[11. Nonparametric Spectrum Estimation
for Stationary Random Signals
- Non-parametric Methods -

3] Periodogram

13] Periodogram properties

17] Modified periodogram

19] Bartlett’s method

24] Blackman-Tukey procedure

. 27] Welch’s procedure

. 32] Minimum Variance (MV) Method
. 39] MultiTaper Method (MTM)

. 42] Appendices

. 49] References

1
el el sl el cHl cll R R}

09/27/11 EC4440.MPF -Section III



Goal: To estimate the Power Spectral Density (PSD) of a
WSS process.

- Two main types of approaches exist:

- Non parametric methods: b :
- do not rely on data model >~ S?Ctlon
- based on FT and FFT B OCUS

- Parametric methods:
- based on different parametric models of the data:
- Moving Average: MA,
- AutoRegressive: AR,
- AutoRegressive & Moving Average: ARMA

- based on subspace methods
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Classical methods (discussed here)

- use FT of the data sequence or its correlation sequence

1) Periodogram

* Easy to compute
«  Limited ability to produce accurate PS estimate

Recall PSD defined as:
(elw) Z R, (k)e i

In practice: R,(K) is approximated with estimated correlation
sequence R (K)
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Recall: Biased correlation estimate of X(n), n=0,...N-1, defined as

N—1-k
R (k)= 2 X(1+K)X (1) 0<k<N-1
k=0
|
p(e”)= 3 R, (K)e ™| L<N
k=-L

L <10% N mees)>  PSD estimate sometimes
known as correlogram

Assume L=N-1

N—1

Iﬁ(ejm): Z IQx(k)e_jwk- periodogram

k=—N +1
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Recall

—1-
iz (+k)x (£), 0<k<N-1
N £
ﬁx(k)*x (k). for x(k)#0 0<k<N-1I

X

Xy (N)=x(n)-w(n)——— X, (k)

= é(ej”)=ﬁ[ﬁxN(k)*XN*(—k>}

:%XN(ej”)XN(ej”)*

Periodogram directly
defined in terms of data

P (&)= ‘X e’”
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< How to Compute the Periodogram

Rectangular
window of length
N
x, ()= x(n)-w(m)—2T5 X, (k)
A i(og 1
P, (e17M))= N\xN(k)z,k:o,...|\|—1

Zero padding Xy (n) in the time-domain increases the number
of frequency PSD points available
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< Example: x(n) white noise

R(k)=

- P(ej”):

X

. P ¢ i ,
i b ok | B I
“ 5I 10 1‘5 zlu 2|5 alu 3|5 40

Sample number
Correlation sequence

IE -
i o W (P i ¢ (P o o (P ? g (P Q@ g
&7 dh ViR & & o & & &
ns | 1 I 1 1 | 1
-20 15 10 ] il g 10 15 20
Carrelation lag
Feriodogram
10 T T T T T T

Magnitude (dB)

0 L L L L ! L ! L L
0 0.05 0.1 0.15 0z 0.25 0.3 0.35 0.4 0.45 05

Freguency (Hz)
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< Average behavior of the periodogram

. E{Ax(e"”)}z E{NZ1 Fix(k)ejk“’}

_ kNNIH E{R, (k)be "
: E{ﬁx(k)}—%Nng[x(mk)x ()]
TR ()
‘N—|K|
=R (K)-wg (k) wg (k)= '(\)l
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+ E[R (0] <R (0w K )= KN
= E[R(e")}= 3 (R.(k)w (K))e ™
E{P(e")] _ip (e’”)*Wie‘”)
T~ 1 [sin(Nw/2)

N

|

sin(w/ 2)

|
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Note: the MATLAB function periodogram.m computes a
“normalized” periodogram defined as

x, (n) =x(n)-w(n)—27 X, (k)

P (e M)= —|X, (k)

* k=0,.N-I

X

L
F.N
»

Normalization parameter
(sampling frequency)

EC4440.MPF -Section III
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< Example: x(n) is 1 tone in white noise

Periodogram

§——————— x(n)= Asin(w,n+¢)+v(n)

20r 7

o | jo 1 jo jo

y | E[PE")= & —-R(E) M)

