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a b s t r a c t

Hybrid microgrids that use renewable energy sources can improve energy security and islanding time
while reducing costs. One potential beneficiary of these systems is the U.S. military, which can seek to
improve energy security when operating in isolated areas by using a microgrid rather than relying on
a fragile (or nonexistent) commercial network. Renewable energy sources can be intermittent and unpre-
dictable, making it difficult to plan operations of a microgrid. We describe a scenario-robust mixed-
integer linear program designed to utilize ensemble weather forecasts to improve the performance of
a hybrid microgrid containing both renewable and traditional power sources. We exercise our model
to quantify the benefit of using ensemble weather forecasts, and we predict the optimal performance
of a hypothetical grid containing wind turbines by using simulated realistic weather forecast scenarios
based on data. Because forecast quality degrades with lead time, we perform a sensitivity analysis to
determine which planning horizon results in the best performance. Our results show that, for day-
ahead planning, longer planning horizons outperform shorter planning horizons in terms of cost of oper-
ations, but this improvement diminishes as the planning horizon lengthens.

Published by Elsevier Ltd.
1. Introduction

In recent years, the utilization of renewable energy sources
(RESs) has become more widespread mainly due to the (1) world’s
growing population and respective increase in the energy require-
ment, (2) depletion of the world fossil energy resources, (3) need
for more flexible and reliable energy sources at lower costs, and
(4) smaller environmental footprint requirements [1]. For such rea-
sons, energy policies often promote energy efficiency measures,
such as combined heat and power, as well as increased utilization
of RESs from distributed generation sources such as solar, wind,
small-scale hydroelectric, and biomass [2]. Today, RESs supply
around 14% of the total world energy demand [3,4] and this pro-
portion is expected to increase to 30–80% by 2100 [3,5].

Among different types of RESs, wind power is a rapidly bur-
geoning energy technology with an annual growth rate of 34% as
of 2010 [6]. Being a competitive alternative for the fossil fuel
power plants, in 2012, wind power accounted for 39% of the
world’s renewable power capacity whereas hydroelectric and solar
powers accounted for 26% [7].

A hybrid microgrid aims to ensure affordable and reliable
energy by supplying power from (1) traditional power generation
devices, (2) renewable power generation devices, and (3) energy
storage systems. Enhancing the organization performance in terms
of energy security and islanding time, hybrid microgrids contain-
ing RESs attract attention in the U.S. military. For security reasons,
it is undesirable for U.S. military bases to rely heavily on fragile
civilian (commercial) electrical grids. Therefore, hybrid microgrids
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are considered as a promising technology for answering the chal-
lenge of reliably supplying energy.

On the other hand, the potential benefits of including RESs in a
microgrid are often difficult to realize due to their intermittent nat-
ure. The electricity supply of microgrids using RESs (e.g., wind,
solar, hydro, geothermal) is strongly related to the fluctuation of
renewable energy availability, which in turn generally depends
on the local weather conditions or other extrinsic factors [8]. One
way to overcome the intermittence challenge is to utilize energy
storage devices, such as a pumped hydroelectric or compressed
air energy storage system [9]. This would enable microgrid opera-
tors to store excess energy produced during peak renewable
energy production times and use it at a later time. Another solution
for the intermittence issue is to connect the microgrid to a com-
mercial grid to provide an alternative energy source while allowing
any excess production to be sold to the grid.

In general, however, the increased complexity of microgrids rel-
ative to traditional grids means that microgrids benefit greatly
from an intelligent approach to operations management. A well-
planned operating framework is critical for better grid efficiency
and stability of hybrid systems [10,11]. Thus, a hybrid microgrid
can benefit greatly from having an Energy Management Center
(EMC) to act as the coordinator between a facility’s load side, gen-
eration side, and energy storage system. An effective EMC can par-
tially overcome the issue of intermittence by anticipating any
fluctuations in the renewable power output and responding
accordingly.

One way to overcome the difficulties imposed by such uncer-
tainties is to develop intelligent EMC designs capable of operating
well under a variety of realizations of the environmental and oper-
ational parameters. The problem of accounting for uncertainties in
energy systems has been addressed by a number of different tech-
niques such as sensitivity analysis, fuzzy mathematical program-
ming, stochastic programming, and robust optimization [12]. In
this paper, we employ a scenario-robust optimization approach,
where our scenarios are derived from ensemble weather forecasts.
In contrast to existing approaches that use a deterministic weather
forecast, our model takes as input an ensemble weather forecast as
produced by most state-of-the-art weather models such as the
Global Ensemble Forecasting System (GEFS) developed by the
National Centers for Environmental Prediction (NCEP) [13]. We
perform computational experiments demonstrating the superior
operating schedules that result from planning over an ensemble
weather forecast. However, there are various practical considera-
tions to be made when using ensemble weather forecasts. One
such consideration is the forecast quality, which deteriorates sub-
stantially at long lead times. To address this issue, we perform a
sensitivity analysis aimed at determining an appropriate planning
horizon for use with ensemble forecasts.

We now review a selection of the literature on microgrid oper-
ations and robust optimization.

1.1. Related work

A number of approaches have been suggested to optimize
hybrid microgrid operational schedules considering various objec-
tives, constraints, and ways of modeling uncertainty. Ref. [14] gives
a detailed review of hybrid renewable systems describing various
configurations, control strategies, storage needs, and energy man-
agement and control issues with applications in several locations
of the world. Ref. [15] presents a review of optimization methods
developed for determining operating plans for different types of
RESs, operating modes, and objectives. In a more recent review,
[16] provides an extensive survey of the stochastic modeling and
optimization tools used to facilitate planning and control of micro-
grid operations.
There exist several papers which use mathematical program-
ming and heuristic techniques to model and plan microgrid oper-
ations. Refs. [17,18,8] use a simulation-based optimization tool
called HOMER (Hybrid Optimization Model for Multiple Energy
Resources) to evaluate the performance of hybrid microgrids. In
another example, [19] minimizes the annual energy cost of a
microgrid using Lawrence Berkeley Laboratory’s Distributed
Energy Resources Customer Adoption Model [DER-CAM], which
implements a mixed integer linear program. The authors test the
performance of their model on a San Francisco hotel and report
11% cost savings as well as 10% CO2 emission reductions. Ref.
[20] presents the Smart Energy Management System (SEMS) tool
to optimize the operation of a microgrid. The SEMS consists of a
power forecasting module as well as an energy storage system
(ESS) management module, and it determines a microgrid opera-
tion policy via a genetic algorithm. The authors show that the pre-
sented tool can lower energy prices for the consumers and reduce
daily electricity costs by 28%. Ref. [21] minimizes the total fuel and
operations cost by using a mixed-integer model, and they derive
analytical closed-form expressions for the optimal commitment
and dispatch solutions. The authors also introduce a probabilistic
approach, called ‘‘probability of self-sufficiency (PSS),” to express
the performance of a microgrid in terms of meeting local demand
in a self-sufficient manner.

