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ABSTRACT 

The potential benefits of automated detection of digital modulation types have 

made it a continuing topic of research for many years.  Commercial systems could be 

made more interoperable and military sensors could send demodulated products for 

analysis, to name just two.  Noisy channels and multipath fading environments continue 

to make this a challenging problem.  This thesis applies classification algorithms that 

have been used in other applications.  Nine different digital modulation schemes are 

considered.  The criteria for selecting higher-ordered moments and cumulants as features 

for discrimination are discussed.  An overview of the classification algorithms considered 

is provided, as well as the statistical models for noisy channels.  Results show that the 

scheme proposed here works well in AWGN channels and in moderate fading conditions. 

.
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EXECUTIVE SUMMARY 

Blind modulation classification remains a challenging problem despite the 

numerous studies that have investigated it.  This thesis applies higher-order moments and 

cumulants as features to several modulation classification algorithms. 

An overview of digital communications is provided along with the statistical 

models for noisy and fading channels.  The extraction of moments and cumulants is 

discussed at length, and the criteria for selecting them as features for discrimination are 

explained.  Attempts are made to make the classifers robust to fading effects, first by 

investigating the effects of phase shifts on the statistics, and second by applying realistic 

power normalizations.  Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA) and their nonlinear, kernel-based counterparts are presented. 

Principal Component Analysis works slightly better than Linear Discriminant 

Analysis in most channel conditions and equals the performance of kernel-based PCA 

with less computational overhead.  Results show that this classifier works very well with 

signals that are corrupted only by additive white Gaussian noise (AWGN).  It achieves a 

classification rate of 95.1% at an SNR of 20 dB and 89.0% at 5 dB.  In moderate fading 

conditions, such as might be experienced by a mobile device being carried by a person 

walking, it performs nearly as well, with classification rates in a Rayleigh channel of 

87.0% (20 dB) and 86.8% (5 dB), and 91.5% (20 dB) and 91.7% (5 dB) in a Ricean 

channel.  Even PCA’s performance degrades sharply, however, in more severe fading 

conditions. 
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I. INTRODUCTION 

A. OBJECTIVES 

Blind modulation classification in which the modulation type of a waveform is 

determined without a priori information has many potential applications.  In the 

commercial sector, it would enable the interoperability of diverse communications 

devices.  In the military domain, it would allow the demodulation of an intercepted signal 

to be performed in situ rather than after the signal has been sampled and forwarded on for 

processing.  Software-defined radio would also benefit from this capability since the 

transmitter and receiver would not have to agree on a particular modulation scheme in 

advance.  

Because of the obvious benefits of blind modulation classification, much has been 

published on this topic in the literature in recent years, as will be seen below.  There is no 

widespread agreement, however, on which modulation schemes to consider.  Even within 

the main families of schemes, there are endless variants.  Some papers consider phase-

shift keying (PSK) versus frequency shift keying (FSK).  Others introduce quadrature 

amplitude modulation (QAM) or variants of PSK such as minimum-shift keying.  This 

thesis is no different in its arbitrariness.  Nine different modulation schemes are 

considered: 2, 4, and 8-PSK, 2, 4, and 8-FSK, and 16, 64, and 256-QAM.  How the 

features used for classification were chosen and the classifier algorithms are discussed.  

Simulation results for signals in additive white Gaussian noise (AWGN) and signals in 

fading channels are also discussed. 

B. BACKGROUND 

Various methods have been proposed to accomplish blind modulation 

classification.  Marchand proposes the use of higher-ordered moments and cumulants in 

[1].  In one way or another, these features are used in [2, 3, 4].  Hatzichristos uses them as 

inputs to a neural network classifier [2], whereas Young uses a simpler approach  
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involving threshold values [3].  Like, Chakravarthy, Ratazzi, and Wu propose a neural 

network-based classifier that uses cyclostationarity detection in its first tier and 4th and 

8th-ordered cumulants thereafter [4]. 

Other methods involve the use of wavelet transforms.  Ho, Prokopiw, and Chan 

propose a scheme that uses very few symbols (on the order of 100) but do not consider 

QAM, in which both the amplitude and the phase are modulated [5, 6].  Prakasam and 

Madheswaran extracts several statistics from the wavelet transform and places them in an 

elaborate decision tree [7]. 

A summary of many of these methods can be found in [8], in which four broad 

categories for all the methods to date are defined: algorithms based on instantaneous 

amplitude, phase, and frequency; algorithms based on the wavelet transform; algorithms 

based on cumulants; and algorithms based on cyclostationarity properties. 

This thesis falls into the third category.  Some of the same features – higher-

ordered moments and cumulants - investigated in [2, 3] are examined, but a different set 

of classification algorithms is investigated.  Specifically, the classification rates of 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), as well 

as their nonlinear (kernel-based) counterparts, are determined and compared.  These 

schemes are well-known and have been applied successfully to face-recognition 

applications in [9, 10]. 

C. ORGANIZATION 

The theory of digital communications systems, the nine modulation schemes 

considered in this work, and the mathematical models for introducing noise to wireless 

channels are reviewed in Chapter II.  The features used for classification, namely 

moments and cumulants, and the reasons for choosing the particular moments and 

cumulants used in this work, are discussed in Chapter III.  The linear and nonlinear 

classification schemes that use the moments and cumulants as inputs are introduced in 

Chapter IV.  The software implementation of the classifiers and the simulation results are 

discussed in Chapter V.  Finally, conclusions and suggestions for further work are 

presented in Chapter VI. 



 3

D. SIMULATION SOFTWARE 

All simulations were conducted in MATLAB version 7.6.  Various functions from 

the Communications Toolbox were used.  The code developed for this thesis is listed in 

the appendices.  Note that this work implicitly assumes that some preprocessing has 

already occurred to down-convert the received signal as the functions in the 

Communications Toolbox used in this work simulate digital signals at baseband. 
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II. DIGITAL MODULATION AND WIRELESS CHANNELS 

The reader is introduced to the digital modulation schemes considered in this 

thesis in this chapter.  Additionally, the mathematical models used to represent modulated 

signals corrupted during transmission are presented.   

A. THE NEED FOR MODULATION 

The purpose of any digital communication system is to transmit data from an 

information source to an information sink.  At a minimum, a baseband waveform must be 

constructed from the symbols making up the information.  This often amounts to 

assigning two different voltage levels to the binary symbols that represent the 

information. Construction of this baseband waveform is called pulse code modulation. 

Some media, such as coaxial cable, can propagate baseband waveforms with no 

further manipulation required.  For wireless transmission, on the other hand, baseband 

waveforms are impractical for several reasons [11].  First, the antenna size necessary to 

transmit an electromagnetic wave is inversely proportional to the wave’s frequency.  

Therefore, shifting the baseband waveform to a higher frequency allows for a smaller 

antenna.  For many mobile devices, this results in a carrier frequency on the order of 1 

GHz. 

Second, multiple transmitters operating at the same frequency generally interfere 

with each other.  By assigning each transmitter a unique portion of the electromagnetic 

spectrum, multiple transmitters can operate without interference.  This is called 

frequency-division multiple access. 

The translation of a baseband waveform to a higher frequency is accomplished by 

manipulating the features of a sinusoidal wave at that frequency.  This process is called 

bandpass modulation. 
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B. DIGITAL MODULATION SCHEMES 

1. Introduction 

There are three features of a sinusoidal wave that the designer can manipulate: 

amplitude, frequency, and phase.  A given modulation scheme works on one or more of 

these.  This work will consider three fundamental schemes: PSK, FSK and QAM.   

2. Phase Shift Keying 

As the name implies, PSK works by assigning a unique phase to each symbol 

present in the baseband waveform.  Thus, binary phase-shift keying (BPSK) in which 

each symbol represents one bit uses two different phases, 4-PSK uses four different 

phases, and so on.  The resulting waveforms can be represented mathematically by [12]: 

 
2 2

( ) cos 2 0,1,..., 1,S
i c

S

E
s t f t i i M

T M


       

 
 (2.1) 

where M  is the number of bits per symbol, cf  is the carrier frequency, sE  is the energy 

per symbol, and sT is the symbol interval.  

The case where 4M   illustrates a result that is widely exploited in 

communications systems: orthogonal signaling.  The four phases are 3
2 20, , , and .    

Note, however, that 

 cos 2 sin 2
2c cf t f t
    

 
 and  3

cos 2 sin 2
2c cf t f t
     

 
. 

This is important because the sine and cosine waves are orthogonal signals, 

meaning that they are uncorrelated in time over a symbol duration.  Even when their 

frequencies are the same, they can be transmitted by the same antenna and recovered by 

the same receiver without mutual interference.  When two signals are orthogonal, it is 

common to represent them as two perpendicular vectors that form a basis in 2R .  This 

leads to a conceptualization of the modulated symbols as points in a constellation, as 

shown in Figure 1.   
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In-Phase Channel

Quadrature Channel

 

Figure 1.   QPSK Constellation. 

Thus, any modulated waveform can be constructed as the sum of two sinusoids.  

The first, represented by the horizontal axis, is called the in-phase (I) channel.  The 

second, represented by the vertical axis, is exactly out of phase with the first and is called 

the quadrature (Q) channel.  For this reason, 4-PSK is usually referred to as quadrature 

phase-shift keying (QPSK).  This result will be particularly important in the discussion of 

QAM. 

PSK schemes are popular for their symbol error performance and bandwidth 

efficiency.  This comes at the price, however, of increased receiver complexity. In order 

to recover the baseband signal, the receiver must generate a sinusoid that is phase-

synchronized with the received signal (except for one variant called differential phase-

shift keying, which is not considered in this work).  Modulation schemes that impose this 

requirement on the receiver are said to be coherently detected. 
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PSK signals sometimes have an additional phase offset that rotates the 

constellation by a uniform amount, typically 4
 for BPSK and 8

 for QPSK.  As will 

be seen in Chapter III, this can affect the features used for classification. 

3. Quadrature Amplitude Modulation 

Whereas PSK only uses phase differences to distinguish between symbols, QAM 

modulates both the phase and the amplitude of the carrier.  Thus, it can be thought of as a 

generalization of PSK where all symbols need not have equal energy.  Like PSK, the 

mathematical expression for an M-ary QAM signal can be decomposed into orthogonal 

sinusoids [12]: 

      0 02 2
cos 2 sin 2 0,1,..., 1.i i c i c

s s

E E
s t a f t b f t i M

T T
      (2.2) 

Figure 2 shows the symbol constellation obtained for a 16-QAM signal. 

In-Phase Channel

Quadrature Channel

 

Figure 2.   16-QAM Constellation. 
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Although this work only considers QAM schemes that have square-shaped 

constellations (i.e., an equal number of symbols occupying each quadrant), this is not a 

general requirement for QAM.  QAM signals tend to be bandwidth efficient and, like 

PSK, must be coherently detected. 

4. Frequency-Shift Keying 

FSK signals are unlike PSK and QAM in that each of the M symbols in an M-ary 

scheme has its own signaling frequency [12]: 

   2
cos(2 ) 1, 2,..., .s

i i
s

E
s t f t i M

T
   (2.3) 

FSK uses bandwidth inefficiently but can be detected noncoherently, which 

reduces receiver complexity.  It cannot be decomposed and visualized as I- and Q-

channels, since it uses multiple signaling frequencies. 

C. SOURCES OF SIGNAL DEGRADATION 

1. Introduction 

In the process of transmission and reception, there are several ways in which a 

signal can undergo degradation, making it harder for the receiver to demodulate it 

correctly—or making it harder to determine its modulation type.  A radio frequency (RF) 

signal always experiences a decrease in power due to the distance from the transmitter, 

called path loss.  In addition, this work considers two types of degradation: AWGN and 

multipath fading. 

2. Additive White Gaussian Noise 

Any receiver will have a certain amount of thermal energy associated with its 

antenna and other circuitry.  Additionally, interfering signals will be received by the 

antenna [11].  This interference can be modeled as a Gaussian random process that adds 

to the modulated signal.  For a signal propagating in free space, this model is sufficient to 
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describe the degradation of the signal.  It is common to express this process in terms of its 

power spectral density, 0
2 ,

N
 which is a constant as a function of frequency. 
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Figure 3.   Power Spectral Density of AWGN. 

The effect of AWGN on a signal is to introduce uncertainty as to which symbols 

are being transmitted.  The variance in the thermal noise will shift each symbol around its 

intended value.  For example, the constellation of a 16-QAM signal with 10,000 symbols 

in the presence of AWGN is shown in Figure 4.   
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In-Phase Channel

Quadrature Channel

 

Figure 4.   Effect of AWGN on 16-QAM (SNR = 20dB). 

This degradation can be quantified by defining the signal-to-noise ratio (SNR), 

which is simply the ratio of the signal power to the noise power.  For the purpose of error 

analysis, it is necessary to modify this quantity to account for symbol time and receiver 

bandwidth.  This results in the quantity
0

,sE
N  which denotes the ratio of symbol energy-

to-noise energy.  Note that much of the literature in communications theory expresses 

SNR as 
0

,bE
N  the ratio of bit energy to noise energy.  This is because the usual measure 

of error performance is bit error ratio, and expressing it in terms of 
0

sE
N allows for an 

apples-to-apples comparison between M-ary systems.  In order to keep the bit energy 

consistent, however, an M-ary system must have M times as much symbol energy as a 

binary system ( s bE ME ), and, therefore, M times as much power, assuming equal 
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symbol rates.  Because the goal of this work is to distinguish between modulation types, 

the symbol energy is kept consistent and 
0

sE
N is used as the measure of SNR. 

3. Fading Channels 

While AWGN alone adequately models the degradation of a signal in free space, 

many signals undergo more complicated propagation on top of AWGN.  The presence of 

physical obstructions such as buildings causes multipath propagation losses.  As the name 

implies, this means that the signal arrives at the receiver via more than one propagation 

path.  Depending on the relative lengths of the paths, this can result in either constructive 

or destructive interference.  Furthermore, relative motion between the transmitter and 

receiver causes Doppler shift. 

Multipath propagation results in both large scale and small scale fading.  Large 

scale fading is similar to the path loss that a signal experiences in free space in that it is 

proportional to 1 ,nr  where r is the distance between the transmitter and receiver.  In free 

space 2,n   whereas in a fading channel, n depends on the particular objects reflecting 

the signal.  Also, this relationship only determines the mean path loss due to large scale 

fading.  The actual path loss can be modeled as a random variable with a log-normal 

variation around this mean value [11]. 

Small scale fading refers to finer variations in the relative position of the 

transmitter and receiver that can cause multipath copies of the signal to interfere with 

each other.  When a line-of-sight component is present among the reflected paths, the 

received amplitude can be modeled as a random variable with a Ricean probability 

density function (PDF) [11], 

  
2 2

0 0 0
0 02 2 2

exp ,
2

r r A r A
p r I

  
       

  
 (2.4) 

where 0r is the distance between transmitter and receiver, A is the magnitude of the line-

of-sight component,   is the mean amplitude of the reflected components, and 0I  is a 

modified Bessel function of the first kind.  When no line-of-sight component is available, 

this PDF simplifies to the Rayleigh PDF: 
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  
2

0 0
0 2 2

exp .
2

r r
p r

 
 

  
 

 (2.5) 

Finally, in mobile applications the Doppler effect causes the multiple received 

copies of the signal to alternate between constructive and destructive interference.  When 

this effect is slow compared to a symbol interval, it is called slow fading.  Similarly, 

when the effect occurs within a symbol interval, it is called fast fading [13]. 

Fortunately, the MATLAB Communications Toolbox includes functions that 

account for all these effects.  A 16-QAM signal in slow Rayleigh fading is shown in 

Figure 5.  The overall effect is to rotate the constellation. 

