
Military Operations Research Society

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force
Deployment Example

Author(s): Gerald G. Brown and Emily M. Craparo

Source: Military Operations Research , 2023, Vol. 28, No. 3 (2023), pp. 5-30

Published by: Military Operations Research Society

Stable URL: https://www.jstor.org/stable/10.2307/27254913

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Military Operations Research Society is collaborating with JSTOR to digitize, preserve and extend
access to Military Operations Research

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/10.2307/27254913

Implementing Defender-Attacker-Operator (DAO)
Optimization, with a Military Force Deployment Example

Gerald G. Brown1 and Emily M. Craparo2

1Naval Postgraduate School, ggbrown@nps.edu
2Naval Postgraduate School, emcrapar@nps.edu

ABSTRACT
We show how to formulate and solve a trilevel defender-
attacker-operator (DAO) optimization model for an opera-
tional system. Here, integer linear programs may repre-
sent limits on courses of action for the system defender,
attacker, and operator. The defender acts first and defen-
sive preparations influence following courses of action by
the attacker and then the operator. The attacker has full
knowledge of prior defender actions and of the following
operator’s abilities. With this knowledge, the attacker
seeks to maximize damage regardless of what the opera-
tor can do subsequently to respond. Finally, the operator
moves to minimize the effects of attacks on the system.
We first show how to solve an attacker-operator (AO)
model, then how to use this as a submodel to solve a
DAO model. A numerical example illustrates planning
defense and operation of a U.S. military force deployment
under risk of interdiction.

“Master, go on, and I will follow thee”

—Shakespeare: As You Like It

INTRODUCTION
Optimization models describe how a wide variety of sys-

tems work and guide the operations of many. Recently, crit-
ical infrastructure systems have received increased atten-
tion because it has become evident that they are vulnerable
to natural disasters and to attacks planned by intelligent
adversaries.

To assess vulnerability of a system, we hold that onemust
understand how that system can be operated. What are the
limits on operator resources and courses of action and how
can the operator respond to damages to the system?

Optimization is frequently used to model system opera-
tion and is ubiquitous in government and industry. In par-
ticular, integer linear optimization models offer the ability
to capture the details of discrete and continuous decisions
and their consequence.

We consider a trilevel defender-attacker-operator (DAO)
optimization, which models the actions of three “players.”

https://doi.org/10.5711/108259832835

© Copyright 2023, Military Operations Research
Society
APPLICATIONS AREAS:
Computational Advances in OR, Linear/Integer
Programming, Homeland Security and Defense

OR METHODS:
Infrastructure Analyses

Military Operations Research, V28 N3 2023 5

RESEARCH ARTICLE

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

mailto:ggbrown@nps.edu
mailto:emcrapar@nps.edu
https://doi.org/10.5711/108259832835

Given an underlying system (e.g., an infrastructure system), the defender first has the opportunity
to harden, defend, or otherwise render some components of the system less vulnerable or invul-
nerable using finite available resources. Then, having seen the defensive preparations, the attacker
deploys its own finite resources to attack a limited number of still-vulnerable components. Finally,
the operator utilizes the resulting system in the best way possible, given the prior actions of the de-
fender and the attacker. Of note, the three players share the same objective, which evaluates the
operator’s ability to utilize the system. The defender and the operator wish to influence this objec-
tive in the same direction (maximizing or minimizing) while the attacker wishes the opposite. For
this reason, DAO models have sometimes been referred to as defender-attacker-defender (DAD)
problems in the literature.

DAD models are a natural extension of bilevel defender-attacker interdiction models. Smith
and Song (2020) provide a survey of such models and the algorithms used to solve them.

Some of the earliest DAD formulations for infrastructure systems were described by Salmeron
et al. (2009) and Brown et al. (2006). Alderson et al. (2011) describe the applicability of DAD mod-
els to critical infrastructure systems and provide a method for solving these problems when the
operator’s model is continuous and convex.

DAD models have since been used in a wide variety of applications, many network-based. For
instance, Nicholas and Alderson (2015) use DAD methodology in the context of wireless mesh net-
work design to find jamming-resistant network topologies. Simchi-Levi et al. (2019) use a trilevel
model to address the problem of prepositioning medical supplies to protect against bioattacks. By
utilizing the affinely adjustable robust counterpart to their problem, they are able to solve supply
chain problems with millions of nodes while ensuring optimality under certain conditions.

Often, application-specific considerations drive modifications to the classic DAO framework.
For example, Xiang and Wang (2019) consider a DAD model where the attacker’s available resour-
ces are uncertain. In the context of defending electric power systems, they demonstrate a column-
and-constraint generation algorithm. Alassad et al. (2020) use a shared cognition approach to
model deceptive tactics at the defender level, resulting in a mixed integer nonlinear master prob-
lem which they then linearize and solve with column-and-constraint generation. Likewise,
Davarikia et al. (2020) consider defender posturing instead of only component hardening.
Conversely, Dahan et al. (2020) consider attacks that are not immediately apparent to the defender,
but that can be detected upon inspection. Assuming an intelligent attacker, they formulate and
solve a network inspection problem to determine the detection strategy that minimizes the num-
ber of required detectors while achieving a target expected detection rate.

Focusing on the case where the objective function is additively separable (i.e., where variables
from among the various stages interact only additively in the objective function), Bolusani and
Ralphs (2022) discuss a generalization of the Benders approach to an arbitrary number of stages
via projection and dual bounding functions. Baggio et al. (2021) consider a trilevel problem to
model cascade failures or viral attacks on nodes in a network. Notably, their third stage allows
nodes to be “protected,” limiting the spread of attacks conducted in the second stage.

In the context of power grid operations, Yuan et al. (2014) describe a column-and-constraint
generation method for solving the DAD problem. Yuan and Zeng (2020) then consider an exten-
sion of the usual DAD model by allowing line switching in the inner (operator) level. To solve the
resulting problem, which has integer decision variables at every level, they develop an exact algo-
rithm based on nested column-and-constraint generation. Thompson and Tran (2020) use a DAD
model to study vulnerabilities in the U.S. air transportation network. They identify improved
intermodal linkages between air and ground networks as a possible means to alleviate disruptions
to network operations.

Due to the computational challenges of DAD problems, many works have focused on simplify-
ing heuristics. Wu and Conejo (2017), for instance, formulate a trilevel DAD model to provide
insight on how best to protect electrical transmission assets from attack. They use strong duality to
merge the two inner layers, resulting in a bilevel model that can be solved with Benders

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

6 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

decomposition. San Martin (2007) formulates a trilevel DAD model aimed at optimally defending
an infrastructure system from attack, then develops four decomposition-based algorithms to solve
it. Wu et al. (2021) consider the defense of an urban water supply system by formulating a DAO
model, which they solve using hydraulic analysis and neighborhood search. Alguacil et al. (2014)
formulate DAD model to tackle the problem of electric power grid defense. They solve it by first
converting the problem to an equivalent bilevel problem, then solve this bilevel problem using
implicit enumeration. Avraamidou and Pistikopoulos (2020) propose an algorithm for solving tri-
level optimization problems with integer and continuous variables at each level, where the objec-
tive function contains quadratic terms of a particular form. Their algorithm formulates the inner
problems as multiparametric programming problems and substitutes the resulting solutions into
the higher-level problems. Lin and Bie (2018) study power system resilience using a DAD model
and solve it using column constraint generation. Ding et al. (2018) use uncertainty sets to model
the attacker, then solve the resulting two-stage robust optimization model using column-and-con-
straint generation.

Lazzaro (2016) develops an implicit enumeration algorithm for solving DAD problems on net-
work models and develops a parametric programming extension of the DAD for cases where the
defense budget is uncertain and a family of “nested” defenses is required. Ghorbani-Renani et al.
(2021) consider both vulnerability reduction and recoverability enhancement in their DAD model
and use a clustering technique to efficiently identify candidate components for protection. Fakhry
et al. (2021) explore three heuristic approaches to solve trilevel optimization problems and illus-
trate their approaches on an electric power grid application.

Lozano and Smith (2017) consider DAD problems where only binary variables are present in
the first and second stages, and where the third stage may take any form. Their approach utilizes a
sample of third-stage solutions to reduce computational complexity and is particularly effective
when a diverse set of solutions to the third-stage problem can be efficiently created (e.g., via a
heuristic).

The remainder of this paper explicitly describes a general solution procedure for DAO linear in-
teger optimization problems that can involve integer decision variables at all levels (defender,
attacker, and operator) while using an off-the-shelf mathematical programming language and
solver. We provide detailed guidance and practical advice for solving difficult problems and
addressing practical issues. We illustrate with a realistic military logistics model.

DEFENDER-ATTACKER-OPERATOR (DAO) MODEL FORMULATION
We now describe an exact method for solving the DAO problem. We represent the system oper-

ation with the operator model (O):

z�O ¼ min
y2Y

f yð Þ: (1)

The operator actions (decision variables) y must be feasible, which we represent by requiring
that they belong to the non-empty domain Y that expresses constraints on actions and interactions
among actions. The objective f measures operating costs and constraints describing Y can be
expressed as a linear function of the decision variables, and, importantly, integer linear optimiza-
tion admits discrete operator decisions, as well as continuous controls.

To introduce the attacker, we state an attacker-operator (AO) model:

z�AO ¼ max
x2X

min
y2Y xð Þ

f x; yð Þ: (2)

Attacker actions x must satisfy a non-empty constraint domain X that can include discrete deci-
sions and may have influence on the operator’s domain, as represented by y 2 Y xð Þ. The attacker
shares the same objective as the operator, but with opposite intent to influence it. Again, to sim-
plify exposition, we assume that there must be a feasible attacker course of action, and that the

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 7

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

attacker may increase the costs for the operator, but cannot render the operator model infeasible.
Accordingly, we change the notation just a bit:

z�AO ¼ max
x2X

min
y2Y

f x; yð Þ: (3)

Even lacking the ability to render the operator infeasible, the attacker can make operator actions
so expensive that they would be avoided if at all possible.