% S0} 1
% ol | _ 02 L |:W (ej(w+ab)) +W. (eJ(aPab))]
=

30t 5

A0k

s} 1 Computes the two-sided

-EDIII 1I_'IID 26III 3L1IIII 4L‘IID 5EIIIII ELlIIII ?'IIIIIII BEIIIII 9L1IIII 1000 p eriOdOgram . )

Frequency (H) (note: better to stick to one-sided

plot(f,10*logl0(fs*Px)) < To compensate for the

title('Periodogram’),ylabel('Magnitude (dB)') pMATLAB sampling

xlabel('Frequency (Hz)') frequency normalization
(optional)
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o Example: X(n) is 2 tones in white noise

L)

x(n) = sin(2n*150%*t) + 2*sin(2*n*140*t) + 0.1*randn(size(t)); f=1KHz

Feriodogram
30

201

10F

0F

-10

Magnitude (dB)

-20

30 F

ADk

0 F

_ED 1 | 1 | 1 | | | |
0 a0 100 150 200 250 300 350 400 450 500

Frequency (Hz)
[Px,f]=periodogram(xn,[],‘onesided’,1024,1s);
plot(f,10*log10(fs*Px))
title('Periodogram’),ylabel("Magnitude (dB)')
xlabel('Frequency (Hz)")
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¢ Properties of the Periodogram

1) Periodogram is biased when dealing with finite windows
2) Periodogram is asymptotically unbiased

e lim,, E[ng(ej‘”)} ~P (e/)

3) Periodogram has limited ability to resolve closely spaced
narrowband components (limiting factor due to the rectangular
window, the shorter the data length, the worse off) (not good)

4) Values of the periodogram spaced in frequency by integer
multiples of 2n/N are approximately uncorrelated . As data length
increases, rate of fluctuation in the periodogram increases (not
good).

5) Variance of the periodogram does not decrease as data length
increases (not good).

=» In statistical terms, it means the periodogram is not a
consistent estimator of the PSD. Nevertheless, the periodogram
can be a useful tool for spectral estimation in situations where
SNR is high, and especially if the data is long.

09/27/11 EC4440.MPF -Section III 13
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hWagnitude (dB)

Magnitude (dB)

xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024;

30

20F

10+

0k
a0k
ank
Aok

A0
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30

N

20
a0 F

-40
0

Periodogram PS50 Estimate - 100 samples

Comments (1)

Periodogram has limited ability to
resolve closely spaced narrowband
components (limiting factor due to the
rectangular window, the shorter the data
length, the worse off) (not good)

1
a0

1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 &00

Periodogram P50 Estimate - 70 samples

1
50

1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

Frequency (Hz))
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Magnitude (dB)

Magnitude (dB)

-100
1]

20

-20
1]

For white noise X(n) one can show [Therrien, p.590]
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Comments (2)

Variance of the periodogram does not decrease as the data

length increases (not good).

Periodagrarn - 40 trials - data length: 32 points

|
50 100 150 200 250 300 350 400
Frequency (Hz)
Aweraged Periodogram

1 | 1 1 1 1
200 250 300 350 400 450

Freguency (Hz)

| 1
a0 100 150 a00

lim Var[lsx (ej“’ﬂ # 0

N —+o00

Var[l?’x(ej‘“)} =o'

X

EC4440.MPF -Section III

Mlagnitude [dB)

Magnitude (dB)

50

-100
a

40

Feriodograrm - 40 trials - data length: 1024 points

1 1 1 1 1 | 1 |
100 150 200 250 300 350 400 450 500

Freguency (Hz)
Aweraged Periodogram

-40
0

1 1 1 1 1 | 1 |
100 150 200 250 300 350 400 450 500
Freguency (Hz)
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Comments (3)
As data length increases, rate of fluctuation in the
periodogram increases (not good).

