frame is not 
ignored... 
elseif nwolp==3 
    d = 2;              % zero selectivity setting - if >=d zeros are in a comparison frame - that frame is not 
ignored... 
    f = 2;              % Choose between 2,3 or 4 out of a group for the decision... 
elseif nwolp<10 
    nwolp=round(nwolp); 
    d = 3;              % zero selectivity setting - if >=d zeros are in a comparison frame - that frame is not 
ignored... 
    f = 3;              % Choose between 2,3 or 4 out of a group for the decision... 
elseif nwolp==10     
    d = 5;              % zero selectivity setting - if >=d zeros are in a comparison frame - that frame is not 
ignored... 
    f = 4;              % Choose between 2,3 or 4 out of a group for the decision... 
elseif nwolp <=20 
    d = 10;             % zero selectivity setting - if >=d zeros are in a comparison frame - that frame is not 
ignored... 
    f = 4;              % Choose between 2,3 or 4 out of a group for the decision... 
end 
ptime = final;          % Set window times that do not meet threshold check to zero. 
pout = [0];             % Program output variable - ie.. the program estimated shift times. 
agreed = [];            % Stats verification array - not a real program output - for simulation results calculation 
only. 
% Loop based on overlap to calculate the program decisions. 
if nwolp~=1             % Special case for no - overlap - just select the window based on threshold... 
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  if nwolp==2           % Special case for only 50% overlap...only compare 1st 2 and pick 1/2... 
      for m=1:1:length(ptime)-nwolp 
          x = ptime(m:m+nwolp-1); % Choose Window group based on step size (NWOLP) 
          rdif = []; 
          if sum(x==0)>=d 
              pout=cat(1,pout,0); 
              continue 
          elseif x(1)==0 
              pout=cat(1,pout,0); 
              continue 
          else 
              for k = 1:nwolp             % Loop calculates the relative difference within 
                  dif = abs(x-x(k));      % each window group for minimum difference decision 
                  rdif = cat(2,rdif,dif); 
              end 
              sdif = sum(rdif);           % Gives a vector sum showing the item with minimum difference to have 
smallest values 
              [dfv dfp]=sort(sdif);       % Sorts this vector (sdif) so that the minimum 2 or 3 values can be 
selected based on comparison. 
              if (abs(x(dfp(1))-x(dfp(2)))<=comp)   % Accomplishes best 2 or 3 out of NWOLP comparison 
using COMP. 
                  bstval=x(dfp(1)); 
                  if (bstval>=stad(m))&&((stad(m)+wlen-1)>bstval) 
                      if dfp(1)~=1 
                          pout=cat(1,pout,0); 
                      else 
                      pout=cat(1,pout,bstval); 
                      end 
                  else 
                      pout=cat(1,pout,0); 
                  end 
              else 
                  pout=cat(1,pout,0); 
              end 
          end 
      end 
  else 
      for m=1:1:length(ptime)-nwolp 
          x = ptime(m:m+nwolp-1); % Choose Window group based on step size (NWOLP) 
          rdif = []; 
          if sum(x==0)>=d 
              pout=cat(1,pout,0); 
              continue 
          elseif x(1)==0 
              pout=cat(1,pout,0); 
              continue 
          else 
              for k = 1:nwolp             % Loop calculates the relative difference within 
                  dif = abs(x-x(k));      % each window group for minimum difference decision 
                  rdif = cat(2,rdif,dif); 
              end 
              sdif = sum(rdif);           % Gives a vector sum showing the item with minimum difference to have 
smallest values 
              [dfv dfp]=sort(sdif);       % Sorts this vector (sdif) so that the minimum 2 or 3 values can be 
selected based on comparison. 
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              if (abs(x(dfp(1))-x(dfp(2)))<=comp)&&(abs(x(dfp(1))-x(dfp(f-1)))<=comp)&&(abs(x(dfp(1))-
x(dfp(f)))<=comp)   % Accomplishes best 2 or 3 out of NWOLP comparison using COMP. 
                  bstval=x(dfp(1));  
                  y = x==bstval; 
                  if (bstval>=stad(m))&&((stad(m)+wlen-1)>bstval) 
                      if (stad(m+dfp(1)-1)-1<x(dfp(1)))&&(x(dfp(1))<=stad(m+nwolp-1)+wlen-1) 
                          pout=cat(1,pout,bstval); 
                      else 
                          pout=cat(1,pout,0); 
                      end 
                  else 
                      pout=cat(1,pout,0); 
                  end 
              else 
                  pout=cat(1,pout,0); 
              end 
          end 
      end 
  end 
  pout = pout(2:length(pout)); 
else 
    pout = ptime.*(ptime>0); 
end 
  