Finally, we introduce a defender, forming the full defender-attacker-operator (DAO) model:

z�DAO ¼ min
w2W

max
x2X

min
y2Y wð Þ

f w; x; yð Þ: (4)

Defender actions w must satisfy a non-empty domain W that can include discrete decisions
and, because the defender seeks to make things better for the operator, we allow defense actions
that influence the domain of feasible operator actions, i.e., y 2 Y wð Þ.

Solving an Attacker-Operator (AO) Model with Benders Decomposition
Alderson et al. (2011) provide an outline of techniques available to solve this problem. We now

amplify these solution techniques and include several key details missing from that work, includ-
ing additional suggestions for convergence tolerances and anticycling techniques.

If we fix operator decisions to ŷ (such a caret hat subsequently denotes a fixed variable through-
out), we can find the best attacks by solving pure attacker model (A):

z�
AÔ

¼ z�A ¼ max
x2X

f x, ŷð Þ: (5)

Similarly, if we fix attacker decisions x̂, we can solve a pure operator model (O):

z�
ÂO

¼ z�O ¼ min
y2Y

f x̂, yð Þ: (6)

When the cost-maximizing attacker (A) and cost-minimizing operator (O) models are each inte-
ger linear programs, unless they are unimodular network flow models, we cannot employ duality
to convert either model to its dual, and simply nest the resulting optimization monolith (see, e.g.,
Owen, 1969). Rather, we employ exhaustive enumeration or solve indirectly by decomposition.

This suggests solving by alternating play, fixing attacker actions x̂ and solving operator model
O, then observing the operator’s response ŷ and re-optimizing attacker model A, and so forth.
Such an approach forms the basis of Benders decomposition (e.g., Geoffrion 1972). Benders decom-
position alternates between an operator’s subproblem and an attacker’s master problem, where for
each iteration a “cut” is added to prevent repeating attacker solutions. Table 1 shows an attacker
master problem (A) arising after L operator responses to prior trial attacks. One can think of this as
the attacker probing the operator, observing how the operator responds, and learning.

Unfortunately, the number of attacks can be exponentially large, so we need a way to decide
when we have discovered a good enough set of attacks. We know that z�A for any subset of all
attacks is a relaxation of (A) if all attacks were known, and if all attacks were known, we would
have the solution z�AO. Thus, z

�
A is an upper bound on the achievable operating costs resulting from

attacks and operator responses. Symmetrically, we know that for a fixed set of attacks, the operator
response is a restriction, so keeping track of the best of the restricted operator responses gives us a

Table 1.Attacker master problem (A).

z�A ¼ max
z,x2X

z

s.t. z � f ŵ, x, ŷlÞ 8l ¼ 1, : : : ,L
�

.

Note: Given some fixed defense ŵ and a fixed set of L prior operator responses, this seeks attacks at least as effective as those already
attempted.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

8 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

lower bound on achievable operating costs z�AO. Table 2 organizes a sequence of alternating model
solutions that improves these bounds and ultimately discovers an optimal attack x�AO and respond-
ing operator plan y�AO. We call this the “best worst-case solution.” Neither opponent can do any
better.

We can also invert the decomposition, and express an operator master problem (OM), but we
do not pursue that here.

As a practical matter, the “solve” in this abstract decomposition algorithm must often be
relaxed to “approximately solve”; exact solutions to integer linear optimization models may take
too long. In this case, these integer linear programs are only approximately solved with some

Table 3.Nested inner attacker-operator (AO) optimization with Benders decomposition solving Kth attacker
master (A) and operator subproblems (O) approximately. Initially, x�AO is set to an admissible value, e.g., zero.

AO 1:Outer (Defender) iteration K is an input and constant here.

zLBAO ¼ �1, zUB
AO ¼ þ1, define «A > 0, «O > 0, «AO > 0, set x̂K ¼ x�AO,

set inner iteration counter L¼0, iteration limit Lmax
AO

AO 2: L ¼ Lþ 1

Fix x̂K and solve Operator (sub-)problem (O) for ŷK with objective value zO and integrality gap
zO � zLBO � «O jzLBO j þ d

� �
If zLBAO < zLBO , then zLBAO ¼ zLBO and x�AO ¼ x̂K

If zUB
AO � zLBAO � «AO jzLBAOj þ d

� �
or L � Lmax

AO ,

go to stepAO 5

AO 3: Fix ŷK and solve Attacker (master) problem (A) for x̂K with objective value zA and integrality gap
zUB
A � zA � «A jzAj þ dð Þ
If A_infeasible, zUB

AO ¼ zLBAO

go to stepAO 5

AO 4: If zUB
AO > zUB

A , then zUB
AO ¼ zUB

A

If zUB
AO � zLBAO > «AO jzLBAOj þ d

� �
and L < Lmax

AO ,

go to stepAO 2

AO 5: relgapAO ¼ zUB
AO � zLBAO

� �
= jzLBAOj þ d
� �

x�AO is a “relgapAO-optimal” attacker solution

Note: The method terminates when the desired decomposition gap «AO is achieved, or after Lmax
AO iterations, or if A_infeasible.

Table 2.Attacker-operator (AO) optimization with Benders decomposition solving attacker master (A) and
operator subproblems (O) exactly optimally.

AO 1: zLBAO ¼ �1, zUB
AO ¼ þ1, define relative tolerance «AO > 0, x̂ ¼ 0

AO 2: Fix x̂ and solve Operator (sub-)problem (O) for ŷ with objective value z�O

If zLBAO < z�O, then zLBAO ¼ z�O and x�AO ¼ x̂

If zUB
AO � zLBAO � «AO jzLBAOj þ d

� �
, go to stepAO 5

AO 3: Fix ŷ and solve Attacker (master) problem (A) in Table 1 for x̂
with objective value z�A

AO 4: zUB
AO ¼ z�A

If zUB
AO � zLBAO > «AO jzLBAOj þ d

� �
, go to stepAO 2

If desired, the optimal operator solution can be recovered by fixing x̂ ¼ x�AO and solving operator
(sub-)problem (O) for y�AO

AO 5: x�AO is «AO-optimal attacker solution, and y�AO is the responding optimal operator solution.

Note: The relative decomposition gaps employ a small constant d � 10�10 in the fashion of many optimization packages.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 9

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

permitted integrality gap (i.e., the difference between the objective value of the best integer solu-
tion found and a bound on the best possible objective value). We denote these “intervals of uncer-
tainty” for the operator subproblem as zLBAO, zO

� �
and for the attacker master problem as zA, zUB

A

� �
,

interpreted above as zLBAO � z�AO � zUB
A

� �
. Note that the bounds on objective values, rather than the objec-

tive values actually attained, must be used in the decomposition. Table 3 summarizes the modified
decomposition, anticipating that this will need to be solved repeatedly for a DAO problem and
introducing the current outer (defender) iteration K accordingly.

The decomposition solution of (AO) illustrated in Table 3 assumes that it will be invoked ini-
tially with K ¼ 1 and the set X̂

1
empty. As we will see, an outer optimization depends on a record

of each (AO) solution x̂K and ŷK.
Even though the successive attacker master problems (A) are restrictions, the solution values

achieved with an interval of uncertainty may not exhibit monotonic objective improvements.
Thus, the bound improvement in step AO 4 is by test, rather than unconditional (as it is in step
AO 4 in Table 2).

When solving attacker problems approximately, it is possible to revisit previously obtained sol-
utions with no improvement in bounds, cycling. To prevent cycling and ensure that a new solution
is obtained by each iteration, one can introduce a solution elimination constraint (SEC), described
in the next section. With these constraints comes the possibility that either the defender’s or the
attacker’s problem may be infeasible. Fortunately, infeasibility implies that all possible solutions
have been enumerated, and that the best solution considered so far is, in fact, optimal.

One can store the operator solution ŷ associated with each new incumbent x�AO in step AO 2
during every iteration. However, the operator solution is typically much (usually very much)
larger than the attacker one, so it is usually faster to just store the best attacker solution and defer
recovering the associated operator response y�AO until the end of the decomposition by solving the
operator problem (O) one last time with x̂K ¼ x�AO. This also permits recovering an operator
response with a smaller interval of uncertainty (i.e., with better resolution and fidelity), given this
particular operator response likely will attract most attention and analysis.

Solving a Trilevel Defender-Attacker-Operator (DAO) Optimization with Nested
Benders Decomposition

It is tempting to use a solution from (AO) to reveal preferred attacks and responding operator
actions, then use this to develop defense courses of action. Unfortunately, common-sense rules of
thumb and intuition about what to defend do not work in general (Alderson et al., 2013) and the
only reliable alternative in our experience is the modeling that follows.

Recall the form above of z�DAO in (4), where defensive actions are governed by constraints in the do-
main w 2 W and subsequent operator actions may be influenced by these defensive actions, as seen in
the domain of operator actions y 2 Y wð Þ. Although we could let defender decisions restrict the result-
ing domain of admissible attacker courses of action, we advise against this. Similarly, we could let the
attacker actions influence the resulting domain of operator ones. Again, we advise against this. Our
motive is to avoid the possibility of domain restrictions inducing infeasibility for either the attacker or
the operator models that can represent the functions of complex systems. This would complicate our
solution methods and analysis, where an infeasible solution signals exhaustive enumeration and thus
optimality. We only allow defender preparations to influence the objective function for the attacker.
As with the (AO) model, attacker actions may only influence the objective function for the operator.
That is the reason for the domains expressed above as they are in the terse definition of z�DAO.