In-Phase Channel

Quadrature Channel

 

Figure 5.   Effect of Rayleigh Fading on 16-QAM (SNR = 20dB). 
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D. CONCLUSION 

In this chapter, the reader was introduced to some of the digital signaling 

techniques commonly in use and the statistical methods that model their corruption by 

white noise and multipath fading, which both make the task of classifying the signals 

harder.  The features used as a basis for discrimination will be discussed in Chapter III. 
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III. SIGNAL FEATURES 

In order to implement the classifier, features must be extracted from the signals to 

provide a basis for distinguishing between the modulation types.  In this chapter, the 

features that will be used in classification are presented and their behavior under AWGN 

and multipath fading examined.  

A. INTRODUCTION 

For FSK signals, the most effective approach is to exploit their unique spectral 

characteristics.  For PSK and QAM, a number of different discriminating features have 

been proposed in the literature.  The use of higher ordered moments and cumulants was 

proposed in [14] and explored in [2, 3].  Wavelet transforms were examined in [5, 6, 7].  

More recently, [4] presented an approach based on cyclostationarity concepts. 

B. SPECTRUM BASED CLASSIFICATION OF FSK SCHEMES 

The spectrum of an FSK signal is sufficient to distinguish it from PSK and QAM 

signals and to separate different M-ary FSK schemes.  A simple way to automate this 

examination of the spectrum is presented in [15].  First, the fast Fourier transform (FFT) 

of the signal is computed.  Next, transform peak values are compared to each other in 

order to determine whether the signal is FSK and if so, what type. 

Consider the single-sided spectrum of the BFSK signal shown in Figure 6.  There 

are clearly two peaks in this spectrum.  If the ratio of the second highest value to the third 

highest value in the spectrum is computed, the result is a number larger than one.  

Likewise, a 4-FSK signal will have a large ratio of the fourth to the fifth highest value 

and an 8-FSK signal of the eighth to the ninth highest value.  For non-FSK signals, these 

ratios will all be approximately unity. 



 16

Frequency (Hz)

 

Figure 6.   Single-Sided Spectrum of BFSK. 

C. MOMENTS 

Statistical moments are nothing more than the expected value of a random 

variable raised to the power indicated by the order of the moment.  A first order moment 

is the mean of the variable.  In many applications, the second order moment is a 

measurement of power.  For complex random variables, a conjugate term is often 

included (note that the signals generated in this work are simulated by their complex 

envelope).  In general, the moment of a random variable is defined as 

 , , ( ) , , ,a b
x a bE E x x a b      (3.1) 

where x is the variable and x  is its complex conjugate.  The order of this moment is 

a b .  For our purposes, x is a vector of samples of a digitally modulated signal.  Rather 

than explicitly calculating statistical moments, they are estimated by raising each element 

in the vector to the indicated power and computing the numerical mean.  In this work the 
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moments are normalized by the measure of signal power appropriate for the order of the 

moment.  For example, a second order moment is normalized by the signal power itself, a 

fourth order moment is normalized by the power squared, and so on.  Additionally, all 

moments are central moments as the signal mean is zero. 

D. CUMULANTS 

In order to define the cumulants of a random variable x, we first define its 

characteristic function and second characteristic function, respectively, as [16]: 

     sxs f x e dx




    (3.2) 

and 
    ln .s s    (3.3) 

The nth-order cumulant of x is defined as the nth derivative of the second 

characteristic function evaluated at s = 0: 

 
(0)

.
n

n n

d

ds
 

  (3.4) 

Note, that x may be complex-valued.  In order to be consistent with the notation 

above for moments, cumulants will be represented by , ,x a bC . 

Fortunately, cumulants can also be expressed as functions of equal and lower 

ordered moments, making it simple to compute them numerically.  These expressions 

were computed up to the eighth order in [1] and are presented in Appendix A. 

E. FEATURE SELECTION 

Some points should be made about the application of moments and cumulants to 

the problem at hand.  First, they will have imaginary components.  It was asserted in [1] 

and [2] that the imaginary components would be zero for the signals considered here.  

This may be the case if there is no rotation of the signal constellation.  As mentioned in 

Chapter II, however, fading channels have the effect of rotating the entire constellation; 

also, some implementations of BPSK and QPSK may include an arbitrary phase offset. 
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To illustrate the effect of a phase rotation, ,4,0xE is calculated below for a QPSK 

signal with an arbitrary phase shift of .   The expression used is the baseband (or 

complex-envelope) expression for QPSK.  Since QPSK signals have four possible values, 

( )d k is a uniformly distributed random integer between 0 and 3. 

 

 
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2 8
exp ( ) exp ( ) 4

4 4

1
exp( 4 ) exp( 2 )
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1
exp( 4 ) 1 1 1 1

4
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E j d k E j d k

j j k

j

j

  

 







                                 



   



  (3.5) 

Clearly, the phase rotation may introduce an imaginary component into the 

statistic that varies with the phase shift .   Section A of Appendix C contains a general 

proof that, for PSK and QAM signals, an arbitrary phase shift of the constellation affects 

the phase of the moments but not their magnitudes.  In section B, this result is shown to 

hold for the cumulants ,2,0 ,1,1 ,4,0 ,3,1 ,6,0 ,5,1 ,8,0, , , , , , and .x x x x x x xC C C C C C C   Therefore, the 

magnitude of each of these statistics are used rather than the real component alone.  In 

Tables 1 and 2 the magnitudes of the moments and cumulants computed for all nine 

modulation types using uncorrupted signals of 20,000 symbols each are presented.  These 

were estimated by simulating the signals in MATLAB.  Note that they have been 

normalized by the estimated received signal power. 

The main purpose of presenting the moments and cumulants here is to verify that 

they are being calculated correctly, but it should already be clear that some of them will 

be more useful than others.  For example, ,2,0xC is useful for identifying BPSK, but 

confuses all the other modulation types.  In contrast, ,4,0 ,5,1andx xC C have different values 

for all PSK and QAM schemes, although the 64- and 256-QAM values are very close 

together.  As will be seen, adjustments are necessary in order to make them more robust 

to noisy conditions.  Accordingly, their behavior in noisy conditions is investigated 

before deciding which ones to use as classification features. 
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Table 1.   Moments of Digitally Modulated Signals (SNR= ). 

 BPSK QPSK 8PSK BFSK 4FSK 8FSK 16QAM 64QAM 256QAM

,2,0xE  
1.000 0.006 0.006 0.000 0.000 0.000 0.008 0.007 0.008

,1,1xE  
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

,4,0xE  
1.000 1.000 0.006 0.000 0.000 0.000 0.681 0.618 0.606

,3,1xE  
1.000 0.006 0.006 0.000 0.000 0.000 0.011 0.012 0.013

,2,2xE  
1.000 1.000 1.000 1.000 1.000 1.000 1.320 1.381 1.396

,6,0xE  
1.000 0.006 0.006 0.000 0.000 0.000 0.018 0.025 0.025

,5,1xE  
1.000 1.000 0.006 0.000 0.000 0.000 1.321 1.296 1.291

,4,2xE  
1.000 0.006 0.006 0.000 0.000 0.000 0.019 0.022 0.025

,3,3xE  
1.000 1.000 1.000 1.000 1.000 1.000 1.960 2.225 2.293

,8,0xE  
1.001 1.000 1.000 0.000 0.000 0.000 2.204 1.907 1.828

,7,1xE  
1.001 0.006 0.006 0.000 0.000 0.000 0.031 0.050 0.054

,6,2xE  
1.001 1.000 0.006 0.000 0.000 0.000 2.485 2.755 2.815

,5,3xE  
1.001 0.006 0.006 0.000 0.000 0.000 0.032 0.047 0.055

,4,4xE  
1.001 1.001 1.000 1.000 1.000 1.000 3.124 3.961 4.194
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Table 2.   Cumulants of Digitally Modulated Signals (SNR= ). 

 BPSK QPSK 8PSK BFSK 4FSK 8FSK 16QAM 64QAM 256QAM

,2,0xC  
1.000 0.006 0.006 0.000 0.000 0.000 0.008 0.007 0.008

,1,1xC  
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

,4,0xC  
2.000 1.000 0.006 0.000 0.000 0.000 0.681 0.618 0.606

,3,1xC  
2.000 0.012 0.012 0.000 0.000 0.000 0.012 0.011 0.011

,2,2xC  
2.000 1.000 1.000 1.000 1.000 1.000 0.680 0.619 0.604

,6,0xC  
15.999 0.087 0.006 0.000 0.000 0.000 0.068 0.054 0.052

,5,1xC  
15.999 3.998 0.024 0.000 0.000 0.000 2.084 1.794 1.738

,4,2xC  
15.999 0.062 0.065 0.000 0.000 0.000 0.060 0.050 0.048

,3,3xC  
15.999 4.000 4.000 4.000 4.000 4.000 2.080 1.798 1.733

,8,0xC  
243.962 33.971 0.998 0.000 0.000 0.000 14.023 11.465 11.009

,7,1xC  
243.957 1.087 0.012 0.000 0.000 0.000 0.870 0.715 0.737

,6,2xC  
243.962 45.984 0.280 0.000 0.000 0.000 29.864 27.043 26.478

,5,3xC  
243.962 0.396 0.528 0.000 0.000 0.000 0.273 0.328 0.345

,4,4xC  
243.962 17.999 16.992 17.000 17.000 17.000 17.371 24.098 25.728

 

One potential problem in using these statistics as they are is that the magnitude of 

the cumulants increases with their order.  This characteristic could have the unintended 

consequence of weighting these larger statistics more heavily in the classification  
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scheme.  In order to mitigate this effect, [17] proposed raising each cumulant to the 

power 2 ,n where n is the cumulant’s order.  A revised table of these normalized 

cumulants is presented in Table 3.   

Table 3.   Normalized Cumulants of Digitally Modulated Signals (SNR= ). 

 BPSK QPSK 8PSK BFSK 4FSK 8FSK 16QAM 64QAM 256QAM

,2,0xC  
1.000 0.007 0.006 0.000 0.000 0.000 0.007 0.007 0.008

,1,1xC  
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

,4,0xC  
1.414 1.000 0.070 0.000 0.000 0.000 0.824 0.787 0.778

,3,1xC  
1.414 0.107 0.103 0.000 0.000 0.000 0.098 0.100 0.099

,2,2xC  
1.414 1.000 1.000 1.000 1.000 1.000 0.824 0.786 0.777

,6,0xC  
2.520 0.424 0.173 0.004 0.004 0.004 0.368 0.369 0.372

,5,1xC  
2.520 1.587 0.265 0.006 0.006 0.006 1.276 1.216 1.201

,4,2xC  
2.520 0.379 0.384 0.006 0.006 0.007 0.351 0.356 0.350

,3,3xC  
2.520 1.587 1.587 1.587 1.587 1.587 1.276 1.215 1.200

,8,0xC  
3.952 2.414 0.999 0.018 0.018 0.018 1.933 1.842 1.820

,7,1xC  
3.952 0.982 0.313 0.018 0.018 0.018 0.895 0.897 0.905

,6,2xC  
3.952 2.604 0.676 0.040 0.039 0.040 2.337 2.282 2.268

,5,3xC  
3.952 0.763 0.818 0.036 0.036 0.037 0.693 0.719 0.768

,4,4xC  
3.952 2.060 2.030 2.031 2.031 2.031 2.042 2.218 2.254
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Simulations showed that taking the magnitude of the statistics and normalizing 

the cumulants according to their order greatly improved discrimination power of the 

features considered when dealing with AWGN.  However, simulations also showed that 

some of the statistics were very sensitive to the received signal power.  In addition, the 

fading process affects the power of signals as well as their phase.  A simple assumption 

will improve the classifier’s performance in AWGN and allow it to deal better with faded 

signals.  Suppose that a measurement of received power is available in the absence of any 

signals.  This measurement will equal the power added to the signals by AWGN.  

Subtracting this from the received signal power will allow us to normalize the statistics 

by the “noise-free” power. 

As stated previously, all FSK signals have nearly the same moments and 

cumulants and are handled by measuring their spectral characteristics.  For the remaining 

six modulation types, the number of features clearly must be reduced in order to simplify 

the problem for the classifier.  Thus, the challenge is to identify a smaller set of moments 

and/or cumulants that can distinguish between the modulation schemes and that are 

relatively invariant over a range of SNRs. 

In order to accomplish this task, MATLAB was used to generate and corrupt the 

modulated signals with AWGN and then to extract their moments and cumulants for even 

orders from two to eight.  These results are plotted for each statistic in Section A of 

Appendix B.  Sections B through I show the same statistics under Rayleigh and Ricean 

fading conditions for all combinations of slow or fast and frequency-flat or frequency-

selective channels.  The exact parameters used in MATLAB are also presented. 

Sections B and C show that the moments and cumulants do not change much 

under slow, frequency-flat fading conditions for either Rayleigh or Ricean channels, 

indicating that the classifier should work well in these regimes.  In sections D and E, the 

frequency-selective nature of the channels begins to shift the values, although some of 

them are still stable with increasing AWGN. 

In sections F and G, the values have shifted significantly due to fast fading.  

Furthermore, they are less stable with increasing AWGN.  Since these results are for 
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frequency-flat channels, we can conclude that Doppler shift has a more significant effect 

on the statistics than path delay.  In sections H and I, which show the effects of fast, 

frequency-selective fading, the statistics are somewhat more stable but still well off their 

original values. 

Three statistics were selected as classification features: ,4,0 ,5,1 ,8,0, , and .x x xC C C   All 

of them are invariant to phase shifts and provide good separation between the PSK 

schemes and some separation between the QAM schemes.  Their plots are shown in 

Figures 7 to 9.  While some of the moments (such as ,4,0xE and ,8,0xE ) appeared to meet 

the same criteria, including them tended to make the classifier perform worse with faded 

signals.  The values for 64- and 256-QAM do not differ until the second or third decimal 

place, indicating that they will present a challenge for the classifier. 
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Figure 7.   ,4,0xC  (AWGN only). 



 24

C51

0

0.5

1

1.5

2

2.5

3

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 8.   ,5,1xC  (AWGN only). 
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Figure 9.   ,8,0xC  (AWGN only). 

Figures 10 through 12 show the same cumulants for a slow, flat Rayleigh channel 

while Figures 13 through 15 show them for a fast, frequency selective channel.  The 

values do not change much under moderate fading conditions, but under more severe 

fading they change significantly.  Since any classifier is only as good as the features it 

works with, this indicates that severe fading conditions will be problematic. 
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Figure 10.   ,4,0xC  (slow, flat Rayleigh fading). 
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Figure 11.   ,5,1xC  (slow, flat Rayleigh fading). 
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Figure 12.   ,8,0xC  (slow, flat Rayleigh fading). 
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Figure 13.   ,4,0xC  (fast, frequency-selective Rayleigh fading). 
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Figure 14.   ,5,1xC  (fast, frequency-selective Rayleigh fading). 
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Figure 15.   ,8,0xC  (fast, frequency-selective Rayleigh fading). 
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F. CONCLUSION 

So far, we have seen the features that will form the basis for classification.  These 

features will be grouped into 3-dimensional vectors for exploitation by different 

classifiers, which are the subject of Chapter IV. 
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IV. LINEAR AND NONLINEAR CLASSIFIERS 

Now that discriminating features have been selected, a classification scheme must 

be identified to exploit them.  This chapter discusses several classification methods.  

A. INTRODUCTION 

The use of higher-ordered moments and cumulants to classify modulation types 

was explored in [2] and [3] using a neural network and a classification tree, respectively.  

The purpose of this thesis is to investigate a different set of classification schemes, all of 

which rely on eigenvector decomposition in some way.  This chapter will present two 

linear methods, PCA and LDA, and their nonlinear counterparts. 