Ref. [22] considers the problem of jointly optimizing sizing
schemes and operating strategies for islanded microgrids via a
genetic algorithm. The optimization model includes three objec-
tives: minimize lifecycle cost, minimize pollutant emissions, and
maximize RES penetration. The authors implement their model
at the Dongfushan microgrid project in China to validate it with
actual operational data. In a similar study, [23] develops a mixed
integer linear mathematical programming model to determine
the optimal configuration and operating plan for a hybrid grid to
minimize the total fuel and operations cost. Applying the model
to a case study for a remote area, the authors demonstrate that
the proposed approach can reduce costs while increasing energy
supply reliability. Ref. [24] also uses a mixed-integer linear math-
ematical programming model to determine optimal schedules of
the power generation units in an isolated microgrid. The proposed
model aims to minimize the generation costs while taking into
account the reliability of the system. Ref. [25] minimizes the fuel
consumption rate of a microgid while constraining it to fulfill a
projected energy demand; the authors emphasize the importance
of the communication infrastructure operating between the power
sources. They also investigate the benefits of having an efficient
power sharing scheme supported by a communication link which
enables the coordination of microgrid elements. Ref. [26] employs
a genetic algorithm to minimize the fuel cost of a microgrid and
analyze the relationship between weather information errors and
the operation results of the grid.

In other work, [27–36,1,37,38] develop optimization models
with objectives such as minimizing emissions, fuel, or operations
costs. Other proposed methods include multi-objective optimiza-
tion [28,37,38,22], the Mesh Adaptive Direct Search Algorithm
(MADSA) [29,30], the Differential Evolution Algorithm (DEA)
[31,34], genetic algorithms [32,20,22,26], Hybrid Inexact
Stochastic-Fuzzy Chance-Constrained Programming (ITSFCCP)
[33], Adaptive Chaos Clonal Evolutionary Programming (ACCEP)
[39], the Dolphin Echolocation Optimization Algorithm (DEOA)
[35], a receding horizon optimization strategy [36], and the Adap-
tive Modified Particle Swarm Optimization Algorithm (AMPSO) [1].

Many different approaches have been used to handle uncertain-
ties in microgrid operations. For example, [39] uses fuzzy set the-
ory to model the uncertainty of renewable production. The
uncertainty of wind power is modeled based on dependable capac-
ity concepts in [40]. [41] develops a stochastic model framework,
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the stochastic security-constrained unit commitment (SCUC) prob-
lem, to manage microgrid operations which involve uncertain RES
(wind and solar) outputs and demand load. To account for the
uncertainty, the authors use a scenario generation method along
with prediction intervals. The SCUC problem is solved via a genetic
algorithm for five deterministic and four stochastic cases. The
results show that the stochastic model is more robust than the
deterministic ones. Ref. [42] also use stochastic programming for
microgrid energy scheduling. The proposed model aims to mini-
mize costs and power losses while accounting for RES power out-
put uncertainties. Using a stochastic model, [43] handles the
uncertainties by adopting a scenario-robust strategy in which each
scenario is assigned a probability that reflects the likelihood of
occurrence. Ref. [44] apply a point estimate method for modeling
the wind power and solar power uncertainties and use a robust
optimization technique to model demand uncertainty. Likewise,
[45,46] employ point estimate methods to investigate the uncer-
tainty of wind and solar energy and consider the optimal manage-
ment of batteries. Ref. [34] model the uncertainties of renewable
power production using various possible scenarios for wind speed
and solar irradiation based on Weibull and beta probability distri-
bution functions, respectively. Ref. [35] proposes a probabilistic
framework based on a scenario-based method, where Monte Carlo
simulation is used to generate the scenarios.

Within the field of robust optimization, there are several studies
that address the problem of optimal microgrid management strate-
gies. Ref. [47] develops a robust optimization methodology for gen-
erating optimal schedules for a microgrid in both grid-connected
and isolated modes. The authors characterize the uncertainty in
the wind power using a time series based Autoregressive Inte-
grated Moving Average (ARIMA) model. The numerical results
obtained from a case study reveal that significant cost reductions
are possible through the implementation of the robust optimiza-
tion based approach. Ref. [48] develops a robust mixed integer lin-
ear program to operate the power management system of a hybrid
microgrid. The proposed robust optimization model minimizes
operational costs while taking into account the uncertainties in
power output. Ref. [49] proposes a robust optimization methodol-
ogy for scheduling microgrid operations which considers uncer-
tainties in both RESs and forecast demand loads. In this study,
the authors first develop a deterministic mathematical model
which minimizes operational costs of the microgrid. Next, the
model is transformed using linear duality and the Karush-Kuhn-
Tucker (KKT) optimality conditions. Simulations are used to prove
that the proposed approach provides good solutions even for the
worst-case realization of the uncertainty bounds.

The robust optimization approach in [50] accounts for the
uncertainties in photovoltaic power production in the optimal
management of distributed energy resources. Using the Non-
dominated Sorting Genetic Algorithm II, the authors aim to mini-
mize power losses, production costs, and CO2 emissions. Ref. [51]
develops a two-stage robust mixed-integer linear programming
model to determine optimal locations, sizes, and mixture of dis-
patchable and intermittent distributed generators with minimum
cost while considering the probabilistic nature of diesel generator
outputs and demand load. The problem is solved using a column
and constraint generation methodology and its effectiveness is
demonstrated on a case study. In a similar study, [52] aims to min-
imize costs by formulating an optimization model which schedules
operations for microgrids which include RESs as well as combined
heat and power generators. To cope with the uncertainty in
demand, the problem is solved via a chance constraint approxima-
tion and a robust optimization approach.

Refs. [53,54] aim to minimize costs by implementing a robust
microgrid scheduling approach which considers the intermittent
nature of RESs. In contrast to previous work, the authors also con-
sider adjustable loads. The problem is solved by applying a dual
decomposition method. In a more recent study, [55] adopts a
scenario-based robust energy management method which consid-
ers the uncertainties in RES outputs and load. A robust model is
developed with the objectives of minimizing social benefits cost
while getting a maximum total exchange cost at the same time.
They use interval prediction techniques to describe the variation
in uncertain components of the model and use Taguchi’s orthogo-
nal array testing method to generate testing scenarios. They show
that the proposed approach provides robust solutions against most
scenario realizations. To determine efficient microgrid operation
schedules, [56] formulate a mixed integer linear program and solve
it over a rolling horizon window, applying a robust optimization
approach to handle uncertainties in power production and load.
In contrast to other studies that a adopt rolling horizon approach,
[56] employs variable time steps in order to reduce computation
time. Refs. [57,58] adopt a robust optimization approach which
considers uncertainties in load, RES power generation, and market
prices. They solve their model using Benders decomposition,
decomposing it into an investment master problem and an opera-
tion subproblem. Ref. [59] studies the schedule optimization prob-
lem for resiliency-oriented microgrids and adopts a robust
optimization approach which accounts for the uncertainty in
demand load, power generation, and grid supply interruption time
and duration. The authors develop mixed integer programming
and linear programming models to solve the normal operation
problem and the resilient operation problem, respectively.