Alderson et al. (2013) show a simple, but complete, concrete DAD formulation. We depart from this
DAD nomenclature by distinguishing between the initial defender and subsequent operator as distinct
entities by our adoption of a DAO formulation. The operator model there is a multicommodity flow
problem, attacks increase operator flow costs, and defenses that influence attacker costs appear in a
relatively short list of defensive options, one of which must be selected. There is a complete set of oper-
ator flows for each defense option, and each defense option can influence the capacity of flows for the

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

10 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

operator. For simplicity, clarity, and to ease model verification, there is one “do nothing” defense
option that has no influence at all on costs or capacities for either attacker or operator.

Viewed this way, our (AO) solution procedure in Table 3 solves z�AO¼ max
x2X

min
y2Y ŵð Þ

f ŵ; x; yð Þ.
The inner attacker-operator optimization seeks attacks leading to the worst minimum operator cost.

We will again form a Benders decomposition of the (DAO) problem by solving a defender-oper-
ator model (D) for every attack plan observed in K attacks.

Given a set of K attacks, the defender-operator master problem seeks a defense that minimizes the
maximum cost of the operator response to any attack.

Table 5.Defender-attacker-operator (DAO) optimization with nested Benders decomposition.

DAO 1: zLBDAO ¼ �1, zUB
DAO ¼ þ1,

define relative optimality tolerances «AO > 0, «DAO � «AO > 0,

fix initial defense, e.g., bw ¼ 0, and initial attacks x*AO ¼ 0

Set outer iteration counter K ¼ 0 with limit Kmax
DAO

DAO 2: K ¼ Kþ 1

DAO 3: Solve DAO bw, x, y
� �

problem (AO) as shown in Table 3, giving zUB
AO;bw does not appear in (AO), but has influenced its objective function;

Add candidate bxK to attacker solution set: bXK ¼ bXK�1 [bxK
If A_infeasible, x�AO ¼ x�DAO

DAO 4: If zUB
DAO > zUB

AO, then zUB
DAO ¼ zUB

AO,

w�
DAO ¼ bw, x�DAO ¼ x�AO

DAO 5: If A_infeasible or zUB
DAO � zLBDAO � «DAO jzLBDAOj þ d

� �
or K � Kmax

DAO,

go to stepDAO 7

DAO 6:Given attack plans bxK, k ¼ 1, . . . ,K, free defense variables w,

solve (D) as shown in Table 4 with optimality tolerance «DAO giving zLBD

If D_infeasible go to stepDAO 7

If zLBDAO < zLBD , zLBDAO ¼ zLBD

If zUB
DAO � zLBDAO>«DAO jzLBDAOj þ d

� �
and K < Kmax

DAO,bw ¼ w�, go to stepDAO 2

DAO 7: relgapDAO ¼ zUB
DAO � zLBDAO

� �
= jzLBDAOj þ d
� �

.

Defense plan w�
DAO and attack plan x�DAO are “relgapDAO-optimal”.

Recover a corresponding operator response by fixing these defense and attack plans and solving
the Operator problem (O).

END.

Note: This algorithm depends in its iterations of step DAO 2 on solution of a Benders decomposition of (AO) problem in Table 3 and solution
of a master problem (D) in step DAO 5 shown in Table 4.

Table 4.Defender-operator master problem (D) for (DAO) after K attacks.

z� X̂
K

� �
¼ min z

z,w2W
yk2Y wð Þ

s:t: z � f w; x̂k; yk
� �

8k ¼ 1, . . . ,K

Note:Given a set of K prior attacks, this seeks a good set of defenses, while observing how the operator would have responded to each attack
with this improved set of defenses. Our sole interest is in the optimal defense solution w�

DAO.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 11

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

Table 5 displays a complete nested Benders decomposition procedure, incorporating the de-
fender-operator master problem (D) from Table 4. The outer decomposition step DAO 4 uses the
upper bound of AO zUB

AO to improve the global upper bound, and step DAO 6 considers the lower
bound from (D) zLBD to improve the global lower bound.

Dealing with cycles. Even though successive defender iterations are restrictions, cycles
(repeated solutions) are possible because we are not solving these integer linear programs exactly,
but instead within some stated relative integer convergence tolerance. If not an outright cycle, an
intermediate stall may yield no improvement for some iterations. To deal with this, it proves use-
ful to be able to preclude reappearance of a binary attacker action x̂. Define the solution elimina-
tion constraint (SEC) function as follows:

add SEC x̂ð Þ :
X
jjx̂ j¼0

xj þ
X
jjx̂ j¼1

1� xjð Þ � 1: (7)

These usually inflict so little overhead they can be added with every new solution. However,
one can apply more careful controls, discarding these SECs when a solution with a better objective
value is found and resuming addition of them if either the objective function is not improved, or
more specifically when a binary solution reappears. To detect this latter case, one can avoid rela-
tively expensive tests to compare each new binary solution to its predecessor candidates for repeti-
tion by computing for each solution a numeric hash score: If hash scores differ between binary sol-
utions, they are different. If the hash scores match, a detailed comparison resolves things.

By construction, an infeasibility unambiguously signals that our SECs have ruled out all alter-
nate solutions, so the one we have (i.e., x�AO) is optimal.

AN EXAMPLE PROBLEM
We demonstrate our solution procedure on a time-phased force deployment data (TPFDD) plan

(e.g., Joint Chiefs of Staff, 2017a, 2017b, 2018, 2019) where military forces (personnel, materiel, am-
munition, and equipment) are mobilized and conveyed through a logistics network to one or more
destinations (see Figure 1). The “operator” manages the multimodal transport system to try to
arrange destination arrivals in desired time windows. Early arrivals may be vulnerable, and late
arrivals impede plannedmilitary operations. An intelligent adversary “attacker” has full knowledge
of the logistics system and its operation. The attacker can anticipate deployment plans and act to
interfere with a limited number of components of the deployment network, delaying or otherwise
interfering with operations. The “defender” has ability to defend a limited number of network com-
ponents from attack. The problem is to find the best worst-case deployment, defending what we can
and deploying as best as possible anticipating optimal attacks evading our defenses.

Figure 1. The U.S. strategic rail system (STRACNET) (left, GSO, 2012; U.S. Army, 2018) extends 58,000 km
and the U.S. strategic highway system STRAHNET (right, U.S. Army, 2013) 101,000 km. These networks
connect about 120 military installations with each other and with airports and seaports.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

12 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

DAO algorithm index use (denoted by superscripts in the formulation below) [�cardinality]:

‘ ¼ 1,2, . . . ,L Inner decomposition (attacker-operator) iteration [�20]
k ¼ 1,2, . . . ,K Outer decomposition (defender) iteration [�20]

Operator model index use (denoted by subscripts) [�cardinality]:

n 2 N Geographic nodes (an ordinal set, alias nx, n1, n2) [�1,000]
m 2 M Mode of transport (e.g., ROAD, RAIL, AIR, SHIP, aliasm1,m2) [4]
p 2 P � N Ports of embarkation [�20]
p 2 POEnx � P Ports of embarkation for shipments originating at node nx [�2]
d 2 D � N Destination nodes [�2]
u 2 U Units deploying (e.g., Brigade Combat Teams [�50])
l 2 L Lines (e.g., PAX, EQUIP, AMMO, AIRCRAFT [�4]
nxu,l Origin node location nx of unit u, line l (each unit may have each of its lines pre-

positioned at advantageous locations)
du Unit u has destination node d

Operator model index tuples:

u,lð Þ 2 UL Unit u uses line l.
l,mð Þ 2 LM Line l can use transport modem.
nx,mð Þ 2 LOAD Node nx can load modem.
n1,n2,mð Þ 2 EDGE (jn1j<jn2j) Undirected edge.
n1,n2,mð Þ 2 ARCS Directed arc from node n1 to n2 via modem.

jn1j < jn2j) n1,n2,mð Þ 2 EDGE, else n2,n1,mð Þ 2 EDGE
n,m1,m2ð Þ 2 CHNG Unit u line l node n change frommodem1 tom2

Given data [units]:

supplyu,l Supply of unit u line l [STONS]
load ratel,nx,m, add load ratel,nx,m

nx,mð Þ 2 LOAD ^ l,mð Þ 2 LM

Rate that line l at node nx can be loaded
on mode m if not attacked or defended,
and additional rate if attacked and not
defended [time/STON]

load timeu,l,nx,m, load add timeu,l,nx,m,

u,lð Þ 2 UL, nx,mð Þ 2 LOAD, l,mð Þ 2 LM

Using load rates, time required to load
supplyu,l for unit u line l at node nx on mode
m if not attacked or defended, and addi-
tional time if attacked and not defended
[time]

edge timen1,n2,m, edge add timen1,n2,m,

n1,n2,mð Þ 2 EDGE

Time between nodes n1 and n2 via mode
m if not attacked or defended, and addi-
tional time if attacked and not defended
[time]

chng ratel,n,m1,m2, chng add ratel,n,m1,m2,

n,m1,m2ð Þ 2 CHNG, l,m1ð Þ 2 LM, l,m2ð Þ 2 LM

Rate that line l at node n can be changed
from mode m1 to mode m2 if not attacked
or defended, and additional rate if attacked
and not defended [time/STON]

chng timeu,l,n,m1,m2, chng add timeu,l,n,m1,m2,

u,lð Þ 2 UL n,m1,m2ð Þ 2 CHNG,

l,m1ð Þ 2 LM, l,m2ð Þ 2 LM

Using change rates, time required to
change supplyu,l for unit u line l at node n
frommodem1 to modem2 if not attacked or
defended, and additional time if attacked
andnot defended [time]

