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volume of these contracts under both cost and emissions uncertainty to optimize the storage operator's expected
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1. Introduction

Most low-carbon energy technologies require well-designed policy
incentives and business models to encourage widespread deployment
of the necessary infrastructure. For carbon capture and storage (CCS),
large networks of capture plants, transportation pipelines, and storage
reservoirs will be necessary. In parallel, a market-based incentive struc-
ture is required to encourage emitters to reduce emissions byparticipat-
ing in a CCS infrastructure.

The potential impacts of CO2 emissions to the atmosphere are well
known and have triggered significant work on low-carbon energy tech-
nologies. In order to reduce atmospheric concentrations of greenhouse
gases over the long term, multiple solutions are needed to reduce the
total emissions volume. Given the magnitude of global dependence on
carbon-intensive fuels, no single technology has been identified that is
sufficient to meet the challenge alone. However, most major studies on
practical strategies to reduce global emissions have included CCS on the
list of technologies that can have a significant impact on emissions by
2050 (International Energy Agency, 2010; Pacala and Socolow, 2004).
The basic idea behind CCS is to identify major point sources, like coal-
fired power plants or cement production facilities, and then capture the
produced CO2 before it is released to the atmosphere. The captured gas
and Industrial Engineering New
, New Jersey 07102-1982.
can then be compressed and piped to special storage sites where it is
injected into deep subsurface reservoirs. The sequestered CO2 is stored in-
definitely and therefore does not increase atmospheric concentrations.

Currently, there are eight industrial scale CO2 capture and storage pro-
jects operating around theworld,withdozensmore in the construction or
planning stages (Global CCS Institute, 2012). The longest running project,
Sleipner, has been injecting CO2 since 1996 and so far has stored 16 Mt
(1 Mt = 106 metric tonnes = 109 kg) in a deep reservoir beneath the
Norwegian North Sea (Arts et al., 2008; Chadwick et al., 2012). Sleipner
was developed in response to the passage of a Norwegian CO2 tax in
1991, and the avoided tax burden quickly paid for the development costs.

Several businessmodels are available to dealwith the capture, trans-
portation, and storage of CO2, including “self build and operate”, “joint
venture” and “pay at the gate” (Esposito et al., 2010). The first model
takes a vertically-integrated approach in which the emissions producer
handles the entire chain of capture, transportation, and storage. This
means that the emissions producer needs to acquire and obtain permits
for reservoirs, build injectionwells and pipelinenetworks, and assemble
a teamof internal staff to operate andmaintain these facilities. The latter
two models involve either partnering or contracting with one or more
companies to handle the transportation and disposition of CO2. Thus,
the emissions producers only need to invest in the CO2 capturing tech-
nology. Most studies in the existing literature (Keating et al., 2011;
Kemp and Kasim, 2010; Klokk et al., 2010; Middleton and Bielicki,
2009; Middleton et al., 2012a) focus on the design of an optimal
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Table 1
List of terms and variables.

Data [units]
K Monthly fixed cost [$] for site
α1 Marginal cost [$/Mt] incurred by the storage operator for transporting and

storing CO2 via pipelines
α2 Marginal cost [$/Mt] incurred by the storage operator for transporting and

storing CO2 via other means
cap Maximum capacity for site [Mt]
tax Fixed tax [$/Mt] that the emitter pays for CO2 vented

Random variables [units]
em Amount of CO2 [Mt] emitted by the emitter, has a p.d.f., f (∙) and a c.d.f., F (∙)
cc Cost [$/Mt] incurred by the emitter for CO2 captured, has a p.d.f., g (∙) and a c.d.f.,

G (∙)

Decision variables [units]
prc Service price [$/Mt] that the storage operator charges the emitter for CO2 stored

at site
con Contract amount of CO2 [Mt] transported via pipeline and stored at the

operator's site

57W. Cai et al. / Energy Economics 43 (2014) 56–62
vertically-integrated CCS infrastructure that minimizes the total cost of
capturing, transportation and storing CO2. Our work considers the “pay
at the gate” approach, inwhichwe assume that the emissions producers
are responsible for capturing CO2 emissionswhile the operator provides
the transportation and the storage as a single service. Certainly, these
services could be handled separately as well.