Ref. [60] proposes a robust optimization framework to optimize
the individual objectives of each stakeholders for a microgrid. The
authors use an agent-based modeling framework in which each
stakeholder is represented as an individual agent. Prediction inter-
vals are used to describe the uncertainties in microgrid operations
and RESs. Ref. [61] analyzes microgrid energy management opera-
tions using robust optimization based on prediction intervals and
optimization based on expected values frameworks. They assess
the impact of different levels and types of uncertainty on the cost
and reliability of the microgrid. Ref. [62] studies the problem of
determining optimal bidding strategies in the day-ahead market
of a hybrid microgrid consisting of renewable and nonrenewable
energy resources, energy storage systems, diesel generators, and
price responsive loads. The problem is formulated as a hybrid
stochastic/robust optimization model with the objective of mini-
mizing total cost. Scenarios based on forecasts are used to model
the uncertainties in energy outputs and the day-ahead market
price. The authors show that the hybrid approach outperforms
the pure stochastic approach as it exhibits a more robust output
against fluctuations in market price.

1.2. Key features and contributions

Similar to previous studies, we adopt a robust optimization
approach to microgrid management. In contrast to these studies,
we use ensemble weather forecasts as input data for our model.
An ensemble weather forecast consists of a finite sample of
equally-likely weather scenarios; the advantage of using an
ensemble is that it captures both the predicted outcome and the
uncertainty inherent in this prediction. Although ensemble fore-
casts are produced as output by most state of the art global
weather models, they are often converted to a single (determinis-
tic) forecast before being promulgated to users. We propose using
the ensemble forecasts directly, rather than adding uncertainty to
the deterministic forecast or producing weather scenarios within
the microgrid model, as previous studies have done.

We utilize a scenario-robust mixed integer linear program to
prescribe day-ahead operating schedules for a hybrid microgrid,
with the goal of minimizing expected cost while satisfying demand
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in all scenarios. After describing our robust optimization model, we
exercise it on a hypothetical microgrid using historical weather
data produced by the Global Ensemble Forecasting System (GEFS)
developed by the National Centers for Environmental Prediction
(NCEP) [13]. In doing so we highlight the benefits robust optimiza-
tion using ensemble forecasts, particularly relative to a determinis-
tic forecast.

Such an optimization model must, in practice, be run in an iter-
ative manner, since weather forecasts are periodically generated
and updated by weather models. In order to run an optimization
model iteratively, the user must specify the planning horizon over
which the model will plan in each iteration. To address this practi-
cal issue, we perform a sensitivity analysis to determine the effect
of the planning horizon length on the microgrid’s performance.
Fig. 1 shows an example of an ensemble weather forecast. As the
figure indicates, the forecast uncertainty grows substantially with
the lead time. Thus, it is plausible that longer planning horizons
do not necessarily lead to better performance, as in other models.
Our work directly addresses this question. To perform our sensitiv-
ity analysis, we generate additional weather data that has similar
properties to the existing forecast data. In contrast to previous stud-
ies, we use an algorithm originally developed in [63] that provides a
set of simulated data using multivariate time-series based on a sin-
gle set of real time-series data. This approach helps us to simulate
realistic data to account for the uncertainties while ensuring that
major qualitative aspects of the forecasts are preserved. Addition-
ally, the proposed approach is flexible enough to incorporate data
pertaining to other types of sources of uncertainty into the model.

The remainder of the paper is structured as follows: Section 2
describes our mathematical model of the hybrid microgrid, while
Section 4 provides computational evidence of the superiority of a
robust optimization approach. Section 3 discusses various imple-
mentation issues, including the need for a rolling horizon opti-
mization approach, and it briefly explains the simulation
methodology used to generate wind forecasts. Section 5 describes
our approach to selecting an appropriate planning horizon, while
Section 6 presents concluding remarks.
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Fig. 1. Wind speed predictions from an 11-member ensemble forecast. In this example,
the near future, they differ substantially at long lead times. This higher degree of variab
2. Microgrid model

Our optimization model is a variation of a mixed-integer linear
optimization model originally described in [64]. The full model for-
mulation appears in Appendix A; we now describe some of its
high-level characteristics, as well as the components of our hypo-
thetical microgrid.

2.1. Microgrid components

We consider a hypothetical hybrid microgrid consisting of (1) a
number of fuel-based generators with different operating charac-
teristics, (2) an energy storage device, (3) renewable energy
sources, and (4) a connection to a power grid. In cases of power
shortages or excess production, the commercial grid can be used
to purchase and sell power at a cost, although doing so is generally
less cost effective than utilizing power locally. For simplicity, we
assume that the hourly demand is known and constant throughout
the planning horizon and the uncertainty is introduced by the
renewable power production.

2.1.1. Fuel-based generators
Our optimization model accounts for a mandatory warm-up

period for the fuel-based generators. During this period the gener-
ator is running (and consuming fuel) without contributing to the
total power production. In practice, this warm-up period is neces-
sary for the generator to reach a safe operating temperature and to
stabilize the power output before coupling it to the grid. Our model
also incorporates the minimum and maximum operating speeds
for each generator, and it restricts the total number of changes to
each generator’s operating speed over the planning horizon.

The power produced and the fuel consumed by a generator are
very nearly proportional to the square of the generator’s rotation
speed. Thus, our optimization model uses the rotations per minute
squared, RPM2, as a decision variable and models power produc-
tion, Poutput , and fuel consumption, Fuelconsumption, using Eqs. (1) and
(2).
8 51 54 57 60 63 66 69 72 78 84 90 96

recasted)

note that although the ensemble members largely agree about their predictions for
ility reflect higher uncertainty about the future.
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Poutput ¼ ProdCoef � RPM2 ð1Þ

Fuelconsumption ¼ Ccons � RPM2 ð2Þ
where ProdCoef and Ccons are the production and the fuel consump-
tion coefficients, respectively.