B. LINEAR CLASSIFICATION SCHEMES 

Linear classification schemes work by projecting data into a feature space using a 

linear mapping and then comparing the result to a centroid for each class.  If the data is 

linearly separable, these schemes work well.  These algorithms attempt to find the best 

projection matrix. 

1. Principal Component Analysis 

PCA seeks the best representation of the data in a least-squares sense [18].  It does 

this by decomposing the data covariance matrix into its eigenvectors and choosing the 

most significant of them to form a projection matrix.  The training data in this case is a 

matrix X of column vectors, denoted ,ix containing the chosen signal statistics.  Assume 

that there are a total of P of these statistical profiles.  Let N be the number of classes (i.e., 

modulation types) represented in the training set.  Also let n be the number of training 

profiles in each class so that .P nN  

Define the mean profile as 
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1
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m x
P 

   (4.1) 
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The first step is to subtract the mean profile from each of the P profiles since it is 

common to all of them and thus contains no information useful for classification: 

 .i ix x m   (4.2) 

These new centered training profiles form the new centered training matrix .X   

Define the covariance matrix as 

 
T

C X X  (4.3) 
and decompose it into its eigenvectors .iw   The eigenvectors corresponding to the top k 

eigenvalues form the projection matrix W.  In this application, all of the possible 

eigenvectors were significant and were included in the projection matrix. 

The columns of W define the feature space into which the statistical profiles will 

be projected.  In order to determine the centroids for each class, first project the centered 

training matrix into this space: 

 1 2| | ... | .T T T T
PT W X W x W x W x      (4.4) 

The centroid for class l will be 
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g W x
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   (4.5) 

In order to use the classifier, compute the projection of a test profile t into the 

feature space, 

  ' ,Tt W t m   (4.6) 

and then choose the centroid having the smallest Euclidean distance to the point '.t  

2. Linear Discriminant Analysis 

In one sense, PCA is just a compression scheme in that it constructs the feature 

space by arbitrarily selecting the most significant eigenvectors as basis vectors.  LDA, on 

the other hand, seeks a different projection matrix W that will maximize the separation 

between classes [18]. 

To explain this further, it is necessary to define the within-class scatter matrix 

WS and the between-class scatter matrix ,BS  defined as 



 31

 
1

,
N

W i
i

S S


  (4.7) 

where iS is the covariance matrix of class i, (defined in the same way as Equation 3.13 

above, except that it only contains profiles from class i) and 
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where im is the mean profile of class i and m is defined as in Equation 3.11.  If these 

same matrices were calculated in the feature space formed by projecting the profiles 

using the projection matrix W, the results would be T
WW S W and ,T

BW S W respectively.  

The problem for LDA becomes finding the matrix W that maximizes the ratio of the 

determinants of these two matrices, 
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 (4.9) 

From [18], finding the matrix W in the expression above is equivalent to solving 

the Eigen problem 

 ,B i i W iS w S w  (4.10) 

where iw is the ith column of W for i=1 to the number of features.  As with PCA, the 

columns are arranged in order of decreasing eigenvalues and an arbitrary number are 

kept. 

Note, in some applications it is necessary to apply PCA before LDA; otherwise, 

WS may be singular.  This requirement is typical in applications where the dimension of 

the data is larger than the number of training observations.  However, the dimension of 

the feature vector is three in our application, as only three representative features were 

selected, and LDA can be applied directly. 

The class centroids and the projection of a given signal profile into the feature 

space are calculated in the same manner as in PCA. 
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C. NONLINEAR CLASSIFICATION SCHEMES 

PCA and LDA work well with classes that are linearly separable.  To visualize 

linear separability, consider a projected feature space which has three dimensions.  If the 

classes are linearly separable, simple planes can be drawn as the decision boundaries 

between the classes.  For data that is not linearly separable, it would be preferable to draw 

curved planes separating the classes.  Conceptually, this can be achieved by a nonlinear 

mapping of the data into a higher dimensional space in which the classes are linearly 

separable.  In the original space, the decision boundaries between them would appear 

curved. 

1. The Kernel “Trick” 

Carrying out an arbitrary nonlinear mapping to the higher-dimensional space may 

be computationally expensive.  However, if the mapping function is chosen well, it may 

be encapsulated in a mechanism commonly known as the kernel “trick.”  Rather than 

operating on individual data points, kernel functions compute the dot product between 

two data points after projection into the higher dimensional space.  The projection of an 

individual data point into the space is formed by computing its dot product with every 

other member of the space and arranging the dot products in a vector. 

As an example, consider the following mapping function from two to three 

dimensions presented in [19]: 

    2 2
1 2 1 2 1 2, , , 2 .x x x x x x  (4.11) 

The goal is to find a function that will express the dot product between two points 

x and y in the higher dimensional space in terms of a function in the lower dimensional 

space.  It can be shown that the function 

    2
,k x y x y   (4.12) 

accomplishes this goal.  Common kernel functions include the following: 

polynomial: 

     ,
d

k x y a x y b    (4.13) 
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Gaussian: 

 
2

2

( )
( , ) exp

2

x y
k x y


  

  
 

 (4.14) 

sigmoid: 
 ( , ) tanh( ( ) ).k x y x y     (4.15) 

2. Nonlinear Component Analysis 

Nonlinear Component Analysis is the extension of the PCA method to higher 

dimensional spaces via the kernel trick; hence, it is sometimes known as kernel PCA 

(KPCA).  The first step is to construct the P P kernel matrix K by applying the kernel 

trick to each pair of points in X (this can usually be done with a matrix equation).  Thus, 

K is the matrix of training data in the higher dimensional space.  Once again, the 

projection matrix W is formed by using the eigen-decomposition of the matrix K.  If 

dimension reduction is desired, only the most significant eigenvectors need to be kept.  

However, the matrix K must be reformed in order for its dimensions to match other 

matrices by applying the following steps: 

 ,TK W W   (4.16) 

where  is the diagonal matrix of eigenvalues.  At that point, the columns of W should 

be normalized by the magnitude of each column in the matrix  
1

2 .TW KW   The 

projected training data is calculated by  

 TT W K  (4.17) 

and the class centroids are calculated in the same manner as with the linear PCA scheme.  

To project a test profile t, first translate it to the higher dimensional space by 

 ' Tt t X  (4.18) 

and then project it for classification, leading to 

 '' '.Tt W t  (4.19) 

3. General Discriminant Analysis 

As was the case for their linear counterparts, GDA differs from KPCA by taking 

into account the scatter within classes.  The kernel matrix K is formed as in the previous 
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section and decomposed into eigenvectors U and eigenvalues  .  Next, the block 

diagonal matrix B is formed from N square matrices.  The dimension of these matrices is 

n n and each coefficient in the matrix is equal to 1 .n  

These results are used to find the eigenvectors  of the matrix .TU BU   The 

projection matrix is found by computing 

 1W U    (4.20) 

and normalizing by the matrix  
1

2TW KW  [20].  The class centroids and projected 

testing data are calculated in the same manner as the previous section. 

D. CONCLUSION 

Several well-known classification schemes were presented in this chapter.  In the 

next chapter, their application to the features selected in Chapter III are presented. 
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V. IMPLEMENTATION AND RESULTS 

The previous four chapters have laid the groundwork for classifying digital 

signals.  In this chapter, the generation of the signals is explained, and the 

implementation of the classifier is discussed.  Finally, we present simulation results.  All 

MATLAB code developed for this thesis can be found in Appendix D.  

A. SIGNAL GENERATION AND CORRUPTION 

The MATLAB Communications Toolbox provides standard objects for 

generating digital signals.  As noted in Chapter I, these objects simulate the signals at 

baseband.  For PSK and QAM, this means that the output is the complex envelope of the 

signal with one sample per symbol.  By definition, FSK signals cannot be represented as 

a single frequency, so they are generated with several samples per symbol, but the 

resulting spectrum is still centered at 0 Hz. 

In terms of a physical system, this means that the digital signal has already been 

downconverted from its carrier frequency to baseband.  In the case of PSK and QAM, it 

also means that the symbol rate has been obtained.  Both of these assumptions are 

reasonable given an accurate spectrum measurement. 

For fading channels, the Communications Toolbox also provides functions to 

generate filter objects for Rayleigh and Ricean channels.  For either type of fading, the 

number of paths must be specified along with the gain and time delay for each one. 

Additionally, the Doppler shift must be specified.  These parameters were varied to 

simulate slow and fast fading as well as frequency-flat and frequency-selective channels.  

Whether or not the channel involves fading, AWGN can be added to the signals using a 

standard function in MATLAB. 

B. CLASSIFIER IMPLEMENTATION 

Separate functions were developed to implement the four classifiers discussed in 

Chapter IV, but they all peform similar tasks.  First, fifty training signals of 20,000 
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symbols are generated for each modulation type and estimates for the three selected 

cumulants computed for each one.  Next, these parameters are passed to a training 

function that determines a projection matrix and class centroids. 

In each trial of the testing phase, one thousand signals (also of 20,000 symbols) 

are generated and a modulation scheme is chosen at random for each one.  One hundred 

trials are run for each combination of testing SNR and fading parameters in order to 

ensure that the results are statistically significant.  The spectrum of each signal is 

analyzed to see if it matches one of the FSK types.  To do this, an FFT is calculated on 

the first 4096 samples of the signal.  The ratios of the second to the third peaks, the fourth 

to the fifth peaks, and the eighth to the ninth peaks are calculated and compared to 

threshold values estimated in a separate simulation.  If the ratio of the second to the third 

peak is above the respective threshold, the signal is classified as BFSK.  If not, similar 

comparisons are made for the other ratios to determine if the signal is 4-FSK or 8-FSK. 

If none of the thresholds is crossed, the signal is not FSK. Its cumulants are 

calculated and projected into the new feature space using the projection matrix calculated 

by the training algorithm.  The projected features are compared to the class centroids and 

the closest one is chosen as the modulation type.  A confusion matrix is saved so that the 

classifier’s performance can be analyzed for each modulation type.  The procedure for 

classifying a test signal is shown in Figure 16. 
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Figure 16.   Classification Flow Chart for Test Signals 

One question that must be addressed is the SNR at which the classifier is trained.  

A classifier trained at 20 dB will have better accuracy handling test signals at 20 dB than 

5 dB and vice versa.  However, after applying the noise-free power normalization 

discussed in Chapter III, these differences were so slight that it was found to be simpler 

to train the classifiers with uncorrupted data. 

C. LINEAR VERSUS NONLINEAR CLASSIFIERS 

The performance of the nonlinear classifiers was generally disappointing.  As 

shown in Tables 4 through 11, for some kernels KPCA and GDA equaled the 

performance PCA and LDA, respectively.  Note that in the case of KPCA, the best-

performing scheme used a polynomial kernel of order one, which is just a more 
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complicated implementation of PCA.  Given that nonlinear schemes involve significantly 

more computations, the linear schemes should be used. 

The results that compare all four schemes are presented below as confusion 

matrices for signals in AWGN (more extensive results for the performance of PCA and 

LDA in fading channels is presented in section D).  The overall performance and 

standard deviation are presented at the top of each table.  Several different kernels were 

tried as well as different kernel parameters for each one.  Only the kernel type leading to 

the best results is presented for KPCA and GDA schemes.  PCA achieved the best overall 

classification rate, although section D shows that LDA performs better in fast Ricean 

channels. 

1. PCA 

PCA achieves the best overall performance and has the added benefit of being the 

simplest classifier to implement.  At an SNR of 20 dB (shown in Table 4), the errors are 

primarily due to 64-QAM and 256-QAM being confused for each other.  At 5 dB (shown 

in Table 5) there is more confusion between these two.  Additionally, 16-QAM is 

sometimes mistaken for the other QAM schemes, and a significant number of 8-FSK 

signals are classified as 8-PSK  

Table 4.   Confusion Matrix for PCA classifier in AWGN, SNR = 20 dB. 

  Classifier Output (Average Performance = 95.1%, Standard Deviation = 0.6%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total

BFSK 11197 0 0 0 0 0 0 0 0 11197

QFSK 0 11272 0 0 0 0 0 0 0 11272

8FSK 0 0 11016 0 0 106 0 0 0 11122

BPSK 0 0 0 11186 0 0 0 0 0 11186

QPSK 0 0 0 0 10903 0 0 0 0 10903

8PSK 0 0 0 0 0 10995 0 0 0 10995

16QAM 0 0 0 0 0 0 11220 0 0 11220

64QAM 0 0 0 0 0 0 5 9342 1640 10987A
ct

ua
l M

od
ul

at
io

n 
T

yp
e 

256QAM 0 0 0 0 0 0 0 3166 7952 11118
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Table 5.   Confusion Matrix for PCA classifier in AWGN, SNR = 5 dB. 

  Classifier Output (Average Performance = 89.0%, Standard Deviation = 1.1%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11053 0 0 0 0 0 0 0 0 11053
QFSK 0 10971 0 0 0 0 0 0 0 10971
8FSK 0 1 10865 0 0 452 0 0 0 11318
BPSK 0 0 0 11243 0 0 0 0 0 11243
QPSK 0 0 0 0 11137 0 0 0 0 11137
8PSK 0 0 0 0 0 10967 0 0 0 10967
16QAM 0 0 0 0 0 0 10394 792 14 11200
64QAM 0 0 0 0 0 0 1371 5826 3774 10971A

ct
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l M
od
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at
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n 

T
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e 

256QAM 0 0 0 0 0 0 489 4154 6497 11140

2. LDA 

LDA performs as well as PCA at 20 dB (Table 6), although it misclassifies 64-

QAM somewhat more and 256-QAM somewhat less.  At 5 dB (Table 7) it does not 

perform as well as PCA due to misclassifying the QAM schemes more often. 

Table 6.   Confusion Matrix for LDA classifier in AWGN, SNR = 20 dB. 

  Classifier Output (Average Performance = 94.9%, Standard Deviation = 0.66%)   

  BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total

BFSK 11073 0 0 0 0 0 0 0 0 11073

QFSK 0 11102 0 0 0 0 0 0 0 11102

8FSK 0 2 11006 0 0 109 0 0 16 11133

BPSK 0 0 1 11117 0 0 0 0 0 11118

QPSK 0 0 0 0 11309 0 0 0 0 11309

8PSK 0 0 0 0 0 11111 0 0 0 11111

16QAM 0 0 0 0 0 0 10946 0 0 10946

64QAM 0 0 0 0 0 0 1 8220 2892 11113

A
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n 
T
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256QAM 0 0 0 0 0 0 0 2060 9035 11095
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Table 7.   Confusion Matrix for LDA classifier in AWGN, SNR = 5 dB. 

  Classifier Output (Average Performance = 87.2%, Standard Deviation = 1.1%)   

  BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11042 0 0 0 0 0 0 0 0 11042
QFSK 0 10999 0 0 0 0 0 0 0 10999
8FSK 0 1 10774 0 0 432 0 0 2 11209
BPSK 0 0 0 10984 0 0 0 0 0 10984
QPSK 0 0 0 0 11145 0 0 0 0 11145
8PSK 0 0 0 0 0 10955 0 0 5 10960
16QAM 0 0 0 0 0 0 9938 1226 91 11255
64QAM 0 0 0 0 0 0 1771 4847 4538 11156
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n 
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256QAM 0 0 0 0 0 0 933 3829 6488 11250

3. KPCA 

For KPCA, the best kernel turns out to be    1, 1 ,k x y x y   which is actually 

a linear scheme.  As one would expect, its performance is the same as that of PCA at both 

20 dB and 5 dB (Tables 8 and 9, respectively).  Because of the extra computational 

overhead required by KPCA, PCA is preferred. 

Table 8.   Confusion matrix for KPCA classifier in AWGN, SNR = 20 dB. 