Wbudget Budget limiting number of defenses [defenses]
Xbudget Budget limiting number of attacks [attacks]

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 13

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

Operator decision variables [units] (there can be K copies of each of these):

YLku,l,nx,m � 0 Load unit u line l at node nx for transport on modem [fraction]
YFku,l,n1,n2,m � 0 Flow of unit u line l from node n1 to node n2 via modem [fraction]
YCk

u,l,n,m1,m2 � 0 Change flow of unit u line l at node n from transport modem1 tom2 [fraction]

Attacker decision variables [units] (there can be K copies of each of these):

XLknx,m 2 f0,1g Attack load node nx, transport modem [binary]
XEk

n1,n2,m 2 f0,1g Attack flows between node n1 and n2 via modem [binary]
XCk

n,m1,m2 2 f0,1g Attack flows at node n changing between transport modem1 andm2 [binary]

Defender decision variables [units]:

WLnx,m 2 f0,1g Defend load node nx, transport modem [binary]
WEn1,n2,m 2 f0,1g Defend flows between nodes n1 and n2 via modem [binary]
WCn,m1,m2 2 f0,1g Defend mode changes at node n between transport modem1 andm2 [binary]

Overall formulation objective:

f w,x,yð Þ ¼X
u,lð Þ 2 UL,

nxu,l,mð Þ 2 LOAD
j l,mð Þ 2 LM

load timeu,l,nx,mYL
k
u,l,nx,m þ load add timeu,l,nx,m 1�WLnx,mð Þ � XLknx,mYLku,l,nx,m

� �

þ
X

u,lð Þ 2 UL,
n1,n2,mð Þ 2 EDGE

j l,mð Þ 2 LM

�
edge timen1,n2,m YFku,l,n1,n2,m þ YFk

u,l,n2,n1,m

h i

þ edge add timen1,n2,m 1�WEn1,n2,mð ÞXEkn1,n2,m YFku,l,n1,n2,m þ YFku,l,n2,n1,m

h i	

þ
X

u,lð Þ 2 UL,
n,m1,m2ð Þ 2 CHNG

j l,m1ð Þ 2 LM ^ l,m2ð Þ 2 LM

chng timeu,l,n,m1,m2YCk
u,l,n,m1,m2 þ chng add timeu,l,n,m1,m2

�

1�Wn,m1,m2Þ
� �

XCk
n,m1,m2YC

k
u,l,n,m1,m2

�
(OBJ)

Discussion
For brevity, defender, attacker, and operator variables appear in the objective function as re-

spective vectors w, x, and y. In use to solve an attacker-operator (AO) problem, w defense varia-
bles are always fixed, and alternating problems use either attack variables x or operator variables
y, with those of the opponent fixed. Successive inner decomposition solutions of an (AO) prob-
lem are indexed by (superscript) ‘ 2 L, outer decompositions solutions of (DAO) are indexed by
(superscript) k 2 K, and alternate between solving for each of k attack variables x with defense
variables w and k operator variables y fixed, or the reverse of this. Each outer iteration k of
(DAO) requires some set of inner iterations L to solve (AO). In an outer iteration k, we reckon

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

14 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

some new proposed defense w and simultaneously adjust all K operator responses to the K prior
attacks. Thus, the full detail of operator responses needs to be recorded.

Operator model:

min
ðykÞ2Y

f ŵ,x̂,yk
� �

(O1)

X
nx,mð Þ 2 LOAD,

j l,mð Þ 2 L

YLku,l,nx,m ¼ 1 8 u,lð Þ 2 UL, nxu,l (O2)

YLku,l,n,mjn ¼ nxu,l ^ n,mð Þ 2 LOAD
^ l,mð Þ 2 LM

þ
X

n,m1,m2ð Þ 2 CHNG
j l,m1ð Þ 2 LM

YCk
u,l,n,m1,m2

¼ YFku,l,n,n2,m2 j n,n2,m2ð Þ 2 ARC 8 u,lð Þ 2 UL, n 2 N,

m2 2 Mjfl,m2g 2 LM (O3)

X
n1,n,m1ð Þ2ARCS

YFk
u,l,n1,n,m1

¼
X

n,m1,m2ð Þ 2 CHNG
jfl,m2g 2 LM

YCk
u,l,n,m1,m2

8 u,lð Þ 2 UL, n 2 N,m1 2 M

j l,m1ð Þ 2 LM ^ n 6¼ du (O4)

X
l,mð Þ 2 LM,
p 2 POEnxu,l

YFk
u,l,p,d,m ¼ 1 8 u,lð Þ 2 UL, du 2 N (O5)

Discussion
The objective (O1) expresses operating costs for fixed defense and binary attack variables by

choice of operating variables. Each constraint (O2) establishes flow at a load node for a unit and
line. Each constraint (O3) balances load and mode change inputs to a node with flows out of that
node for a unit and line. Each constraint (O4) balances flows into a node with mode change flows
out for a unit and line. Each constraint (O5) ensures that a unit-line exits the model via an admissi-
ble port-of-embarkation.

Attacker constraints:

max
z,ŵ ,x2X,ŷ

z � f ŵ,x,ŷ‘
� �

8‘ ¼ 1,2, . . . ,L (A1)

X
nx,mð Þ2LOAD

XLknx,m

þ
X

n1,n2,mð Þ2EDGE
XEkn1,n2,m

þ
X

n,m1,m2ð Þ2CHNG
XCk

n,m1,m2 � Xbudget

(A2)

Discussion
Each objective cut (A1) has fixed defender variables and a record of an operator action observed

so far in this AO subproblem (see Table 3). Constraint (A2) limits the number of system compo-
nents that can be attacked.

It can be useful to condense cuts (A1) as follows:

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 15

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

load coef ‘nx,m ¼
X

u,lð Þ 2 UL
j l,mð Þ 2 LM

load add timeu,l,nx,mcYLk

u,l,nx,m

load cnst‘nx,m ¼
X

u,lð Þ 2 UL
j l,mð Þ 2 LM

load timeu,l,nx,mcYLk

u,l,nx,m

8‘ � L,
nx,mð Þ 2 LOAD (A1L)

edge coef ‘n1,n2,m ¼
X

u,lð Þ 2 UL
j l,mð Þ 2 LM

edge add timeu,l,n1,n2,mcYEk

u,l,n1,n2,m

edge cnst‘n1,n2,m ¼
X

u,lð Þ 2 UL
j l,mð Þ 2 LM

edge timeu,l,n1,n2,mcYEk

u,l,n1,n2,m

8‘ � L,
n1,n2,mð Þ 2 EDGE (A1E)

chng coef ‘n,m1,m2 ¼
X

u,lð Þ 2 UL
j l,m1ð Þ 2 LM
^ l,m2ð Þ 2 LM

chng add timeu,l,n,m1,m2cYCk

u,l,n,m1,m2

chng cnst‘n,m1,m2 ¼
X

u,lð Þ 2 UL
j l,m1ð Þ 2 LM
^ l,m2ð Þ 2 LM

chng timeu,l,n,m1,m2cYCk

u,l,n,m1,m2

8‘ � L,
n,m1,m2ð Þ 2 CHNG (A1C)

z �
X
nx:mð Þ

load coef ‘nx,m 1�dWLnx,m

� �
XLKnx,m þ load cnstl

þ
X

n1,n2,mð Þ2EDGE
edge coef ‘n1,n2,m 1� dWEn1,n2,m

� �
XEKn1,n2,m þ edge cnst‘

þ
X

n,m1,m2ð Þ2EDGE
chng coef ‘n,m1,m2 1� dWCn,m1,m2

� �
XCK

n,m1,m2 þ chng cnst‘

8‘ � L (A1F)

The factoring (A1L), (A1E), and (A1C) of terms appearing in (A1F) emphasizes the operator’s
use of each component the attacker might target.

Defender constraints:

min
z;w2W,yk2Y wð Þ

z � f w;x̂k,yk
� �

8k ¼ 1,2, . . . ,K (D1)

X
nx,mð Þ2LOAD

WLnx,m

þ
X

n1,n2,mð Þ2EDGE
WEn1,n2,m

þ
X

n,m1,m2ð Þ2CHNG
WCn,m1,m2 � Wbudget (D2)

Additional auxiliary linearizing decision variables:

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

16 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

WYLku,l,nx,m � 0 8 u,lð Þ 2 UL,

nx,mð Þ 2 LOAD

j l,mð Þ 2 LM

WYEku,l,n1,n2,m � 0 8 u,lð Þ 2 UL,

n1,n2,mð Þ 2 EDGE

j l,mð Þ 2 LM

WYCk
u,l,n,m1,m2 � 0 8 u,lð Þ 2 UL,

n,m1,m2ð Þ 2 CHNG

jfl,m1g 2 LM ^ fl,m2g 2 LM

Linearizing constraints using these auxiliary variables:

WYLku,l,nx,m � WLnx,m;
WYLku,l,nx,m � YLku,l,nx,m; and
WYLku,l,nx,m
� WLnx,m þ YLku,l,nx,m � 1 8 u,lð Þ 2 UL,

nx,mð Þ 2 LOAD

j l,mð Þ 2 LM (D3-D5)

WYEkn1,n2,m � WEn1,n2,m;
WYEkn1,n2,m � YFku,l,n1,n2,m þ YFku,l,n2,n1,m; and
WYEkn1,n2,m
� WEn1,n2,m YFk

u,l,n1,n2,m þ YFku,l,n2,n1,m
� �

� 1 8 u,lð Þ 2 UL,

nx,mð Þ 2 LOAD

j l,mð Þ 2 LM (D6-D8)