Periodogram - data length: 10 points

2
=

)

o
fo]
f]
@

Magnitude (dB
=
=
2

i} 1 1
a 50 100 150 200 250 300 350 400 450 500
Freguency (Hz)
Periodogram - data length: 124 points
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=i}
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=

i=
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i} | 1
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Frequency (Hz)
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= 001 ~
=i}

=

=

S 0.005 b
=

i} 1
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2. Modified Periodogram

— Apply a general window Wg(Nn) to X(n) prior to computing
the periodogram (periodogram extension)

()= 2 [x(n)wa (me

N=—o0

;
£ [P () )= gy (o) o)

|

Note: amount of smoothing is determined by
the window type

‘2

2

Matlab implementation:
Hs = spectrum.periodogram('"Hamming'); € create modified periodogram object
psd(Hs,xn,'Fs',fs,'NFFT",1024,'SpectrumType', ‘onesided') € plot

EC4440.MPF -Section III
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<+ Example:

09/27/11

Powear Spactral Density (dB'Hz)

xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t)); fs=1000; nfft=1024;
data length=100.

Periodogram P50 Estimates

a Periodogram P50 Estimate
a T T
=10 1o}
-20 1 § -zaf
-3y 1 5-a0
—Har I é_m
5
-50 n% =0
—8ar I E—ED
—rQ -7
—B0 . ! - . i i i 1
1aa Etli?equancg.r [iﬂ;lﬂ 4 at _BDU 100 E'I:llzﬂ [iﬂﬂ 400 500
requency i
Hamming window Rectangular window
Note: lower Hamming window sidelobes, but wider
mainlobes with the Hamming window than with the ¢
rectangular window [©]
EC4440.MPF -Section II1
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3. Bartlett’s Method

® Averages several periodograms (rectangular window applied to each)

® Leads to consistent estimate of the PSD

Define: Py (e17) = %i 5 (1)
k=1

where K: number of segments 1n the data.

— > > x(n+(k=1)L)e ™|
KL k=1 n=0

P (e") =

'JTTUT”HTTTUT”NTTTI '[Tl*r‘[H“Tﬂ”HH“;

_
n

L points
points poin I

| X;(n) X,(N) I X ()
n n

09/27/11 EC4440.MPF -Section III
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Var[FSB (ej“’ )} = %Var[l:;x(k) (ej“’ )}

Examples:

— white noise

— two sinusoids 1n noise

EC4440.MPF -Section III
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< Compare: basic periodograms / Bartlett estimates

raged Periodogram

FPeriodogram - S0 trials - data length: 32 points e
=20 =20
10 10 -
o
¥
— L —
[ (LT T H [}
= -0 | R =. -10
= Tl =
= =
= =
= -=0 = =0
= =
-=0 -0
-40 -40
50 s + s s S0

(] 100

=200 SO0 A00 SO0

Frequency (Hz)

Averaged Periodogram

10 |

10 b

Magniude (1B)

_zo b

_30o b .
—40 | .
_s0O " s L " _s0 s s " s
[m} 100 200 =00 400 [=1m|m} [m} 100 200 =00 <00 [=1m]m]
Fregquency (H=z) Fregquency (Hz)
Periodograrm - S0 trials - data length: S12 points Awveraged Periodogram
=20 =20
10 - —
o | 1
[
= 10 -
P
=
=
= 2o :
=
30 —
A0 - -
=0 s s s s
m] 100 =200 =00 400 SO0
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Freguency (Hz)

EC4440.MPF -Section III

Periodogram of white
noise with variance 1.

 Overlay 50 plots, N=32

& average.

*  Overlay 50 plots,

N=128 & average.

*  Overlay 50 plots,

N=256 & average.

Following [2, Fig. 8.9]
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Bartlett estimates

| | of white noise N(0,1)
L s o At
= T ol | e  50-plot overlay, N=512 &
g E Sl - average.
= u] 1 DDFreiDugncil:;DHz) A00 SO0 = m] 1 DDFre2unDenC3l3(?_|Z) A00 SO0
- ' i «  Overlay of 50 Bartlett
R e estimates with K=4 &
T ol T ol ] =128, N=512, & average.
*  Overlay of 50 Bartlett
= estimates with K=8 & L.=64,
2 N=512, & average.
205 i00  Zoo =00 400 s00 B[S i00 oo =00 400 s00 K: number Of Segments
Frequency (Hz=) Frequency (Hz)

09/27/11 Following [2, Fig. 8.14] EC4440.MPF -Section I11 L: segment length ’