In the US, a modest market for CO2 already exists in Enhanced Oil
Recovery (EOR) operations, in which CO2 is used to release residual oil
trapped in depleted fields. Currently, the primary sources of CO2 are from
natural deposits and from certain industrial processes. The CO2 is sold, at
a profit, to oil and gas companies for their EOR operations. In many ways,
the current CO2 market therefore already reflects a “pay at the gate”
model. For CCS to have a significantmitigation effect on global greenhouse
gas emissions, however, simply expanding the EOR market is insufficient.
CO2 capture from power plants and dedicated geologic storage will be
required. Nevertheless, a similar market structure may be adopted.

The “pay at the gate” model provides a number of advantages. The
most significant one is that emissions producers do not need to develop
in-house expertise and staffing in CO2 transportation and storage,
which are far outside their traditional knowledge area. Secondly, there
are significant risk and liability issues associated with subsurface CO2

storage. A dedicated CO2 storage providermay be able to better manage
these risks by developing the necessary technical capabilities. Thus,
having a dedicated company to provide the service and free the emis-
sions producers from these concerns can be attractive to the emissions
producers. Thirdly, by providing the service to multiple emissions pro-
ducers, the service company can reduce the risks associatedwith uncer-
tainty and become cost efficient.

We design contracts between two individual players: a CO2 emissions
producer and a transportation and storage provider. We refer to these
players as the “emitter” and the “storage operator” respectively. An emit-
ter can be any large point-source of CO2: a coal- or natural-gas-fired
powerplant, a steelmaker, or a cementmanufacturer. Both energy service
companies and oil and gas companies can be good candidates to play the
role of storage operators. We study how a storage operator should design
a contract that specifies the amount of captured CO2 to be transported via
pipeline at a fixed service price (per Mt). We consider the storage
operator's costs, his expectations of both the emissions quantity and the
emitter's capture cost, and an external tax rate on emissions faced by
the emitter.Whilewe do notmodel negotiations between the players, re-
sults fromourmodels canhelp the storage operator choose an initial offer.

Our work is based on three premises: (1) all participants are utility
maximizers, (2) a fixed carbon tax has been established, and (3) some
of the inputs needed to design the contract, namely the capture cost
and the emissions quantity, are uncertain. While the first premise
enables us to establish an economic model of how participants make
their decisions, the second premise is essential since emitters will have
little financial incentive to participate in CCS if they can emit CO2 into
the atmosphere for free. A carbon tax is generally considered as an effec-
tive economic incentive to reduce CO2 emissions. To date,many countries
andmunicipalities have adopted some formof carbon taxation, including:
Finland (1990); Netherlands (1990); Norway (1991); Sweden (1991);
Denmark (1992); United Kingdom (2001); Boulder, Colorado (2007);
Quebec (2007); British Columbia (2008); and the Bay Area Air Quality
Management District, California (2008) (Sumner et al., 2011). A number
of other countries have carbon tax proposals under consideration.

The third premise allows us to construct an optimal contract for the
storage operator while allowing for uncertain information. Due to the
novelty of CO2-capture technology and the one-of-a-kind nature of
new capture plants, the true cost to install and operate the capture
facility can only be known to the emitter, who may want to conceal its
value to keep the storage contract price low. Additionally, the emissions
quantity is not constant. In the case of a power plant, the uncertainty in
emissions quantity is a result of fluctuations in electricity demand and
plant downtime for maintenance. As demonstrated by Middleton and
Eccles (2013), emissions profiles at different plants are heterogeneous
and therefore greatly impact the emitters' decisions on the amount of
CO2 captured. Thus, such uncertainty also affects the optimal contract
the storage operator offers to the emitter in our analysis. Optimizing
the price and volume of the contract together can further increase the
profit of the storage operator, especially when the distributions of the
capture cost and emissions quantity are correlated. While Middleton
et al. (2012b) demonstrate that the geologic reservoir uncertainty has
large cost implications on building a CCS infrastructure, our analysis
shows uncertainty in capture cost and emissions quantity also have sig-
nificant impacts on the optimal contractual agreement between the
emitters and the storage operator.