WYCk
u,l,n,m1,m2 � WCn,m1,m2;

WYCk
u,l,n,m1,m2 � YCk

u,l,n,m1,m2; and
WYCk

u,l,n,m1,m2

� WCn,m1,m2 þ YCk
u,l,n,m1,m2 � 1 8 u,lð Þ 2 UL,

n,m1,m2ð Þ 2 CHNG

j l,m1ð Þ 2 LM ^ l,m2ð Þ 2 LM

(D9-D11)X
nx,mð Þ 2 LOAD

jŴL
k
nx,m ¼ 0

WLnx,m þ
X

nx,mð Þ 2 LOAD

jdWL
k

nx,m ¼ 1

1�WLnx,mð Þ

þ
X

n1,n2,mð Þ 2 EDGE

jdWE
k

n1,n2,m ¼ 0

WEn1,n2,m þ
X

n1,n2,mð Þ 2 EDGE

jdWE
k

n1,n2,m ¼ 1

1�WEn1,n2,mð Þ

þ
X

n,m1,m2ð Þ 2 CHNG

jdWC
k

n,m1,m2 ¼ 0

WCn,m1,m2 þ
X

n,m1,m2ð Þ 2 CHNG

jdWC
k

n,m1,m2 ¼ 1

1�WCn,m1,m2ð Þ � 1

8k < K (D12)

Discussion
Each defender objective cut in (D1) expresses for a prior attack the cost of a defense and

the best the defender can do to minimize damage from that attack. The object is to

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 17

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

minimize the cost of the worst-case attack (see Table 4). Constraints (D3)–(D11) are used to
linearize the nonlinear products of binary defense variables w and nonnegative operator
variables y (see overall objective). This admits linear integer programming, i.e., a linear
mixed integer programming (MIP) model. We also solve without these auxiliary features
as a quadratically constrained model, i.e., a mixed integer quadratically constrained pro-
gram (MIQCP) model. Optional solution elimination constraints (D12) can be used to
ensure each successive defense solution differs from its predecessors in at least one binary
defense detail.

Optimization Formulations
Operator (O) consists of (O1)–(O5) with ŵ and x̂ fixed. Similar to the attacker model, during sol-

utions of (AO) a single copy of (O1)–(O5) is used, but for (D) solutions, all K copies of these are
used.

Attacker uses (A1)–(A2), or optionally (A1) can be replaced by the more condensed (A1L),
(A1E), (A1C), and (AIF). Each model instance includes a single copy of (A1)–(A2) for (AO) solu-
tions, and K copies of these features accumulated from prior outer iterations k ¼ 1,2, . . . ,K for (D)
solutions of (DAO).

Defender employs (D1)–(D11) and (O2)–(O5). Each model instance includes K copies of con-
straints (O2)–(O5) accumulated from prior outer iterations k ¼ 1,2, . . . ,K. Solution elimination con-
straints (D12) are optional.

Each solution of (AO), the inner decomposition, consists of iterations ‘ ¼ 1,2, . . . ,L. Each solu-
tion of (D) consist of outer iterations k ¼ 1,2, . . . ,K.

NUMERICAL EXAMPLES
Our numerical experiments use the Generalized Algebraic Modeling System (GAMS) 31.1.0

(2022), Gurobi 9.1.2rc0 (2022), and CPLEX 12.10.0.0 (IBM 2022). The entire GAMS script has 2,200
lines, exclusive of data tables; of this, about 500 lines are about models, and the rest stethoscope
views of the actions of our three players. Total nested decomposition solution time depends on the
convergence tolerances and decomposition iteration limits; moderation is a virtue. These results
are from a Lenovo P17 portable workstation with 128GB random access memory and a Passmark
(2022) rating of 4,552.

We have been loaned an unclassified continental United States transportation dataset used
by military deployment planners (see acknowledgements). This consists of 1,229 nodes and
2,077 undirected edges. There are four transport modes: road (with 1,625 edges), rail (288), air
(147), and ship (17). The road and rail networks are drawn from the 101K km of the U.S.
Strategic Highway Network STRAHNET and the 58K km of the Strategic Rail Network
STRACNET (e.g., U.S. Army, 2013, 2018). The network connects 18 load nodes near military
installations, 27 airports and 17 seaports. Our planning focus is on domestic U.S. transport, so
our vulnerability and defensive interests are limited up to but not beyond United States points
of embarkation.

We aggregate shipments by similarity of logistic transport into four lines: PAX (personnel),
EQUIP, AMMO, and AIRCRAFT. These lines can use the transport modes in Table 6.

Each line must be prepared for shipment at its source node, and this takes significant time.
There are 44 nodes where a transfer between modes can take place. These transitions also take
time and are of particular interest. We assume that once PAX are boarded on AIR, we plan no
additional mode change for them. Once any line is loaded on a SHIP, no mode change is planned
to follow that.

Armageddon Reduction
As part of our data verification, we use a preliminary reduction to ensure connectivity of unit-

line sources and destinations, and to identify and remove unusable components. Given the

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

18 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

number of times we anticipate having to solve this operator problem, any reduction can be benefi-
cial. We call this the Armageddon Reduction. From each unit-line source, we find a shortest path
to its destination. Every component is vulnerable to attack, we so attack (and thus render longer
duration for) every component in these paths. We repeat until no additional unattacked compo-
nent is attacked, then delete all unattacked components.

Five examples follow. Table 7 gives basic problem entity numbers and problem dimen-
sions. Although we would prefer to represent each historic decision variable in a decompo-
sition by merely its value, each is represented via a mathematical programming language
by at least a tuple of variable type, lower bound, current value, upper bound, and reduced
cost.

Table 8 displays default convergence tolerance and iteration limit controls. Table 9 gives
some idea of the convergence trajectory of the nested decompositions on these problems. The
instances here have 14 attacks, but only six defenses—these are tough planning problems.
Convergence rate is influenced by the relative numbers of attacks and defenses, but surpris-
ingly not by much.

The results in Table 9 are representative of those achieved in hundreds of scenarios. We nor-
mally do not require a relative DAO convergence gap of less than 10%, and one can see this is rou-
tinely achieved in only a couple outer DAO iterations. All scenarios solve in essentially the same
time whether linearized or not with GORUBI MIP for (D) or MIQCP for (DQ). CPLEX solves the

Table 6. Transport modes for each line. All lines can move by road.

Mode line PAX EQUIP AMMO AIRCRAFT
ROAD X X X X
RAIL X X X
AIR X X
SHIP X X X

Table 7. TPFDmodel statistics.

Instance
Entities ONE EIGHT TWENTY THIRTY FORTY

Units 1 8 20 30 40
Unit origins 1 5 9 9 18
Lines 4 25 62 95 126
Modes 4 4 4 4 4
Nodes before reduction 1,229 1,229 1,229 1,229 1,229
Edges before reduction 2,077 2,077 2,077 2,077 2,077
Nodes after reduction 566 824 954 964 1,044
Edges after reduction 629 966 1,209 1,229 1,389
(w, x) Binary variables 2,394 3,604 4,360 4,418 4,920
O constraints x000 5 41 117 181 262
O variables x000	 7 66 200 312 450
A constraints 3þL 3þL 3þL 3þL 3þL
A variables x000	 1 2 2 2 2
D constraints x000 19þK 171þK 508þK 789þK 1,157þK
D variables x000	 13 112 336 521 770
DQ constraints x000 5þK 61þK 117þK 181þK 262þK
DQ variables x000	 8 123 200 314 462

Notes:All units are destined for Europe. Each of these instances has models that can be initially reduced in size, depending on the origin(s)
and destination(s) of units and their lines. Note the number of attacker constraints grows (þL) with inner iterations, but the number of
attacker variables does not. Note that the number of constraints for defender master problemmodels (D) or (DQ) grows (þK) with each outer
iteration, and that these problems require copies of each of prior K outer iteration solutions () for attacker and operator. D has linearizing
constraints (D3)–(D11), DQ does not. The largest model FORTY involves moving about 160K personnel and 430K STONS of materiel. FORTY
uses every unit-origin in our network. Larger instances scale as would be expected from these results.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 19

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

linearized scenarios with essentially the same performance as GORUBI, but CPLEX fails to solve
any of these MIQCP scenarios, falsely declaring lack of convexity.

Table 10 shows computation times for problem generation and optimization, and between the
Armageddon Reduction and the three basic optimization models. Note that optimization takes
much less computation than the overhead required to generate these problems and recover their
solutions. This has been our experience with general-purpose mathematical programming lan-
guages, among which GAMS is a fast competitor. This shows how much performance can be
gained by replacing a general-purpose mathematical modeling language by a custom model gen-
eration in a computationally efficient programming language. Doing so is tedious and model-spe-
cific, but in our experience reduces generation and solution extraction overhead to negligible
times. These sequences of decomposition master problems only differ in the constraints added at
each iteration, but our (GAMS) program regenerates each entire master problem from scratch.
Directly executable models can be restricted with additional constraints (i.e., cuts) without this sig-
nificant overhead. So, the results here give a worst-case assessment of achievable model response
time.

For scenario FORTY, six optimal defenses protect military installation unit-origin load nodes
for roads, while the 14 attacks are at 10 other unit-origin load nodes for roads and four rail edges.
The optimization advises defending the most important “break-out” unit-origin load nodes, and
the attacker goes after the remaining undefended load nodes and rail edges that have a lot less re-
dundancy than roads. We are surprised that mode change nodes escape defense, or attack (this
may be due to our estimates of attack delays). We interpret each component transit time and attack
delay time exactly as the network authors defined these—an attack does not interdict flow, but
instead delays it and may divert operator flow to alternate, unattacked, but longer routes. Average
resulting transit times are shown in Tables 11 and 12.