2.1.2. Renewable energy source
In our optimization model we represent the total power output

of renewable energy sources using a time- and scenario-indexed
parameter RenPowk;s. In our numerical examples we assume that
the renewable power is generated solely by a wind farm. Given a
wind speed V, the power output PðVÞ of a typical wind turbine in
kilowatts (kW) is calculated as [65]:

PðVÞ ¼

0 V < Vci

V3�V3
ci

V3
n�V3

ci
Pn Vci < V < Vn

Pn Vn < V < Vco

0 V > Vco

8>>>><
>>>>:

ð3Þ

where Vci; Vn; and Vco are the minimum required (cut-in), rated
(nominal) and highest possible (cut-out) speeds, respectively and
Pn is the nominal power in kW.

2.1.3. Energy storage
We model a generic energy storage device that allows our

model to capture energy at a time when it is abundant and utilize
it at a later time. We henceforth refer to this device as a ‘‘battery,”
although in reality such a device might represent a traditional elec-
trochemical battery or an alternative storage mechanism such as a
compressed air energy storage device or a pumped hydroelectric
device. Our battery is characterized by its efficiency a, which is
the fraction of energy recuperated from the total energy input.
The state of charge of the battery at time step k;Bk, is represented
in terms of the initial charge B0, the efficiency a, and the energy
used for charging and discharging in each time step k0 6 k, denoted
by Ck0 and Dk0 , respectively:

Bk ¼ B0 þ
X
k06k

aðCk0 � Dk0 Þ: ð4Þ

We do not consider degradation of the battery’s efficiency over
time, as the timescales considered by our optimization model are
too short for this such degradation to have an appreciable effect
on performance.

2.2. Optimization model

We use an integer linear program (ILP) to prescribe an optimal
operating schedule for the microgrid. It accounts for the uncer-
tainty inherent in renewable energy production by utilizing an
ensemble weather prediction. This ensemble of forecasts repre-
sents a finite sample of the uncountably infinite set of possible
weather outcomes. The model then generates a time-indexed oper-
ating schedule for each component of the microgrid. This schedule
includes: (1) the times which each generator should be turned on
and off, and its operating speed(s), (2) the times when an energy
storage device should be charged or discharged, as well as
charge/discharge rates, and (3) the amount of energy to be pur-
chased or sold to the commercial grid in each time step.

Decisions regarding generators are regarded as ‘‘first stage”
decisions and are constant across all weather forecast scenarios;
all other decisions are allowed to vary by scenario in order to
reflect operational decisions that can be made in real time.

The objective function of our optimization model (Eq. (A.1)) cal-
culates the expected total cost incurred over the planning horizon;
this quantity is to be minimized. The first term measures the fuel
consumption costs incurred during generator warm-up and pro-
duction periods. The second term represents the cost of power pur-
chased from the commercial grid. The next term measures the cost
of using the energy storage device. Finally, the revenue obtained by
selling the excess energy to the commercial grid is calculated in the
fourth term.

The constraints used in our model are designed to capture both
the physical (technical) limitations and the operational character-
istics of the microgrid. They can be categorized under three types
as the constraints reflecting the limitations on microgrid power
production, diesel-generator operations, and energy storage
system.

2.2.1. Power production and demand satisfaction
Constraint (A.2) in our optimization model reflects the require-

ment associated with the balance between power production and
demand. The constraint ensures that the total amount of energy
available at any time step is at least as great as the total load.
Energy can be produced by generators, wind turbines, purchases
from the commercial grid, and discharge of the energy storage
device. On the other hand, the load consists of the demand to be
satisfied, sales to the commercial grid, and charging of the energy
storage device.

2.2.2. Generator operation
Constraints (A.3)–(A.10) in our model ensure that, each genera-

tor undergoes a warm-up period upon activation, as discussed in
Section 2.1.1. This is achieved by enforcing that each generator
spend a warm-up period for a certain length of time before they
can actually start contributing to the grid. Moreover, the con-
straints ensure that each generator operates within the minimum
and maximum operating speeds, and the total number of changes
in the operating speed is limited.

2.2.3. Energy storage
Constraints (A.11)–(A.16) ensure that, at each time step, the

total amount of energy stored in the energy storage device is non-
negative and does not exceed the storage device capacity. The con-
straints also ensure that the charge and discharge rates are within
the minimum and maximum limits.
3. A simulation-based methodology for generating forecasts

In order to evaluate the performance of our optimization model
and perform sensitivity analyses, we require a large amount of
input data, specifically ensemble weather forecasts. Given limited
sets of ensemble forecasts, we require a method of simulating
weather data that has similar properties to the existing forecast
data.

We use an algorithm developed in [63] that simulates multi-
variate time-series based on a single set of real time-series data.
Many time series simulation methods rely on parametrizing a time
series of real data using methods like linear or autoregressive mod-
eling. While these methods can be successful at replicating the
overall statistical properties of the data, they often fail to replicate
the specific dependence patterns in the data. In the case of weather
data, we may not know the exact wind speed ahead of time, but
may know the general trends that are expected in the short term.
Thus, we require a method for simulating wind forecasts that keeps
the overall major trends and patterns in the forecasts, while simu-
lating variation to account for uncertainty in the forecasts.

The idea is by maintaining similar patterns of dependence as
the original data and generating many simulated forecasts, we
can test the robustness of the optimization model. The main
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advantage of the method in [63] is that we can generate multiple
forecasts from a single data set and retain qualitative structural
properties of the original data realization without fitting a compli-
cated parametric model. Our primary data set includes 11 forecasts
from each day in 2012, each of which predicts the wind speed at an
altitude of 80 m for up to 72 h. Each replication of the simulation
algorithm generates 11 forecast predictions that follow the general
trends of the original data. The algorithm also incorporates the
dependence between these forecasts, so that if all the forecasts
are predicting similar wind speeds, then the simulated forecasts
are more likely to be closely distributed around the mean of the
forecast speeds. If the real data has a high level of variation across
forecasts, then the simulated data will also have a high variation.

The simulation algorithm works by mapping all the data fore-
casts into one multi-dimensional time series in a hypercube. Then,
Algorithm 2 of [63] is used to generate paths that ‘‘follow” the data
in the hypercube. We summarize this algorithm next. Suppose the
original data time series consists of vectors xt; t ¼ 1;2; . . . ;n, with
each vector containing values mapped values from the 11 forecasts
at time t into the hypercube, and n being the length of the forecast
data series. Let the simulated path in the hypercube be vectors
yt ; t ¼ 1;2; . . . ;n. Suppose we start the simulation with
y1 � Nðx1;r2InÞ, where the simulated forecast at the first time step
is sampled as a multivariate normal distribution around x1. We
then simulate the rest of the path in the hypercube
yt ; t ¼ 2; . . . ; n using a recursive algorithm. The algorithm simu-
lates the next step in the path yt based on yt�1, and a linear combi-
nation of the vectors xt � yt�1 and xt � xt�1. The first vector is the
difference between the original data forecast at time t and the sim-
ulated forecast at time t � 1, and captures the direction the simu-
lated path needs to move to meet the actual forecast at time t. The
second vector is the difference between the original forecasts at
times t and t � 1, and represents the trajectory of the original fore-
cast. Thus, the simulated forecast attempts to replicate the trajec-
tory of the original data, and stay ‘‘close” to the original data
values. Due to the initial randomness at t ¼ 1 and an additional
noise term added at each time t, a series of similar paths can be
generated that follow the overall trajectory of the original mapped
data series xt .