    %% Filter duplicate times out of pout and maintain lineup with truth vector..... 
    pout2=[];  
    for l=1:length(pout) 
        if pout(l)==0 
            pout2 = [pout2; 0]; 
            continue 
        elseif length(find(abs(pout(l)-pout2)<=comp))>0   % Don't repeat shift time answers within window 
tolerance (comp). 
            pout2 = [pout2; 0]; 
            continue 
        else 
            pout2 = [pout2; pout(l)];                     % store accompanying program shift time 
        end 
    end 
    pout=pout2(1:length(pout2)); 
    if length(pout)<length(truth) 
        pout = [pout; zeros(length(truth)-length(pout),1)]; 
    elseif length(truth)<length(pout) 
        truth = [truth; zeros(length(pout)-length(truth),1)]; 
    end 
    poutf = pout.*~truth; 
%% Filter Duplicate Pout times based on COMP... 
    poutf2=[0]; 
    for l=1:length(poutf) 
        if poutf(l)==0 
            continue 
        elseif length(find(abs(poutf(l)-poutf2)<=comp))>0    % Don't repeat shift time answers within window 
tolerance (comp). 
            continue 
        else 
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            poutf2 = [poutf2; poutf(l)];                     % sets logic bit to 1 and stores accompanying actual shift 
time 
        end 
    end 
    if (length(poutf2)==1)&&(poutf2==0) 
        poutf1 = poutf2; 
    else 
        poutf1=poutf2(2:length(poutf2)); 
    end 
%% STATS CHECK ONLY - NOT VALID PROGRAM OUTPUT 
% Agreed shows 1 for program times matching actual within COMP limit.(HIT) 
%              0 for program times that don't match (FA or MISS) 
  
if isempty(pout) 
    pout =0; 
    agreed = [0 0 0]; 
else 
    agreed = [0 0 0]; 
    for l=1:length(pout) 
        for k = 1:length(ast) 
            if ((abs(pout(l)-ast(k)))<=comp)   % Loop finds phase shift times that are within COMP, 
               % for accuracy analysis... 
                if length(find(abs(pout(l)-agreed(:,2))<=comp))>0  % Don't repeat shift time answers within 
window tolerance (comp). 
                  continue 
                else 
                  agreed =[agreed;[1 ast(k) pout(l)]];             % sets logic bit to 1 and stores accompanying actual 
shift time 
                end 
            end 
        end 
    end 
end 
[r c]=size(agreed); 
agreed = agreed(2:r,:); 
  
%% Sort poutf to find and count distinct false alarm times that do not appear in AST. 
% AgreedF shows 1 for program times that don't match (FA or MISS) 
%              0 for program times matching actual within COMP limit.(HIT) 
     agreedf = [0 0]; 
     if isempty(poutf1(poutf1>0)) 
         poutf = 0; 
     else 
     poutf = poutf1(poutf1>0); 
     end 
     poutf = [poutf; poutf(length(poutf))+5; 0;]; 
    for l=1:length(poutf-1) 
        for k = 1:length(ast) 
           if poutf(l)==0 
               continue 
           elseif (((abs(poutf(l)-ast(k)))>comp)&(poutf(l)<poutf(l+1))) % Loop finds phase shift times that are 
within COMP, 
                if length(find(abs(poutf(l)-agreedf)<=comp))>0          % Don't repeat shift time answers within 
window tolerance (comp). 
                   continue 
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                else 
                  agreedf = [agreedf; [1 poutf(l)]];                    % sets logic bit to 1 and stores accompanying 
actual shift time 
                end 
            end 
        end 
    end 
    [r2 c]=size(agreedf); 
    agreedf = agreedf(2:r2,:); 
end 
 