  Classifier Output (Average Performance = 95.1%, Standard Deviation = 0.7%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10975 0 0 0 0 0 0 0 0 10975
QFSK 0 11103 0 0 0 0 0 0 0 11103
8FSK 0 0 10982 0 0 119 0 0 0 11101
BPSK 0 0 1 10929 0 0 0 0 0 10930
QPSK 0 0 0 0 11062 0 0 0 0 11062
8PSK 0 0 0 0 0 11213 0 0 0 11213
16QAM 0 0 0 0 0 0 11317 0 0 11317
64QAM 0 0 0 0 0 0 4 9434 1656 11094A

ct
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256QAM 0 0 0 0 0 0 0 3171 8034 11205
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Table 9.   Confusion matrix for KPCA classifier in AWGN, SNR = 5 dB. 

  Classifier Output (Average Performance = 88.7%, Standard Deviation = 1.0%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11182 0 0 0 0 0 0 0 0 11182
QFSK 0 11328 0 0 0 0 0 0 0 11328
8FSK 0 1 10455 0 0 467 0 0 0 10923
BPSK 0 0 0 11078 0 0 0 0 0 11078
QPSK 0 0 0 0 11075 0 0 0 0 11075
8PSK 0 0 0 0 0 11073 0 0 0 11073
16QAM 0 0 0 0 0 0 10334 780 11 11125
64QAM 0 0 0 0 0 0 1431 5872 3889 11192A
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256QAM 0 0 0 0 0 0 493 4199 6332 11024

4. GDA  

For GDA, the best kernel was Gaussian: 
2( )

( , ) exp .
1

x y
k x y

  
  

 
Its overall 

performance at both 20 dB and 5 dB (Tables 10 and 11, respectively) is about the same as 

LDA, but with slightly better performance for 256-QAM and slightly different 

performance for the QAM schemes. 

Table 10.   Confusion Matrix for GDA classifier in AWGN, SNR = 20 dB. 

  Classifier Output (Average Performance = 94.8%, Standard Deviation = 0.6%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11082 0 0 0 0 0 0 0 0 11082
QFSK 0 10981 0 0 0 0 0 0 0 10981
8FSK 0 0 10994 0 0 118 0 0 0 11112
BPSK 0 0 0 11204 0 0 0 0 0 11204
QPSK 0 0 0 0 11007 0 0 0 0 11007
8PSK 0 0 0 0 0 11238 0 0 0 11238
16QAM 0 0 0 0 0 0 10677 316 0 10993
64QAM 0 0 0 0 0 0 0 8830 2425 11255A
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256QAM 0 0 0 0 0 0 0 2393 8735 11128
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Table 11.   Confusion Matrix for GDA classifier in AWGN, SNR = 5 dB. 

  Classifier Output (Average Performance = 87.7%, Standard Deviation = 1.1%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11038 0 0 0 0 0 0 0 0 11038
QFSK 0 10978 0 0 0 0 0 0 0 10978
8FSK 0 1 10617 0 0 412 0 0 0 11030
BPSK 0 0 0 11057 0 0 0 0 0 11057
QPSK 0 0 0 0 11060 0 0 0 0 11060
8PSK 0 0 0 0 0 11120 0 0 0 11120
16QAM 0 0 0 0 0 0 8511 2834 15 11360
64QAM 0 0 0 0 0 0 331 6637 4293 11261A
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256QAM 0 0 0 0 0 0 85 4331 6680 11096

D. PERFORMANCE OF THE PCA AND LDA CLASSIFIERS IN AWGN 
AND FADING CONDITIONS 

Tables 12 through 27 are confusion matrices for the LDA classifier.  Tables 28 

through 43 are confusion matrices for the PCA classifier.  PCA performs slightly better 

than LDA in most conditions. 

In MATLAB, the functions used to simulate fading effects were rayleighchan.m 

and ricianchan.m.  The parameters passed to these functions were a sampling interval of 

61 10 ; a maximum Doppler shift of 3.5 Hz for slow fading and 5000 Hz for fast fading; 

path delays of 0 and 71 10  for frequency-flat channels and 0 and 62 10  for frequency-

selective channels; average path gains of 0 and 10  dB; and a K-factor of 3 for Ricean 

channels. 

1. LDA 

In a slow, frequency-flat Rayleigh channel, LDA misclassifies some of the PSK 

signals for QAM.  The main difference between the results at 20 dB (shown in Table 12) 

and 5 dB (shown in Table 13) is once again additional confusion of the QAM schemes 

for each other. 

 

 

 



 43

Table 12.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Flat 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 86.2%, Standard Deviation = 1.1%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11118 0 0 0 0 1 0 0 0 11119
QFSK 0 11269 1 0 0 3 0 0 12 11285
8FSK 0 10 10557 0 0 301 0 0 136 11004
BPSK 0 0 0 10768 219 8 0 0 0 10995
QPSK 0 0 0 0 10460 0 503 21 149 11133
8PSK 0 0 0 0 0 10948 0 0 3 10951
16QAM 0 0 0 0 0 0 7173 2169 1838 11180
64QAM 0 0 0 0 0 0 0 3635 7632 11267A
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256QAM 0 0 0 0 0 0 0 782 10284 11066
 

Table 13.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Flat 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 82.3%, Standard Deviation = 1.2%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10940 0 0 0 0 10 0 0 1 10951
QFSK 0 11083 1 0 0 36 0 0 7 11127
8FSK 0 9 10178 0 0 919 0 0 87 11193
BPSK 0 0 0 10737 255 13 1 0 0 11006
QPSK 0 0 0 0 10393 0 474 22 168 11057
8PSK 0 0 0 0 0 11116 0 0 91 11207
16QAM 0 0 0 0 0 15 6369 2683 2077 11144
64QAM 0 0 0 0 0 17 888 3224 7051 11180A

ct
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256QAM 0 0 0 0 0 21 471 2356 8287 11135

 

The classifier fares better in Ricean fading conditions due to the presence of the 

line-of-sight path.  Once again, most of the difference between the results at 20 dB and 5 

dB (shown in Tables 14 and 15, respectively) is due to additional misclassifications of 

QAM signals. 
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Table 14.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Flat 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 91.1%, Standard Deviation = 0.9%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11208 0 0 0 0 0 0 0 0 11208
QFSK 0 11100 1 0 0 10 0 0 0 11111
8FSK 0 3 11002 0 0 307 0 0 0 11312
BPSK 0 0 0 10989 57 0 0 0 0 11046
QPSK 0 0 0 0 10914 0 135 6 25 11080
8PSK 0 0 0 0 0 11064 0 0 0 11064
16QAM 0 0 0 0 0 0 9552 861 564 10977
64QAM 0 0 0 0 0 0 1 5170 5862 11033A
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256QAM 0 0 0 0 0 0 0 1043 10126 11169

Table 15.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Flat 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 85.5%, Standard Deviation = 1.0%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11119 0 0 0 0 0 0 0 0 11119
QFSK 0 11117 0 0 0 24 0 0 0 11141
8FSK 0 1 10347 0 0 765 0 0 1 11114
BPSK 0 0 0 11032 56 0 0 0 0 11088
QPSK 0 0 0 0 11033 0 141 6 29 11209
8PSK 0 0 0 0 0 11159 0 0 0 11159
16QAM 0 0 0 0 0 1 8181 2059 761 11002
64QAM 0 0 0 0 0 0 1162 4175 5781 11118A
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256QAM 0 0 0 0 0 0 561 3133 7356 11050

 

In Tables 16 and 17, the classifier’s performance in fast, frequency-flat Rayleigh 

conditions is no better than a guess.  The increased Doppler shift causes most signals to 

be misclassified as either 8-PSK or 256-QAM, and there is almost no difference between 

the results at 20 dB (shown in Table 16) and the results at 5 dB (shown in Table 17). 
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Table 16.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Flat 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 11.9%, Standard Deviation = 1.0%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 0 4 71 0 0 9774 0 0 1270 11119
QFSK 0 1 15 0 0 9952 0 0 1207 11175
8FSK 0 0 4 0 0 9879 0 0 1188 11071
BPSK 0 0 0 289 160 3799 480 50 6190 10968
QPSK 0 0 0 244 168 3593 581 26 6430 11042
8PSK 0 0 0 296 0 10610 0 0 134 11040
16QAM 0 0 0 2574 315 7234 168 91 790 11172
64QAM 0 0 0 2808 243 7376 95 100 601 11223A
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256QAM 0 0 0 2941 195 7355 77 87 535 11190

Table 17.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Flat 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 11.3%, Standard Deviation = 0.98%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 0 0 67 72 0 10337 0 0 584 11060
QFSK 0 0 21 74 0 10555 0 0 595 11245
8FSK 0 0 1 73 0 10307 0 0 643 11024
BPSK 0 0 0 320 190 4187 668 49 5697 11111
QPSK 0 0 0 307 197 4028 668 47 6059 11306
8PSK 0 0 0 536 0 10108 2 0 373 11019
16QAM 0 0 0 3014 419 6666 233 72 602 11006
64QAM 0 0 0 4009 336 6376 131 68 335 11255A
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256QAM 0 0 0 4153 281 6048 100 55 337 10974

 

In Tables 18 and 19, the classifier appears to perform much better in Ricean 

conditions even though the fading parameters are otherwise the same as in Tables 16 and 

17.  This is because the line-of-sight component preserves the spectral content of the FSK 

signals, resulting in relatively high classification rates for them.  The rates for the PSK 

and QAM signals are just as bad as in fast, frequency-flat Rayleigh conditions. 
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Table 18.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Flat Ricean 
Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 52.6%, Standard Deviation = 1.6%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11014 2 0 0 0 22 0 0 27 11065
QFSK 0 10881 5 0 0 124 0 0 131 11141
8FSK 0 3 7799 0 0 1600 0 0 1592 10994
BPSK 0 0 0 1149 9979 0 5 0 0 11133
QPSK 0 0 0 0 34 23 1550 1632 7849 11088
8PSK 0 0 0 0 0 10894 0 0 211 11105
16QAM 0 0 0 0 12 161 117 8 10881 11179
64QAM 0 0 0 0 14 255 141 6 10696 11112A
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256QAM 0 0 0 0 21 258 147 7 10750 11183

Table 19.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Flat Ricean 
Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 49.3%, Standard Deviation = 1.5%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11096 1 2 0 0 56 0 0 10 11165
QFSK 0 10669 9 0 0 314 0 0 34 11026
8FSK 0 1 5995 0 0 4404 0 0 533 10933
BPSK 0 0 0 1309 9709 0 0 4 1 11023
QPSK 0 0 0 0 64 36 2208 1524 7193 11025
8PSK 0 0 0 3 0 10227 0 0 897 11127
16QAM 0 0 0 2 47 459 414 24 10268 11214
64QAM 0 0 0 6 56 866 586 9 9713 11236A
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256QAM 0 0 0 2 64 1014 633 14 9524 11251

 

In Tables 20 and 21, the results for slow, frequency-selective Rayleigh conditions 

are shown.  At 20 dB, many signals are mistaken for QAM.  At 5 dB, 8-FSK is also 

frequently mistaken for 8-PSK. 
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Table 20.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Selective 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 65.0%, Standard Deviation = 1.4%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10643 5 8 0 0 36 0 0 365 11057
QFSK 333 8621 37 0 0 5 0 0 2302 11298
8FSK 0 654 6289 0 0 10 0 0 4258 11211
BPSK 0 0 0 9612 1528 27 40 0 40 11247
QPSK 0 0 0 0 6383 209 2280 207 2024 11103
8PSK 0 0 0 0 0 10598 0 0 588 11186
16QAM 0 0 0 0 0 96 1606 1799 7426 10927
64QAM 0 0 0 0 0 60 0 304 10568 10932A
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256QAM 0 0 0 0 0 78 0 38 10923 11039

Table 21.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Selective 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 63.2%, Standard Deviation = 1.3%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10916 1 0 0 0 314 0 0 129 11360
QFSK 304 8397 22 0 0 1443 0 0 1016 11182
8FSK 0 573 5120 0 0 3461 0 0 1851 11005
BPSK 0 0 0 9257 1548 44 40 3 30 10922
QPSK 0 0 0 0 6490 188 2269 184 1998 11129
8PSK 0 0 0 0 0 10094 0 0 877 10971
16QAM 0 0 0 0 1 149 1788 1657 7535 11130
64QAM 0 0 0 0 0 182 247 866 9820 11115A
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256QAM 0 0 0 0 0 161 148 596 10281 11186

 

In Tables 22 and 23, it can be seen once again that the classifier performs better in 

Ricean conditions (all other parameters being the same as in Tables 20 and 21).  Many 

signals are misclassified as QAM, and at 5 dB 8-FSK is often misclassified as 8-PSK. 
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Table 22.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Selective 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 69.3%, Standard Deviation = 1.3%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10889 1 0 0 0 0 0 0 188 11078
QFSK 222 9072 32 0 0 0 0 0 1654 10980
8FSK 0 496 6705 0 0 0 0 0 3925 11126
BPSK 0 0 0 10194 864 12 28 24 43 11165
QPSK 0 0 0 0 7958 93 1935 224 1018 11228
8PSK 0 0 0 0 0 10903 0 0 277 11180
16QAM 0 0 0 0 0 56 2037 2052 6814 10959
64QAM 0 0 0 0 0 50 0 409 10637 11096A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 48 0 37 11103 11188

Table 23.   Confusion Matrix for LDA Classifier in AWGN Plus Slow, Frequency-Selective 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 67.3%, Standard Deviation = 1.2%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10970 0 1 0 0 125 0 0 51 11147
QFSK 236 9065 19 0 0 1047 0 1 892 11260
8FSK 0 438 5670 0 0 3076 0 2 1924 11110
BPSK 0 0 0 10259 817 16 28 29 49 11198
QPSK 0 0 0 0 7884 96 1855 255 959 11049
8PSK 0 0 0 0 0 10154 0 0 947 11101
16QAM 0 0 0 0 5 65 2307 1890 6761 11028
64QAM 0 0 0 0 1 76 360 1141 9550 11128A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 2 71 202 810 9894 10979

 

The classifier once again breaks down in fast, frequency-selective Rayleigh 

conditions due to Doppler shift, which has a more severe effect than frequency 

selectivity.  The results at 5 dB (shown in Table 25) do not differ significantly from those 

at 20 dB (shown in Table 24). 
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Table 24.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Selective 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 11.7%, Standard Deviation = 0.9%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 3 1 65 0 0 10263 0 0 759 11091
QFSK 0 0 22 0 0 10298 0 0 698 11018
8FSK 0 0 3 0 0 10408 0 0 742 11153
BPSK 0 0 0 108 128 4252 360 211 6081 11140
QPSK 0 0 0 90 102 4001 191 125 6664 11173
8PSK 0 0 0 124 0 10702 0 0 247 11073
16QAM 0 0 0 1561 358 8042 119 65 1026 11171
64QAM 0 0 1 1804 262 8115 42 39 794 11057A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 1955 243 8224 36 22 644 11124

Table 25.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Selective 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 11.2%, Standard Deviation = 1.1%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 2 1 70 62 0 10589 0 0 517 11241
QFSK 0 0 16 71 0 10408 0 0 483 10978
8FSK 0 0 6 53 0 10599 0 0 523 11181
BPSK 0 0 0 154 198 4636 511 289 5309 11097
QPSK 0 0 0 148 135 4581 361 238 5618 11081
8PSK 0 0 0 262 0 10314 0 3 461 11040
16QAM 0 0 0 2290 602 7463 167 62 716 11300
64QAM 0 0 0 2997 477 7033 108 32 430 11077A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 3357 471 6719 79 32 347 11005

 

In Tables 26 and 27, the presence of a line-of-sight component once again assists 

in the classification of FSK signals despite the fast, frequency-selective nature of the 

channel. 