The generated path in the hypercube is then reverted back to a
forecast by way of an inverse of the mapping used to create the
multi-dimensional time series in the hypercube. The recursive
algorithm described above works better when values are scaled
to be between 0 and 1, which is why we map the data to xt in
the hypercube before simulating the paths. There are two main
parameters in the algorithm that need to be chosen carefully to
model the process of the simulated data following the real data
time series. The first is a parameter that measures how closely
the simulated data should follow the real data. The parameter con-
trols how closely the simulated data follows the overall trends and
dependence in the real data. The second parameter controls the
variation in the simulation replications; higher variance means
more variation around the mean forecast. These two parameters
were chosen to generate simulated forecasts that had qualitatively
similar structures to the real forecasts, with enough differences
and variation to adequately test the robustness of the optimization
model. For details on the algorithmic implementation for weather
forecasts, see [66].
4. Scenario-robust optimization and its benefits

An important aspect of our optimization model is that it is cap-
able of optimizing over an ensemble of weather forecasts rather
than only a single forecast. This aspect of the model is reflected
by the scenario index, s, that is present on the RenPowerk;s param-
eter as well as on a number of decision variables reflecting real-
time decisions. This modeling approach allows us to ensure that
the resulting plan performs well in a variety of possible outcomes,
rather than tailoring the plan toward a single forecast. To quantify
the benefits of robust optimization in microgrid planning, we
examine the grid operating costs that would have been incurred
by performing single-day optimizations in each of a total of
10,614 simulated forecast days. For each day, we optimize over
each of the following:

� An 11-member ensemble wind forecast, as generated by the
GEFS. Given an ensemble of wind speed values Windk;s, we cal-
culate RenPowerk;s as in Eq. (3) and use all 11 scenarios in our
robust optimization model.

� A single wind forecast, where the wind speed at each time step
is equal to the expected wind speed over all ensemble mem-

bers. That is, we calculate AvgWindk ¼
P

s
Windk;s
11 , then calculate

RenPowerk;s¼1 from AvgWindk according to Eq. (3). We optimize
over only a single scenario, s ¼ 1.

� A single renewable power forecast, calculated as the expected
renewable power produced over all ensemble members. That
is, we calculate RenPowerk;s from Windk;s according to Eq. (3),
then calculate the expected renewable power produced in each

time period as
P

s
RenPowerk;s

11 . We optimize over only a single sce-
nario, s ¼ 1, reflecting this expected renewable power.

� Each single scenario from the 11-member ensemble, taken
separately.

The first of these approaches leverages the scenario-robust nat-
ure of the model to account for the full spectrum of outcomes
reflected in the ensemble forecast. The second approach most clo-
sely resembles the current practice of optimizing over only an
expected weather outcome (in this case, expected wind speed).
The third approach is slightly more sophisticated; instead of aver-
aging over wind speed and then calculating renewable power pro-
duction, it calculates renewable power production for each
scenario and then uses the average renewable power produced in
the optimization model. The fourth approach is another simple
method for choosing a single scenario over which to optimize.

For each run of the optimization model, we compare the result-
ing cost to the expected cost of an ‘‘omniscient” solution, in which
the planner has a perfect wind forecast for the next 24 h. This solu-
tion represents a best-case plan and its resulting cost for each day.
Although one could not hope to achieve the best-case cost in prac-
tice, it provides a benchmark by which to compare the costs result-
ing from the various approaches. Because each ensemble member
represents an equally likely weather outcome, we calculate the
expected cost of an omniscient solution as the average of the opti-
mal costs associated with each scenario. We solve the optimization
model using CPLEX 12.2.0.2 in the General Algebraic Modeling Sys-
tem (GAMS) environment.

Figs. 2 and 3 show the results of our computational experi-
ments. For each of the 10,614 days, we calculate the operating cost
associated with implementing the solution resulting from the four
approaches above, and we compare this cost to the lowest possible
cost that could be achieved that day using the omniscient solution.
As Fig. 2 shows, the robust optimization approach results in signif-
icantly more days with operating costs close to the omniscient cost
than any other approach. Among the approaches that involve opti-
mizing over only a single scenario, the lowest costs are achieved by
optimizing over the expected renewable power production rather
than the expected weather outcome, as is current practice. This
result is not surprising, given that Eq. (3) is nonlinear: we obtain
better results by taking the average of a number of values PðVÞ



Fig. 2. We quantify the performance of our optimization approaches by examining the difference in cost achieved by each, relative to the lowest possible cost that could be
achieved on each of the 10,614 forecast days considered. Of the four methods, the scenario robust optimization approach yields significantly more days with costs that are
close to the lowest achievable. Note that a few negative values appear; this occurs because we solve our models to a 1% optimality gap.

Fig. 3. Viewing the data from Fig. 2 in another way, we see that among the four approaches, robust optimization is the method most likely to achieve a low operating cost,
followed by optimizing over the expected renewable power production. Optimizing over a single forecast scenario produces results comparable to the current practice of
optimizing over the expected weather outcome.
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than by evaluating P at some average value V. Interestingly, opti-
mizing over the expected weather outcome does not produce sig-
nificantly different results than choosing an ensemble member at
random. This is made more apparent in Fig. 3, which depicts the
fraction of days (of the 10,614 considered) in which the cost asso-
ciated with each approach exceeded the omniscient cost by a par-
ticular amount.
5. Implementation issues: rolling horizon implementation

We now examine two decisions that are important in the prac-
tical operation of a prescriptive model such as ours: the frequency
with which the model should be run, and the time horizon over
which it should optimize. Additional details on this work appear
in [66].
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5.1. Rolling horizon optimization

Weather forecasts typically span time frames ranging from 24
to 120 h, and their degree of accuracy varies over this time frame.
In particular, their accuracy degrades as the lead time grows, as
shown in Fig. 1. Although the wind speed prediction is fairly con-
stant among the 11 ensemble members for short lead times, it
begins to diverge at around 60 h. The ensemble members differ
substantially in their wind speed predictions by about 96 h for this
particular example. The exact time of this divergence varies from
forecast to forecast, but qualitatively it is a consistent phenomenon
in weather forecasting.