 
I.   STATISTICS CALCULATIONS 
 
%% FUNCTION [ESTATS]=ERRSTAT(A,CP,FP,SL,WL) 
%% PURPOSE: CALCULATE THE CORRECT HITS, FALSE ALARMS, AND MISSES FOR A RUN. 
%   Uses known shift vector to calculate the accuracy rates of the algorithm. 
%   INPUTS: 
%            A - Truth vector based on test signal shift times. (1's & 0's) 
%           [AST] 
%           CP - Correct Program shift times that agree with T. (1's & 0's) [AGREED(:,1)] 
%           FP - False Program shift times (1's & 0's) [AGREEDF(:,1)] 
%           Detects. 
%           SL - Signal Length 
%           WL - Window Length 
%   OUTPUTS: 
%           ESTATS - Vector that tracks the stats for this run. (in percent) 
%           [PCD(1|1) PFA(1|0) PM(0|1) PD(1|1) PACC PERR] 
% 
%   Filename: errstat.m 
% 
%                       LT Joseph Kramer, REVISION DATE: 28JUL2009 
function [estats]=errstat(a,cp,fp,sl,wl) 
format short g; 
a = a>0;                         % Forms a binary vector based on program shift times. 
cp = cp>0; 
fp = fp>0; 
if isempty(cp) 
    cp=0; 
end 
if isempty(fp) 
    fp=0; 
end 
nonh = (sl-64)/wl-sum(a);       % Possible no shifts in this run. 
TP = sum(cp);                   % Correct detection of Shifts P(1|1). 
if length(fp)>nonh 
    FN = sum(a)-TP;             % MISS... 
    FP = nonh;                  % All NONHs are False Alarms in this case... 
    TN = 0;                     % If all NONHs are FAs then there are no (0|0)s 
else 
    FP = sum(fp);               % Type I error. (False Alarm) P(1|0) 
    FN = sum(a)-TP;             % Type II error. (Miss) P(0|1) 
    if nonh==0 
        TN = 0; 
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    else 
        TN = nonh-sum(fp);      % For accuracy P(0|0) 
    end 
end 
PD = TP; 
PA = (TP+TN)/(sum(a)+nonh);     % Paccuracy = {P(1|1)+P(0|0)}/TOTAL 
PE = (FP+FN)/(nonh+sum(a));     % Perror = {P(0|1)+P(1|0)}/TOTAL 
%%             Pcd(1|1) Pfa(1|0) Pm(0|1)   Pd(1|1) Pacc  Perr           
estats = 100*[TP/sum(a) FP/nonh FN/sum(a) PD/sum(a) PA PE]; 
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APPENDIX B – DATA AND PLOTS 

A.   THRESHOLD PLOTS 
 
1. DIFFERENCE FILTER ALGORITHM 
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Figure 77.   Cross-correlation values for QPSK + AWGN, SNR = 12 dB, using 

Difference filter, phase shift and no-shift cases. 
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Figure 78.   Cross-correlation values for QPSK + AWGN, SNR = 6 dB, using 

Difference filter, phase shift and no-shift cases. 
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Figure 79.   Cross-correlation values for QPSK + AWGN, SNR = 2 dB, using 

Difference filter, phase shift and no-shift cases. 
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Figure 80.   Cross-correlation values for QPSK + AWGN, SNR = 0 dB, using 

Difference filter, phase shift and no-shift cases. 
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2. SG FILTER 
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Figure 81.   Cross-correlation values for QPSK + AWGN, SNR = 9 dB, using SG 

filter, phase shift and no-shift cases. 
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Figure 82.   Cross-correlation values for QPSK + AWGN, SNR = 6 dB, using SG 

filter, phase shift and no-shift cases. 
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Figure 83.   Cross-correlation values for QPSK + AWGN, SNR = 4 dB, using SG 

filter, phase shift and no-shift cases. 
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Figure 84.   Cross-correlation values for QPSK + AWGN, SNR = 2 dB, using SG 

filter, phase shift and no-shift cases. 
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Figure 85.   Cross-correlation values for QPSK + AWGN, SNR = 0 dB, using SG 

filter, phase shift and no-shift cases. 
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Figure 86.   Cross-correlation values for QPSK + AWGN, SNR = -2 dB, using SG 

filter, phase shift and no-shift cases. 
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B.   SIMULATION DATA 
 
 Note, data displayed is at a frequency of 0.1Hz, window length 300, tolerance of 
10% unless otherwise stated in the tables. 
 

