
ABSTRACT

B
order surveillance is an important
concern for nations wishing to detect
and intercept intruders. Unmanned

aerial vehicles (UAVs) allow for moderniza-
tion of border surveillance efforts, improv-
ing performance while reducing cost. While
UAVs carry a number of advantages over
traditional means of border surveillance,
they also present new operational chal-
lenges. This paper formulates mathematical
models designed to find the best way to
utilize a given fleet of UAVs by deciding
their routes, altitudes, and speeds in order to
maximize the probability of detecting in-
truders. These models can aid a decision
maker in effectively acquiring and employ-
ing a UAV fleet for border surveillance.

INTRODUCTION
The problem of defending a territory

against intruders has existed for millennia,
and modern nations face no shortage of po-
tential intruders. These intruders can
include terrorists, drug traffickers, smug-
glers, illegal immigrants, and others who
represent a threat to national interests. A
first step toward preventing intrusion is
detecting potential intruders. While the
problem of detecting intruders is not new,
the ecosystem of threats and countermea-
sures continues to expand and evolve. Un-
manned aerial vehicles (UAVs) represent
one emerging tool in this domain. Avariety
of advantages motivate the use of UAVs for
border surveillance: many UAVs can be
controlled by a single operator, reducing
personnel costs; they are very fast and can
patrol large regions; and they have wider
regions of view than conventional surveil-
lance methods, thus potentially increasing
the probability of detecting intruders.
UAVs’ mobile nature means that they can
be deployedmore flexibly and reconfigured
more easily that many other forms of border
surveillance, and it can also give them
a stealth advantage. These advantages and
others have made UAVs an important com-
plement to human expertise in the border
control domain (Preston, 2014). As noted
by Haddah and Gertler (2010), there are
two types of UAVs: autonomous drones
and remotely piloted vehicles (RPVs). Both
types are unmanned, but drones are

preprogrammed for their flight andmission,
whereas RPVs are actively controlled by an
operator at the ground station. Both are
good candidates for border surveillance,
but both need good planning in order to
realize their full potential.

This paper gives guidance to UAVoper-
ators and mission planners on how to opti-
mally employ their UAVs while conducting
surveillance on a border in order to maxi-
mize the probability of detecting intruders.
Throughout the paper, we refer to UAVs
as searchers and intruders as targets.

This paper is organized as follows. We
first review a selection of the small but grow-
ing literature on the use of UAVs for border
surveillance. We then consider a fundamen-
tal border patrol problem referred to as the
‘‘barrier patrol problem’’ by Wagner et al.
(1999) and ‘‘patrollinga channel’’ byWashburn
(2002). We derive a more accurate detection
probability formula than currently exists in
the literature and validate our formula using
Monte Carlo simulation. Building upon this
result, we expand our analysis to include
multiple searchers. We determine the best
way to allocate a border amongmultiple het-
erogeneous searchers, and we study the
change in optimal allocation depending on
the differences in the searchers’ characteris-
tics. Finally, we demonstrate a methodology
for determining the optimal way to operate
multiple searchers when the performance of
the searchers’ sensors degrades with increas-
ing searcher speed. This methodology calcu-
lates both the allocation and speeds required
to achieve the maximum detection probability.

BRIEF LITERATURE REVIEW
AlthoughUAVs are relative newcomers

to the border surveillance domain, efforts to
analyze and optimize their operations pre-
date their actual deployment. For example,
Girard et al. (2004) propose a hierarchical
control architecture for UAV teams, while
Matveev et al. (2011) develop a guidance-
control law to allowUAVwith afixed camera
to follow and monitor a border in the pres-
ence of obstacles. Szechtman et al. (2007)
compare the performance of a UAV to a sta-
tionary sweeping camera against intruders
who appear according to a Poisson process
in locations determined by a specified distri-
bution.Ozcan (2013) takes a simulation-based
approach to examine the effectiveness of
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UAVs in a particular scenario. After performing
a sensitivity analysis on various parameters, she
concludes that the UAV’s detection and classifi-
cation performance as well as the target’s
counter-detection capabilities are the most im-
portant factors impacting detection probability.

A body of work also examines various sensor
models, which are not the focus of this paper but
are an important component of the search and de-
tection problem. For example, Soza & Company
(1996), Wagner et al. (1999), Washburn (2002),
Sözen (2014), and Haddah and Gertler (2010)
study lateral range curves and possible approxi-
mations of them. Additionally, Wagner et al.
(1999) explains how lateral range curves are
determined for a particular sensor. They per-
form preliminary analyses on the approxima-
tions, mentioning the differences between the
actual sensor model and its approximations.