Themodels proposed in this paper encompass the unique aspects of
the contract design problem. The emitter compares the cost of paying
the emissions tax against the cost of engaging a storage operator to
store their CO2. Meanwhile, a storage operator has limited capacity
and incurs costs for transporting and storing captured CO2. Neither
player will participate if a negative utility is obtained. We construct a
newsvendor model and derive the optimal contract terms that maxi-
mizes the expected profit of the storage operator, while incentivizing
the emitter to participate. Our results provide guidance in determining
how much CO2 should be expected to be transported and stored, and
atwhat cost. We also provide analysis on the effect of information accu-
racy on the optimal contracts.

The rest of our paper is organized as follows: Section 2 provides the
modeling details and the structure of the contract. In Section 3 we intro-
duce the first model, in which we choose the optimal contract volume
given uncertainty in the emissions quantity and a pre-determined
service price. We extend the basic model to select the optimal price con-
sidering both uncertainty in the capture cost and emissions quantity in
Section 4. In Section 5 we present numerical results for realistic input
values, and study the effect of correlation between the capture cost and
emissions quantity on the optimal profit. Section 6 draws conclusions
and details avenues for further research. All proofs appear in Appendix A.
2. Model details

In this section we describe the components of our model, which are
summarized in Table 1. Let K denote the fixed monthly cost associated
with setting up the site, which includes the costs of drilling the injection
wells, monitoring the site, insurance, etc. Note that both the number of
wells and the depth of each well are determined by the geology of the
reservoir, and the number of wells often determines the storage cost.
The limiting factor in determining capacity is often themaximum storage
rate (Mt/yr) rather than the maximum volume (total Mt). In our model,
we focus on a single-period setting which corresponds to monthly injec-
tion and storage. Thus we assume that the contracted amount of CO2 will



58 W. Cai et al. / Energy Economics 43 (2014) 56–62
be injected at a rate below the physical limit, and let cap denote the
maximummonthly capacity that the storage operator can take.

The storage operator also incurs a unit cost α1 (per Mt) for
transporting and storing CO2 up to the contract amount, and amarginal
cost α2 (per Mt) to transport and store any excess CO2 above the con-
tract amount. Note that this is a simplified cost model that masks
many of the financing details associatedwith large capital planning pro-
jects. More complex cost structures, however, can be converted to
equivalent fixed and unit costs. Additionally, there is a tax (per Mt)
imposed on the emitter for any CO2 that is released to the atmosphere.

The power plant has an emissions volume em (in Mt) during the
single period which is a random variable from a known distribution.
Additionally, the capture cost cc is the (per Mt) cost of employing cap-
ture technology to prevent CO2 frombeing emitted. This cost is privately
known to the emitter, but the storage operator can estimate a distribu-
tion on cc to help decide what price to charge the emitter.

We divide the decision process into two stages. In the contracting
stage, the storage operator maximizes his expected profit over two deci-
sion variables. The first is the service price, prc, to charge the emitter per
Mt of CO2 transported and stored. The second is the contract amount,
con (in Mt) that is the amount the emitter can store at a given value of
prc. Once such decisions are made, the storage operator presents a con-
tract that specifies both the price and the contract amount. The emitter
decides whether to accept the contract by comparing prc against the dif-
ference between the tax and the capture cost. If the emitter finds it is
cheaper to capture and store the carbon than to pay the emissions tax,
he accepts the contract, and the storage operator commits to build the
pipeline capacity so that the contracted amount of CO2 (con) can be
transported via pipeline and stored. The storage operator only builds
the pipeline between the emitter and the storage site after the contract
is accepted and prior to the beginning of transporting CO2.

In the execution stage, the emitter observes the actual emissions
quantity and has the right (but not the obligation) to store con Mt of
CO2 at the operator's site. If the emitter wants to store more CO2 than
the contracted amount, the storage operator may choose not to accept
the excess based on either the cost of transportation or the capacity of
the site. However, the storage operator is not able to charge a higher
price for the additional amount of CO2.

Under the framework described above, we construct two linked
models for the storage operator to determine the optimal contract
volume and the optimal price in Sections 3 and 4, respectively.