Because it is so difficult to accurately predict the weather far in
advance, it is highly advisable to run a planning model such as ours
in an iterative fashion. Such iterative execution is sometimes called
rolling horizon optimization or receding horizon optimization. It
proceeds as follows: first, the optimization model is solved over
a time horizon known as the planning horizon. The optimal plan
generated by this solve is then executed over a shorter time frame
known as the execution horizon. For example, the model may opti-
mize over a time horizon of 24 h, and then the first 6 h of the
resulting plan may be executed. After the first execution horizon
has elapsed, the user updates any input data that has changed
(such as the weather forecast) and solves the model once more
over the planning horizon. This process repeats ad infinitum.

There are a number of advantages to running an optimization
model in this manner. One main advantage for our application is
that we are less sensitive to imperfections in our input data, since
we constantly incorporate improved information as it becomes
available. But rolling horizon optimization is often used even in
cases where perfect information is available due to its computa-
tional efficiency. If one wishes to optimize over a very long time
horizon, it may be much more efficient to handle this horizon in
‘‘chunks.” The resulting solution will generally not be globally opti-
mal, but it may be good enough, or it may be used to ‘‘warm start”
a run of the optimization model using the full horizon. Simply pro-
viding the solver with a fairly good initial solution can significantly
decrease computation time.

Two user-selected values determine how the rolling horizon
iterations proceed: the length of the planning horizon and the
length of the execution horizon. For our application, it is best to
incorporate updated weather forecasts as they are generated. Thus,
the interval between forecast updates is a natural choice for the
execution horizon. We use weather forecasts that are generated
daily, so in this paper our execution horizon is one day (24 h).
While an appropriate execution horizon might be suggested by
external factors, the user has more leeway in selecting a planning
horizon. Of course, we are not able to plan over horizons that
exceed the availability of our data; if we have a forecast for the
next 120 h, we cannot plan more than 120 h. However, we may
wish to plan over a shorter horizon than 120 h, due to the uncer-
tainty of the forecast at long lead times. Although long planning
horizons are often preferred because of their superior solution
quality, this is not necessarily the case in our application. With a
very long planning horizon, we run the risk of subordinating
near-term decisions to account for possibilities expressed in highly
uncertain future predictions. It may be better to base our near-
term solutions only on near-term data, which has higher quality.
To answer this dilemma, we perform a computational study com-
paring the performance of our model when using different plan-
ning horizons.

5.2. Impact of the planning horizon

To study the impact of the planning horizon on the solution
quality, we use the simulation method described in Section 3 to
generate thirty 72-h ensemble weather forecasts for each day in
a 60-day period. We then use a rolling horizon approach to imple-
ment our optimization model. We use a 24-h execution horizon,
and we compare the outcomes resulting from planning horizons
of 24, 27, 30, 33, 36, 48, 60 and 72 h. Our figure of merit is the
actual cost, i.e., the cost that would be incurred by using the pre-
scribed plan under the observed weather conditions. Because we
do not have observed wind speeds at an 80-m altitude in our his-
torical database, it does not appear in our simulated forecasts
either. As an alternative, we use a ‘‘most accurate” member of each
forecast ensemble to represent the observed wind speed. In this
approach, we determine which ensemble member’s wind speed
prediction at 24 h is closest to the ensemble mean in the first time
step of the next forecast. The first time step in a weather forecast
generally contains the forecast model’s estimate of the current
conditions, given the available observations. Thus, the ensemble
mean in the first time step is a reasonable proxy for observed data,
and we treat the forecast of this ‘‘most accurate” ensemble mem-
ber as ground truth for the purposes of our study.

As in our analysis of the scenario-robust optimization approach,
we again compute a ‘‘best-case” schedule and resulting cost for
each day. Now, the best-case cost is the lowest cost that could be
achieved over the entire 60-day period of interest by an omniscient
planner with perfect knowledge of the wind speed for all future
time and with the capability of running the optimization model
with a 60-day planning horizon. One could not hope to achieve
the best-case cost in reality, but it provides a useful reference point
for comparing the costs obtained from our sensitivity analysis.

Fig. 4 compares the scheduled power production (left) and load
satisfaction (right) resulting from a best-case plan (top) and a roll-
ing horizon schedule generated with a 24-h planning horizon (bot-
tom). In this example, the purchase and selling prices of energy are
constant, and demand is also constant at 2000 kW. Production
costs for the three generators vary with time, but continuing to
run a generator is always less than purchasing from the commer-
cial grid. (Recall that generators have a required warm-up period,
making them inefficient to run for only short durations.) We see
that Generator 3 is run fairly consistently in the best-case produc-
tion schedule, whereas in the actual schedule it is started and shut
down many times. For time steps in which Generator 3 is not run-
ning in the actual schedule, the deficit is addressed with costly pur-
chases from the commercial grid. Perfect future knowledge allows
the best-case schedule to continue running the generator at times
when it is not strictly needed, with the excess production being
stored in the battery for future use. In the actual schedule, the cost
of continuing to run the generator (or start it, if it is not already
running) cannot be justified due to a lack of knowledge of future
demand. Thus, when such demand occurs, it must be met from
the commercial grid. Overall, the best-case schedule uses the stor-
age device more heavily and makes fewer transactions with the
outside grid.

In addition to examining various planning horizons, we also
consider three different microgrid configurations. Table 1 summa-
rizes these configurations. Configuration 1 is our baseline configu-
ration. In this configuration, the wind farm is capable of supplying
approximately 40% of the demand at the average wind speed for
the area. In Configuration 2 the commercial grid is less attractive:
its purchase price is 50% higher, while its selling price is 25% lower.
Configuration 3 represents a larger installation with a more signif-
icant renewable component: both demand and the wind farm pro-
duction capacity are doubled. All three configurations use the same
generator attributes: Generator 1 has a production cost of
$0.10 per kW h (after warm-up), Generator 2’s production cost is
$0.09 per kW h, and Generator 3’s is $0.14 per kW h. All generators
must produce at least 490 kW while running and can produce
at most 640 kW. For each of our rolling horizon iterations, we



Fig. 4. An example of the optimal power production plan (left) and load schedule (right) resulting from a best-case plan (top) and a plan generated using a rolling horizon
approach with a 24-h planning horizon (bottom). Power is produced using three generators, discharge from a storage device, and a wind power plant; it can also be purchased
from the commercial grid. Power is consumed through demand satisfaction and charging of the storage device, or it can be sold to the commercial grid.

Table 1
Microgrid configurations.