 

 

 

 

 

 



 50

Table 26.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Selective 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 53.6%, Standard Deviation = 1.6%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11142 0 0 0 0 20 0 0 36 11198
QFSK 0 10956 8 0 0 127 0 0 127 11218
8FSK 0 3 7711 0 0 1428 0 0 1917 11059
BPSK 0 0 0 2635 8432 0 0 0 0 11067
QPSK 0 0 0 0 0 0 567 1762 8831 11160
8PSK 0 0 0 0 0 10093 0 0 1063 11156
16QAM 0 0 0 0 6 8 25 14 10912 10965
64QAM 0 0 0 0 7 22 35 16 11048 11128A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 2 20 48 7 10972 11049

Table 27.   Confusion Matrix for LDA Classifier in AWGN Plus Fast, Frequency-Selective 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 50.8%, Standard Deviation = 1.6%   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11059 1 2 0 0 39 0 0 4 11105
QFSK 0 10831 11 0 0 350 0 0 49 11241
8FSK 0 2 5885 0 0 4527 0 0 658 11072
BPSK 0 0 0 2804 8214 0 0 0 0 11018
QPSK 0 0 0 0 53 1 1877 1777 7371 11079
8PSK 0 0 0 0 0 9800 0 0 1428 11228
16QAM 0 0 0 0 36 129 324 82 10506 11077
64QAM 0 0 0 0 33 347 478 75 10111 11044A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 31 435 594 74 10002 11136

2. PCA 

PCA performs better than LDA in some cases.  In Tables 28 and 29 no significant 

difference can be seen between the results for a slow, frequency-flat Rayleigh channel at 

20 dB and 5 dB, respectively.  Most errors are due to the QAM schemes being mistaken 

for each other. 
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Table 28.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Flat 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 87.0%, Standard Deviation = 1.0%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11190 1 1 0 0 5 0 0 0 11197
QFSK 3 11232 2 0 0 35 0 0 0 11272
8FSK 0 17 10728 0 0 377 0 0 0 11122
BPSK 0 0 1 10742 393 1 33 3 13 11186
QPSK 0 0 0 5 10052 36 550 62 198 10903
8PSK 0 0 0 0 0 10991 0 0 4 10995
16QAM 0 0 0 0 1 103 8219 1372 1525 11220
64QAM 0 0 0 0 1 144 310 4570 5962 10987A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 2 123 160 1605 9228 11118

Table 29.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Flat 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 86.8%, Standard Deviation = 1.1%)   

  BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11051 0 2 0 0 0 0 0 0 11053
QFSK 0 10931 0 0 0 40 0 0 0 10971
8FSK 0 19 10884 0 0 415 0 0 0 11318
BPSK 0 0 1 10847 352 0 26 4 13 11243
QPSK 0 0 0 8 10209 34 572 45 269 11137
8PSK 0 0 0 0 0 10966 0 0 1 10967

16QAM 0 0 0 0 3 108 8157 1412 1520 11200
64QAM 0 0 0 0 0 146 319 4577 5929 10971

A
ct

ua
l M

od
ul

at
io

n 
T

yp
e 

256QAM 0 0 0 0 1 152 187 1634 9166 11140

 

As with LDA, the PCA classifier achieves better results in Ricean conditions.  

However, the PCA classifier does just as well at 5 dB (shown in Table 31) and 20 dB 

(shown in Table 30). 

 

 

 

 

 

 



 52

Table 30.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Flat 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 91.5%, Standard Deviation = 1.0%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11197 0 0 0 0 0 0 0 0 11197
QFSK 2 11249 0 0 0 21 0 0 0 11272
8FSK 0 4 10808 0 0 310 0 0 0 11122
BPSK 0 0 1 11089 85 0 7 0 4 11186
QPSK 0 0 0 0 10664 13 150 13 63 10903
8PSK 0 0 0 0 0 10995 0 0 0 10995
16QAM 0 0 0 0 0 44 9917 779 480 11220
64QAM 0 0 0 0 0 42 33 6128 4784 10987A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 44 11 1573 9490 11118

Table 31.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Flat 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 91.7%, Standard Deviation = 0.9%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11052 0 1 0 0 0 0 0 0 11053
QFSK 2 10959 1 0 0 9 0 0 0 10971
8FSK 0 11 11018 0 0 289 0 0 0 11318
BPSK 0 0 0 11141 90 0 8 1 3 11243
QPSK 0 0 0 0 10925 15 146 15 36 11137
8PSK 0 0 0 0 0 10967 0 0 0 10967
16QAM 0 0 0 0 0 33 10030 704 433 11200
64QAM 0 0 0 0 0 46 33 6089 4803 10971A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 1 40 9 1605 9485 11140
 

In Tables 32 and 33, the classifier’s performance degrades due to Doppler shift in 

the fast, frequency-flat Rayleigh channel, although, not to the same extent as the LDA 

classifier.  Once again, the results are about the same at 20 dB and 5 dB. 
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Table 32.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Flat 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 19.0%, Standard Deviation = 1.2%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 1 3 71 0 0 11122 0 0 0 11197
QFSK 0 1 19 0 0 11252 0 0 0 11272
8FSK 0 0 2 0 0 11120 0 0 0 11122
BPSK 0 0 0 0 37 5283 171 91 5604 11186
QPSK 0 0 0 0 37 5295 187 85 5299 10903
8PSK 0 0 0 0 3 10292 25 14 661 10995
16QAM 0 0 0 5 498 2049 1123 387 7158 11220
64QAM 0 0 0 13 495 2121 1005 379 6974 10987A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 8 467 2053 1031 407 7152 11118

Table 33.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Flat 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 18.9%, Standard Deviation = 1.2%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 0 0 86 0 0 10967 0 0 0 11053
QFSK 0 0 15 0 0 10956 0 0 0 10971
8FSK 0 0 5 0 0 11313 0 0 0 11318
BPSK 0 0 0 0 49 5330 169 88 5607 11243
QPSK 0 0 0 0 57 5407 150 82 5441 11137
8PSK 0 0 0 0 8 10259 26 12 662 10967
16QAM 0 0 0 5 457 2135 1128 425 7050 11200
64QAM 0 0 0 13 471 2047 1080 388 6972 10971A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 17 498 2008 1102 412 7103 11140

 

In fast, frequency-flat Ricean conditions, PCA performs worse than LDA, mainly 

due to additional misclassifications of BPSK as QPSK.  Tables 34 and 35 show no 

significant difference between SNRs of 20 dB and 5 dB, respectively. 
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Table 34.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Flat Ricean 
Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 43.7%, Standard Deviation = 1.5%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11070 3 0 0 0 50 0 0 0 11123
QFSK 0 10794 6 0 0 219 0 0 0 11019
8FSK 0 1 7844 0 0 3231 0 0 0 11076
BPSK 0 0 0 0 11214 0 24 0 2 11240
QPSK 0 0 0 0 1 131 762 765 9427 11086
8PSK 0 0 0 0 0 10967 0 0 0 10967
16QAM 0 0 0 0 0 5764 6 3 5456 11229
64QAM 0 0 0 0 0 7730 5 5 3391 11131A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 1 8079 4 4 3041 11129

Table 35.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Flat Ricean 
Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 43.8%, Standard Deviation = 1.7%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11020 1 1 0 0 50 0 0 0 11072
QFSK 0 10903 8 0 0 248 0 0 0 11159
8FSK 0 0 7918 0 0 3291 0 0 0 11209
BPSK 0 0 0 0 11154 0 21 1 1 11177
QPSK 0 0 0 0 0 123 731 741 9532 11127
8PSK 0 0 0 0 0 10942 0 0 0 10942
16QAM 0 0 0 0 0 5647 3 3 5467 11120
64QAM 0 0 0 0 0 7675 1 3 3404 11083A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 1 8097 8 3 3002 11111

 

PCA also performs slightly worse than LDA for slow, frequency-selective 

channels, whether a Rayleigh or Ricean channel model is used.  In Tables 36 and 37, the 

results for Rayleigh fading are shown at 20 dB and 5 dB, respectively.  Once again, the 

performance is nearly identical. 

 

 

 

 

 



 55

Table 36.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Selective 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 62.0%, Standard Deviation = 1.6%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10897 3 5 0 0 320 0 0 0 11225
QFSK 302 8476 34 0 0 2138 0 0 0 10950
8FSK 1 568 6373 0 0 4369 0 0 0 11311
BPSK 0 0 1 7889 3050 1 121 7 29 11098
QPSK 0 0 0 0 5452 241 2655 331 2264 10943
8PSK 0 0 0 0 0 11071 0 0 0 11071
16QAM 0 0 0 0 0 1158 1952 1719 6380 11209
64QAM 0 0 0 0 0 1493 13 585 9104 11195A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 1589 6 134 9269 10998

Table 37.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Selective 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 61.9%, Standard Deviation = 1.7%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10698 3 2 0 0 337 0 0 0 11040
QFSK 325 8564 48 0 0 2202 0 0 0 11139
8FSK 0 573 6340 0 0 4240 0 0 0 11153
BPSK 0 0 3 8001 3056 0 106 6 14 11186
QPSK 0 0 0 0 5478 265 2702 355 2340 11140
8PSK 0 0 0 0 0 11084 0 0 0 11084
16QAM 0 0 0 0 0 1159 1855 1749 6401 11164
64QAM 0 0 0 0 1 1468 11 615 8949 11044A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 1633 7 137 9273 11050

 

In Tables 38 and 39, the classifier performs slightly better in a slow, frequency-

selective Ricean channel due to the line-of-sight component. 
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Table 38.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Selective 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 66.3%, Standard Deviation = 1.5%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11043 3 3 0 0 176 0 0 0 11225
QFSK 197 9057 38 0 0 1658 0 0 0 10950
8FSK 0 471 6927 0 0 3913 0 0 0 11311
BPSK 0 0 0 8934 2112 0 46 0 6 11098
QPSK 0 0 0 0 6276 112 2758 277 1520 10943
8PSK 0 0 0 0 0 11071 0 0 0 11071
16QAM 0 0 0 0 0 591 2232 2170 6216 11209
64QAM 0 0 0 0 0 757 1 671 9766 11195A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 853 0 104 10041 10998

Table 39.   Confusion Matrix for PCA Classifier in AWGN Plus Slow, Frequency-Selective 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 66.4%, Standard Deviation = 1.4%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10826 1 3 0 0 210 0 0 0 11040
QFSK 196 9285 29 0 0 1629 0 0 0 11139
8FSK 0 480 6864 0 0 3809 0 0 0 11153
BPSK 0 0 0 9017 2120 0 40 2 7 11186
QPSK 0 0 0 0 6446 126 2827 297 1444 11140
8PSK 0 0 0 0 0 11084 0 0 0 11084
16QAM 0 0 0 0 0 578 2160 2163 6263 11164
64QAM 0 0 0 0 0 831 0 638 9575 11044A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 818 0 116 10116 11050

 

In Tables 40 and 41, it can be seen that PCA performs better than LDA in a fast, 

frequency-selective Rayleigh channel.  Once again, there are no significant differences 

between results at 20 dB and at 5 dB. 
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Table 40.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Selective 
Rayleigh Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 18.1%, Standard Deviation = 1.3%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 2 0 61 0 0 11162 0 0 0 11225
QFSK 0 0 12 0 0 10938 0 0 0 10950
8FSK 0 0 0 0 0 11311 0 0 0 11311
BPSK 0 0 0 0 23 6899 80 36 4060 11098
QPSK 0 0 0 0 19 7561 56 25 3282 10943
8PSK 0 0 0 0 0 10693 12 4 362 11071
16QAM 0 0 0 3 205 3567 585 244 6605 11209
64QAM 0 0 0 2 213 3606 528 213 6633 11195A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 1 4 213 3376 575 242 6587 10998

Table 41.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Selective 
Rayleigh Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 18.2%, Standard Deviation = 1.4%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 0 1 57 0 0 10982 0 0 0 11040
QFSK 0 0 22 0 0 11117 0 0 0 11139
8FSK 0 0 1 0 0 11152 0 0 0 11153
BPSK 0 0 0 1 21 7017 81 44 4022 11186
QPSK 0 0 0 0 19 7609 58 41 3413 11140
8PSK 0 0 0 0 1 10751 11 8 313 11084
16QAM 0 0 0 2 203 3817 547 245 6350 11164
64QAM 0 0 0 7 233 3491 578 234 6501 11044A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 3 223 3354 603 253 6614 11050

 

In Tables 42 and 43, the classifier’s performance is seen to improve due to the 

line-of-sight component in the Ricean channel.  The results are not quite as good as those 

for LDA. 
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Table 42.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Selective 
Ricean Fading (SNR = 20 dB). 

  Classifier Output (Average Performance = 42.4%, Standard Deviation = 1.5%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 10998 1 1 0 0 48 0 0 0 11048
QFSK 0 10785 11 0 0 249 0 0 0 11045
8FSK 0 2 7853 0 0 3464 0 0 0 11319
BPSK 0 0 0 0 11173 0 2 0 0 11175
QPSK 0 0 0 0 0 22 153 413 10402 10990
8PSK 0 0 0 0 0 10866 0 0 0 10866
16QAM 0 0 0 0 0 5386 0 0 5776 11162
64QAM 0 0 0 0 0 8653 0 0 2418 11071A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 9432 0 0 1892 11324

Table 43.   Confusion Matrix for PCA Classifier in AWGN Plus Fast, Frequency-Selective 
Ricean Fading (SNR = 5 dB). 

  Classifier Output (Average Performance = 42.7%, Standard Deviation = 1.6%)   

   BFSK QFSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 256QAM Total
BFSK 11069 0 2 0 0 52 0 0 0 11123
QFSK 0 10683 5 0 0 258 0 0 0 10946
8FSK 0 0 7772 0 0 3357 0 0 0 11129
BPSK 0 0 0 0 11119 0 2 0 0 11121
QPSK 0 0 0 0 0 22 129 394 10684 11229
8PSK 0 0 0 0 0 11196 0 0 0 11196
16QAM 0 0 0 0 0 5267 0 0 5759 11026
64QAM 0 0 0 0 0 8773 1 0 2356 11130A

ct
ua

l M
od

ul
at

io
n 

T
yp

e 

256QAM 0 0 0 0 0 9090 0 0 2010 11100

In summary, LDA performs better than PCA in some channel conditions, but the 

results for PCA do not vary as much with SNR.  In general, as channel conditions 

deteriorate, the two classifiers tend to mistakenly select either 8-PSK or 256-QAM.  

Ricean channels also generally show better results than Rayleigh channels because the 

line-of-sight component preserves the spectral content of the signal, allowing FSK signals 

to be correctly classified. 

The next chapter summarizes this thesis and presents recommendations for further 

work. 
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VI. CONCLUSIONS 

In this thesis, previous work that investigated the use of higher-ordered moments 

and cumulants in the problem of blind modulation classification was built upon.  The 

criteria for selecting moments and cumulants to form feature vectors for the signals were 

discussed.  Two classical classification algorithms, PCA and LDA, as well their 

nonlinear, kernel-based equivalents, KPCA and GDA, were applied, and the effects of 

AWGN and multipath fading on resulting performances were investigated.  

Whereas previous work assumed that the statistics would be purely real, this work 

demonstrated the effect of rotating the symbol constellation by a phase offset.  This result 

was used to select cumulants whose magnitudes are unaffected by phase shifts.  

Additionally, power normalizations were applied to the cumulants to make them more 

robust to fading effects. 