Bartlett - ED trlals data Iength 512 points

Magnitude (dB)

30

20+

10

|:| L

=10 it B
L

|1
a 1DD 200 200 400 EDD
Freauency (Hz)

Magnitude (dB)

Bartlett - 50 trlals data Iength 512 points

Magnitude (dB)

30

20F

o 1 EIEI 2Ell:| 3EIEI til:ll:l 500

Fregquency (Hz)

Magnitude (dB)

Bartlett - ED trlals data Iength 512 points

30
20 ¢
[T}
= 10}
fa k)
-
=
=
= 0r
=
10 feabAhiadsifny
Lottt f g ST W
-20 : . : .
] 100 200 300 400 s00
Freguency (Hz)
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Magnitude (dB)

Averaged Bartlett

] 100 200 300 400 S00
Freauency (Hz)

Avaraged Bartlett
30 T T T T

] 100 200 300 400 s00
Fregquency Hz)

Axveraged Bartlett
30 T T .

-20

a 1oa 200 300 400 S00
Freguency (Hz)

EC4440.MPF -Section III

X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)

+v(n), v(N)~N(,0.1)

Bartlett estimates of 2 tones
in white noise

A) 50-plot overlay, N=512,
average.

B) Overlay of 50 Bartlett
estimates with K=4 &
L=128, N=512, & average.

C) Overlay of 50 Bartlett
estimates with K=8 & L=64,
N=512, & average.

Note: For a given data length
N=K*L, tradeoff between
good spectral resolution
(large L) and reduction in
variance (Large K)

Note: Spectral peaks
broadening, why?

Following [2, Fig. 8.15]

23



09/27/11

4. Blackman-Tukey (BT) Procedure

— apply windowing to correlation samples prior to
transformation to reduce variance of the estimator

B, (&)= kim w(k)R, (k)e "

where the window wW(K) length is much smaller than data
length, w(k) = 0 for |k| > M where M << N

Maximum recommended window length M<N/5

EC4440.MPF -Section III
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Bartlett - S0 trials - data length: 512 points
=0

=2

10 F

Wagnitude (dE)

20 F

30 F

o b

ot

10 F

-40

a

FRect windows; length: 21 pts

100 =200 200 400 E:DD
Freguency (Hz)

Magnitude (dB)

Eartlett - S0 trials - data length: S12 points

=0

20

10

Magnitude (dE)

-=20

-z

-40

ok

10 b

Rect window, length: 41 pts

o

' L 1
100 200 =00 A00 SO0
Frequency (Hz)

Magnitude (dB)

Eartlett - SO trials - data length: 512 paoints
30

20

10

Magnitudz (dE)

o

1o b

Rect windows;, length: 81 pts

09/27/11

Magnitudz (dE)

=0

Averaged Bartlett

20

-40

X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)
+v(n), v(n)~N(0,0.1)

BT estimates of 2 tones in

u]

=0

white noise, 50-plot overlay, &
average, data size=512,

100 200 300 400 S00
Freguency (Hz)

Avaraged Bartlett

20

-40

NFFT=512
* Rectangular wind. length=21

* Rectangular wind. length=41

m]

30

L s ' '
100 200 =00 A00 s00
Frequency [(Hz)

* Rectangular wind. length=81

Awveraged Bartlett

-40

100 =200 =00 400 SO0
Frequency (H=z)

EC4440.MPF -Section III
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X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)
+v(n), v(n)~N(0,0.1)

Eartlett - 50 trials - data length: 512 points
=0

Axveraged Bartlett
=0

Harmming windows; length: 81 pts
20 |

-
[}
T

BT estimates of 2 tones in

white noise, 50-plot overlay, &
average, data size=512,
NFFT=512

m]

Magnituds (dB)

-
]

Magnitudz (dB)

N
a]

]
]

b
o

1 n " n n _40 " N n "
o 100 200 =00 400 s00 u] 100 200 =00 400 s00
Freguency [(H=)