Segmentation A - Difference Filter Segmentation B - Difference Filter 
  Overlap Rate   Overlap Rate 

SNR (dB) 0% 60% 90% SNR (dB) 0% 60% 90% 
PCD 

12 1.0000 1.0000 1.0000 12 1.0000 1.0000 1.0000 
9 1.0000 1.0000 1.0000 9 1.0000 1.0000 1.0000 
6 0.9960 0.9920 0.9960 6 1.0000 1.0000 1.0000 
4 0.9760 0.9000 0.9480 4 0.9760 0.9760 0.9720 
2 0.8800 0.7840 0.8320 2 0.8280 0.7480 0.8320 
0 0.5640 0.3640 0.5880 0 0.4800 0.3760 0.4840 
-2 0.2120 0.1200 0.2480 -2 0.1160 0.1000 0.2000 

Probability of False Alarm 
12 0.0000 0.0000 0.0000 12 0.0000 0.0000 0.0000 
9 0.0000 0.0000 0.0000 9 0.0000 0.0000 0.0000 
6 0.0040 0.0080 0.0040 6 0.0160 0.0000 0.0000 
4 0.0560 0.0560 0.0641 4 0.0681 0.0961 0.0400 
2 0.6245 0.5685 0.6486 2 0.7246 0.5204 0.5244 
0 0.8968 0.7206 1.0000 0 0.9488 0.7647 1.0000 
-2 0.9848 0.3643 0.8848 -2 0.9928 0.3843 0.8848 

Probability of Accuracy 
12 1.0000 1.0000 1.0000 12 1.0000 1.0000 1.0000 
9 1.0000 1.0000 1.0000 9 1.0000 1.0000 1.0000 
6 0.9960 0.9920 0.9960 6 0.9920 1.0000 1.0000 
4 0.9600 0.9220 0.9420 4 0.9540 0.9400 0.9660 
2 0.6278 0.6078 0.5918 2 0.5518 0.6138 0.6539 
0 0.3337 0.3217 0.2941 0 0.2657 0.3057 0.2421 
-2 0.1136 0.3777 0.1817 -2 0.0616 0.3577 0.1576 

Probability of Error 
12 0.0000 0.0000 0.0000 12 0.0000 0.0000 0.0000 
9 0.0000 0.0000 0.0000 9 0.0000 0.0000 0.0000 
6 0.0040 0.0080 0.0040 6 0.0080 0.0000 0.0000 
4 0.0400 0.0780 0.0580 4 0.0460 0.0600 0.0340 
2 0.3722 0.3922 0.4082 2 0.4482 0.3862 0.3461 
0 0.6663 0.6783 0.7059 0 0.7343 0.6943 0.7579 
-2 0.8864 0.6223 0.8183 -2 0.9384 0.6423 0.8424 

Table 5.   Difference filter differentiation results for 0%, 60%, and 90% overlap rates and 
segmentation options A and B. 
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Window = 256 - Difference Filter Freq. = 0.4Hz - Difference Filter 

  Overlap Rate   Overlap Rate 
SNR (dB) 0% 60% SNR (dB) 0% 60% 

PCD 
12 1.0000 1.0000 12 0.9960 1.0000 
9 1.0000 1.0000 9 1.0000 1.0000 
6 1.0000 1.0000 6 1.0000 1.0000 
4 0.9480 0.9720 4 0.9880 0.9560 
2 0.8280 0.8240 2 0.8280 0.7840 
0 0.4600 0.3880 0 0.4520 0.3560 
-2 0.1640 0.1160 -2 0.1440 0.0840 

Probability of False Alarm 
12 0.0000 0.0000 12 0.0000 0.0000 
9 0.0000 0.0000 9 0.0000 0.0000 
6 0.0000 0.0030 6 0.0080 0.0040 
4 0.0447 0.0596 4 0.0560 0.0480 
2 0.7120 0.5064 2 0.7366 0.5565 
0 0.9324 0.7507 0 0.9608 0.7366 
-2 0.9890 0.4528 -2 0.9969 0.3803 

Probability of Accuracy 
12 1.0000 1.0000 12 0.9980 1.0000 
9 1.0000 1.0000 9 1.0000 1.0000 
6 1.0000 0.9983 6 0.9960 0.9980 
4 0.9522 0.9539 4 0.9660 0.9540 
2 0.5185 0.6346 2 0.5458 0.6138 
0 0.2351 0.3085 0 0.2457 0.3097 
-2 0.0763 0.3631 -2 0.0736 0.3517 