Nonlinear classifiers turned out not to have any advantage in a problem with low-

dimension feature vectors.  The linear schemes turned out to work better (and with fewer 

computations).  The steps taken to make the features more resistant to the effects of 

fading were effective for modest Doppler shift and for frequency-flat channels.  The 

classifiers’ performance dropped sharply, however, with increasing Doppler shift. 

The linear classifiers proposed here are very effective in channels that only 

undergo corruption by AWGN and in the sorts of fading channels one might expect from 

a person walking and using a mobile device.  On the whole, however, fading remains a 

challenge for blind modulation classification.  Future work in this area should focus on 

methods to compensate for fading. 

Additionally, one drawback to the work presented here is that it uses continuous 

streams of symbols.  A more sophisticated simulation should attempt to account for 

phenomena above the physical layer of communications systems, such as packetized 

data.  Furthermore, simulations in the passband should be conducted to see if this 

problem is tractable when dealing with modern techniques such as spread spectrum 

transmission. 
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 APPENDIX A: CUMULANTS EXPRESSED AS FUNCTIONS 
OF EQUAL AND LOWER ORDER MOMENTS 

Table 44.   Cumulants Expressed In Terms of Moments. 

Cumulant In Terms of Moments 

,2,0xC  ,2,0xE  

,1,1xC  ,1,1xE  

,4,0xC   2

,4,0 ,2,03x xE E  

,3,1xC  ,3,1 ,2,0 ,1,13x x xE E E  

,2,2xC     2 2

,2,2 ,2,0 ,1,12x x xE E E   

,6,0xC   3

,6,0 ,2,0 ,4,0 ,2,015 30x x x xE E E E   

,5,1xC   2

,5,1 ,2,0 ,3,1 ,1,1 ,4,0 ,2,0 ,1,110 5 30x x x x x x xE E E E E E E    

,4,2xC     3 2

,4,2 ,2,0 ,4,0 ,1,1 ,3,1 ,2,0 ,2,2 ,2,0 ,1,1 ,2,08 6 6 24x x x x x x x x x xE E E E E E E E E E      

,3,3xC     2 3

,3,3 ,2,0 ,3,1 ,1,1 ,2,2 ,2,0 ,1,1 ,1,16 9 18 12x x x x x x x xE E E E E E E E     

,8,0xC       2 4 2

,8,0 ,4,0 ,2,0 ,2,0 ,4,035 630 420x x x x xE E E E E    

,7,1xC   3

,7,1 ,4,0 ,3,1 ,2,0 ,1,1 ,4,0 ,2,0 ,1,1 ,2,0 ,3,135 630 210 210x x x x x x x x x xE E E E E E E E E E     
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APPENDIX B: BEHAVIOR OF MOMENTS AND CUMULANTS 
WITH DECREASING SNR 

A. AWGN ONLY 
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Figure 17.   ,2,0xE in AWGN. 
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Figure 18.   ,1,1xE in AWGN. 
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Figure 19.   ,4,0xE in AWGN. 
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Figure 20.   ,3,1xE in AWGN. 
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Figure 21.   ,2,2xE in AWGN. 
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Figure 22.   ,6,0xE in AWGN. 
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Figure 23.   ,5,1xE in AWGN. 

E42

0

1

2

3

4

5

6

7

8

9

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 24.   ,4,2xE in AWGN. 
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Figure 25.   ,3,3xE in AWGN. 
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Figure 26.   ,8,0xE in AWGN. 
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Figure 27.   ,7,1xE in AWGN. 
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Figure 28.   ,6,2xE in AWGN. 
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Figure 29.   ,5,3xE in AWGN. 
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Figure 30.   ,4,4xE in AWGN. 
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Figure 31.   ,4,0xC in AWGN. 
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Figure 32.   ,3,1xC in AWGN. 
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Figure 33.   ,2,2xC in AWGN. 
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Figure 34.   ,6,0xC in AWGN. 
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Figure 35.   ,5,1xC in AWGN. 
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Figure 36.   ,4,2xC in AWGN. 
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Figure 37.   ,3,3xC in AWGN. 
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Figure 38.   ,8,0xC in AWGN. 
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Figure 39.   ,7,1xC in AWGN. 
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Figure 40.   ,6,2xC in AWGN. 



 75

C53

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 41.   ,5,3xC in AWGN. 
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Figure 42.   ,4,4xC in AWGN. 

B. AWGN PLUS SLOW, FREQUENCY-FLAT RAYLEIGH FADING 

Parameters for the rayleighchan.m function in MATLAB are: 
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 Sampling interval: 61 10  

 Maximum Doppler shift: 3.5 Hz 

 Path Delays: [0, 71 10 ] 

 Average Path Gains: [0, -10] 
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Figure 43.   ,2,0xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 44.   ,1,1xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 45.   ,4,0xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 46.   ,3,1xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 47.   ,2,2xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 48.   ,6,0xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 49.   ,5,1xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 50.   ,4,2xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 51.   ,3,3xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 52.   ,8,0xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 53.   ,7,1xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 54.   ,6,2xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 55.   ,5,3xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 56.   ,4,4xE in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 57.   ,4,0xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 58.   ,3,1xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 59.   ,2,2xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 60.   ,6,0xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 61.   ,5,1xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 62.   ,4,2xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 



 86

C33

0

0.5

1

1.5

2

2.5

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 63.   ,3,3xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 64.   ,8,0xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 65.   ,7,1xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 66.   ,6,2xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 67.   ,5,3xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 
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Figure 68.   ,4,4xC in AWGN and Slow, Frequency-Flat Rayleigh Fading. 

C. AWGN PLUS SLOW, FREQUENCY-FLAT RICEAN FADING 

Parameters for the ricianchan.m function in MATLAB are: 
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 Sampling interval: 61 10  

 Maximum Doppler shift: 3.5 Hz 

 K-factor: 3 

 Path Delays: [0, 71 10 ] 

 Average Path Gains: [0, -10] 
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Figure 69.   ,2,0xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 70.   ,1,1xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 71.   ,4,0xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 72.   ,3,1xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 73.   ,2,2xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 74.   ,6,0xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 75.   ,5,1xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 76.   ,4,2xE in AWGN and Slow, Frequency-Flat Ricean Fading. 

E33

0

2

4

6

8

10

12

14

16

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 77.   ,3,3xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 78.   ,8,0xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 79.   ,7,1xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 80.   ,6,2xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 81.   ,5,3xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 82.   ,4,4xE in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 83.   ,4,0xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 84.   ,3,1xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 85.   ,2,2xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 86.   ,6,0xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 87.   ,5,1xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 88.   ,4,2xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 89.   ,3,3xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 90.   ,8,0xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 91.   ,7,1xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 92.   ,6,2xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 93.   ,5,3xC in AWGN and Slow, Frequency-Flat Ricean Fading. 
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Figure 94.   ,4,4xC in AWGN and Slow, Frequency-Flat Ricean Fading. 

D. AWGN PLUS SLOW, FREQUENCY-SELECTIVE RAYLEIGH FADING 

Parameters for the rayleighchan.m function in MATLAB are: 

 Sampling interval: 61 10  

 Maximum Doppler shift: 3.5 Hz 

 Path Delays: [0, 62 10 ] 

 Average Path Gains: [0, -10] 
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Figure 95.   ,2,0xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 96.   ,1,1xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 97.   ,4,0xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 98.   ,3,1xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 99.   ,2,2xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 100.   ,6,0xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 101.   ,5,1xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 102.   ,4,2xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 103.   ,3,3xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 104.   ,8,0xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 105.   ,7,1xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 106.   ,6,2xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 107.   ,5,3xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 108.   ,4,4xE in AWGN and Slow, Frequency-Selective Rayleigh Fading. 



 110

C40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 109.   ,4,0xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 110.   ,3,1xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 111.   ,2,2xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 112.   ,6,0xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 113.   ,5,1xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 114.   ,4,2xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 115.   ,3,3xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 116.   ,8,0xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 117.   ,7,1xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 118.   ,6,2xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 119.   ,5,3xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 
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Figure 120.   ,4,4xC in AWGN and Slow, Frequency-Selective Rayleigh Fading. 

E. AWGN PLUS SLOW, FREQUENCY-SELECTIVE RICEAN FADING 

Parameters for the ricianchan.m function in MATLAB are: 
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 Sampling interval: 61 10  

 Maximum Doppler shift: 3.5 Hz 

 K-factor: 3 

 Path Delays: [0, 62 10 ] 

 Average Path Gains: [0, -10] 
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Figure 121.   ,2,0xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 122.   ,1,1xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 123.   ,4,0xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 124.   ,3,1xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 125.   ,2,2xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 126.   ,6,0xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 127.   ,5,1xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 128.   ,4,2xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 129.   ,3,3xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 130.   ,8,0xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 131.   ,7,1xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 132.   ,6,2xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 133.   ,5,3xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 134.   ,4,4xE in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 135.   ,4,0xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 136.   ,3,1xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 137.   ,2,2xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 138.   ,6,0xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 139.   ,5,1xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 140.   ,4,2xC in AWGN and Slow, Frequency-Selective Ricean Fading. 

C33

0

0.5

1

1.5

2

2.5

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 141.   ,3,3xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 142.   ,8,0xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 143.   ,7,1xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 144.   ,6,2xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 145.   ,5,3xC in AWGN and Slow, Frequency-Selective Ricean Fading. 
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Figure 146.   ,4,4xC in AWGN and Slow, Frequency-Selective Ricean Fading. 

F. AWGN PLUS FAST, FREQUENCY-FLAT RAYLEIGH FADING 

Parameters for the rayleighchan.m function in MATLAB are: 

 Sampling interval: 61 10  

 Maximum Doppler shift: 5000 Hz 

 Path Delays: [0, 71 10 ] 

 Average Path Gains: [0, -10] 
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Figure 147.   ,2,0xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 148.   ,1,1xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 



 131

E40

0

0.05

0.1

0.15

0.2

0.25

0.3

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 149.   ,4,0xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 150.   ,3,1xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 151.   ,2,2xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 152.   ,6,0xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 153.   ,5,1xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 154.   ,4,2xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 155.   ,3,3xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 156.   ,8,0xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 157.   ,7,1xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 158.   ,6,2xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 159.   ,5,3xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 160.   ,4,4xE in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 161.   ,4,0xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 162.   ,3,1xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 163.   ,2,2xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 164.   ,6,0xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 165.   ,5,1xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 166.   ,4,2xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 167.   ,3,3xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 168.   ,8,0xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 169.   ,7,1xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 170.   ,6,2xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 171.   ,5,3xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 
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Figure 172.   ,4,4xC in AWGN and Fast, Frequency-Flat Rayleigh Fading. 

G. AWGN PLUS FAST, FREQUENCY-FLAT RICEAN FADING 

Parameters for the ricianchan.m function in MATLAB are: 
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 Sampling interval: 61 10  

 Maximum Doppler shift: 5000 Hz 

 K-factor: 3 

 Path Delays: [0, 71 10 ] 

 Average Path Gains: [0, -10] 
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Figure 173.   ,2,0xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 174.   ,1,1xE in AWGN and Fast, Frequency-Flat Ricean Fading. 

E40

0

0.1

0.2

0.3

0.4

0.5

0.6

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 175.   ,4,0xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 176.   ,3,1xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 177.   ,2,2xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 178.   ,6,0xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 179.   ,5,1xE in AWGN and Fast, Frequency-Flat Ricean Fading. 



 147

E42

0

1

2

3

4

5

6

7

8

9

10

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 180.   ,4,2xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 181.   ,3,3xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 182.   ,8,0xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 183.   ,7,1xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 184.   ,6,2xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 185.   ,5,3xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 186.   ,4,4xE in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 187.   ,4,0xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 188.   ,3,1xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 189.   ,2,2xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 190.   ,6,0xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 191.   ,5,1xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 192.   ,4,2xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 193.   ,3,3xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 194.   ,8,0xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 195.   ,7,1xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 196.   ,6,2xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 197.   ,5,3xC in AWGN and Fast, Frequency-Flat Ricean Fading. 
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Figure 198.   ,4,4xC in AWGN and Fast, Frequency-Flat Ricean Fading. 

H. AWGN PLUS FAST, FREQUENCY-SELECTIVE RAYLEIGH FADING 

Parameters for the rayleighchan.m function in MATLAB are: 

 Sampling interval: 61 10  

 Maximum Doppler shift: 5000 Hz 

 Path Delays: [0, 62 10 ] 

 Average Path Gains: [0, -10] 
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Figure 199.   ,2,0xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 200.   ,1,1xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 

 



 158

E40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 201.   ,4,0xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 202.   ,3,1xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 203.   ,2,2xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 204.   ,6,0xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 205.   ,5,1xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 206.   ,4,2xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 207.   ,3,3xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 208.   ,8,0xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 209.   ,7,1xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 210.   ,6,2xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 211.   ,5,3xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 212.   ,4,4xE in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 213.   ,4,0xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 214.   ,3,1xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 215.   ,2,2xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 216.   ,6,0xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 217.   ,5,1xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 218.   ,4,2xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 219.   ,3,3xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 220.   ,8,0xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 221.   ,7,1xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 222.   ,6,2xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 223.   ,5,3xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 
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Figure 224.   ,4,4xC in AWGN and Fast, Frequency-Selective Rayleigh Fading. 

I. AWGN PLUS FAST, FREQUENCY-SELECTIVE RICEAN FADING 

Parameters for the ricianchan.m function in MATLAB are: 

 Sampling interval: 61 10  
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 Maximum Doppler shift: 5000 Hz 

 Path Delays: [0, 62 10 ] 

 Average Path Gains: [0, -10] 
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Figure 225.   ,2,0xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 226.   ,1,1xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 227.   ,4,0xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 228.   ,3,1xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 229.   ,2,2xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 230.   ,6,0xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 231.   ,5,1xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 232.   ,4,2xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 233.   ,3,3xE in AWGN and Fast, Frequency-Selective Ricean Fading. 

E80

0

1

2

3

4

5

6

7

100 40 20 15 12 10 8 7 6 5 3

SNR [dB]

BPSK

QPSK

8PSK

16QAM

64QAM

256QAM

 

Figure 234.   ,8,0xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 235.   ,7,1xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 236.   ,6,2xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 237.   ,5,3xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 238.   ,4,4xE in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 239.   ,4,0xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 240.   ,3,1xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 241.   ,2,2xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 242.   ,6,0xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 243.   ,5,1xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 244.   ,4,2xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 245.   ,3,3xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 246.   ,8,0xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 247.   ,7,1xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 248.   ,6,2xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 249.   ,5,3xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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Figure 250.   ,4,4xC in AWGN and Fast, Frequency-Selective Ricean Fading. 
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APPENDIX C: EFFECT OF CONSTELLATION ROTATION ON 
MOMENTS AND CUMULANTS FOR PSK AND QAM SIGNALS 

A. MOMENTS 

1. PSK Signals 

The complex envelope expression for a PSK signal is given as 

 
2

( ) exp ( ) ,x k A j d k
N

       
 (C.1) 

where A is the amplitude, N is the number of symbols, d(k) is a uniformly distributed 

random integer between 0 and N-1.  Let '( )x k be the same signal after an arbitrary phase 

shift is introduced: 

 
2

'( ) exp ( ) .x k A j d k
N

        
 (C.2) 

The general expression for the   thp q -order moment of '( )x k is defined as 

 ', ,

2 2
exp ( ) exp ( )

p q

x p qE E A j d k A j d k
N N

  
                                  

 (C.3) 

which may be rewritten as 

 
', ,

, ,

2 ( )
exp( ( )) exp ( )

exp( ( )) .

p q
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E j p q A E j d k
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j p q E
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

          
 

 (C.4) 

2. QAM Signals 

The complex envelope expression for a QAM signal is 

 ( ) ( ) ( ),x k a k jb k   (C.5) 

or, in polar form, 

    2 2 1 ( )
( ) ( ) ( ) exp tan ,

( )

b k
x k a k b k j

a k
 

   
 

 (C.6) 
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where ( )a k and ( )b k are random variables representing the I and Q channels, 

respectively.  Let '( )x k be the same signal after an arbitrary phase shift is introduced: 

    2 2 1 ( )
'( ) ( ) ( ) exp tan .