3. Stochastic emissions quantity

First, we determine the optimal contract amount in the presence of a
stochastic emissions quantity. Because there is uncertainty in the capture
process, the demand for power varies, and the plant may need to shut
down for unexpected maintenance, neither the emitter nor the storage
operator can definitively predict the volume of CO2 emissions available
for storage. To address this uncertainty, we treat the emissions volume
(em) as a random variable with a known distribution. Let f(em) denote
the probability density function (p.d.f.) of the emissions quantity, and
F(em) denote its cumulative density function (c.d.f.). Since the emissions
quantity needs to be positive and can be potentially quite large, we fur-
ther assume that the density function has a non-negative and continuous
support. The storage operator's goal is to optimize the contract given a
pre-determined prc, which, for now, we assume is known.

Because the storage operator needs to build the pipelines for
transporting CO2 from the emitter to the site after the contract has
been accepted but prior to any CO2 being transported, the optimal con-
tract amount is an important decision. For simplicity, we assume that
the emitter builds the capacity of the pipelines to match the contract
amount. If the emitter asks to store more than the contract amount,
the storage operator can use another method (truck, train or ship) to
transport the excess CO2 at a higher marginal cost, α2 (Nα1). In general,
building a pipeline is the most efficient way of transporting large
volumes of CO2, and other options such as trucking are more expensive
in the long run (Herzog and Golomb, 2004).

Because our model assumes that the storage operator can only
charge a single price for all CO2 stored, the profit function for the storage
operator varies depending on em. Recall that cap denotes themaximum
capacity at the site the operator makes the injection. If emissions
amount is less than cap, the storage operator receives revenue prc∙em;
otherwise, he receives prc∙cap. On the cost side, the operator incurs a
cost ofK+α1∙con (whereK is thefixed setup cost andα1 is themarginal
cost of operating the transport and storage system) regardless of the
emissions quantity. When em is above con, the storage operator incurs
an additional cost of α2∙(min(em, cap) − con) for transporting and
storing the additional CO2. The following equation summarizes the prof-
it function for the three cases:

Π con; prcð Þ ¼
prc � em−α1 � con−K if em≤con
prc � em−α1 � con−α2 � em−conð Þ−K if conbembcap
prc � cap−α1 � con−α2 � cap−conð Þ−K if em≥cap:

8<
:

The storage operator's expected profit is:

E Π con; prcð Þ½ � ¼ −K−α1 � conþ
Z con

em¼0
prc � em½ � f emð Þdem

þ
Z cap

em¼con
prc � em−α2 � em−conð Þ½ � f emð Þdem

þ
Z ∞

em¼cap
prc � cap−α2 � cap−conð Þ½ � f emð Þdem:

ð1Þ

Eq. (1) shows the calculation of the expected profit by performing a
probability-weighting over the possible profits the storage operator
would receive under different values of em. Since the storage operator's
goal is to maximize his expected profit, we can formulate an optimiza-
tion problem as

max
con

E Π con;prcð Þ½ � s:t: con≤capj g:f ð2Þ

The optimal solution to the problem is summarized in the proposi-
tion below, and the proof is provided in Appendix A.

Proposition 1. Given a pre-determined service price, the optimal contract
that maximizes the storage operator's expected profit is

con� ¼ min F−1 α2−α1

α2

� �
; cap

� �
;

where F−1 is the inverse of the c.d.f. F.
Proposition 1 suggests that the optimal contract amount is indepen-

dent of the pre-determined service price (prc) charged for the contract
(as long as the price is high enough for the storage operator to make a
profit). Instead, it depends on the marginal costs (α1 and α2) of
transporting and storing CO2 as well as the distribution function of the
emissions quantity. The optimal contract amount (con⁎) increases in
α2 but decreases in α1. Since the storage operator commits himself to
transport and store the contract amount via pipelines, he is thus incen-
tivized to build a bigger pipeline capacity when the marginal cost of
pipeline is cheaper or when the other transportation methods are
costly.