Probability of Error 
12 0.0000 0.0000 12 0.0020 0.0000 
9 0.0000 0.0000 9 0.0000 0.0000 
6 0.0000 0.0017 6 0.0040 0.0020 
4 0.0478 0.0461 4 0.0340 0.0460 
2 0.4815 0.3654 2 0.4542 0.3862 
0 0.7649 0.6915 0 0.7543 0.6903 
-2 0.9237 0.6369 -2 0.9264 0.6483 

Table 6.   Difference filter differentiation frequency results for 0% and 60% overlap rates 
and window length equal to 256. 
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Difference Approximation Differentiation - Segmentation B 
  12 dB 9 dB 6 dB 4 dB 2 dB 0 dB 2 dB Tolerance 

PCD 
1.0000 1.0000 1.0000 0.9640 0.7960 0.3440 0.0880 5% 
1.0000 1.0000 1.0000 0.9760 0.8280 0.4800 0.1160 10% 

0%     
Overlap 

1.0000 1.0000 1.0000 0.9640 0.8240 0.5320 0.1480 15% 
1.0000 1.0000 1.0000 0.9200 0.7280 0.2600 0.0560 5% 
1.0000 1.0000 1.0000 0.9760 0.7480 0.3760 0.1000 10% 

60%    
Overlap 

0.9960 1.0000 1.0000 0.9720 0.8080 0.4360 0.1640 15% 
Probability of False Alarm 

0.0000 0.0000 0.0040 0.0761 0.6886 0.9168 0.9928 5% 
0.0000 0.0000 0.0160 0.0681 0.7246 0.9488 0.9928 10% 

0%     
Overlap 

0.0000 0.0000 0.0040 0.0641 0.6926 0.9328 0.9969 15% 
0.0000 0.0000 0.0040 0.0560 0.4804 0.7206 0.3163 5% 
0.0000 0.0000 0.0000 0.0961 0.5204 0.7647 0.3843 10% 

60%    
Overlap 

0.0000 0.0000 0.0040 0.0841 0.4884 0.8567 0.4484 15% 
Probability of Accuracy 

1.0000 1.0000 0.9980 0.9440 0.5538 0.2137 0.0476 5% 
1.0000 1.0000 0.9920 0.9540 0.5518 0.2657 0.0616 10% 

0%     
Overlap 

1.0000 1.0000 0.9980 0.9500 0.5658 0.2997 0.0756 15% 
1.0000 1.0000 0.9980 0.9320 0.6238 0.2697 0.3697 5% 
1.0000 1.0000 1.0000 0.9400 0.6138 0.3057 0.3577 10% 

60%    
Overlap 

0.9980 1.0000 0.9980 0.9440 0.6599 0.2897 0.3577 15% 
Probability of Error 

0.0000 0.0000 0.0020 0.0560 0.4462 0.7863 0.9524 5% 
0.0000 0.0000 0.0080 0.0460 0.4482 0.7343 0.9384 10% 

0%     
Overlap 

0.0000 0.0000 0.0020 0.0500 0.4342 0.7003 0.9244 15% 
0.0000 0.0000 0.0020 0.0680 0.3762 0.7303 0.6303 5% 
0.0000 0.0000 0.0000 0.0600 0.3862 0.6943 0.6423 10% 

60%    
Overlap 

0.0020 0.0000 0.0020 0.0560 0.3401 0.7103 0.6423 15% 

Table 7.   Difference filter differentiation results for 0% and 60% overlap rates across 
5%,10%, and 15% tolerance.  
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Savitzky-Golay Differentiation - Segmentation B 

  12 dB 9 dB 6 dB 4 dB 2 dB 0 dB 2 dB Tolerance 
PCD 

1.0000 1.0000 1.0000 0.9960 0.9080 0.6040 0.1840 5% 
1.0000 1.0000 1.0000 1.0000 0.8880 0.6280 0.2960 10% 

0%     
Overlap 

1.0000 1.0000 1.0000 0.9960 0.9240 0.6200 0.3240 15% 
1.0000 1.0000 0.9960 1.0000 0.8120 0.5280 0.1080 5% 
1.0000 1.0000 1.0000 0.9920 0.9120 0.6280 0.2360 10% 