( )

b k
x k a k b k j

a k
  

    
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 (C.7) 

The   thp q -ordered moment obtained for this signal is given by 
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 (C.8) 

B. CUMULANTS 

From the proof above and the expressions in Appendix A, it will be shown that 

the magnitude of most of the cumulants is unaffected by an arbitrary phase shift.  In the 

paragraphs to follow, '
, ,x p qE refers to the moment , ,x p qE whose underlying signal has 

been shifted by an arbitrary phase .   Note that there is no need to consider ,2,0xC and 

,1,1xC as they are mathematically identical to ,2,0xE and ,1,1.xE  
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2. ,3,1xC  

   
  
 

' ' ' '
,3,1 ,3,1 ,2,0 ,1,1

,3,1 ,2,0 ,1,1

,3,1 ,2,0 ,1,1

,3,1

3

exp 2 3exp 2

exp 2 3

exp 2 .

x x x x

x x x

x x x

x

C E E E

j E j E E

j E E E

j C

 





 

 

 



 

3. ,2,2xC  

,2,2xC is not magnitude-invariant to phase shifts. 

4. ,6,0xC  
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5. ,5,1xC  
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6. ,4,2xC  

,4,2xC is not magnitude-invariant to phase shifts. 
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7. ,3,3xC  

,3,3xC is not magnitude-invariant to phase shifts. 

8. ,8,0xC  
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9. ,7,1 ,6,2 ,5,3 ,4,4, , , andx x x xC C C C  

,7,1 ,6,2 ,5,3 ,4,4, , , andx x x xC C C C are not magnitude-invariant to phase shifts. 
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APPENDIX D: MATLAB CODE 

A. LINEAR CLASSIFIERS 

1. Description: 

 PCA.m performs Principal Component Analysis on training data. 

 LDA.m performs Linear Discriminant Analysis on training data. 

 LINEARTESTER.m generates digitally modulated signals by randomly 

picking the modulation type, then corrupting them with AWGN and 

(optionally) applying fading.  Finally, it uses the projection matrix and 

class centroids passed as inputs to classify the signals. Works with either 

class data calculated by either PCA.m or LDA.m 

2. PCA.m 

function [TrainMean centroids projmatrix] = pca(TrainData, Neigvecs, Nclasses, 
Nsamp) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% PCA.m performs principal component analysis on the column vectors in 

% TrainData. 

  

% Inputs: TrainData (Data to be used for training the classifier, stored as 

% column vectors) 

% Neigvecs: number of eigenvectors to be used in the projection matrix 

% Nclasses: number of classes present in the training data 

% Nsamp: number of samples per class 

  

% Calculate mean training vector and subtract from each vector to form a 

% centered training matrix 
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TrainMean = mean(TrainData,2); 

CentTrainData = (TrainData - TrainMean*ones(1,Nclasses*Nsamp)); 

  

% Calculate covariance matrix and decompose into eigenvectors. Keep the 

% desired number of eigenvectors (Neigvecs) as the projection matrix 

covarmatrix = CentTrainData*conj(CentTrainData)'; 

[eigvecs,eigvals] = eig(covarmatrix); 

SortedEigvals = sort(eigvals,1,'descend'); 

SortedEigvals = SortedEigvals(1,:); 

[SortedEigvals,index] = sort(SortedEigvals,2,'descend'); 

projmatrix = eigvecs(:,index(1:Neigvecs)); 

  

% Calculate class centroids by projecting training data for each class and 

% calculating the mean 

centroids = zeros(size(projmatrix,2),Nclasses); 

for n = 1:Nclasses 

    projclass = projmatrix'*CentTrainData(:,[(n-1)*Nsamp+1:n*Nsamp]); 

    centroids(:,n) = mean(projclass,2); 

end 

 

3. LDA.m 

function [TrainMean centroids W] = lda(TrainData, Neigvecs, Nclasses, Nsamp) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% LDA.m performs linear discrimant analysis on the column vectors in 

% TrainData. 

  

% Inputs: TrainData (Data to be used for training the classifier, stored as 

% column vectors) 

% Neigvecs: number of eigenvectors to be used in the projection matrix 

% Nclasses: number of classes present in the training data 
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% Nsamp: number of samples per class 

  

% First determine the mean training vector and subtract it from the 

% training data to form the centered training matrix. Initialize the 

% within- and between-class scatter matrices Sw and Sb and the matrix of 

% class centroids. 

r = size(TrainData,1); 

TrainMean = mean(TrainData,2); 

CentTrainData = (TrainData - TrainMean*ones(1,Nclasses*Nsamp)); 

Sw = zeros(r,r); 

Sb = zeros(r,r); 

centroids = zeros(Neigvecs,Nclasses); 

  

% Calculate Sw and Sb 

for n = 1:Nclasses 

    Si = zeros(r,r); 

    mu = mean(CentTrainData(:,(n-1)*Nsamp+1:n*Nsamp),2); 

    for m = 1:Nsamp 

        x = CentTrainData(:,(n-1)*Nsamp+m); 

        Si = Si + (x-mu)*conj((x-mu)'); 

    end 

    Sb = Sb + Nsamp*(TrainMean - mu)*conj((TrainMean - mu)'); 

    Sw = Sw + Si; 

end 

  

% Decompose inv(Sw)*Sb into eigenvectors and keep the top Neigvecs of them 

% as the projectoin matrix 

[eigvecs, lambda] = eig(inv(Sw)*Sb); 

lambda = sort(lambda,1,'descend'); 

lambda = lambda(1,:); 

[lambda,index] = sort(lambda,2,'descend'); 

W = eigvecs(:,index(1:Neigvecs)); 
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% Find class centroids by projecting each class and taking the mean 

for n = 1:Nclasses 

    centroids(:,n) = mean((W'*CentTrainData(:,(n-1)*Nsamp+1:n*Nsamp)),2); 

end 

 

4. LINEARTESTER.m 

function[tracker,percent]=lineartester(numtrials,msglength,ModSchemes,symorde
r,SymSNR,MeanProf,centroids,projmatrix,channeltype) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% LINEARTESTER.m generates digitally modulated signals by randomly 
picking 

% the modulation type, then corrupts it with AWGN and (optionally) fading. 

% Finally, uses the projection matrix and class centroids passed as inputs 

% to classify the signals. Works with either lda.m or pca.m. 

  

% Inputs: 

% numtrials: number of signals to generate 

% msglength: length of each signal 

% ModSchemes: vector containing number of distinct symbols for each scheme. 

% Usually [2 4 8 2 4 8 16 64 256] for BFSK, QFSK, 8FSK, BPSK, QPSK, 8PSK, 

% 16QAM, 64QAM, 256QAM. 

% symorder: 'gray' or 'binary' 

% SymSNR: SNR used to corrupt signals with AWGN 

% MeanProf: the mean profile of the training data (determined by lda.m or 

% pca.m), to be subtracted from each signal. 

% centroids: Class centroids determined by lda.m or pca.m 

% projmatrix: Projection matrix determined by lda.m or pca.m 

% channeltype: 1 = AWGN only, 2 = Rayleigh, 3 = Ricean, 4 = mixed. 
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NumSchemes = length(ModSchemes); 

  

% tracker will keep track of the results as a confusion matrix 

tracker = zeros(NumSchemes); 

  

% define modulator objects for PSK and QAM signals 

bpskmodulator = 
modem.pskmod('M',2,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

qpskmodulator = 
modem.pskmod('M',4,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

epskmodulator = 
modem.pskmod('M',8,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator16 = 
modem.qammod('M',16,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator64 = 
modem.qammod('M',64,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator256 = 
modem.qammod('M',256,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

  

% define parameters for FSK signals 

freqsep = 16; 

Nsamp = 16; 

Fs = 128; 

  

% The following thresholds for distinguishing between BFSK, QFSK, and 8FSK 

% were determined empirically. 

thold23 = 2; 

thold45 = 1.5; 

thold89 = 1.15; 

  

% Define fading channel parameters 

symrate = 1e6; 

raychan = rayleighchan(1/symrate,5000,[0, 2e-6], [0,-10]); 

richan = ricianchan(1/symrate,5000,3,[0, 2e-6], [0,-10]); 
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h=waitbar(0,'Conducting Trials...'); 

for n = 1:numtrials 

    % Pick modulation scheme at random and generate msg 

    modtype = randsrc(1,1,1:NumSchemes); 

    M = ModSchemes(modtype); 

    msg = randsrc(msglength,1,[0:M-1]);     

    switch modtype 

        case {1,2,3} 

            modmsg = fskmod(msg,M,freqsep,Nsamp,Fs,'cont',symorder); 

        case 4 

            modmsg = modulate(bpskmodulator,msg);            

        case 5 

            modmsg = modulate(qpskmodulator,msg); 

        case 6 

            modmsg = modulate(epskmodulator,msg);             

        case 7 

            modmsg = modulate(modulator16,msg)./sqrt(10); 

        case 8 

            modmsg = modulate(modulator64,msg)./sqrt(42); 

        case 9 

            modmsg = modulate(modulator256,msg)./sqrt(170); 

    end 

     

    % Use channel type to determine the propagation model to use 

    if channeltype == 4 

        propmodel = randsrc(1,1,1:3); 

    else 

        propmodel = channeltype; 

    end 

     

    % Apply the appropriate model. AWGNFreePower is a measurement of the 

    % signal power before adding AWGN. 
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    switch propmodel 

        case 1 

            AWGNFreePower = sqrt(mean(modmsg.*conj(modmsg))); 

            noisymsg = awgn(modmsg,SymSNR,'measured'); 

        case 2 

            multipath = filter(raychan,modmsg(1:msglength)); 

            AWGNFreePower = sqrt(mean(multipath.*conj(multipath))); 

            noisymsg = awgn(multipath,SymSNR,'measured'); 

        case 3 

            multipath = filter(richan,modmsg(1:msglength)); 

            AWGNFreePower = sqrt(mean(multipath.*conj(multipath))); 

            noisymsg = awgn(multipath,SymSNR,'measured');               

    end 

     

    % Normalize by AWGNFreePower 

    noisymsg = noisymsg./AWGNFreePower; 

  

    %First check to see if the signal was FSK 

    sfft = fft(noisymsg(1:4096)); 

    sortfft = sort(abs(sfft),1,'descend'); 

    ratio23 = sortfft(2)/sortfft(3); 

    ratio45 = sortfft(4)/sortfft(5); 

    ratio89 = sortfft(8)/sortfft(9); 

     

    if ratio23>thold23 

        modguess = 1; 

    else if ratio45>thold45 

            modguess = 2; 

        else if ratio89>thold89 

                modguess = 3; 

            else 

                % If not FSK, subtract the mean training vector, project 
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                % the result, and calculate the distance to all centroids. 

                % Closest distance wins 

                sigprof = (profgen(noisymsg) - MeanProf); 

                projdata = projmatrix'*sigprof; 

                euclidnorm = sqrt(sum((centroids - projdata*ones(1,NumSchemes-
3)).^2)); 

                [dist,modguess] = min(euclidnorm); 

                modguess = modguess+3; 

            end 

        end 

    end 

    tracker(modtype,modguess) = tracker(modtype,modguess) + 1; 

    waitbar(n/numtrials,h); 

end 

close(h); 

% Calculate overall performance 

percent = sum(diag(tracker))/numtrials; 

 

B. NONLINEAR CLASSIFIERS 

1. Description: 

 KPCA.m performs kernel-based (nonlinear) principal component analysis 

on training data. 

 GDA.m performs general discriminant analysis on training data. 

 NONLINTESTER.m generates digitally modulated signals by randomly 

picking the modulation type, then corrupting them with AWGN and 

(optionally) applying fading.  Finally, it uses the paramters calculated by 

either KPCA.m or GDA.m to classify the signal. 

 



 195

2. KPCA.m 

function [TrainMean CentTrainData centroids K M1 u] = kpca(TrainData, 
Nclasses, Nsamp, maptype,a,b,d) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% KPCA.m performs kernel-based (nonlinear) principal component analysis on 

% the column vectors in TrainData. 

  

% Inputs: TrainData (Data to be used for training the classifier, stored as 

% column vectors) 

% Neigvecs: number of eigenvectors to be used in the projection matrix 

% Nclasses: number of classes present in the training data 

% Nsamp: number of samples per class 

% maptype: Type of kernel. 'gauss', 'sig', or 'poly.' 

% a,b,d: kernel paramters (set to 0 if not used by your kernel) 

  

% Calculate mean training vector and subtract from each vector to form a 

% centered training matrix 

TrainMean = mean(TrainData,2); 

CentTrainData = TrainData - TrainMean*ones(1,Nclasses*Nsamp); 

  

% Call KERNEL.m to calculate kernel matrix 

K = kernel(CentTrainData,CentTrainData,maptype,a,b,d); 

% M1 = (1/no. of training vectors) * I, used to center the kernelized 

% training data matrix in the higher-dimensional space 

M1 = (1/(Nclasses*Nsamp))*ones(size(K)); 

K = K-M1*K-K*M1+M1*K*M1; 

  

% Eigen-decomposition of Kernel matrix. Sort vectors and values in 

% descending order and keep any that are at least 1/100 of the magnitude of 

% the largest eigenvalue 

[u,gamma] = eig(K); 



 196

[sortgamma,index] = sort(diag(gamma),1,'descend'); 

u = u(:,index); 

sortgamma = sortgamma(sortgamma>max(sortgamma)/100); 

gamma = diag(sortgamma); 

u = u(:,1:length(sortgamma)); 

  

% K must be reformed from the most significant eigenvectors and eigenvalues 

% in order for the dimensions to match. 

K = u*gamma*u'; 

% Normalize the eigenvectors. This will form the projection matrix 

u = u./(ones(size(u,1),1)*sum(sqrt(u'*K*u))); 

  

% Find class centroids by projecting the kernel matrix class by class and 

% calculating the mean. 

ProjData = (K*u)'; 

centroids = zeros(size(u,2),Nclasses); 

for n = 1:Nclasses 

    projclass = ProjData(:,(n-1)*Nsamp+1:n*Nsamp); 

    centroids(:,n) = mean(projclass,2); 

end 

 

3. GDA.m 

function [TrainMean CentTrainData centroids K M1 alpha] = gda(TrainData, 
Nclasses, Nsamp, maptype, a,b,d) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% GDA.m performs general discriminant analysis on the column vectors in 

% TrainData. 

  

% Inputs: TrainData (Data to be used for training the classifier, stored as 

% column vectors) 
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% Neigvecs: number of eigenvectors to be used in the projection matrix 

% Nclasses: number of classes present in the training data 

% Nsamp: number of samples per class 

% maptype: Type of kernel. 'gauss', 'sig', or 'poly.' 