Hamming wind. length=81

Eartlett - S0 trials - data length: 512 points
30

Averaged Bartlett
=0

Rect window; length: 51 pts
20 | 1

Rectangular wind. length=81

Magnituds (dE)
Magnituds (48

—a0

SO0
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5. Welch’s Procedure

— Modification to the Bartlett procedure: Averaging modified periodograms

— Dataset split into K possibly overlapping segments of length L

— Window applied to each segment

— All K periodograms are averaged

o 1T &
W@W:?;ﬁww)

where =
50 _ L () ( ) - fon
P” =—> lw(n)x“(n)e
N n:()/ H_/
window data x(n) located in Ktk
segment
MATLAB

Hs = spectrum.welch('rectangular', segmentLength, overlap %); €< define
Welch spectrum object

psd(Hs,xn,'Fs',fs,'NFFT",512); < plot

EC4440.MPF -Section III 27



Wwelch - 50 trials - data length: 512 points

30

Rec:ta'ngular'windn':.ﬁ.-'; L= 16 pts
S50 %% overlap
20 B

10

ok

Magnitucte (dB)

-10

20 b B

30 b .

-40

a 100 200 300 400 500
Frequency (Hz)

Whelch - 50 trials - data length: 512 paints

=0

Rectangular windows;, L= 54 pts
20 | 50 %% overlap

10 |

o |

Magnituce (1B)

10 s E’-':"'E-ﬁ-‘
=20 | |

30 | -

-40

“WwWelch - 50 trials - data length: 512 points

30 v . v .
Rectangular window, L= 125 pi=s
S0 %% overlap
20 F
10
[T
= o
ax
=
=
-20
=0 b i
_A0 " L L L
a 100 =200 300 A00 S00
Fregquency (Hz)
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Wagnitude (dB)

Magnitude (d)

30

20

=20 F

-0 F

-40

30

Aoveraged Wwelch

X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)
+v(n), v(n)~N(0,0.1)

| Welch estimates of 2 tones in
: white noise, 50-plot overlay, &

T T average, data size=512,

Frequency (Hz)

serngaa SIS NFFT=512, overlap: 50%

=0 |

30 b

-40

 Rectangular wind. length=16

1+ Rectangular wind. length=64

=0

100 200 =00 400 SO0

Freauency 1)  Rectangular wind. length=128

Awveraged Welch

-30 F

-40

u]

100 =200 300 A00 S00
Fregquency (Hz)
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Magnitudz (dB)

Magnitude (46)

Magnitutz (dE)

wWielch - 50O trials - data length: 512 paoints
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20
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-=20 |

s}

o b

10 b

Harmming window,; L= 16 pts
S0 %% owverlap
zo0f -
] 100 =200 =00 400 SO0
Frequency (H=z)

Magnituie (iB)

Wealch - 50 trials - data length: 512 points

30
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10
D_
10 F
=20 .

-30 F

-40

Harmming window,; L= 54 pts
50 %% overlap
a 100 200 300 400 s00

Freguency (Hz)

Magnituda (dE)

Wy'elch - S0 trials - data length: 512 paoints

=0

20

10 F
ol
1o b
=0 [

-=Z0

Harmming window; L= 128 pts

S0 %% overlap

o 100 200 =00 <00
Freguency (Hz)

Magnitude (16)

-=20 |

-A0

-40

=0

Averaged Welch

20 |

X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)
+v(n), v(n)~N(0,0.1)

Welch estimates of 2 tones in
white noise, 50-plot overlay, &

m}

=0

=200 =00
Frequency (H=)

100

Avaraged Welch

400

average, data size=512,

-30 F

NFFT=512, overlap: 50%

a

=0

200 300
Fregquency (Hz)

100

Awvaraged Wwelch

=30

-a0

100 200 =00

Freguency (Hz)

« Hamming wind. length=16

Hamming wind. length=64
e *  Hamming wind. length=128
a0 =enll  Following [2, Fig. 8.17]
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“eelch - 50 trials - data length: 512 paoints Ayveraged Welch