THE BORDER PATROL PROBLEM
We consider the basic problem of monitoring

a straight-line border over flat terrain without any
line-of-sight issues. Our hypothetical border is
bounded by two barriers that are perpendicular
to the border. These barriers may represent actual
(physical) barriers or imaginary barriers denoting
a region of interest. We have one or more searchers
available and would like to employ them in such
a way as to maximize our likelihood of detecting
an entity attempting to cross the border; this entity
is henceforth referred to as ‘‘the target.’’ We as-
sume that the target moves with constant speed
perpendicular to and toward the border, while
the searchers patrol the border by moving back
and forth at constant speed, reversing direction in-
stantaneously at the endpoints of their patrol re-
gions. For simplicity, we assume that the target
cannot see the searchers and takes no action to
evade them. Future work may consider an intelli-
gent target that candetect and evade the searchers.

Border Patrol with a Single
Searcher

As a first step toward optimally deploying
one or more searchers, we first determine the
probability of detecting the target with a single
deployed searcher. We assume that the searcher

is equipped with a sensor capable of detecting
the target within a finite radius. For simplicity,
we consider a definite range or ‘‘cookie-cutter’’
sensor, meaning that if the distance between
the target and the searcher is less than the detec-
tion radius, detection occurs with probability 1;
otherwise, detection does not occur. Such a sen-
sor represents an approximation of, for instance,
a vision-based sensor operating in the absence of
obstacles. Other sensor models are possible, and
a similar analysis could be performed for sensors
that are not oriented in a downward-facing pos-
ture, or sensors for which a definite range ap-
proximation is not appropriate.

Figure 1 illustrates our problem setup. The
length of the border is L units, and the searcher
moves back and forth along the border with con-
stant speed v. The searcher’s detection radius is
R, and we assume that this radius dictates the
searcher’s trajectory along the border: when the
searcher is at a distance of R units away from ei-
ther edge of the border, it turns andmoves in the
opposite direction. A target attempts to pass
through the border at constant speed u, and if
the target’s position is within distance R of the
searcher’s position at any point in time, the target
is detected. Otherwise, it is not detected.

Analytical Model
In order to calculate the probability that the

searcher will detect the target, we utilize target-
stationary geometry. Target stationary geometry

Figure 1. Simple border patrol problem setup.
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uses a coordinate system that moves with the
target rather than a stationary coordinate sys-
tem (Eagle, 2013). To use target-stationary ge-
ometry, we simply add a vector –u to every
speed vector in our problem. That is, we add
a vector with the same magnitude as the tar-
get’s speed vector, but in the opposite direc-
tion. After performing the reference geometry
transformation, the transformed speed of the
target (ue ) is 0, and the transformed speed of
the searcher (ve) changes depending on the di-
rection of the searcher’s movement. In terms
of our problem setup shown in Figure 1, if the
searcher is moving to the right, its correspond-
ing speed vector will be the vector shown in
Figure 2(a). Likewise, if the searcher is moving
to the left, its speed vector will change as
shown in Figure 2(b).

Following this coordinate transformation,
the border patrol problem shown in Figure 1
can be visualized as shown in Figure 3(a). In
this figure, the searcher follows the dashed-
dotted lines according to the speed vectors
shown in Figure 2, and its detection radius is in-
dicated by solid lines. Two targets, depicted as
solid dots, are stationary. The searcher moves in
the infinitely long region bounded by the two
barriers. Thus, when using target-stationary ge-
ometry, the border patrol problem is transformed
into a channel search problem in which the
searcher looks for stationary targets in the infi-
nitely long channel bounded by the barriers.

Figure 3(b) shows the detection region in
the target-stationary case. If a target is in the
shaded region, it is detected. Likewise, if it is
not in the shaded region, it is not detected. In
this example, target 2 from Figure 3(a) is de-
tected, and target 1 is not.

Assuming a uniform target density, the
probability of detection can be calculated as

the ratio of the shaded area in the infinitely long
channel to the area of the channel itself. As Fig-
ure 3(b) indicates, the shaded area follows a con-
sistent pattern. In particular, between each of
the searcher’s turning points, the areas of the
shaded regions are equal to each other. More-
over, the vertical distance between any two con-
secutive turning points is the same. Thus, we
can calculate the detection probability by con-
sidering a region like that shown in Figure 4
(a), which is simply the region between two con-
secutive turning points. We can find the proba-
bility of detection by computing the ratio of
the shaded area to the area of the outlined rect-
angle in Figure 4(a).