If we increase to 20 defenses the attacker could degrade the operator by 5%. Adding more
defenses gradually improves things for the operator, but it takes several hundred defenses to

Table 8. Convergence tolerances and solution controls. The outer decomposition iteration seeks a 10% relative
convergence gap.

d 10�10

«A 0.0001
«O 0.000
«AO 0.050
«DAO 0.100
Lmax
AO 20

Kmax
DAO 20

Table 9.DAO nested decomposition convergence trajectory for linearized instances.

Instance DAO iterations AO L-iterations relgap_%DAO Cumulative seconds
ONE K01 4 60 11

K02 4 7 13
EIGHT K01 3 21 55

K02 3 6 70
TWENTY K01 2 16 135

K02 2 4 178
THIRTY K01 2 18 204

K02 2 6 266
FORTY K01 2 12 255

K02 2 8 350

Notes: There are 14 attacks, but only six defenses—these are tough planning scenarios. Using the convergence tolerances from Table 8, the
FORTY instance requires two major DAO iterations and almost seven minutes. These results are from a Lenovo P17 portable workstation with
128GB random access memory and a Passmark (2022) rating of 4,552. At most one GB random access memory was used.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

20 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

render the operator immune from the worst-case attack. Experimentation reveals that the first pri-
ority should be to defend break-out unit-origin load nodes and that the rail network has less re-
dundancy than the roads: the attacker will be attracted in that order.

Figure 2 illustrates how optimization can discover simplicity hidden in clutter. In this excur-
sion, we utilize the network from FORTY and allow unlimited defenses. The initial map (Figure
2(a)) shows the locations of 40 deploying units and their 126 lines, the candidate ports of embar-
kation and the rail and road networks (air and sea networks are not shown). Figure 2(b) shows
the networks after (Armageddon) removal of components that won’t be used by this deploy-
ment. Anticipating 14 attacks, the optimization chooses to defend 12 roads coming from unit-ori-
gin load nodes and two rail edges. (It is coincidental that the number of defenses selected equals
the number of attacks.) Seeing these defenses, the attacker shifts attention in Figure 2(c) to six
undefended roads and one rail edge coming from other load nodes, as well as seven rail edges.
This leaves us with a strategically defended deployment network (Figure 2(d)) that the operator
will be able to use after a worst-case attack with only about an 8% degradation in objective
value.

Table 10. (DAO) computation times.

Instance Model Solves Gen secs Gen avg Opt secs Opt avg Total secs
ONE O reduce 14 7 1 1 0 9

D 2 1 1 1 0 2
A 8 1 0 0 0 1
O 8 2 0 0 0 2
Total 32 11 0 1 0 12

EIGHT O reduce 12 38 3 3 0 40
D 2 10 5 7 3 17
A 6 1 0 0 0 1
O 6 8 1 1 0 8
Total 26 57 2 11 0 67

TWENTY O reduce 11 87 8 7 1 94
D 2 33 16 19 9 51
A 4 2 1 0 0 2
O 4 16 1 0 0 19
Total 21 138 7 28 1 166

THIRTY O reduce 11 126 11 11 1 127
D 2 48 24 28 14 76
A 4 3 1 0 0 3
O 4 23 6 3 1 25
Total 21 200 10 42 2 242

FORTY O reduce 9 145 16 13 1 158
D 2 72 36 48 24 120
A 4 4 1 0 0 4
O 4 34 8 4 1 38
Total 19 256 13 66 3 321

Notes: The number of models solved appears with generation and optimization seconds required. The last defender (D) model in FORTY
(Table 9) has about 2,052 K constraints and 1,536 K decision variables of which about 2 K are binary. Note the dominance of model generation
time, generally around 80% of total time.

Table 11.Average transit days for unit lines in scenario FORTY. Planners use this to synchronize arrivals of
lines.

Lines Load Flow Change Total
PAX 1 1 0 2
AMMO 1 13 0 14
EQUIP 1 13 0 15
AIRCRAFT 4 3 0 7

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 21

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

Recall that we have «DAO¼ 0.1; with «DAO¼ 0 and unlimited defenses, we expect no degrada-
tion in the operator’s objective value. For this extreme case we wouldn’t use decomposition, but
would solve the operator problem and defend every component used.

The formulations here accommodate only the most primitive actions by attacker and defender.
This particular system exhibits an objective terrain that is quite smooth and pushing on with more
whack-a-mole DAO iterations does not lead to much improvement. Realistically, one would want
to embellish each of these actors with much more detailed descriptions of feasible courses of
action. In particular, the decisions to attack and defend are not indexed by time here. Index these
actions by time, and the most attractive modification to the operator model is a mechanism for

Table 12. For scenario FORTY, the range of transit times in days with no attacks, and with every vulnerable
component attacked.

Lines No attack Armageddon
PAX 1–4 2–14
AMMO 10–21 12–29
EQUIP 10–22 15–46
AIRCRAFT 4–5 16–27

Figure 2. Unit origins and points of embarkation (POEs), defenses, attacks, and flows for FORTY.
Notes: The TPFD network in (a) consists of 1,625 road, 288 rail edges, and (not shown) 154 air and 34 ship edges.
The 40 units with 126 lines are located in 25 CONUS military installations (upright blue triangles in (a)). There
are 11 sea ports of embarkation (SPOEs) and six air ports of embarkation (APOEs) (inverted purple triangles in
(a)); these serve as flow destinations. Knowing this, we can drop 247 road, 113 rail, 140 air, and 20 ship edges,
reducing to the network shown in (b). Allowing an unlimited number of defenses, only 14 are selected, 12
protecting roads from military unit-origin load nodes (green triangles in (b)) and two defending rail edges
(green edges in (b)). The 14 attacks then target six undefended roads and one rail edge departing military unit-
origin load nodes and seven other rail edges (red in (c)). Subsequent operator flows (black in (d)) use 416 road
edges, 93 rail edges, and (not shown) 11 ship and six air edges.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

22 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

post-attack reconstitution (see, e.g., Alderson et al., 2017). These and many other realistic model
features are accommodated by the methods presented here.

The analyses here use the attack delays we received with the network, verbatim. Given these
performance estimates, the U.S. Strategic Highway and Rail networks appear remarkably resil-
ient, with ample means at large scale to avoid attacked components when necessary. In con-
trast, see Alderson et al. (2017) for an analysis of the vulnerability of bridges and roads of the
San Francisco Bay area, with reconstitution times extending from months to years. These two
cases contrast attacks spread among many targets that are mere delaying irritants with
destruction of a few key components. Both these extreme cases are amenable to the analysis
presented here.

A useful specialization restricted to solving bilevel attacker-operator (AO). When we solve
(AO), the preceding procedures can be specialized to good effect. Specialization (A1F) applies if
the attacker’s actions can be restricted to attack each vulnerable system component at most once;
then we can accumulate the total penalty the operator expends in operation of each vulnerable
component, and substitute that in the (A1) cut for each iteration, along with a term for total opera-
tor penalties not associated with vulnerable components. Call such projected penalty accumula-
tion for solution y* of (6) y�
 fy�X,y*0g, with y�X corresponding one-to-one with the attacks in x 2 X,
and y�0 the penalties associated with operating all nonvulnerable components. Table 13 shows the
Benders decomposition master problem (AMAO).

The motive for doing this is that the number of vulnerable operator activities is usually far
fewer than of all the operator activities. In the numerical example FORTY, this condenses over two
hundred thousand operator decisions during each iteration to just 2,460 penalty values to convey
to the attacker master problem (AMAO).

A useful specialization for linear program operator models. The operator model example here
is a linear program. During its development, we expected at any time that binary variables would
need to be introduced, and in some excursions they have been.

But suppose the operator model is known to be a linear program.
We can replace the inner decomposition to solve (AO) by using the maximizing dual of the min-

imizing operator model. We introduce dual variables (unrestricted in sign) for operator (equality)
constraints (O2)–(O5) and index these dual constraints (DYL), (DYF), and (DYC) to trace their
provenance.

f ŵ,x,yð Þ ¼ g ŵ,x,oð Þ ¼
X

u,lð Þ2UL,
nxu,l

O2u,l,nx þ
X

u,lð Þ2UL,
du2N

O5u,l,du (DUAL OBJ)

þO2u,l,nx þ O3u,l,nx,m
� load timeu,l,nx,m

þload add timeu,l,nx,m 1�dWLnx,m

� �
XLknx,m 8 u,lð Þ 2 UL,

nx,mð Þ 2 LOAD

j l,mð Þ 2 LM (DYL)

Table 13.Attacker master problem (AMAO).
z�AMAO ¼ max

z,x2X
z AMAO1ð Þ

s:t: z � f x;y‘X,y
‘
0

� �
8‘ ¼ 1, . . . ,L AMAO2ð Þ

Note: Operator penalties of the ‘�th defender solution have been accumulated to match the components vulnerable to the attacker, and a fixed
penalty sum for operating components not subject to attack. (For our specific example instance of (AMAO2), see (A1F).)