30 T v v v 30
Rectangular window, L= 125 pi=s
S0 2% owverlap
20 F
10
o [y
= [ =
ax ax
= =
= =
5 10 =
= et =
LS
-20
-30 — -30 B
40 " " L L _40 L L L L
o 100 =200 S00 A00 S00 o 100 200 S00 A00 S00
Frequency (H=z) Frequency (Hz)
Wyv'elch - S0 trials - data length: 512 points Avaraged Wvelch
=0 =0
Harmrming window; L= 128 pt=s
S0 % overlap
20 | -
10 —
[ [
= Ak E =
ax ax
= =
= =
= ot { &
-2 1|
-30 | - -30 1
40 L L L L 40 L L L L
o 100 200 =00 A00 S00 o 100 200 =00 00 S00
Freguency (H=z) Freguency (Hz)

Note: what do we gain with the Welch’s method?
—> Reduction in spectral leakage that takes place
through the sidelobes of the data window

EC4440.MPF -Section III
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Performance comparison

[2, Table 8.7]

variability resolution Figure of merit
Periodogram 1 0.89 (2nt/N) 0.89 (2rt/N)
Bartlett 1/K 0.89 K(21/N) 0.89 (2rt/N)
Welch (50% overlap, | 9/8K 1.28 (2n/L) 0.72 (2nt/N)
triangular window)
BT 2M/3N 0.64 (21/M) 0.43 (27/N)

K: number of data segments
N: overall data length
L: data section length
M: BT window length

09/27/11

All schemes limited

by data length

Definitions:

Var{l?’x(ej“’)}

variability £

Ez{ﬁx(ejw)}

(normalized variance)

figure of merit = variability x resolution

= should be as small as possible.

resolution = mainlobe width at its 1/2

power (6dB) down level

EC4440.MPF -Section III
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6. Minimum Variance (MV) Spectrum Estimate — Capon PSD

« PSD estimate adapts itself to the data characteristics and exhibits smaller
leakage amounts than previous schemes discussed.

* Provides better resolution than DFT based schemes.

 Basic idea behind MV PSD scheme:
—> Estimate the power content estimated at a certain
frequency without being influenced by the power at other
frequencies.

 Design PSD estimate as a filterbank where each filter of length P<=N (data
length) adapts itself to data characteristics, 1.e.,

- has center frequency f; (spread between 0 and f))

- has bandwidth A~f /P ( filters spread over [0,1] )

- depends on data correlation matrix R,

- designed so components at f; are passed without distortion

and rejects maximum amount of out-of-band power [1, p.474]
09/27/11 EC4440.MPF -Section II1



MYV Spectrum Estimate, cont’

 Resulting PSD estimate 1s given as:

« MV PSD advantages/drawbacks:
o Achieves higher resolution than that obtained with DFT schemes

o Very sensitive to frequency partitioning selected = need very fine
frequency spacing to accurately measure PSD (computational costs may
be an 1ssue)

[1, Section 9.5, p.474]

09/27/11 EC4440.MPF -Section III
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MATLAB implementation

e"R'e=e"(UAU")"'e=e"UAU"e

=(E"VAT(EV)
™

e"U =[Le ', ...,e 1" D]y,

=[FT(u), - , FTEHP)]

09/27/11 EC4440.MPF -Section III

L] | C
e
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'e= (e"U)AT'(e"U)"
=[FT(u,), --- ,FT(up)|A”
<[FT(u,), - ,FT(up)]"

[(I/A)IFT(QJI + e HUA)FT(U,) [ |
R =Z<1/@>|FT<gk>|2

P
> (1A JFTw,)

ISMV (ejw) =
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Magnitude [dB)
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20 E
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10 F
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30+ 4
40 1 L 1 L
a 100 200 300 400 S00
Fregquency (Hz)
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Magnitude (dB)

Magnitude (dE)
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20 F

X() =sin( 272(300/1000)n) +2sin( 272(370/1000)n)
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30 b 4
40 1 L L 1
o a0 200 300 400 500
Freguency (H=)
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30 v .
20 F B

-30 }

-40

o

100

200 3I00 400 S00
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+v(n), v(N)~N(,0.1)

MYV estimates of 2 tones in

white noise, 50-plot overlay, &
average, data size=512,
NFFT=512,

Filter length: 6

Filter length: 16
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MYV estimates of 2 tones in white

noise, 50-plot overlay, & average,

data size=512, NFFT=512,variable

noise power

x(n) =sin(272(300/1000)n) +2sin( 272(370/1000)n)