Configuration
1

Configuration
2

Configuration
3

Demand (kW) 1000 1000 2000
Purchase cost ($ per kW h) 0.12 0.18 0.18
Selling price ($ per kW h) 0.08 0.06 0.06

Size of wind farm Baseline Baseline 2� baseline
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terminate the optimization model when it obtains a solution with
objective value that is proven to be within 1.5% of the optimal
objective value.

Fig. 5 summarizes our results; the left side displays cost data
(which our objective function sought to optimize), while the right
side shows purchases from the grid. Along the horizontal axes we
see the various planning horizons we seek to evaluate. Within the
subfigures, blue dots represent values obtained for the individual
simulated scenarios, and red dotted lines represent best-case val-
ues for each simulated scenario. Solid lines indicate average quan-
tities over the 30 simulated scenarios. Note that a planning horizon
of 24 h results in quite poor performance, both in terms of the cost
incurred and the amount of energy purchased from the grid. This is
to be expected, since the model has no information about future
events that may occur beyond the 24-h execution horizon, and it
is forced to execute the entire plan before seeing any additional
information. Extending the planning horizon to 33 h results in sig-
nificantly better solution quality across all configurations. A plan-
ning horizon longer than 33 h does not improve either figure of
merit for any of the configurations considered. Our empirical
results indicate that after a lead time of 33 h, the quality of the
weather forecasts has deteriorated to the point that it is no longer
beneficial to consider them for planning purposes. We predict that
this qualitative behavior will occur in many systems that rely on
weather predictions. The exact point at which it occurs will likely
depend on many factors, including the adaptability of the system
in question and the variability of the weather forecasts themselves.

It is interesting to note that although the optimization model
does not explicitly minimize purchases from the commercial grid,
we nonetheless see smaller amounts of energy purchased from the
grid in the same planning horizons for which our overall costs are
low. Because the commercial grid is always an unattractive option
in terms of cost, large purchases from the grid generally reflect
poor planning.

Comparing the results for Configurations 1 and 2, we see that
when it is more expensive to purchase from the commercial grid
and less profitable to sell to it, our total cost is higher. This is to
be expected. However, the cost difference is much more pro-
nounced for a 24-h planning horizon than for the longer planning
horizons. Because we are better able to avoid interaction with the
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Fig. 5. Actual and best-case costs (left) and purchases from the commercial grid (right) for various configurations and planning horizons. Blue dots represent values obtained
in individual simulated scenarios, while red dotted lines depict best-case values. Solid lines show the average quantities over the 30 simulated scenarios. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

144 E. Craparo et al. / Applied Energy 201 (2017) 135–147
commercial grid with a longer planning horizon, we are less sensi-
tive to perturbations in its costs. This phenomenon is also clearly
reflected in the right side of Fig. 5. (Note that the exponent on the
vertical axis differs between Configuration 1 and Configuration 2.)

Performing a similar comparison for Configurations 2 and 3, we
see that the cost incurred more than doubles when we double both
our demand and our renewable production capacity. Although this
may seem counterintuitive, recall that the generator production
capacity is the same in all configurations. In Configuration 3, the
generators can satisfy a smaller proportion of the any remaining
demand not satisfied by wind power. Moreover, a day with no
wind produces no wind power, regardless of the side of the wind
farm. In such a situation the only alternative is to purchase a larger
fraction of energy from the commercial grid. Indeed, looking at the
right side of Fig. 5, we see that this quantity approximately triples
from Configuration 2 to Configuration 3. If renewable penetration
increased further, one could speculate that this trend may con-
tinue, unless storage were made more efficient or cost effective.
6. Conclusions and future work

This paper has described the use of optimization and simulation
techniques to assess the performance of a hybrid microgrid con-
taining both traditional and renewable power generation devices,
as well as energy storage systems. Our computational results indi-
cate that scenario-robust optimization using ensemble weather
forecasts produces substantially better results than planning based
on a single forecast of any type. Furthermore, we explore an impor-
tant implementation issue that must be addressed in operating
such a model: the sequence of planning and execution horizons
to be used. Our proposed rolling horizon optimization approach
utilizes an ensemble of realistic weather forecast scenarios gener-
ated by a time series simulation method to develop more realistic
and effective grid operation schedules. The proposed model is
exercised on a hypothetical microgrid successfully. We also per-
form a sensitivity analysis to measure the impact of planning hori-
zon length on solution quality. Our experimental results show that
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although longer planning horizons are superior to shorter planning
horizons, the marginal benefit of increasing the planning horizon
decreases substantially as the planning horizon increases. This is
an important practical consideration, since longer planning hori-
zons can significantly increase computational effort while resulting
in only minor performance benefits, or perhaps evening worsening
performance.

In this study, we have assumed that the demand is determinis-
tic and the uncertainty only arises from imperfect knowledge of
wind power production. However, in many real-world applica-
tions, the demand is also uncertain and may be correlated with
weather. A possible future work of our study extends to incorpo-
rate demand uncertainty.
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Appendix A

Sets

g 2 G
 Fuel-based generators

w 2 W
 Wind turbines

b 2 B
 Batteries

k 2 K
 Time steps

s 2 S
 Weather forecast scenarios

Parameters

DT
 Duration of time step [hours]

Nmax
 Maximum tolerable number of changes in the

generator’s speed during the planning
horizon
ProdCoefg
 Production coefficient of generator g [kW/
RPM2]
ProdCostg
 Production cost coefficient of generator g [$/
kW h]
InitialRPM2g
 Initial squared RPM of generator g [RPM2]

InitialContribg
 Contribution status of generators at initial

step [binary]

MaxRPM2g
 Maximum squared RPM of running the

generator g [RPM2]

MinRPM2g
 Minimum speed of running the generator g

[RPM2]

warmupg
 Number of time steps generator g must run

before it can contribute power

Demandk
 Electricity demand at time step k [kW]

RenPowk;s
 Power generated by renewable energy

sources at time step k from forecast scenario s
[kW]
PurchaseCostk
 Cost of purchasing power from the
commercial grid at time step k [$/kW h]
SellingPricek
 Revenue from selling power to the
commercial grid at time step k [$/kW h]
MaxChargeb
 Maximum rate of charging battery b [kW]

MinChargeb
 Minimum rate of charging battery b [kW]

MaxDischargeb
 Maximum rate of discharging battery b [kW]

MaxCapacityb
 Maximum storage capacity of battery b

[kW h]
ab
 Fraction of power lost while charging battery
b (loss factor)
InitialStorageb
 Initial energy stored in battery b [kW h]

StorageCostb
 Cost of storing electricity in battery b [$/

kW h]
Decision variables

ONg;k
 Binary
 1 if generator g is running at

time step k and 0 otherwise

RPM2g;k
 Continuous

(P0)

