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Goal: To estimate the Power Spectral Density (PSD) of a 
wss

 
process.

- Two main types of approaches exist:
- Non parametric methods:

- do not rely on data model
- based on FT and FFT 

- Parametric methods: 
- based on different parametric models of the data: 

- Moving Average: MA, 
- AutoRegressive: AR, 
- AutoRegressive

 
& Moving Average: ARMA

- based on subspace methods

Section 
focus
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Classical methods (discussed here)
use FT of the data sequence or its correlation sequence

1) Periodogram
• Easy to compute
• Limited ability to produce accurate PS estimate

Recall PSD defined as:

( ) ( )j j k
x x
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P e R k eω ω
∞
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=−∞
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In practice: Rx (k) is approximated with estimated correlation 
sequence ( )xR k
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Recall:  Biased correlation estimate of x(n), n=0,…N-1, defined as
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PSD estimate sometimes 
known as correlogram
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( ) ( ) 21ˆ j j
x NP e X e
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ω ω= Periodogram directly 

defined in terms of data

Recall

( ) ( ) ( ) ( )DFT
N Nx n x n w n X k= ⋅ ⎯⎯⎯→

Define:
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How to Compute the Periodogram

( ) ( ) ( ) ( )
( )( ) ( )

DFT

22 1ˆ    =  , 0,... 1

N N

j k N
x N

x n x n X k

P e X k k N
N

w n

π

= ⋅ ⎯⎯⎯→

= −

Rectangular 
window of length 
N

Zero padding xN (n) in the time-domain increases the number 
of frequency PSD points available 
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Example: x(n) white noise
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Average behavior of the periodogram
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Note: the MATLAB function periodogram.m computes a 
“normalized”

 
periodogram defined as
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Normalization parameter 
(sampling frequency)
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( ) ( ) ( )0sinx n A n v nω φ= + +
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Example: x(n) is 1 tone in white noise

[Px,f]=periodogram(x,[],'twosided',1024,fs);
plot(f,10*log10(fs*Px))
title('Periodogram'),ylabel('Magnitude

 

(dB)')
xlabel('Frequency

 

(Hz)')

Computes the two-sided

 periodogram
(note: better to stick to one-sided 
when dealing with real-data)

To compensate for the 
MATLAB sampling 
frequency normalization 
(optional)
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x(n) = sin(2π*150*t) + 2*sin(2*π*140*t) + 0.1*randn(size(t)); fs

 

=1KHz

Example: x(n) is 2 tones in white noise

[Px,f]=periodogram(xn,[],‘onesided',1024,fs);
plot(f,10*log10(fs*Px))
title('Periodogram'),ylabel('Magnitude

 

(dB)')
xlabel('Frequency

 

(Hz)')
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Properties of the Periodogram
1)

 

Periodogram is biased when dealing with finite windows
2)

 

Periodogram is asymptotically unbiased
i.e.,

lim ( ) ( )j j
xN xE P e P eω ω

→+∞
⎡ ⎤ =⎣ ⎦

3) Periodogram has limited ability to resolve closely spaced 
narrowband components

 

(limiting factor due to the rectangular 
window, the shorter the data length, the worse off) (not good)
4) Values of the periodogram spaced in frequency by integer 
multiples of 2π/N are approximately uncorrelated . As data length 
increases, rate of fluctuation in the periodogram increases

 

(not 
good).
5) Variance of the periodogram does not decrease as data length 
increases

 

(not good).
In statistical terms, it means the periodogram is not a 

consistent estimator of the PSD. Nevertheless, the periodogram 
can be a useful tool for spectral estimation in situations where
SNR is high, and especially if the data is long. 
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xn

 

= sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024; 

[6]

Comments (1)
Periodogram has limited ability to 
resolve closely spaced narrowband 
components (limiting factor due to the 
rectangular window, the shorter the data 
length, the worse off) (not good)
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Comments (2)
Variance of the periodogram does not decrease as the data 
length increases (not good).

( )
4

lim var 0

var ( )

x
j

N

j
x x

P e

P e

ω

ω σ

→+∞
⎡ ⎤ ≠⎣ ⎦

⎡ ⎤ =⎣ ⎦

For white noise x(n) one can show [Therrien, p.590]



09/27/11 EC4440.MPF -Section III 16

Comments (3)
As data length increases, rate of fluctuation in the 
periodogram increases (not good).
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2. Modified Periodogram
─

 

Apply a general window

 

wR (n) to x(n) prior to computing 
the periodogram (periodogram extension)

( ) ( ) ( ) 21ˆ j jn
Rx

n
w nP e x n e

N
ω ω

+∞
−

=−∞

= ∑

( ) ( ) ( ) 21ˆ *
2

j
R

j j
x xE W eP e P e

N
ω ωω

π
⎡ ⎤ =⎣ ⎦

Note: amount of smoothing is determined by 
the window type

Matlab implementation:
Hs = spectrum.periodogram('Hamming');  create modified periodogram object
psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType',‘onesided') plot
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Example:

[6]

Note: lower Hamming window sidelobes, but wider 
mainlobes with the Hamming window than with the 
rectangular window

xn

 

= sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024; 
data length=100. 