% a,b,d: kernel paramters (set to 0 if not used by your kernel) 

  

% Calculate mean training vector and subtract from each vector to form a 

% centered training matrix 

TrainMean = mean(TrainData,2); 

CentTrainData = TrainData - TrainMean*ones(1,Nclasses*Nsamp); 

  

% Call KERNEL.m to calculate kernel matrix 

K = kernel(CentTrainData,CentTrainData,maptype,a,b,d); 

% M1 = (1/no. of training vectors) * I, used to center the kernelized 

% training data matrix in the higher-dimensional space 

M1 = (1/(Nclasses*Nsamp))*ones(size(K)); 

K = K-M1*K-K*M1+M1*K*M1; 

  

% Eigen-decomposition of Kernel matrix. Sort vectors and values in 

% descending order and keep any that are at least 1/100 of the magnitude of 

% the largest eigenvalue 

[u,gamma] = eig(K); 

[sortgamma,index] = sort(diag(gamma),1,'descend'); 

u = u(:,index); 

sortgamma = sortgamma(sortgamma>max(sortgamma)/100); 

gamma = diag(sortgamma); 

u = u(:,1:length(sortgamma)); 

K = u*gamma*u'; 

  

% Form the block diagonal matrix W. There will be one block for each class 

% (modulation type). Each block will be equal to (1/no. of samples per 

% class) * ones(no. of samples per class) 
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Wl = (1/Nsamp)*ones(Nsamp); 

W = Wl; 

  

for m = 1:Nclasses-1 

    W = blkdiag(W,Wl); 

end 

  

% Eigendecomposition of u'Wu. Vectors are used to calculate the projection 

% matrix alpha. 

[beta,lambda] = eig(u'*W*u); 

alpha = u*inv(gamma)*beta; 

% Normalize all vectors in alpha. This is the projection matrix. 

alpha = alpha./(ones(size(alpha,1),1)*sum(sqrt(alpha'*K*alpha))); 

  

% Project kernelized training data and calculate class centroids 

ProjData = (K*alpha)'; 

centroids = zeros(size(alpha,2),Nclasses); 

  

for n = 1:Nclasses 

    projclass = ProjData(:,(n-1)*Nsamp+1:n*Nsamp); 

    centroids(:,n) = mean(projclass,2); 

end 

 

4. NONLINTESTER.m 

function [tracker,percent] = 
nonlintester(numtrials,msglength,ModSchemes,symorder,SymSNR,MeanProf,CentProfs,
K,M1,centroids,alpha,maptype,a,b,d,channeltype) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% NONLINTESTER.m generates digitally modulated signals by randomly 
picking 

% the modulation type, then corrupts it with AWGN and (optionally) fading. 
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% Finally, uses the paramters calculated by either KPCA.m or GDA.m to 

% classify the signal. 

  

% Inputs: 

% numtrials: number of signals to generate 

% msglength: length of each signal 

% ModSchemes: vector containing number of distinct symbols for each scheme. 

% Usually [2 4 8 2 4 8 16 64 256] for BFSK, QFSK, 8FSK, BPSK, QPSK, 8PSK, 

% 16QAM, 64QAM, 256QAM. 

% symorder: 'gray' or 'binary' 

% SymSNR: SNR used to corrupt signals with AWGN 

% MeanProf: the mean profile of the training data (determined by lda.m or 

% pca.m), to be subtracted from each signal. 

% CentProfs: Matrix of centered training profiles (from KPCA.m or GDA.m) 

% K: Kernel matrix (from GDA.m or KPCA.m) 

% M1: matrix used to center the testing signals in the higher-dimensional 

% space (see GDA.m or KPCA.m) 

% centroids: Class centroids determined by GDA.m or KPCA.m 

% alpha: Projection matrix determined by GDA.m or KPCA.m 

% maptype: Type of kernel. 'gauss', 'sig', or 'poly.' 

% a,b,d: kernel paramters (set to 0 if not used by your kernel) 

% channeltype: 1 = AWGN only, 2 = Rayleigh, 3 = Ricean, 4 = mixed. 

  

NumSchemes = length(ModSchemes); 

% tracker will keep track of the results as a confusion matrix 

tracker = zeros(length(ModSchemes)); 

  

% define modulator objects for PSK and QAM signals 

bpskmodulator = 
modem.pskmod('M',2,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

qpskmodulator = 
modem.pskmod('M',4,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 
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epskmodulator = 
modem.pskmod('M',8,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator16 = 
modem.qammod('M',16,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator64 = 
modem.qammod('M',64,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator256 = 
modem.qammod('M',256,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

  

% define parameters for FSK signals 

freqsep = 16; 

Nsamp = 16; 

Fs = 128; 

  

% The following thresholds for distinguishing between BFSK, QFSK, and 8FSK 

% were determined empirically. 

thold23 = 2; 

thold45 = 1.5; 

thold89 = 1.15; 

  

% Define fading channel parameters 

symrate = 1e6; 

raychan = rayleighchan(1/symrate,3.5,[0, .1e-6], [0,-10]); 

richan = ricianchan(1/symrate,3.5,3,[0, .1e-6], [0,-10]); 

  

h=waitbar(0,'Conducting Trials...'); 

for n = 1:numtrials 

    % Pick modulation scheme at random and generate msg 

    modtype = randsrc(1,1,1:NumSchemes); 

    M = ModSchemes(modtype); 

    msg = randsrc(msglength,1,[0:M-1]);     

    switch modtype 

        case {1,2,3} 
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            modmsg = fskmod(msg,M,freqsep,Nsamp,Fs,'cont',symorder); 

        case 4 

            modmsg = modulate(bpskmodulator,msg);            

        case 5 

            modmsg = modulate(qpskmodulator,msg); 

        case 6 

            modmsg = modulate(epskmodulator,msg);             

        case 7 

            modmsg = modulate(modulator16,msg)./sqrt(10); 

        case 8 

            modmsg = modulate(modulator64,msg)./sqrt(42); 

        case 9 

            modmsg = modulate(modulator256,msg)./sqrt(170); 

    end 

     

    % Use channel type to determine the propagation model to use 

    if channeltype == 4 

        propmodel = randsrc(1,1,1:3); 

    else 

        propmodel = channeltype; 

    end 

     

    % Apply the appropriate model. AWGNFreePower is a measurement of the 

    % signal power before adding AWGN. 

    switch propmodel 

        case 1 

            AWGNFreePower = sqrt(mean(modmsg.*conj(modmsg))); 

            noisymsg = awgn(modmsg,SymSNR,'measured'); 

        case 2 

            multipath = filter(raychan,modmsg(1:msglength)); 

            AWGNFreePower = sqrt(mean(multipath.*conj(multipath))); 

            noisymsg = awgn(multipath,SymSNR,'measured'); 
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        case 3 

            multipath = filter(richan,modmsg(1:msglength)); 

            AWGNFreePower = sqrt(mean(multipath.*conj(multipath))); 

            noisymsg = awgn(multipath,SymSNR,'measured');               

    end 

     

    % Normalize by AWGNFreePower 

    noisymsg = noisymsg./AWGNFreePower; 

     

    %First check to see if the signal was FSK 

    sfft = fft(noisymsg(1:4096)); 

    sortfft = sort(abs(sfft),1,'descend'); 

    ratio23 = sortfft(2)/sortfft(3); 

    ratio45 = sortfft(4)/sortfft(5); 

    ratio89 = sortfft(8)/sortfft(9); 

     

    if ratio23>thold23 

        modguess = 1; 

    else if ratio45>thold45 

            modguess = 2; 

        else if ratio89>thold89 

                modguess = 3; 

            else 

                % If not FSK, subtract the mean training vector. Calculate 

                % the higher-dimensional version of the vector (ksignal) 

                % and center in the higher-dimensional space using M1p and 

                % M1. 

                sigprof = (profgen(noisymsg) - MeanProf); 

                ksignal = kernel(sigprof,CentProfs,maptype,a,b,d); 

                M1p = 1/(size(ksignal,2))*ones(size(ksignal)); 

                ksignal = ksignal - M1p*K - ksignal*M1 + M1p*K*M1; 

                % Project signal and calculate the distance to each 
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                % centroid. Smallest distance is chosen as the modulation 

                % type. 

                projsig = (ksignal*alpha)'; 

                euclidnorm = sqrt(sum((centroids - projsig*ones(1,NumSchemes-
3)).^2)); 

                [dist,modguess] = min(euclidnorm); 

                modguess = modguess+3; 

            end 

        end 

    end 

    tracker(modtype,modguess) = tracker(modtype,modguess) + 1; 

    waitbar(n/numtrials,h); 

end 

close(h); 

% Calculate overall performance 

percent = sum(diag(tracker))/numtrials; 

 

C. SUPPORTING FUNCTIONS 

1. Description 

 PROFGEN.M calculates higher order statistics of the input signal and 

stores them in a vector. 

 TRAINPROFS.m generates PSK and QAM signals for training classifiers. 

 KERNEL.m calculates a kernel matrix given two collection of 

columnwise input vectors. 

 MDIST.m calculates the distance between pairs of vectors stored 

columnwise in two input matrices. 
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2. PROFGEN.m 

function profile = profgen(s) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% PROFGEN.M calculates higher order statistics of input signal s and stores 

% them in the vector profile. Note that many are commented out since they 

% are not used. 

  

% First ensure that mean of s is 0 

[r,c] = size(s); 

s = s - ones(r,1)*mean(s); 

sbar = conj(s); 

% spower = mean(s.*sbar); 

% Calculate higher order moments 

e20 = (mean(s.^2)); 

e11 = (mean(s.*sbar)); 

e40 = (mean(s.^4)); 

e31 = (mean((s.^3).*sbar)); 

%e22 = (mean((s.^2).*(sbar.^2))); 

%e60 = (mean(s.^6)); 

e51 = (mean((s.^5).*sbar)); 

%e42 = (mean((s.^4).*(sbar.^2))); 

%e33 = (mean((s.^3).*(sbar.^3))); 

e80 = (mean(s.^8)); 

%e71 = (mean((s.^7).*sbar)); 

%e62 = (mean((s.^6).*(sbar.^2))); 

%e53 = (mean((s.^5).*(sbar.^3))); 

%e44 = (mean((s.^4).*(sbar.^4))); 

  

% Calculate cumulants 

%c20 = e20; 
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%c11 = e11; 

c40 = e40 - 3*e20.^2; 

%c31 = e31 - 3*e20.*e11; 

%c22 = e22 - e20.^2 - 2*e11.^2; 

%c60 = e60 - 15*e20.*e40 + 30*e20.^3; 

c51 = e51 - 10*e20.*e31 - 5*e11.*e40 + 30*(e20.^2).*e11; 

%c42 = e42 - e20.*e40 - 8*e11.*e31 - 6*e20.*e22 + 6*e20.^3 + 
24*(e11.^2).*e20; 

%c33 = e33 - 6*e20.*e31 - 9*e11.*e22 + 18*(e20.^2).*e11 + 12*e11.^3; 

c80 = e80 - 35*e40.^2 - 630*e20.^4 + 420*(e20.^2).*e40; 

%c71 = e71 - 35*e40.*e31 - 630*(e20.^3).*e11 + 210*e40.*e20.*e11 + 
210*e20.*e31; 

%c62 = e62 - 15*e40.*e22 - 20*e31.^2 + 30*e40.*(e20.^2) + 60*e40.*(e11.^2) + 
240*e31.*e11.*e20 + 90*e22.*e20.^2 - 90*e20.^4 - 540*(e20.^2).*e11.^2; 

%c53 = e53 - 5*e40.*e31 - 30*e31.*e22 + 90*e31.*e20.^2 + 120*e31.*e11.^2 + 
180*e22.*e11.*e20 + 30*e40.*e20.*e11 -270*(e20.^3).*e11 - 360*(e11.^3).*e20; 

%c44 = e44 - e40.^2 -18*e22.^2 - 16*e31.^2 - 54*e20.^4 - 144*e11.^4 - 

%432*(e20.^2).*e11.^2 + 12*e40.*e20.^2 + 96*e31.*e11.*e20 + 
144*e22.*e11.^2 + 72*e22.*e20.^2 + 96*e31.*e20.*e11; 

  

%c20 = c20./spower; 

%c11 = c11./spower; 

c40 = (c40).^.5; 

%c31 = (c31).^.5; 

%c22 = (c22).^.5; 

%c60 = (c60).^(1/3); 

c51 = (c51).^(1/3); 

%c42 = (c42).^(1/3); 

%c33 = (c33).^(1/3); 

c80 = (c80).^.25; 

%c71 = (c71).^.25; 

%c62 = (c62).^.25; 

%c53 = (c53).^.25; 
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%c44 = (c44).^.25; 

  

profile = abs([c40;c51;c80]); 

 

3. TRAINPROFS.m 

function profmatrix = 
TrainProfs(SymSNR,msglength,symorder,MsgsPerScheme) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% TRAINPROFS.m generates PSK and QAM signals for training classifiers 

  

% Inputs: 

% SymSNR: SNR at which the training signals will be generated 

% msglength: length of signals 

% symorder: 'gray' or 'binary' 

% MsgsPerScheme: Number of training signals to generate per modulation 

% scheme 

  

numstats = length(profgen(1));%This will determine the size of profmatrix 

ModSchemes = [2 4 8 16 64 256];%Number of symbols in each scheme 

NumSchemes = length(ModSchemes); 

  

% Modem object for each scheme 

bpskmodulator = 
modem.pskmod('M',2,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

qpskmodulator = 
modem.pskmod('M',4,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

epskmodulator = 
modem.pskmod('M',8,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator16 = 
modem.qammod('M',16,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 
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modulator64 = 
modem.qammod('M',64,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

modulator256 = 
modem.qammod('M',256,'PhaseOffset',0,'SymbolOrder',symorder,'InputType','integer'); 

  

h2 = waitbar(0, 'Generating Training Signals...'); 

% Initialize profmatrix, where statistics for each signal will be stored 

profmatrix = zeros(numstats,NumSchemes*MsgsPerScheme); 

for n = 1:length(ModSchemes) 

    M = ModSchemes(n); 

    for k = 1:MsgsPerScheme 

        % Iterate through each modulation scheme, generate signal, add 

        % AWGN, and store its statistics in profmatrix 

        msg = randsrc(msglength,1,[0:M-1]); 

        switch n 

            case 1 

                modmsg = modulate(bpskmodulator,msg); 

            case 2 

                modmsg = modulate(qpskmodulator,msg); 

            case 3 

                modmsg = modulate(epskmodulator,msg); 

            case 4 

                modmsg = modulate(modulator16,msg)./sqrt(10); 

            case 5 

                modmsg = modulate(modulator64,msg)./sqrt(42); 

            case 6 

                modmsg = modulate(modulator256,msg)./sqrt(170); 

        end         

        noisymsg = awgn(modmsg(1:msglength),SymSNR,'measured');         

        profmatrix(:,(n-1)*MsgsPerScheme+k) = profgen(noisymsg); 

        waitbar(((n-1)*MsgsPerScheme+k)/(NumSchemes*MsgsPerScheme),h2); 

    end 



 208

end 

close(h2); 

 

4. KERNEL.m 

function K = kernel(x1,x2,ktype,a,b,d) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% KERNEL.m calculates the kernel matrix given two collection of columnwise 

% input vectors x1,x2 and kernel parameters. 

  

switch ktype 

    case 'gauss' 

        K = exp(-Mdist(x1,x2)./a); 

    case 'sig' 

        K = tanh(a*x1'*x2+b); 

    case 'poly' 

        K = (a*x1'*x2+b).^d; 

end 

 

5. MDIST.m 

function d = Mdist(x1,x2) 

% Author: Nathan Geisinger, Naval Postgraduate School 

% Date: 24 February 2010 

% MDIST.m calculates the distance between columnwise vectors in x1 and x2. 

% In other words, if each vector describes a point, d(m,n) will be the 

% distance between the mth vector of x1 and the nth vector of x2. This was 

% done without for loops using a trick from dist2.m by Christopher Bishop 

% and Ian T Nabney. 
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[n,p] = size(x1); 

[m,k] = size(x2); 

x1sq = x1.^2; 

x2sq = x2.^2; 

sumx1sq = ones(k,1)*sum(x1sq); 

sumx2sq = ones(p,1)*sum(x2sq); 

d = sumx1sq' + sumx2sq - 2*x1'*x2; 
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