Squared rotation speed of
generator g at time step k
[RPM2]
CONTRIBg;k
 Binary
 1 if generator g is contributing
at time step k and 0 otherwise
PCONTRIBg;k
 Continuous
(P0)
Power contributed by generator
g at time step k [kW]
PBUYk
 Continuous
(P0)
Power purchased from the grid
at time step k [kW]
PSELLk
 Continuous
(P0)
Power sold to the grid at time
step k [kW]
PCHARGEb;k;s
 Continuous
(P0)
Rate of charging battery b at
time step k in scenario s [kW]
PDCHARGEb;k;s
 Continuous
(P0)
Rate of discharging battery b at
time step k in scenario s [kW]
CHARGEb;k;s
 Binary
 1 if battery b will be charged at
time step k in scenario s and 0
otherwise
DCHARGEb;k;s
 Binary
 1 if battery b will be discharged
at time step k in scenario s and
0 otherwise
CHANGEg;k
 Binary
 1 if there is a change in
generator g’s speed at step k
and 0 otherwise
Objective function

MinZ ¼

X
k

X
g

ProdCostg � ProdCoefg � RPM2g;k � DT

þ
X
k

PurchaseCostk � PBUYk � DT

þ 1
jSj
X
k

X
b

X
s

StorageCostb � PCHARGEb;k;s � DT

�
X
k

SellingPricek � PSELLk � DT

2
666666666664

3
777777777775

ðA:1Þ

ConstraintsX
g

PCONTRIBg;k þ RenPowk;s þ
X
b

PDCHARGEb;k;s þ PBUYk P

PSELLk þ Demandk þ
X
b

PCHARGEb;k;s

1� ab
8k 2 K; s 2 S

ðA:2Þ

PCONTRIBg;k 6 MaxRPM2g � ProdCoefg � CONTRIBg;k 8k
2 K; g 2 G ðA:3Þ

PCONTRIBg;k P ProdCoefg � RPM2g;k � ð1� CONTRIBg;kÞ
�MaxRPM2g � ProdCoefg 8k 2 K; g 2 G ðA:4Þ

PCONTRIBg;k 6 ProdCoefg � RPM2g;k 8k 2 K; g 2 G ðA:5Þ
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CONTRIBg;k 6 ONg;k0 8g; k; k0 : k�warmupg 6 k0 6 k ðA:6Þ

CONTRIBg;k 6 InitialContribg 8g; k : k 6 warmupg ðA:7Þ

CHANGEg;k P
1

MaxRPM2g

� �
� ½RMP2g;k � RMP2g;k�1� 8g

2 G; k 2 K ðA:8Þ

CHANGEg;k P
1

MaxRPM2g

� �
� ½RMP2g;k�1 � RMP2g;k� 8g

2 G; k 2 K ðA:9Þ
X
k

CHANGEg;k 6 Nmax 8g 2 G ðA:10Þ

InitialStorageb þ
X
k06k

ðPCHARGEb;k0 ;s � PDCHARGEb;k0 ;sÞ � DT

6 MaxCapacityb 8b 2 B; s 2 S; k 2 K
ðA:11Þ

InitialStorageb þ
X
k06k

ðPCHARGEb;k0 ;s � PDCHARGEb;k0 ;sÞ � DT

P 0 8b 2 B; k 2 K; s 2 S ðA:12Þ

PCHARGEb;k;s 6 MaxChargeb � CHARGEb;k;s 8b 2 B; k 2 K; s 2 S

ðA:13Þ

PCHARGEb;k;s P MinChargeb � CHARGEb;k;s 8b 2 B; k 2 K; s 2 S

ðA:14Þ

PDCHARGEb;k;s 6 MaxDischargeb � DCHARGEb;k;s 8b 2 B; k

2 K; s 2 S ðA:15Þ

CHARGEb;k;s þ DCHARGEb;k;s 6 1 8b 2 B; k 2 K; s 2 S ðA:16Þ

RPM2g;k 6 MaxRPM2g � ONg;k 8g 2 G; k 2 K ðA:17Þ

RPM2g;k P MinRPM2g � ONg;k 8g 2 G; k 2 K ðA:18Þ

ONg;k 2 0;1f g 8g 2 G; k 2 K ðA:19Þ

CONTRIBg;k 2 0;1f g 8g 2 G; k 2 K ðA:20Þ

CHARGEb;k;s 2 0;1f g 8b 2 B; k 2 K; s 2 S ðA:21Þ

DCHARGEb;k;s 2 0;1f g 8b 2 B; k 2 K; s 2 S ðA:22Þ

CHANGEg;k 2 0;1f g 8g 2 G; k 2 K ðA:23Þ

RPM2g;k P 0 8g 2 G; k 2 K ðA:24Þ

PCONTRIBg;k P 0 8k 2 K; g 2 G ðA:25Þ

PCHARGEb;k;s P 0 8b 2 B; k 2 K; s 2 S ðA:26Þ

PDCHARGEb;k;s P 0 8b 2 B; k 2 K; s 2 S ðA:27Þ

PBUYk P 0 8k 2 K ðA:28Þ

PSELLk P 0 8k 2 K ðA:29Þ
The model’s objective is to minimize the total expected cost

incurred over the planning horizon. Constraint set (A.2) ensures
that power production is high enough to satisfy demand at each
time step k while accounting for power bought from or sold to
the commercial grid as well as power used to charge the battery.
RenPowk;s is computed using (3). Constraint sets (A.3), (A.4) and
(A.5) are used to create a linear model of power contribution by
generator g at time step k. Constraint sets (A.6) and (A.7) ensure
that generator g does not contribute to power production at time
step k unless it has been running sufficiently long or was contribut-
ing in its initial condition and has remained running since then.
Constraint set (A.11) keeps track of the quantity of energy stored
in every battery and forces it to be always less than the maximum
storage capacity of the battery. Constraint set (A.12) ensures that
the battery storage will not go below zero. Constraint sets (A.13)
and (A.14) enforce the maximum and the minimum rate of charg-
ing each battery. Constraint set (A.15) limits the maximum rate of
discharging a battery. Constraint set (A.16) is used to ensure that
we cannot charge and discharge a battery b at the same time step
k. Constraint sets (A.8), (A.9), and (A.10) calculate the number of
changes in rotation speed for each generator and ensure that it
does not exceed a prescribed maximum. In constraint sets (A.8)
and (A.9), the binary variable CHANGEg;k is forced to be equal to 1
if RPM2g;k differs from RPM2g;k�1. In constraint set (A.10) we
enforce a maximum number of time steps k in which CHANGEg;k

can be equal to 1, for each generator g. Constraint set (A.17) and
(A.18) define the maximum and the minimum values of RPM2
for each generator, respectively. Constraint sets (A.19)–(A.29)
declare decision variable domains.
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