We calculate the area of the shaded region
in Figure 4(a) by dividing it into separate re-
gions as shown in Figure 4(b). The area of
the shaded region inside the rectangle in Fig-
ure 4(b) can be found by calculating the areas
of the two wedge-shaped regions on the
ends of the region and the inner rectangle
(shaded areas). By adding these two areas and

Figure 2. Transformed speed of the searcher in target-
stationary geometry.

Figure 3. The border patrol problem in target-
stationary geometry.

Figure 4. Area of coverage between two searcher
turning points in target-stationary geometry.
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subtracting the shaded regions outside of the
rectangle, we obtain the area of the original
shaded region.

Washburn (2002) determined an upper
bound on this area by calculating the area
shown in Figure 5(a). Wagner et al. (1999) ar-
rived at a different approximation of this area
by removing the regions lying outside the rect-
angle, as shown in Figure 5(b).

Using his approximation, Washburn (2002)
obtains the following upper bound on the detec-
tion probability Pd:

Pd#min 1;
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
21 u

2
p
Lu

( )
: (1)

Likewise, Wagner et al. (1999) approximate the
detection probability as:
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By calculating the area of the shaded region
exactly, we calculate the detection probability
without any approximations. The width w of
the rectangles in Figure 4 is the vertical distance
the searcher travels between turns in target-
stationary geometry, or, equivalently, the dis-
tance the target travels between the searcher’s
turns in the original coordinate system. Hence,

w5 u
L2 2R

v
5 ðL2 2RÞu

v
: (3)

Depending on the width w, we may have
different shapes of the areas to be calculated.
Figure 6(a) shows the geometry for large w,
i.e., w . Rcos(u), where u is the angle whose
tangent is the ratio of the target’s speed to the
searcher’s speed (see Figure 2). Figure 6(b)
shows the geometry for small w, i.e., w #
Rcos(u). To aid our calculations in this case,
we introduce angle a, where a ¼ arcsin(w/R).

For largew, we can find the area of rectangle
EFGH in Figure 6(a) by multiplying its width
(EH) by its length (EF, which equals IK). Its
width is 2R, and its length isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w
2 1 ðL2 2RÞ2

q
;

thus, its area is

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

2 1 ðL2 2RÞ2
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:

The area of the two wedge-shaped regions is
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The area of the triangular areas (e.g., triangle HIJ
in Figure 6(a)) is 2(xR/2) ¼ xR ¼ Rcot(u)R ¼
R2 cot u.

By combining these areas, we compute the
probability of detection as

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

2 1 ðL2 2RÞ2
q

2R
2cotu1R

2 p
2
2 u

� �
wL

:

(4)

For the case when w # Rcos(u), it is sim-
plest to compute the areas ADE and BCG
(which are equal by symmetry) and subtract
these areas from the area of the rectangle
ABCD. The area ADE can be computed by
calculating the area of the trapezoid AEFD
and subtracting the wedge-shaped area DEF
from it.

The area of trapezoid AEFD is (2R – R
cos a)w/2. The area of semicircle DEF is
pR2(a/2p) ¼R2(a/2). By using these, we cal-
culate the area of region ADE as (2R – R cos
a)w/2 – R2(a/2).

Figure 5. Approximations of the area of coverage
from (a) Washburn (2002) and (b) Wagner et al. (1999).
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Combining these areas, we compute the
probability of detection as

wL2 2
2R2Rcosa

2
 w2R

2a

2

� �
wL

5 12
ð2R2RcosaÞ w2R

2
a

wL
: (5)

Finally, in order to obtain the probability of
detection for the simple border patrol problem,
we combine Equations (4) and (5). Furthermore,
we express each of the terms w, a, and u as ex-
pressions of the original parameters of the prob-
lem setup: the border length L, detection radius
R, target speed u, and searcher speed v. The re-
sult appears in Equation (6).
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otherwise:

8>>>>>><>>>>>>:
(6)

Figure 7 compares the detection probabili-
ties given by Equations (1), (2), and (6) for vari-
ous searcher speeds. In this figure, the border

length L is 50 distance units, the detection ra-
dius R is 6 distance units, and the speed of the
target u is 5 speed units (distance units/time

Figure 6. Qualitatively different geometries result from (a) large w and (b) small w. We handle each case separately.
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unit). We observe that for these parameter
values, the three formulas give nearly the same
result for low searcher speeds. The upper bound
Washburn (2002) obtained starts to differ
slightly when the searcher speed is approxi-
mately twice the speed of the target. The for-
mula of Wagner et al. (1999) starts to differ
when the searcher’s speed exceeds four times
the target’s speed. We notice from Equations
(1), (2), and (6) that increasing the accuracy of
the formulations increases their complexity.
For simplicity, one can choose the most appro-
priate formula to use depending on the charac-
teristics of a particular problem. However, it is
noteworthy that both of the approximations
provide optimistic estimates of the detection
probability for these particular parameter
values; this may be undesirable in practice.