60%    
Overlap 

1.0000 1.0000 1.0000 0.9880 0.9280 0.5840 0.2920 15% 
Probability of False Alarm 

0.0000 0.0000 0.0040 0.1962 0.9328 0.9969 0.9969 5% 
0.0000 0.0000 0.0080 0.1842 0.9328 0.9969 0.9969 10% 

0%     
Overlap 

0.0000 0.0000 0.0080 0.1441 0.9208 0.9928 0.9969 15% 
0.0000 0.0000 0.0000 0.0841 0.5925 0.8167 0.6405 5% 
0.0000 0.0000 0.0080 0.1241 0.5325 0.7326 0.6526 10% 

60%    
Overlap 

0.0000 0.0000 0.0080 0.1481 0.6526 0.8848 0.7807 15% 
Probability of Accuracy 

1.0000 1.0000 0.9980 0.9000 0.4878 0.3037 0.0936 5% 
1.0000 1.0000 0.9960 0.9080 0.4778 0.3157 0.1496 10% 

0%     
Overlap 

1.0000 1.0000 0.9960 0.9260 0.5018 0.3137 0.1636 15% 
1.0000 1.0000 0.9980 0.9580 0.6098 0.3557 0.2337 5% 
1.0000 1.0000 0.9960 0.9340 0.6899 0.4478 0.2917 10% 

60%    
Overlap 

1.0000 1.0000 0.9960 0.9200 0.6378 0.3497 0.2557 15% 
Probability of Error 

0.0000 0.0000 0.0020 0.1000 0.5122 0.6963 0.9064 5% 
0.0000 0.0000 0.0040 0.0920 0.5222 0.6843 0.8504 10% 

0%     
Overlap 

0.0000 0.0000 0.0040 0.0740 0.4982 0.6863 0.8364 15% 
0.0000 0.0000 0.0020 0.0420 0.3902 0.6443 0.7663 5% 
0.0000 0.0000 0.0040 0.0660 0.3101 0.5522 0.7083 10% 

60%    
Overlap 

0.0000 0.0000 0.0040 0.0800 0.3622 0.6503 0.7443 15% 

Table 8.   SG filter differentiation results for 0% and 60% overlap rates across 5%,10%, and 
15% tolerance 

 
 
 
C.   OPERATING CURVES DATA AND PLOTS 
 
1. CURVE DATA 
 
Note, data displayed is for a normalized signal carrier frequency equal to 0.1Hz, window 
length 300, detection accuracy tolerance equal to 10% unless otherwise stated in the 
tables. 



 120

 
Difference filter algorithm Operating Characteristic Curve Data 

SNR 6 dB 4 dB 2 dB 0 dB 
τ PCD False Alarm PCD False Alarm PCD False Alarm PCD False Alarm 

0.05 1.0000 0.0320 0.9840 0.5805 0.8480 0.9969 0.4520 0.9969 
0.10 1.0000 0.0160 0.9880 0.4724 0.8160 0.9969 0.4560 0.9969 
0.15 1.0000 0.0080 0.9920 0.3163 0.8320 0.9728 0.4360 0.9969 
0.20 1.0000 0.0120 0.9800 0.2762 0.8440 0.9368 0.4560 0.9969 
0.25 1.0000 0.0120 0.9960 0.2202 0.8360 0.9288 0.4400 0.9969 
0.30 0.9920 0.0000 0.9880 0.2362 0.8360 0.8447 0.3880 0.9969 
0.35 0.9920 0.0000 0.9840 0.1201 0.7960 0.7967 0.4560 0.9969 
0.40 0.9920 0.0000 0.9640 0.1201 0.8400 0.8127 0.4400 0.9969 
0.45 0.9880 0.0000 0.9520 0.0841 0.8000 0.7647 0.4760 0.9969 
0.50 0.9600 0.0000 0.9560 0.0601 0.8120 0.7286 0.5160 0.9969 
0.55 0.9280 0.0000 0.9000 0.0560 0.8360 0.6245 0.4560 0.9969 
0.60 0.9240 0.0000 0.9000 0.0280 0.8000 0.5405 0.4680 0.9928 
0.65 0.8360 0.0000 0.8400 0.0280 0.8200 0.5685 0.4560 0.9969 
0.70 0.7920 0.0000 0.7800 0.0160 0.7680 0.4444 0.5040 0.9568 
0.75 0.6680 0.0000 0.7440 0.0080 0.7880 0.4124 0.4160 0.9528 
0.80 0.6280 0.0000 0.7360 0.0080 0.6840 0.3043 0.4440 0.9248 
0.85 0.4880 0.0000 0.6280 0.0160 0.7000 0.2482 0.4600 0.9248 
0.90 0.3880 0.0000 0.5960 0.0120 0.5920 0.2202 0.4520 0.9368 
0.95 0.2880 0.0000 0.4080 0.0000 0.5280 0.1401 0.4760 0.7847 