Hamming window Rectangular window
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3. Bartlett’s Method

( ) ( ) ( )
1

1ˆ ˆD efine: 
K

kj j
B x

k
P e P e

K
ω ω

=

= ∑

• Averages several periodograms (rectangular window applied to each)

• Leads to consistent estimate of the PSD

where K:  number of segments in the data.
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Note:  

( ) ( ) ( )1ˆ ˆvar var kj j
B xP e P e

K
ω ω⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦

Examples: ─
 

white noise

─

 

two sinusoids in noise



09/27/11 EC4440.MPF -Section III 21
Following [2, Fig. 8.9]

Compare: basic periodograms / Bartlett estimates
Periodogram of white 

noise with variance 1. 

•

 

Overlay 50 plots, N=32  
&  average.

•

 

Overlay 50 plots, 
N=128  & average.

•

 

Overlay 50 plots, 
N=256  & average.
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K: number of segments
L: segment length

Bartlett estimates
of white noise N(0,1)

•

 

50-plot overlay, N=512 &  
average.

•

 

Overlay of 50 Bartlett 
estimates with K=4 & 
L=128, N=512,  & average.

•

 

Overlay of 50 Bartlett 
estimates with K=8 & L=64, 
N=512,  & average.
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

Note: Spectral peaks 
broadening, why?

Bartlett estimates of 2 tones 
in white noise 

A) 50-plot overlay, N=512, 
average.

B) Overlay of 50 Bartlett 
estimates with K=4 & 
L=128, N=512, & average.

C) Overlay of 50 Bartlett 
estimates with K=8 & L=64, 
N=512, & average.

Note: For a given data length 
N=K*L,  tradeoff between 
good spectral resolution 
(large L) and reduction in 
variance (Large K)
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4. Blackman-Tukey (BT) Procedure

( ) ( ) ( )ˆ ˆ
M

j j k
BT x

k M
P e w k R k eω ω−

=−

= ∑

─

 

apply windowing to correlation samples prior to 
transformation to reduce variance of the estimator

where the window w(k) length is much smaller than data 
length, w(k) = 0 for |k| > M where M << N

Maximum recommended window length M<N/5
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

BT estimates of 2 tones in 
white noise, 50-plot overlay, & 
average, data size=512, 
NFFT=512

•

 

Rectangular wind. length=21

•

 

Rectangular wind. length=41

•

 

Rectangular wind. length=81
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

BT estimates of 2 tones in 
white noise, 50-plot overlay, & 
average, data size=512, 
NFFT=512

•

 

Hamming wind. length=81

•

 

Rectangular wind. length=81
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5. Welch’s Procedure
─

 

Modification to the Bartlett procedure: Averaging modified periodograms

─

 

Dataset split into K possibly overlapping segments of length L

where

─

 

Window applied to each segment

─

 

All K periodograms are averaged

( ) ( ) ( )
1

1ˆ ˆ
K

kj j
w x

k
P e P e

K
ω ω

=

= ∑

( ) ( ) ( ) ( )
1 2

0

1ˆ
L

k j
x

n

k nP ew
N

x nn ω
−

−

=

= ∑
window data x(n) located in Kth

 
segment

MATLAB
Hs = spectrum.welch('rectangular', segmentLength, overlap %); define 
Welch spectrum object
psd(Hs,xn,'Fs',fs,'NFFT',512); plot
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

Welch estimates of 2 tones in 
white noise, 50-plot overlay, & 
average, data size=512, 
NFFT=512, overlap: 50%

•

 

Rectangular wind. length=16

•

 

Rectangular wind. length=64

•

 

Rectangular wind. length=128



09/27/11 EC4440.MPF -Section III 29Following [2, Fig. 8.17]

( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

Welch estimates of 2 tones in 
white noise, 50-plot overlay, & 
average, data size=512, 
NFFT=512, overlap: 50%

•

 

Hamming wind. length=16

•

 

Hamming wind. length=64

•

 

Hamming wind. length=128
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Note: what do we gain with the Welch’s method?
Reduction in spectral leakage that takes place 

through the sidelobes of the data window
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Performance comparison

variability resolution Figure of merit

Periodogram 1 0.89 (2π/N) 0.89 (2π/N)

Bartlett 1/K 0.89 K(2π/N) 0.89 (2π/N)