Monte Carlo Simulation
We now examine the border patrol problem

by means of a Monte Carlo simulation model.
Our purpose here is twofold: first, we wish to
validate our analytical formula. Second, we es-
tablish a baseline simulation model that we will
augment in later sections. We use MATLAB
(2012b) for all simulations. Our initial simula-
tion setup is as follows:

1. The searcher’s initial position is at a dis-
tance of R units from the left edge of the

border, and its initial direction of move-
ment is to the right.

2. We use a time-step model for our simulation.
In the time-step model, we calculate the posi-
tions of the searcher and the target and make
necessary computations to see if the target
is detected after each time step increment.
This temporal discretization introduces a
small error resulting from the fact that detec-
tion may not occur at any time step, but oc-
curs between the time steps. We choose the

time step as �t5
R

25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 v2

p ; this time step

reduces the error below 6.7 3 1023 percent.
Sözen (2014) explains how the time-step is
chosen and the calculation for the error. We
use the same time step throughout the time-
step simulations in this paper.

3. The simulation is run until the searchermakes
a full cycle, i.e., comes back to its initial posi-
tion and initial direction of travel. This simula-
tion end time is referred to as tmax.

4. Targets are generated randomly using a two-
dimensional uniform distribution over a rect-
angle between the two barriers. Each target’s
initial vertical position is randomized so as to
ensure that it passes through the horizontal
axis of the searcher’s movement before the
end of the simulation. The targets’ initial hor-
izontal position is between 0 and L.

5. We simulate the movement of n targets and
record the number of targets detected as k.

Figure 7. Comparison of detection probability formulas of Washburn, Wagner et al., and this paper.
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This approach generates the same results as
generating one target and running n different
simulations, however, the simulation run-
time improves considerably. We then use
MATLAB’s ‘‘binofit’’ function to fit the
Monte Carlo simulation’s results to a bino-
mial distribution, and we compute the esti-
mated probability of detection along with
its 95 percent confidence interval.

Figures 8 and 9 show the probability of de-
tection versus the speed of the searcher when
the border length L is 200 distance units, the de-
tection radius is 6 distance units, and the speed
of the target u is 5 speed units. Figure 8 shows
the results of the Monte Carlo simulation with
1,000 replications, and Figure 9 shows the re-
sults of the Monte Carlo simulation with 1 mil-
lion replications. In both figures, the solid line
shows the probability of detection obtained
from Equation (6). The dashed line shows the
estimated probability of detection from the
Monte Carlo simulation, and the dotted lines
show the upper and lower 95 percent confi-
dence interval of the estimated probability of
detection.

From Figure 9 we can see that the estimated
probability of detection obtained from the
Monte Carlo matches the probability of detec-
tion obtained from Equation (6) very closely.

Recall that we assumewhen the searcher is
R distance units away from any edge of the
border, it turns in the opposite direction. Al-
though all of the other attributes of the prob-
lem setup may be considered as fixed inputs,

the turning distance is clearly within the con-
trol of the operator. Sözen (2014) studies the
turning distance for 10 scenarios. In all 10 sce-
narios, the estimated detection probability bPd

is either insensitive to the turning distance,
or it is maximized or nearly maximized at the
detection radius R. Based on these results, we
fix the turning distance to R for the remainder
of this paper.

BORDER PATROL WITH MULTIPLE
SEARCHERS

We now build upon the results of the previ-
ous section to study the problem of optimally
employing multiple heterogeneous searchers.
Our goal is to provide fundamental insights to
operators of border patrol UAVs, as well as to
outline a basic procedure by which an operator
could perform an analysis that is suitable to his
or her needs.

First, we consider the problem of optimally
allocating a border among multiple searchers. If
two searchers are available, the operatormay ei-
ther employ both searchers to patrol the entire
border, or the operator may divide the border
into two disjoint segments and assign each
searcher to patrol one segment. We refer to the
first option as the ‘‘common path’’ allocation
and the second option as the ‘‘disjoint path’’
allocation.

In the following subsections we examine
the probability of detection when using the dis-
joint and common path allocations. For simplic-
ity, we consider only two searchers in both
cases, but a similar methodology can be
employed when more than two searchers are
available.

Disjoint Path
Figure 10 shows the border patrol problem

with two searchers and one target. The
searchers allocate the border into two disjoint
regions with lengths L1 and L2 ¼ L – L1.