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 23

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

�O3u,l,n1,m þ O4u,l,n2,mjn26¼duþO5u,l,n2jn12POEnxu,l^n2¼du

�
h
þ edge timen1,n2,m

þ edge add timen1,n2,m 1� dWEn1,n2,m

� �
XEkn1,n2,m

i
n1<n2h

þ edge timen2,n1,m

þ edge add timen2,n1,m 1� dWEn2,n1,m

� �
XEkn2,n1,m

i
n2<n1

8 u,lð Þ 2 UL,

n1,n2,mð Þ 2 ARC

j l,mð Þ 2 LM (DYF)

O3u,l,n,m2 � O4u,l,n,m1jn 6¼du� chng timeu,l,n,m1,m2

þchng add timeu,l,n,m1,m2 1� dWCn,m1,m2

� �
XCk

n,m1,m2

8 u,lð Þ 2 UL,

n,m1,m2ð Þ 2 CHNG

j l,m1ð Þ 2 LM

^ l,m2ð Þ 2 LM (DYC)

Corresponding with this is a new master problem with objective min
x2X

gðw,x̂,ôÞ. By now, in this
paper it should be clear how these constraints would be expressed and handled and what solution
elimination constraints for w look like.

Table 14 shows results of solving (AO) directly as a dual integer linear program and extracting
the operator solution from the duals of constraints (DYL), (DYF), and (DYC).

We advise caution. Solving this operator-dual-integer linear program condensation of the inner
AO optimization problems is not always faster than the inner AO decomposition in Table 3.
Comparing times in Tables 9 and 14 show this trend. We have encountered two reasons for this.
First, the solver may take longer for the dual. Second, to our surprise, GAMS requires a lot of time
to convert the constraint marginals to recover a corresponding primal operator solution. We are fa-
miliar enough with an interface to GAMS to know this is a GAMS problem, not the solver.

And if you end up needing a discrete decision for the operatormodel, youwill regret this effort.
Some alternatives for difficult problems. When solving either (AO) or (DAO), some “tricks of

the trade” can be helpful.

Table 14. Solution with an operator-dual integer linear program solving (AO) directly using «A. These times
are comparable to those in Table 10.

Instance DAO iterations relgap_%DAO Cum. seconds
ONE K01 59 10

K02 5 19
EIGHT K01 21 54

K02 3 74
TWENTY K01 15 132

K02 2 176
THIRTY K01 16 208

K02 3 274
FORTY K01 10 217

K02 4 312

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

24 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

If one is fortunate enough to have defender and/or attacker models as simple as those pre-
sented here, these defender and attacker optimizations are easy to replace with sequential thumb
rule heuristics. Table 15 shows what happens when the defender can see in a preferred operator
plan which system components are most vulnerable to delay and sequentially allocate available
defenses in decreasing order (ODA); then, the attacker targets remaining undefended components
in decreasing order of delay. If the operator plan is revised after these fixed, sequential allocations
(ODAO), delays can be reduced. In the smaller, simpler cases, this primitive greedy heuristic beats
the formal optimization (unless the decomposition is run to a smaller decomposition gap).
However, we wouldn’t know whether to trust the heuristic without the reassuring lower bound
from the DAO decomposition.

We again advise that the defender, attacker, and operator models be expressed so they each
have an initial feasible solution. If the influence of defender decisions on the attacker model, and
those of the attacker decisions on the operator model, are expressed in terms of penalties that do
not interfere with feasibility, then infeasibility uniquely signifies that cuts and/or SECs have iso-
lated an optimal solution.

For solving (AO), step AO 1 of Table 3 suggests an initial attacker solution x̂1 ¼ 0. Similarly, for
solving (DAO), step DAO 1 in Table 5 suggests initial defender solution ŵ ¼ 0. These null initial
solutions ease verification of models. Surprisingly, even when planners can suggest admissible
(i.e., feasible) initial solutions (for instance, from prior solutions or subject matter expertise, or
from a simple heuristic such as ODAO), although these can provide much improved initial solu-
tions, this does not necessarily contribute significantly to the progress of the decomposition. An
interesting characteristic of decomposition is that it seems to need to learn what not to do.

It is also easy to conduct intermediate solves, archiving resulting solutions and bounds, and
retrieving and restoring these later for resumed solves. Resumed solves, lacking the history of
Benders cuts, may introduce some cycling and/or stalling to reestablish support from cuts, but
generally work well in practice. This permits periodic examination of solution progress.

Another useful decomposition technique is periodic editing of the Benders cuts (constraints
(A1) and (D1)) to eliminate dominated ones. Although this could involve solving an ancillary opti-
mization, there is a simple, effective heuristic: over some epoch of iterations, keep track of how of-
ten each cut is taut. Relax those that have been frequently inactive, perhaps even using exponential
decay to degrade the recency of frequencies. If such a relaxed cut later proves essential, the decom-
position will generate it again.

As a practical matter, if the defender-operator model (see Table 4) grows too large as outer itera-
tion countK increases, an easy quick heuristic is simply to limit the domain of iterations (i.e., retained
attacks and cuts) to amost-recent set, perhaps even only the Kth iteration. This relaxation frequently
renders a good defense and a lower bound on howmuch better a defensemight be (see Table 15).

Sometimes the operator model exhibits some well-known special structure, such as a multicom-
modity flow model. In such cases, using ancillary methods to identify things like vulnerable cut-

Table 15. Sequential operator defender-attacker heuristic.

Scenario (ODA) (ODAO) (DAO)
ONE 112 4* 4, 8, 12
EIGHT 32 3* 3, 4, 9
TWENTY 24 12 5, 6*, 9
THIRTY 24 22 6, 7*, 12
FORTY 20 19 9, 13*, 13

Notes:An operate-defend-attack (ODA) heuristic achieves the percentage increase shown in delay when an operator plan initially reveals the
desired utilization of each system component, then the defender sequentially protects the six ones that would be most delayed by an attack,
and then the attacker sequentially targets the 14 most delayable remaining undefended components. ODAO shows how the operator would
optimally respond after those ODA defenses and attacks. DAO shows the lower bound, solution value and upper bound when all actors are
modeled to sequentially behave optimally. For the two smallest cases, the ODAO heuristic beats the decomposition and these solutions (*) can
be substituted for those from the optimization. However, without the bounds from optimization, we wouldn’t knowwhen to trust this
heuristic. As problems get larger and more nuanced, the primitive greedy heuristic doesn’t do as well.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 25

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

set choke points can be useful to guide better attacks earlier in the solution. However, it is advisa-
ble to seek features that are structural in the operator model and its data, rather than those that
may be easy for the operator to accommodate (Alderson et al., 2013).

We have set up models based on the example data here with explicit time periods. For a plan-
ning horizon of 50 daily time periods, this expands the number of operator decision variables by
about that factor. Undaunted, we employed servers with a lot more power than our Lenovo porta-
ble workstation and concluded that the insight gained for this paper was not worth the investment
in computation and planning delay.

Simulation is an effective alternative, which can easily accommodate the scale of such a model,
but which cannot to our knowledge provide in general a reliable objective function bound for any
player here. Our limited experiments with simulation of DAO- and merely AO-style models have
rendered stark results (e.g., see Alderson et al., 2013). This is not surprising, given that for the
DAO models presented in this paper, the opponents present a sample space (employing casual,
but unambiguous notation) proportionate to:

jdefendablesj
jwj

� 	 jvulnerablesj
jxj

� 	
: (8)

(For the 1,236 entities that can be defended and are vulnerable, with six defenses and 14 attacks,
this presents merely 1048 alternatives.)

A time- and otherwise-aggregated DAO optimization model such as the one here can be used
as a guide and correction model for a more detailed one. This is worth the effort if, e.g., a simula-
tion-guided restriction of a DAO optimization can render objective bounds for either, or both
opponents. We advise keeping as much formal optimization foundation as possible in lieu of aban-
doning such for sole use of simulation and/or heuristics, a path that has not worked well for us.

There is an advantage for opponents who can keep some actions secret from the adversary.
Brown et al. (2005, 2011) show how to assess the value of such secrecy. When DAO is used to
model vulnerability to actions mixing intelligent actors and Mother Nature, this is useful.

Our numerical example here offers few embellishing details about the actions of the opponents
whose activities are not heavily intermingled. This is for simplicity of exposition. In practice, for
example, defender activities can include stocking anticipatory spare replacement components,
adding redundancy and increasing operator resources. Defensive measures can influence restora-
tion time after an attack. When an integer linear program is admitted in all three modeling deci-
sion levels, one is limited only by one’s imagination.

There are a number of suggestions for generalization to include other than linear integer optimi-
zation models in Alderson et al. (2014). These authors also explain how to use (DAO) (which they
call DAD) to formally define and assess the crucial property of system resilience.

CONCLUSION
Although it can be very enlightening to apply DAO with these systems to see how they can be

defended, then attacked, and then operated, in the end with real systems there are real defenders,
attackers and operators. The attackers might be us, or some adversary, with the opposing role(s)
also reversed.

For advising policy for dealing with real systems, actions take permission and resources, and
policymakers will need to be briefed and comfortable enough with our advice to commit to action.

We have shown that insights from such analysis defy simple thumb rules. We have struggled to
develop ways to illustrate the what and the why of these nuanced solutions (e.g., Alderson, et al.
2011, 2013, 2014, and Brown, et al. 2005, 2011). We have much more to learn about how to interpret
and convey the insights offered by these models. The main purpose of this piece is to inform
clearly how DAO optimization can be conducted with widely available modeling tools, and
understood. For examples of how to present results, please see our references.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

26 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

ACKNOWLEDGEMENTS
Although the results reported here are from a single portable workstation, getting to that sole

computational device has involved a lot of experimental computing on a lot more computers. Our Professor
Thomas Halwachs set up software and expanded hardware suites we could easily access during the COVID-
19 months, providing support around-the-clock throughout. We came to call this our DAO-cloud. Dr. Michael
Martinez and Samuel Billingham of MITRE Corporation have been working independently in parallel with us
on their own DAO modeling of force deployment. They generously loaned us a carefully crafted
transportation network database, and have shared their insights with us as they have developed their
optimization tools. Along the way, we have been able to cue each other on potential improvements. We at
Naval Postgraduate School have been gratified to be able to apply DAO to a number of military and homeland
defense situations, but it is even more satisfying to see these methods applied by others in our national
defense.