Welch (50% overlap, 
triangular window)

9/8K 1.28 (2π/L) 0.72 (2π/N)

BT 2M/3N 0.64 (2π/M) 0.43 (2π/N)

[2, Table 8.7]

{ }
{ }2

Definitions:

var ( )
variability  ( )

( )

figure of merit variability resoluti

normalized variance

should be as small 
on

            .
resolution mainlobe width a

as possib
t its 1/2 

         

le

       

j
x

j
x

P e

E P e

ω

ω

×
⇒

    power (6dB) down level

K: number of data segments
N: overall data length
L: data section length
M: BT window length

All schemes limited 
by data length
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6. Minimum Variance (MV) Spectrum Estimate – Capon PSD

•

 

PSD estimate adapts itself to the data characteristics and exhibits smaller 
leakage amounts than previous schemes discussed.

• Provides better resolution than DFT based schemes.

• Basic idea behind MV PSD scheme:
Estimate the power content estimated at a certain 

frequency without being influenced by the power at other 
frequencies.

•

 

Design PSD estimate as a filterbank where each filter of length

 

P<=N (data 
length) adapts itself to data characteristics, i.e.,

-

 

has center frequency fi (spread between 0 and fs

 

)
-

 

has bandwidth Δ∼fs

 

/P

 

(

 

filters spread over [0,fs

 

] )
-

 

depends on data correlation matrix Rx
-

 

designed so components at fi are passed without distortion
and rejects maximum amount of out-of-band power [1, p.474]
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MV Spectrum Estimate, cont’

• Resulting PSD estimate is given as:

( ) 1

( 1)

ˆ ,

       [1, ,..., ]

j
MV H

x

j j P T

PP e
e R e

e e e

ω

ω ω

−

−

=

=

[1, Section 9.5, p.474]

• MV PSD advantages/drawbacks:
o Achieves higher resolution than that obtained with DFT schemes

o

 

Very sensitive to frequency partitioning selected need very fine 
frequency spacing to accurately measure PSD (computational costs may 
be an issue)
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( ) ( 1)
1

ˆ , [1, ,..., ]j j j P T
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PP e e e e
e R e

ω ω ω−
−

= =

MATLAB implementation

1 1 1

1

Note:
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e U e e u u

u u

ω ω− − −
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⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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[ ]
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0,0.1)
x n n n

v n v n N
π π= +

+

MV estimates of 2 tones in 
white noise, 50-plot overlay, & 
average, data size=512, 
NFFT=512,

•

 

Filter length: 6

•

 

Filter length: 16
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( ) ( )( ) sin 2 (300/1000) 2sin 2 (370/1000)
                       ( ), ( ) ~ (0, )
x n n n

v n v n N K
π π= +

+

MV estimates of 2 tones in white 
noise, 50-plot overlay, & average, 
data size=512, NFFT=512,variable 
noise power

Noise ~N(0,0.1) Noise ~N(0,1)
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MATLAB Implementation

x=x-mean(x);    % remove mean to prepare for covariance estimation
xc=xcorr(x,P,'biased'); % compute covariance sequence
R=toeplitz(xc(P+1:end)); % compute covariance matrix
[v,d]=eig(R);
UI=diag(inv(d)+eps); % extract eigenvalues

VI=abs(fft(v,nfft)).^2;
Px=10*log10(P)-10*log10(VI*UI);

In practice       -

 

Pick P <N 

-

 

Zero pad FFT to insure more accurate
measurements 



09/27/11 EC4440.MPF -Section III 39

7. MultiTaper Spectrum Estimate Method (MTM) (Thompson)
•

 

Periodogram can be viewed as obtained by using a filterbank structure, 
(using rectangular windows). 

•

 

Multitaper

 

method (MTM) can be viewed the same way, with different 
filters, i.e., different orthogonal windows applied to the full data length. 
Thompson (1982) proposed to use discrete prolate spheroidal sequences 
(DPSS).  Other sequences can also be used.

[4, 5, 7]
[6, statistical signal processing, 
spectral analysis, non parametric 
methods]

•

 

Several independent PSD estimates 
are computed by pre-multiplying the 
data by orthogonal tapered windows 
designed to minimize spectral 
leakage. 

•

 

Final PSD estimate obtained by 
combining set of PSD estimates
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7. MultiTaper Method (MTM) cont’

•

 

PSD estimate variance is reduced by using the full data over different windows. 
Since the data length is not shortened, the overall PSD bias is smaller than that 
obtained using data segments instead.

•

 

PSD estimate uses Km DSPS sequences of length N, bandwidth [-W, W] and order 
0 to Km -1, where Km ≤2NW-1, typical choices for NW are 2, 2.5, 3, 4, 3.5.