Analytical Solution. The disjoint path problem in
Figure 10 decomposes into two separate border
patrol problemswith single searchers as studied
in the previous section. Based on this insight, we

Figure 8. Comparison of the detection probability
estimated from a Monte Carlo simulation with 1,000
replications and from Equation (6).
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compute the probability of detection using the
law of total probability:

Pd 5Pds1Ptr1 1Pds2Ptr2 (7)

where Pdsi is the conditional probability that
searcher i detects the target, given the target is
in its region, and Ptri is the probability that the
target is in the region of searcher i.

We can compute Pdsi by substituting the ap-
propriate values for searcher i into Equation (6):

Pdsi 5PdðLi;Ri; u; viÞ: (8)

Since we assume that the horizontal po-
sition of the target is uniformly distributed

along the border, we have Ptri ¼ Li/L. Thus,
we have

Pd 5Pds1
L1
L
1Pds2

L2
L

5PdðL1;R1; u; v1ÞL1
L
1PdðL2;R2; u; v2ÞL2

L
:

(9)

In general, with n searchers and one target,
we have

Pd 5
Xn
i5 1

Pdsi
Li
L
5

1

L

Xn
i5 1

PdðLi;Ri;u; viÞLi: (10)

Monte Carlo Simulation. We also evaluate the dis-
joint path problem by means of a Monte Carlo
simulation. The following setup applies to our
simulation:

1. The searchers’ initial positions depend on
their detection radii and their allocated re-
gions. The initial position of the ith searcher
is distance Ri away from the edge of its allo-
cated region. Its direction of movement is to-
ward the opposite edge, and its turning
distance is Ri distance units from the end of
its allocated region. If Ri $ Li/2 for any
searcher, the searcher remains stationary at

Figure 9. Comparison of the detection probability estimated from aMonte Carlo simulation with 1 million rep-
lications and from Equation (6).

Figure 10. Problem setup for the disjoint path
allocation.
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the midpoint of its allocated region. (In prac-
tice, a fixed-wing UAV could not remain
truly stationary and would need to execute
a loiter pattern. It may be possible for a rotary-
wing aircraft or lighter-than-air UAV to remain
stationary.)

2. Recall that in the single searcher case, we run
our simulation until the searcher arrives at its
initial starting position. Depending on the al-
located regions and characteristics of the
searchers, such a policy may result in a very
long runtime in the disjoint path case. Thus,
we limit our simulation end time to 25 times
the maximum time required for any searcher
to make a full cycle in its allocated region.
Sözen (2014) explains the rationale for this
choice of multiplier.

3. We generate targets and calculate detection
probabilities as in the previous section.

Figure 11 shows the probability of detection
Pd as calculated analytically using Equation (9),
as well as the estimated valuebPd as determined
via Monte Carlo simulation with one million
replications. Detection probability is expressed
as a function of the ratio of the border length al-
located to the first searcher, L1, to the total bor-
der length L. This ratio is varied from 0 to 1
with 0.01 increments. In this specific case L is

200 distance units, detection radii R1 and R2

are 12 and 6 distance units, respectively; the tar-
get speed u is 5 speed units, and the speeds of
the searchers, v1 and v2, are each 20 speed units.

Comparing the analytical solution to the
Monte Carlo simulation, we see a discrepancy
at very high or low values of L1/L. When L1/L
is very large or very small, this means that the
region allocated to one of the searchers is very
small. Figure 12 shows the case when the region
allocated to the first searcher is very small. In
this case we have R1 . L1/2, so the first
searcher remains in the middle of its allocated
region and covers some portion of the area allo-
cated to the second searcher. This extra region is
shaded with horizontal stripes in Figure 12 and
is not accounted for in the analytical solution.
Because of this extra region, the Monte Carlo
simulation produces a higher detection proba-
bility value than the analytical solution when
the allocation to any searcher is less than two
times the detection radius of that searcher.

Common Path
Figure 13 shows the border patrol problem

with two searchers sharing the same path and
attempting to detect a single target. Although

Figure 11. Detection probability utilizing a disjoint path allocation.
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the searchers share the same path, their turning
points may differ due to their differing detec-
tion radii. For clarity, we introduced a slight ver-
tical displacement in the paths that the
searchers follow, although in reality we assume
that there is no vertical displacement.

The common path allocation is difficult to
evaluate analytically; thus, we utilize Monte
Carlo simulation to analyze it. Our simulation
in this section is based on the Monte Carlo sim-
ulation for the disjoint path case, with modifica-
tions to the searchers’ initial positions and their
turning points.