(), v(n)~N(0,K)

L]
.
Noise ~N(0,0.1 1
V. o1se ~N(0,
Ml - 50 trials - data length: 512 points Awaraged bW
30 30 B - S0 trials - data length: 512 points Aoaraged b
30 30
Filter length:& Filter length:&
20 - iza: E 20 =t Tt
FFT size: 512 s FFT size: 512 _ sk i
10 B
10| 4
& & . . y/\
= = [==] [==]
= = = = 0t =
= = 2 &
= = = =
= = = =
= = S 10| 1 -0} 4
= = = =
-20 - B -20 B
-30 - B -30 B -30 7 -30 | &
=40 : : . . 0 : : . : P9 700 =zom @om 400 so0 U5 700 =zoo =om 200 soo
u} 100 200 300 400 500 u} 100 200 300 400 S00 = H - H
Frequency (Hz) Frequency [(H=) requency (Hz) reguencyyiiz)
b - 80 trials - data length: 512 points Aweraged v kA - 50 trials - data length: 512 points Avaraged W
30 =0 =0 =0
Filter length: 16 . k
FFT size: 512 Filter length: 16
20 B 20 - B 20 FFT size: 512 | 20 b 4
1ar 10 10 | 4
g or g g O [ g Ok
£ 2 s [ =
= = = =
= = = =
£ 7T z = T 1 77 1
o0 [ 2ot . 20 T
-30 g -30 g -30 | E -30 | g
_an ' L L L _40 L ' ' L _4a0 ' L L L _4a0 ' ' ' L
o 100 200 300 400 SO0 [} 100 200 300 400 S00 [n] 100 2OoO 300 A00 s00 a 100 200 300 400 s00
Frequency (Hz) Frequency (Hz) Freguency (Hz) Frequency (Hz)
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“* MATLAB Implementation

x=x-mean(x); % remove mean to prepare for covariance estimation
xc=xcorr(x,P,'biased"); % compute covariance sequence
R=toeplitz(xc(P+1:end)); % compute covariance matrix
[v.d]=eig(R);

Ul=diag(inv(d)+eps); % extract eigenvalues

VI=abs(fft(v,nfft)).”2;
Px=10*1og10(P)-10*log10(VI*UI);

In practice (- Pick P <N
<

- Zero pad FFT to insure more accurate

g measurements

09/27/11 EC4440.MPF -Section III
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7. MultiTaper Spectrum Estimate Method (MTM) (Thompson)

 Periodogram can be viewed as obtained by using a filterbank structure,
(using rectangular windows).

» Multitaper method (MTM) can be viewed the same way, with different
filters, 1.e., different orthogonal windows applied to the full data length.
Thompson (1982) proposed to use discrete prolate spheroidal sequences
(DPSS). Other sequences can also be used.

First 4 Slepian Sequences N=256, MNyw=21

- Several independent PSD estimates

are computed by pre-multiplying the ;|
data by orthogonal tapered windows
designed to minimize spectral
leakage.

0.05F

* Final PSD estimate obtained by 0051
combining set of PSD estimates

01 F

3rd
- dth

[6, statistical signal processing,
spectral analysis, non parametric [4,5,7] o

methods]
09/27/11 EC4440.MPF -Section I1I 39
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7. MultiTaper Method (MTM) cont’

« PSD estimate variance 1s reduced by using the full data over different windows.
Since the data length is not shortened, the overall PSD bias 1s smaller than that
obtained using data segments instead.

 PSD estimate uses K, DSPS sequences of length N, bandwidth [-W, W] and order
0 to K -1, where K <2NW-1, typical choices for NW are 2, 2.5, 3, 4, 3.5.

*The time-bandwidth parameter NW balances the PSD estimate variance and
resolution. MATLAB implementation uses 2*NW-1 sequences to form the estimate.

* As NW increases,
- More estimates of the power spectrum are combined to form the MT PSD
estimate, and the variance of the PSD decreases,
- each estimate exhibits more spectral leakage (i.e., wider peaks) and the overall
spectral estimate 1s more biased.