Suppose the emissions level follows a uniform distribution U[μem −
δem, μem + δem], where μem is the mean of the distribution and δem is the
half-width of the support. If the emissions distribution has a lower
bound above zero, the storage operator's optimal contract amount is
con⁎ = min {μem + (1 − 2α1 / α2)em, cap}. In the extreme case where
the marginal cost of transporting and storing carbon is the same using
pipelines as other transportation methods (i.e., α1 = α2), the storage
operator should build pipeline capacity equivalent to the lower bound
(μem − δem). In the other extreme case where another transportation
method is not available (i.e., α2 is infinity), the storage operator should
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set the contract amount to be the minimum of the upper bound
(μem + δem) and the total capacity (cap). In the scenario where
the emissions distribution has a positive density at zero, the storage op-
erator should not build any pipelinewhen themarginal costs of the two
types of transportation are not significantly different. We provide some
numerical examples showing the optimal contract amount under
different distributional settings in Section 5.

4. Stochastic capture cost

Next, we model the decision for how much the storage operator
should charge the emitter per Mt of CO2 stored given uncertainty in
both the capture cost cc and the emissions quantity em. Because the
emitter's capture cost varies depending on the technology used, it is pri-
vate information and the emitter does not have any incentive to report
the cost truthfully. To address this information asymmetry, the storage
operator needs to form rational expectations of the distribution of the
emitter's capture cost. We allow cc to be a random variable with a
known distribution. The storage operator's objective is to find the opti-
mal price for the contract tomaximize his profit while still incentivizing
the emitter to participate (as long as the emitter is sufficiently efficient
in capturing CO2 and cc is low enough).

For a given price, the emitter will either accept or reject the contract
based on his capture cost. If the price is set too high, the storage operator
bears the risk of being turned down because the emitter is better off
emitting to the atmosphere and paying the tax. On the other hand, if
the price is set too low, the storage operator leaves “information rent”
to the emitter which in turn lowers his profit.

Given a contract (prc, con) specified by the storage operator, the
emitter determines whether he should accept the contract or vent the
CO2 and pay the tax. Since the cost to the emitter is the price to store
the CO2 plus the cost of capturing it, he will accept the contract only if
ptc + cc ≤ tax. If the actual emissions quantity is less than the
contracted amount (em b con), then both parties agree to only transport
and store emMt of CO2 at the price of prc. On the other hand, if the emit-
ter produces more CO2 than the contract amount (em N con), the emit-
ter can either pay tax on the excess amount or can request the storage
operator to transport more to his site. For simplicity, we assume that
the storage operator is unable to charge a higher price for the additional
CO2. However, hemay choose not to fulfill the request if there is a lack of
capacity.

Though the capture cost is the emitter's private information, it
is natural for us to assume that the storage operator can learn the
distribution of the emitter's capture cost through estimation. Let
g(cc) and G(cc) denote the probability and cumulative distribution
function of the capture cost (per Mt of CO2) of the emitter, respec-
tively. Since the capture cost should be positive and can be very
high, we assume that the density function g has a non-negative
and continuous support. Recall from Section 3 that the optimal
contract amount does not depend on the price or the distribution
of cc, and we can thus use the contract amount (con⁎) as given.

If the price is set such that the emitter is willing to accept the con-
tract, the storage operator will receive revenue from the contract. The
storage operator also pays the cost of operating the site as well as the
cost of transporting and storing the contracted (or requested) amount
of CO2. Otherwise, the emitter rejects the contract and the storage oper-
ator builds neither the storage site nor the pipeline connecting the emit-
ter and the storage site, and consequently incurs no costs.

Consider the problem of designing a contract from the storage
operator's point of view given the uncertainty in cc and em. For a given
price prc, the storage operator's profit can be written as:

Π′ con; prcð Þ ¼
0 if cc N tax−prc
prc � em−α1 � con − K otherwise & em ≤ con
prc � em−α1 � con −α2 � em−conð Þ− K otherwise & con b em b cap
prc � cap−α1 � con− α2 � cap−conð Þ−K otherwise & em ≥ cap

8>><
>>:
We can thus calculate the storage operator's expected profit while
allowing the contract to be rejected. This is the same as the expected
profit given the contract is accepted times the probability that the con-
tract is accepted. Since we assume that the emitter is rational, we con-
clude that he would accept the contract if the sum of his capture cost
and the service price charged by the storage operator is lower than
tax, i.e.,

ccþ prc≤tax⇒cc≤tax−prc:

Thus, G(tax− prc) is the probability that the emitter will participate
in CCS with the storage operator, and we can write the storage
operator's expected profit as follows:

E Π′ con;prcð Þ
h i

¼ E Π con; prcð Þ½ � � G tax−prcð Þ: ð3Þ

To maximize the storage operator's expected profit, we solve the
following unconstrained optimization problem by determining the
optimal price:

max
prc

E Π′ con�
; prc

� �h in o
:

Proposition 2. Given the optimal contract amount (con⁎), the optimal
service price, prc⁎, that maximizes the storage operator's expected profit
solves the following implicit equation:

G tax−prcð Þ �
�
cap−

Z cap

0
F emð Þdem

	
¼ g tax−prcð Þ � E

h
Π con�

; prc
� �i

:

ð4Þ

In addition, the following conditions must hold at prc⁎:

ið ÞE Π con�
; prc�

� �
 �
≥0; and iið Þg′ tax−prc�

� � � E Π con�
;prc�

� �
 �

−2g tax−prc�
� � � �cap−

Z cap

0
F emð Þdem

	
b0:

Proposition 2 suggests that the optimal price depends on G(tax −
prc), which is the cumulative probability that the capture cost is lower
than the difference between tax and price. As mentioned before, the
storage operator wants to set the service price to be as high as possible
tomaximize his expected profit, but also ensures that the service price is
low enough to induce efficient emitters (i.e., with low capture costs) to
accept the contract. This tradeoff is thus incorporated by having the
distribution of cc in the optimal solution in the terms G(tax − prc) and
g(tax− prc).

The discontinuity of the profit function at cc = tax − prc results in
the reliance on the density function g(tax − prc). While such reliance
makes a closed form solution for prc⁎ intractable for general distribution
functions, simple line search methods can be used to find the optimal
solution numerically for any arbitrary distribution of g. Condition
(i) stated in Proposition 2 ensures that the optimal price guarantees a
non-negative profit for the storage operator. He should choose not
to provide the service if this condition does not hold. Condition
(ii) checked the second order condition. These conditions may further
restrict the value of prc⁎, the allowable range of tax to motivate a CCS
infrastructure, as well as the allowed shape of the density distribution
g(cc).
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To providemore intuition for our result, let us consider uniformdistri-
butions for both the capture cost and emissions quantity. Let f (∙) ~ U[μem
− δem, μem + δem] and g (∙) ~ U[μcc − δcc, μcc + δcc] where μcc and δcc are
defined similarly for the capture cost distribution. Further, the upper
limit of the emissions quantity is below the total capacity and the lower
limit is non-negative, i.e., μem + taem b cap and μem − δem ≥ 0. Recall
that the optimal contract amount is con⁎ = μem + (1 − 2α1 / α2)δem,
and the storage operator's expected profit given the acceptance of the
contract is

E Π con�
; prc

� �
 � ¼ prc � μem−α1 � μem þ 1−α1=α2ð Þδemð Þ−K: ð5Þ

Solving Eq. (4), we obtain the optimal price as follows:

prc� ¼ α1 � μem þ 1−α1=α2ð Þδemð Þ þ K
2μem

þ tax− μcc−δccð Þ
2

: ð6Þ

Note that since the distribution of capture cost is bounded, prc⁎must
be within the range of [μcc − δcc, μcc + δcc]. Otherwise, setting the opti-
mal service price to the lower limit of the distribution is optimal. This
means that all emitters would accept the contract. Since g(cc) is
uniform, g′ (tax − prc⁎) = 0. Condition (ii) becomes − 1/δcc ⋅ (cap −
∫ 0

capF(em)dem) b 0, and is thus satisfied. Condition (i) holds as long as
the marginal tax is large enough, i.e.,

tax≥μcc−δcc þ
α1 � μem þ 1−α1=α2ð Þδemð Þ þ K

μem
:

Because ∂prc∗/∂α1 = (μem + (1 − 2α1/α2)δem)/(2μem) ≥ 0, and
∂prc∗/∂α2 = (α1/α2)2δem/(2μem) N 0, the optimal service price increases
when either of the transportation costs increases. Similarly, a higher
set-up cost also drives up the service price. Moreover, a higher tax
rate not only allows the storage operator to charge a higher price, but
also increases the emitter's willingness to participate in CCS. Conse-
quently, the storage operator's overall expected profit increases.