The initial starting point of the searchers
could be chosen to be the same point, i.e., they
could initially start their movement from ex-
actly the same location. However, if their detec-
tion radii and speeds were identical, then they
would move together and would perform no
better than a single searcher. For this reason,

we choose to initialize searcher i’s location as
L(i – 1)/n 1 Ri, where n is the number of
searchers. The searchers’ initial direction of
movement is toward the right. As before, each
searcher’s turning distance is simply its detec-
tion radius. Figure 14 shows our initial setup
for the common path simulations; dashed lines
show the turning points of the searchers.

The simulation is run until all searchers
come back to their initial starting point. In order
to reduce the runtime, the simulation end time
is limited to 100 times the maximum time it
takes for any searcher to make a full cycle.

We perform one million Monte Carlo simu-
lations for the common path case with the same
searcher and target variable settings we consid-
ered in the disjoint path problem (Figure 11).
We obtain an estimate and 95 percent confidence
interval for the probability of detection. This esti-
mate is shown in Figure 15, alongwith the results
previously obtained for the disjoint path case.
(Due to the large number of replications, the con-
fidence interval is difficult to detect in the figure.)

Since there is no allocation of borders in the
common path problem, the estimated probabil-
ity of detection is constant. It is plotted over the
results from Figure 11 in order to provide a com-
parison between the disjoint and common path
allocations.

Figure 15 shows that the common path de-
tection probability is higher than the disjoint
path probability for nearly half of the L1/L
values. This means that if we do not allocate
the border to the two searchers properly for
the disjoint path case, we may end up with

Figure 12. Disjoint path extreme case.

Figure 13. Problem setup for the common path
allocation.

Figure 14. Searchers’ initial positions and move-
ment vectors in the common path simulations.
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a worse probability of detection than we would
obtain without allocating the region at all. How-
ever, by intelligently allocating the border, we
are able to obtain a higher detection probability
than is possible with the common path alloca-
tion. We now consider the problem of optimally
allocating the border so as to maximize detec-
tion probability.

OPTIMAL ALLOCATION OF REGIONS
In this section we wish to determine an op-

timal allocation of a border between two
searchers. Although we consider only two
searchers, our general approach can be ex-
tended to accommodate n . 2 searchers.

In the optimal allocation problem, our goal
is to determine L1 and L2 such that the overall
probability of detection is maximized. That is,
given values for L, R1, R2, u, v1, and v2, we wish
to determine L1 and L2 such that L2 ¼ L – L1 and
the probability of detection is maximized:

max PdðL1;R1; u; v1ÞL1
L
1PdðL2 L1;R2; u; v2ÞL2 L1

LL1 st 0# L1 # L

(11)

This is a constrained optimization problemwith
one decision variable and a convex feasible re-
gion. The concavity of the objective function,

given by Equation (9), is difficult to evaluate an-
alytically. Sözen (2014) performed an extensive
computational evaluation andwas unable to find
a counterexample showing that the objective func-
tion is nonconcave, thus raising the possibility
of finding a globally optimal solution by locat-
ing a stationary point of the objective function.
However, other good methods for solving the
above optimization problem include conduct-
ing a line search on L1 and evaluating potential
allocations by means of a simulation model.

Monte Carlo Simulation
We now perform a Monte Carlo simulation

study to compare various border allocations to
a common path approach for a variety of scenar-
ios. Specifically, we vary the detection radii and
speeds of the searcherswhile fixing the length of
the border to 200 distance units and the speed of
the target to 5 speed units. In each scenario, we
vary the allocation of border to the first searcher
in 1 percent increments, each with one million
replications, in order to observe the change in
the probability of detection. We then compare
this detection probability to the detection prob-
ability obtained by a common path solution.

Figure 16 illustrates the outcome of six rep-
resentative setups. Each subfigure in Figure 16
is generated with the same logic as Figure 15,

Figure 15. Common path Monte Carlo simulation results.
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Figure 16. Monte Carlo simulation results for various searcher characteristics.
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where the subfigures show the probability of de-
tection versus the fraction of the border alloca-
tion to the first searcher. The dashed line shows
the analytical disjoint path detection probability
(Equation (9)), the solid line shows the estimated
probability of detection for the disjoint path case
obtained from the Monte Carlo simulation, and
the dashed-dotted line shows the estimated
probability of detection for the common path
case obtained from the Monte Carlo simulation.
We also plotted 95 percent confidence intervals
for the estimated probabilities of the common
path and disjoint path cases, but due to the large
number of replications, they are difficult to detect
in the figures.