•The time-bandwidth parameter NW balances the PSD estimate variance and 
resolution. MATLAB implementation uses 2*NW-1 sequences to form the estimate. 

• As NW increases,
-

 

More estimates of the power spectrum are combined to form the MT PSD 
estimate, and the variance of the PSD decreases, 
-

 

each estimate exhibits more spectral leakage (i.e., wider peaks) and the overall 
spectral estimate is more biased. 

•

 

For each data set, there is usually a value for NW that allows an optimal trade-off 
between bias and variance. [6, statistical signal processing, 

spectral analysis, non parametric 
methods]
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fs

 

= 1000Hz; N=1000; 2 sine components, 
Amplitude = [1 2];  
Sinusoid frequencies f = [150;140]; 
Hs1 = spectrum.mtm(4,'adapt'); 
psd(Hs1,xn,'Fs',fs,'NFFT',1024) 

Periodogram

MTM, NW=3/2 MTM, NW=4

MT estimates of 2 tones in white 
noise, data size=512, NFFT=512,  

Note, as NW increases

• Variance decreases

• Peaks get larger



09/27/11 EC4440.MPF -Section III 42

Appendices
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•
 

The periodogram can be viewed as obtained by using a 
filterbank structure.

Recall periodogram defined for x(n), n=0,…N-1, as:

( )( ) ( ) 22 1ˆ    =  , 0,... 1j k N
x NP e X k k N

N
π = −

Appendix A: Connections between Periodogram and 
filterbank

( ) ( ) ( ) ( )

( )

DFT 2 /

1
2 /

0
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                                             ( )

j kp N
N N N

p

N
j kp N

N N
p

x n x n w n X k x p e

X k x p e

π

π

+∞
−

=−∞

−
−

=

= ⋅ ⎯⎯⎯→ =

=

∑

∑
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For x(n) defined over a finite time window {x(n-N+1),…x(n)}

( ) ( ) ( ) ( )
1

DFT 2 /

0
( )

N
j kp N

N N N
p

x n x n w n X k x n p e π
−

−

=

= ⋅ ⎯⎯⎯→ = −∑
( )h p

( ) ( ) ( ) ( )
1

DFT

0
( ) ( )

N

N N N
p

x n x n w n X k x n p h p
−

=

= ⋅ ⎯⎯⎯→ = −∑
k=0, …N-1
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For x(n) defined over a finite time window {x(n-N+1),…x(n)}

( ) ( ) ( ) ( )
1

DFT

0
( ) ( )

N

N N N
p

x n x n w n X k x n pp h
−

=

= ⋅ ⎯⎯⎯→ = −∑

2xN (n) ( )( )2ˆ j k N
xP e π

- 2 /

Filter  ( )
1( ) j kp N

H z

h p e
N

π=

Periodogram                  DFT filterbank  

k=0, …N-1( )( ) ( ) 22 1ˆ    =  j k N
x NP e X k

N
π

2 /j kp Ne π−
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xN (n)

2
( )( )2 0ˆ j N

xP e π

0

Filter  ( )
1( ) , 0

H z

h p k
N

= =

2 ( )( )2ˆ j N
xP e π

- 2 /
1

Filter  ( )
1( ) , 1j p N

H z

h p e k
N

π= =

2

( )( )2 ( 1)ˆ j N N
xP e π −

- 2 ( 1) /
1

Filter  ( )
1( ) , 1j p N N

N

H z

h p e k N
N

π −
− = = −

( )( ) ( ) 22 1ˆ    =  j k N
x NP e X k

N
π
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xN (n)

2
( )( )2 0ˆ j N

xP e π

0

Filter  ( )
1( ) , 0

H z

h p k
N

= =

2 ( )( )2ˆ j N
xP e π

- 2 /
1

Filter  ( )
1( ) , 1j p N

H z

h p e k
N

π= =

2

( )( )2 ( 1)ˆ j N N
xP e π −

- 2 ( 1) /
1

Filter  ( )
1( ) , 1j p N N

N

H z

h p e k N
N

π −
− = = −

Lowpass filter

Modulation term

( )( ) ( ) 22 1ˆ    =  j k N
x NP e X k

N
π
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2

2 / 2 ( 1) /

2 ( 1) / 2 ( 1) /

1 1 1(0)
1(1)

( 1) 1

1/ N ( )
( 1)1/ N                                            

( 1)1/ N

N
j N j N N

N

j N N j N N
N

X
e eX

X N e e

x n
x n

x n N

π π

π π

− − −

− − − −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥× ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎣ ⎦⎣ ⎦

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Periodogram DFT matrix formulation

( )( ) ( ) 22 1ˆ    =  j k N
x NP e X k

N
π

May be viewed as a rectangular 
window applied to data before FT 
operation

k=0 

k=N-1 
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