* For each data set, there 1s usually a value for NW that allows an optimal trade-off

between bias and variance. [6, statistical signal processing,

spectral analysis, non parametric
09/27/11 EC4440.MPF -Section III methods] 40



MT estimates of 2 tones in white
noise, data size=512, NFFT=512,

fs = 1000Hz; N=1000; 2 sine components,
Amplitude = [1 2];

Sinusoid frequencies £ =[150;140];

Hsl = spectrum.mtm(4,'adapt’);
psd(Hs1,xn,'Fs'.fs,'NFFT',1024)

Thompsan Multitaper Power Spectral Density Estimate

l
....... _ Note, as NW increases

g

S 5 """ A

S e e et e Variance decreases
%_50 Rl \I' I| ___E_ ', |'[ ] I I"' Ii[|| .]:' a4l

: ] i i T "

ot THY L e Peaks get larger

| e e e

o T T R TR T S NN R

0 50 100 150 200 280 300 30 400 450 500
Frequency (Hz)
MTM, NW=3/2
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Powerfreaquency (dB/MHz)

Penodogram Power Spectral Densily Estimate
T

Powerfrequency (dB/Hz)

£0 1 i I 1 I I 1 I I
o 50 100 150 200 250 300 330 400 450 500
Frequency (Hz)
Periodogram
Thompson Multitaper Power Spectral Density Estimate
-5
) . A S -
e SO e -

o L N T TR S T RN R
0 50 100 150 200 250 300 350 400 450 &S00
Frequency (Hz)

MTM, NW=4
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“*Appendix A: Connections between Periodogram and

filterbank
 The periodogram can be viewed as obtained by using a

filterbank structure.

Recall periodogram defined for x(n), n=0,...N-1, as:

400

XN(n):x(n).W(n) DFT )XN(k):Z N(p)e—jz;zkp/N

p=—c0

N-1
XN (k) _ ZXN(pﬁ_jzﬁkp/N
p=0

" k=0,.N-1

R[] TP

09/27/11 EC4440.MPF -Section III
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For X(n) defined over a finite time window {X(n-N+1),..

x, (1) =x(n)-w(n)—2"

x(n)}

ZX (n pﬁ j27kp/N

h(p)

% ()= x(n)-w(n) =T X, (k) = X%, (n—p)(p)

k=0, ...

EC4440.MPF -Section III
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For X(n) defined over a finite time window {Xx(n-N+1),...x(n)}

60 ()= () () 2T X, (K) = 3 x, (1 P

1 ef—j27zkp/N
S [ @l(27k/N) | _ 2 _
Px(eli N)_ N‘XN(k)‘ k=0, ...N-1
X, () Filter Hiz) ‘ ‘2 "X(ej(27zk/N))
- ___ ©  p-j2zkp/N -
h(p) = me‘

Periodogram < mm=) DFT filterbank
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Filter H(z o .
tlter H(z) (exznom))

()= —— k=01 [l
0 p _\/Wa —
Xy (M) Filter H(z) A [ j(27N)
_h(lfJ)—Le'””p/N k=1 ‘ ‘2_’ (€
1 \/W 9
° A j(22(N=1)/N
Filter H(2) Px(e( / ))
2
l 1 I .
hN—l(p):Wejz P k=N -1 ‘ ‘

— P (ej(zﬂk/N)):

X

S, (K)
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Filter H(2)

Xy (M) Filter H 1 2
[h(p)= -k=1 ‘ \ H

, If)(ej(ZﬂO/N))
1@@ Hind
\\/N - Lowpass filter

. I Modulation term

Filter H(2) -

hm(p)k:N—l

-

< U

09/27/11 EC4440.N
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Periodogram DFT matrix formulation

k=0 =>»

Xy(0)
Xv(@D

K=N-1 -)I_XN(N _1)_

N

X
09/27/11

1
1

1

B ()= P

1

e—j2ﬁ/N

g~ J27(N-1/N

1

a—i27(N-D/N

e—j27z(N—1)2/N

ﬁ i x(r_l) 1)

/N x(n—1)

1\/\/2 X(n—N +1)_)

May be viewed as a rectangular
window applied to data before FT
operation
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