In Figure 16(a) we see that the optimal allo-
cation to the first searcher is very low since its
detection radius is inferior to that of the second
searcher, while their speeds are equal to each
other. It is also interesting to note that the opti-
mal detection probability is very close to the
common path probability of detection. This oc-
curs because the optimal allocation to the sec-
ond searcher is nearly the entire border.

In Figure 16(b), the first searcher’s capabil-
ities are still inferior to those of the second
searcher, but not as much as in Figure 16(a).
Thus, more of the border is allocated to the first
searcher. The difference between the common
path probability and optimal allocation proba-
bility has also increased. Further increasing
the speed of the first searcher (Figure 16(c)), re-
sults in a further increase in its allocation, and
the gap between the common path and optimal
allocation probability widens.

When we increase the speed of the first
searcher such that the properties of both searchers
are equal, we expect to have the same border allo-
cation to both searchers. We might also expect to
see a larger gap between the common path and
optimal allocation probabilities compared to the
previous cases. As Figure 16(d) indicates, our first
expectation is correct, but our second is not. This
occurs mainly because of improved performance
in the common path case. In particular, when the
two searchers have the same characteristics, they
can operate in a cyclical fashion. Specifically, the
two searchers cross each other at the same place
every time they transit the border. These crossings
occur when they are moving in opposite direc-
tions, causing them to have relatively brief

overlap periods. Shorter crossing times means
less coincident area covered by the searchers,
resulting in a smaller gap between the common
path and optimal allocation probabilities.

In Figure 16(e) and Figure 16(f) one searcher
is inferior, but by a smaller margin than in Fig-
ure 16(a) though Figure 16(c). The differences
between the common path and optimal alloca-
tion probabilities are larger here than the other
four scenarios.

In general, we observe that if one of the
searchers is superior to the other, the allocation
of the border to the inferior searcher is low, and
the difference between the common path and
optimal allocation probabilities is lower than
one might expect. Decreasing the difference in
the capabilities of the searchers results in
a higher allocation to the inferior searcher and
can widen the gap between the common path
and optimal allocation probabilities. However,
due to the perfect coordination between the
searchers when the searchers have the same
characteristics, the gap between the common
path and optimal allocation probabilities can
be low in some cases.

Based on our results, we conclude that the
best possible detection probability is obtained
by an optimal implementation of the disjoint
path approach. However, if a user cannot deter-
mine the optimal allocation, or if the character-
istics of the searchers are unknown or subject
to change, the user may choose the common
path approach in order to avoid the risk of
choosing a poor allocation. If the common path
is utilized, the UAVs should be employed in
such away as to reduce the timewhen they pass
or cross each other to further increase the detec-
tion probability.

Varying Detection Radius as
a Function of Speed

In practice, it is likely that the detection ca-
pability of a searcher depends on its speed. For
example, with a vision-based sensor, the qual-
ity of the video would be reduced if the UAV
were to travel at a very fast speed. In this sub-
section, we model this degradation in sensor
quality as a reduction in detection radius. We
now consider the problem of selecting optimal
speeds and allocations of our searchers when
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their detection radii vary as a function of
speed.

Single Searcher. As before, we first consider a sin-
gle searcher. In order to make a comparison with
the constant detection radius case (Figure 9), we
utilize the same parameters as before, with the
exception of the detection radius. We model the
detection radius as a monotonically decreasing
function of the searcher speed; in particular, we
choose R5 6e2v=60. The same approach could
be employed for a different sensor model.

Figure 17 shows the detection radius as
a function of speed (left) and the corresponding
probability of detection (right). As the figure in-
dicates, the probability of detection first in-
creases with increasing speed; then it starts to
decrease after reaching a maximum.

In general, the probability of detection in-
creases with both increasing speed and increas-
ing detection radius. However, when detection
radius decreases with increasing speed, the per-
formance benefit obtained from a higher speed
must be weighed against the impairment
caused by a smaller detection radius. For the
particular example in Figure 17, at lower
speeds, the probability of detection increases
with increasing searcher speed. After the maxi-
mum probability of detection point, effect of de-
creasing detection radius dominates the effect of
increasing speed.

Multiple Searchers.We now consider joint selection
of speed and border allocation in the two-
searcher problem. For our computational exper-
iments we consider the same border length and
target speed as in the previous case; in particular,
we have L ¼ 200 and u ¼ 5 units. For simplicity,
we hold one searcher’s detection radius constant
at 6 units while allowing the other searcher’s de-
tection radius to vary as a function of its speed. In
particular, we let R1 5 6e2v1=60 and set the speed
of the second searcher to 100 speed units. Then,
we vary the speed of the first searcher and ob-
serve the optimal allocation and the probability
of detection at the optimal allocation.