Table 9.   Difference filter differentiation operating curve results for input signal SNR levels 
of 6, 4, 2, and 0 dB. 
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SG filter Operating Characteristic Curve Data 

SNR 6 dB 4 dB 2 dB 0 dB 
τ PCD False Alarm PCD False Alarm PCD False Alarm PCD False Alarm 

0.05 1.0000 0.0200 0.9960 0.4003 0.9120 0.9928 0.6360 0.9969 
0.10 1.0000 0.0120 1.0000 0.3363 0.9000 0.9288 0.6480 0.9969 
0.15 1.0000 0.0040 0.9880 0.2082 0.9080 0.8928 0.6200 0.9969 
0.20 1.0000 0.0080 0.9920 0.2042 0.9080 0.8087 0.6360 0.9969 
0.25 1.0000 0.0000 1.0000 0.1281 0.8880 0.8167 0.6000 0.9969 
0.30 1.0000 0.0000 0.9920 0.1441 0.9040 0.6766 0.5840 0.9928 
0.35 1.0000 0.0000 0.9880 0.0560 0.8960 0.6365 0.6800 0.9928 
0.40 0.9960 0.0000 0.9960 0.0520 0.9280 0.6365 0.5640 0.9888 
0.45 0.9920 0.0000 0.9720 0.0440 0.8960 0.4644 0.6560 0.9808 
0.50 0.9680 0.0000 0.9640 0.0160 0.8760 0.4884 0.6400 0.9928 
0.55 0.9360 0.0000 0.9040 0.0160 0.8760 0.3963 0.5920 0.9608 
0.60 0.9000 0.0000 0.8880 0.0040 0.8440 0.3763 0.6040 0.9488 
0.65 0.8000 0.0000 0.8400 0.0120 0.8320 0.3483 0.6400 0.9448 
0.70 0.7760 0.0000 0.7680 0.0000 0.8120 0.2322 0.6720 0.8767 
0.75 0.6680 0.0000 0.7440 0.0040 0.7800 0.2042 0.6320 0.8367 
0.80 0.6520 0.0000 0.7600 0.0000 0.7720 0.1361 0.6200 0.7847 
0.85 0.5280 0.0000 0.6960 0.0040 0.7200 0.0681 0.6440 0.7326 
0.90 0.4480 0.0000 0.5720 0.0040 0.6520 0.1001 0.5840 0.6686 
0.95 0.3680 0.0000 0.3880 0.0000 0.5480 0.0520 0.5800 0.5685 

Table 10.   SG filter differentiation operating curve results for input signal SNR levels of 6, 
4, 2, and 0 dB 
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2. OPERATING CURVES FOR THE DIFFERENCE FILTER 
IMPLEMENTATION OF THE DIFFERENTIATION STEP 
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Figure 87.   Operating Characteristic Curve, QPSK + AWGN, SNR = 6dB, Difference 
filter implementation. 
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Figure 88.   Operating Characteristic Curve, QPSK + AWGN, SNR = 4dB, Difference 

filter implementation. 
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Figure 89.   Operating Characteristic Curve, QPSK + AWGN, SNR = 2dB, Difference 

filter implementation. 
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Figure 90.   Operating Characteristic Curve, QPSK + AWGN, SNR = 0dB, Difference 

filter implementation. 
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3. OPERATING CURVES OBTAINED FOR THE SG FILTER 

IMPLEMENTATION OF THE DIFFERENTIATION STEP 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 τ=0.05 τ=0.5

 τ=0.95

Operators Curve: 6dB, 10% Tolerance, 0.1 Hz, No Overlap

Probability of False Alarm (PFA)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

(P
D)

 
Figure 91.   Operating Characteristic Curve, QPSK + AWGN, SNR = 6dB, SG filter 

implementation. 
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