REFERENCES
Alassad, M., Davarikia, H., and Chan, Y. 2020. An Epistemic Utility-Theoretic Model in Fortifying
Oil-and-Gas Production Networks, Applied Sciences, Vol 10, No 11, 3870.

Alderson, D. L., Brown, G. G., and Carlyle, W. M. 2014. Assessing and Improving Operational
Resilience of Critical Infrastructures and Other Systems, INFORMS Tutorials in Operations
Research, 180–215.

Alderson, D. L., Brown, G. G., Carlyle, W. M., and Cox, L. A. 2013. Sometimes There Is No ‘Most-
Vital’ Arc: Assessing and Improving the Operational Resilience of Systems, Military Operations
Research, Vol 18, No 1, 21–37.

Alderson, D. L., Brown, G. G., Carlyle, W. M., and Wood, R. K. 2017. Assessing and Improving the
Operational Resilience of a Large Highway Infrastructure System to Worst-Case Losses,
Transportation Science, Vol 52, No 1, 1012–1034.

Alderson, D. L., Brown, G. G., Carlyle, W. M., and Wood, R. K. 2011. Solving Defender-Attacker-
Defender Models for Infrastructure Defense. In Operations Research, Computing, and Homeland
Defense, R. K. Wood and R. F. Dell, eds. INFORMS, 28–49.

Alguacil, N., Delgadillo, A., and Arroyo, J. 2014. A Trilevel Programming Approach for Electric
Grid Defense Planning, Computers & Operations Research, Vol 41, 282–290.

Avraamidou, S., and Pistikopoulos, E. N. 2020. A Global Optimization Algorithm for the Solution
of Tri-Level Mixed-Integer Quadratic Programming Problems. In Optimization of Complex
Systems: Theory, Models, Algorithms and Applications. (World Congress on Global Optimization 2019).
Advances in Intelligent Systems and Computing, Vol 991. Springer, 579–588. https://doi.org/
10.1007/978-3-030-21803-4_58

Baggio, A., Carvalho, M., Lodi, A., and Tramontani A. 2021. Multilevel Approaches for the Critical
Node Problem,Operations Research, Vol 69, No 2, 486–508.

Bolusani, S., and Ralphs, T. K. 2022. A Framework for Generalized Benders’ Decomposition and Its
Application to Multilevel Optimization,Mathematical Programming, Vol 196, 389–426.

Brown, G. G., Carlyle, M., Salmeron, J., and Wood, K. 2006. Defending Critical Infrastructure,
Interfaces, Vol 36, 530–544.

Brown, G. G., Carlyle, W. M., Diehl, D., Kline, J. E., and Wood, R. K. 2005, A Two-Sided
Optimization for Theater Ballistic Missile Defense,Operations Research, Vol 53, No 5, 745–763.

Brown, G. G., Kline, J. E., Thomas, A., Washburn, A. R., and Wood, R. K. 2011. A Game-Theoretic
Model for Defense of an Oceanic Bastion Against Submarines, Military Operations Research, Vol
16, No 4, 25–40.

Dahan, M., Sela, L., and Amin, S. 2020. Network Inspection for Detecting Strategic Attacks.
Preprint, https://doi.org/https://doi.org/10.48550/arXiv.1705.00349.

Davarikia, H., Barati, M., Mustafa Al-Assad, M., and Chan, Y. 2020. A Novel Approach in Strategic
Planning of Power Networks against Physical Attacks, Electric Power Systems Research, Vol 180,
106140.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 27

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

https://doi.org/10.1007/978-3-030-21803-4_58
https://doi.org/10.1007/978-3-030-21803-4_58
https://doi.org/https://doi.org/10.48550/arXiv.1705.00349.

Ding, T., Yao, L., and Li, F. 2018. A Multi-Uncertainty-Set Based Two-Stage Robust Optimization to
Defender-Attacker-Defender Model for Power System Protection, Reliability Engineering & System
Safety, Vol 169, 179–186.

Fakhry, R., Hassini, E., Ezzeldin, M., and El-Dakhakhni, W. 2021. Tri-level Mixed-Binary Linear
Programming: Solution Approaches and Application in Defending Critical Infrastructure,
European Journal of Operational Research, Vol 298, No 3, 1114–1131.

GAMS. 2012. GAMS.com.
Geoffrion, A. M. 1972. Generalized Benders Decomposition, Journal of Optimization Theory and
Applications, Vol 10, 237–260.

Ghorbani-Renani, N., González, A. D., and Barker, K. 2021. A Decomposition Approach for Solving
Tri-level Defender-Attacker-Defender Problems, Computers & Industrial Engineering, Vol 153,
107085.

GSO. 2012. Global Security, https://www.globalsecurity.org/military/facility/stracnet.htm.
Gurobi. 2022. https://www.gurobi.com/.
IBM. 2022. https://www.ibm.com/analytics/cplex-optimizer.
Joint Chiefs of Staff. 2017a. Joint Publication 4-01 The Defense Transportation System, July 18.
Joint Chiefs of Staff. 2017b. Joint Planning 5-0, June 16.
Joint Chiefs of Staff. 2018.Deployment and Redeployment Operations, January 10.
Joint Chiefs of Staff. 2019. Joint Publication 4-0 Joint Logistics, May 8.
Lazzaro, G. 2016. Tri-Level Optimization Algorithms for Solving Defender-Attacker-Defender Network
Models. Naval Postgraduate School dissertation.

Lin, Y., and Bie, Z. 2018. Tri-level Optimal Hardening Plan for a Resilient Distribution System
Considering Reconfiguration and DG Islanding, Applied Energy, Vol 210, 1266–1279.

Lozano, L., and Smith, J. C. 2017. A Backward Sampling Framework for Interdiction Problems with
Fortification, INFORMS Journal on Computing, Vol 29, No 1, 123–139.

Nicholas, P., and Alderson, D. L. 2015. Designing Interference-Robust Wireless Mesh Networks Using a
Defender-Attacker-Defender Model. Naval Postgraduate School Technical Report, February 2015.

Owen, G. 1969. Minimization of Fatalities in a Nuclear Attack Model, Operations Research, Vol 17,
No 3, 489–505.

Passmark. 2022. https://www.cpubenchmark.net/cpu_list.php.
Salmeron, J., Wood, K., and Baldick, R, 2009. Worst-Case Interdiction Analysis of Large-Scale
Electric Power Grids, IEEE Transactions on Power Systems Vol 24, 96–104

San Martin, P. A. 2007. Tri-Level Optimization Models to Defend Critical Infrastructure. Master’s thesis,
Naval Postgraduate School.

Simchi-Levi, D., Trichakis, N., and Yun Zhang, P. 2019. Designing Response Supply Chain Against
Bioattacks,Operations Research, Vol 67, No 5, 1246–1268.

Smith, J. C., and Song, Y. 2020. A Survey of Network Interdiction Models and Algorithms, European
Journal of Operational Research, Vol 283, 797–811.

Thompson, K. H., and Tran, H. T. 2020. Operational Perspectives Into the Resilience of the U.S. Air
Transportation Network Against Intelligent Attacks, IEEE Transactions on Intelligent Transportation
Systems, Vol 21, No 4, 1503–1513.

U.S. Army. 2013. Highways for National Defense, Surface Deployment and Distribution Command.
https://www.sddc.army.mil.

U.S. Army. 2018, Strategic Rail Corridor Network (STRACNET), Surface Deployment and Distribution
Command. https://www.sddc.army.mil.

Wu, X., and Conejo, A. J. 2017. An Efficient Tri-Level Optimization Model for Electric Grid Defense
Planning, IEEE Transactions on Power Systems, Vol 32, No 4, 2984–2994.

Wu, Y., Chen, Z., Gong, H., Feng, W., Chen, Y., and Tang, W. 2021. Defender–Attacker–Operator:
Tri-level Game-Theoretic Interdiction Analysis of Urban Water Distribution Networks, Reliability
Engineering & System Safety, Vol 214, 107703.

Brown and Craparo Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example

28 Military Operations Research, V28 N3 2023

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

http://GAMS.com
https://www.globalsecurity.org/military/facility/stracnet.htm
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
https://www.cpubenchmark.net/cpu_list.php
https://www.sddc.army.mil
https://www.sddc.army.mil

Xiang, Y., and Wang, L. 2019. An Improved Defender–Attacker–Defender Model for Transmission
Line Defense Considering Offensive Resource Uncertainties, IEEE Transactions on Smart Grid, Vol
10, No 3, 2534–2546.

Yuan, W., and Zeng, B. 2020. Cost-Effective Power Grid Protection through Defender–Attacker–
Defender Model with Corrective Network Topology Control, Energy Systems, Vol 11, 811–837.

Yuan, W., Zhao, L., and Zeng, B. 2014. Optimal Power Grid Protection through a Defender–
Attacker–Defender Model, Reliability Engineering & System Safety, Vol 121, 83–89.

Implementing Defender-Attacker-Operator (DAO) Optimization, with a Military Force Deployment Example Brown and Craparo

Military Operations Research, V28 N3 2023 29

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

This content downloaded from
�����������205.155.65.226 on Tue, 14 Nov 2023 16:34:43 +00:00�����������

All use subject to https://about.jstor.org/terms