We can see in Figure 18(a) that the allocation
to the first searcher starts with 0.06 when its
speed is 0; in other words, when it is stationary.
An allocation of 0.06 means that 0.063 200¼ 12
units are allocated to the first searcher, which is
double its detection radius when it is stationary.
In this case, the probability of detection of the
first searcher in its region is 1.

Although increasing v1 decreasesR1, the op-
timal allocation to the first searcher nevertheless
increases as v1 increases from zero. After some
point (v1¼ 57.2 in Figure 18(a)) the optimal allo-
cation to the first searcher starts to decrease.

We have a similar relationship for the prob-
ability of detection as a function of the speed of
the first searcher. When we start with the
first searcher being stationary and increase

Figure 17. Impact of varying detection radius as a function of speed.
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v1 infinitesimally, we notice a reduction in the
probability of detection. Further increasing v1
results in an increase. This behavior shows that
the probability of detection for this problem is
non-concave. Further increasing v1 causes a re-
duction in probability of detection after v1 ¼
57.8. Interestingly, the peaks of two curves in
Figure 18(a) and Figure 18(b) do not occur at
the same v1. That is, the speed that results
in the largest allocation to the first searcher is
not the speed that results in the highest aggre-
gate detection probability. This phenomenon
persists across varying problem parameters.

Multiple Searchers with Varying Detection Radii Depend-
ing on Speed. We now consider the case in which
the detection radii of both searchers are func-
tions of their corresponding speeds. We use
the same function for the detection radius of
the first searcher that we used previously,
R1 5 6e2v1=60, and we use a slightly different
function for the second searcher in order to ob-
serve the difference in the results. Specifically,
we use R2 5 6e2v2=90. These functions appear in
Figure 19.

Figure 20(a) shows the optimal allocation to
the first searcher with searcher speeds varying
from 0 to 100 speed units in increments of 0.1
units. For each searcher speed setting, the detec-
tion probability resulting from an optimal allo-
cation appears in Figure 20(b).

As Figure 17 indicates, when one searcher
is stationary its allocation is equal to twice its
detection radius. In the region where both
searchers have moderate speeds, increasing v1
up to around 60 speed units while keeping v2
constant results in an increase in the optimal al-
location to the first searcher and in the proba-
bility of detection. After that value, both the
allocation to the first searcher and the detec-
tion probability start to decrease. This is not
the case for v2. When v1 is kept constant and
v2 is increased up to around 70 speed units,
the allocation to the first searcher decreases,
which means that the allocation to the sec-
ond searcher increases. After that value, the

Figure 18. Optimal border allocation and detection problemwhen the first searcher’s detection radius varies as
a function of speed.

Figure 19. Detection radii of the two searchers.
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allocation stays nearly constant. However, the
detection probability continues to increase.
This can be understood by noting that the de-
tection radius of the second searcher does not
decrease as much as that of the first searcher.
The positive effect of increasing the second
searcher’s speed tends to dominate the nega-
tive effect of the reduction in the detection ra-
dius for speeds up to 100 speed units for the
second searcher. For this particular case, the
maximumprobability of detection is 56 percent
which is achieved when v1 ¼ 58.3 and v2 ¼ 88.4
speed units. At these speed values, the optimal
allocation to the first searcher is about 40 per-
cent of the border length.

SUMMARY
This paper develops both analytical and

Monte Carlo simulation models for the simple
border patrol problem in which a single
searcher equipped with a cookie cutter sensor
patrols a straight border to detect intruders.
Our analytical formula improves the detection
probabilities computed in the literature by

using highly accurate geometrically-based
calculations.

After computationally verifying ourmodels
for the simple border patrol problem, we add
complexity to the problem by introducing an-
other searcher. We propose two different strate-
gies for the multiple-searcher problem: the
disjoint path and the common path allocation.
We develop both analytical and Monte Carlo
simulation models for the disjoint path problem
by building upon the single searcher case. We
also develop a Monte Carlo simulation model
for the common path problem.

When we compare the results of the two
multiple-searcher cases, we see the importance
of optimally allocating the border to the two
searchers. Although the disjoint path deploy-
ment can provide a better detection probability
than the common path, it is important to allo-
cate the border intelligently between the two
searchers. Otherwise, the detection probability
may be worse than that resulting from a com-
mon path deployment.

We also analyze the effect of degrading de-
tection performance with increasing searcher
speed. We perform an analysis for a single

Figure 20. Impact of varying both searchers’ detection radii.
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searcher, then extend this analysis to multiple-
searcher problems. Besides analyzing the speeds
that result in maximum detection probability,
we determine the optimal allocation to maxi-
mize the detection probability.
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