5. Experimental results

In this section, we provide numerical examples to assess the effect of
the distributions of the capture cost (cc) and the emissions quantity (em)
on the optimal policies. The contract decisions are computed in two
stages. In the first stage, the optimal contract amount is calculated inde-
pendently of the service price. In the second stage,we set the optimal ser-
vice price. While the optimal values can be calculated numerically for
given distributions of cc and em, we can also use simulation to choose
the contract values. Simulation is an easyway to generate expected profit
values for different contract options. We demonstrate that a higher accu-
racy of information about cc and em (i.e., lower variance in their distribu-
tions) can lead to higher expected profit for the storage operator.

We use the parameter values given in Table 2. These values are taken
to be representative of realistic costs based on current experience (Herzog
andGolomb, 2004; Rubin et al., 2007; Sumner et al., 2011). Due to the im-
maturity of the CCS industry and the site-specific nature of all costs, how-
ever, estimated values for each of these parameters can cover very broad
ranges and are the subject of some debate.
Table 2
Parameter values used in numerical solution.

Parameter Value

K $500,000 per month
α1 $6 per tonne
α2 $15 per tonne
cap 1 Mt per month
tax $100 per tonne
Mean of em 0.5 Mt per month
Mean of cc $50 per tonne
5.1. Uniform distributions

Simulation optimization has recently becomea very popularmethod
for finding optimal solutions when objective functions can be evaluated
via simulation (see Fu et al. (2008) for an overview). In order to esti-
mate the optimal solution, we simulate many possible values of cc and
em according to their distributions g and f, and determine the optimal
values of the service price (prc) and contract amount (con) that would
provide the highest average profit using those simulated values. As a
first example, we consider uniform distributions for em and cc. Specifi-
cally, we use a distribution of the form U[μ − kσ, μ + kσ], where μ is
the mean of the distribution and σ is some level of variation in the dis-
tribution. We vary k (using the same k for both cc and em) to show the
effect on the optimal solutionwhen the ranges of the distributions vary.

Table 3 suggests that with lower levels of uncertainty, the expected
profit and expected amount of CO2 stored are higher. When k = 0, we
have the deterministic case where the optimal contract amount and
price can be calculated exactly given the exact information. As uncer-
tainty increases, the optimal contract amount increases to allow for
potentially higher emissions, but the price decreases to allow for uncer-
tainty in capture costs that might lead to rejection of the contract.
Because there is an increased chance of rejection or low emissions, the
expected value of CO2 stored decreases. However, for high levels of
uncertainty, we notice an increase in the optimal price to compensate
for the extreme risk to the storage operator.
5.2. Normal distributions

We now consider normal distributions for cc and em as N μcc;σ ccð Þ
and N μem;σ emð Þ, respectively. The μ parameters are the sample means
of the distributions, while the σ values are the standard deviations.
We modify the coefficient of variation (CoV), which is defined to be
σ/μ for the normal distribution, and represents the relative level of
dispersion given the mean. Keeping the mean constant, we modify
the CoV through the standard deviation (using the same CoV for
both cc and em). Table 4 displays the optimal solutions, and we
again see that a higher optimal price can be obtained when the un-
certainty in the distribution is either very low or very high.

The results for the normal distribution in Table 4 are similar to those
of the uniform case. The deterministic case (CoV = 0) yields the same
results, and as uncertainty increases, con⁎ increases, while the expected
profit and expected amount stored decrease. The optimal price
decreases originally, but increaseswhen uncertainty is large. The results
provide lower bounds on the optimal contract amounts and price that
should be offered, and provide benchmarks on the profit that can be
expected. The similarity in scale between the uniform and normal
values implies that our model may be robust to incorrect distribution
selections, and we would recommend that the user try many distribu-
tions to check model sensitivity. While the ideal situation is low
or zero uncertainty, the storage operator may want to use a high-
variance distribution in order to obtain a conservative estimate of
their expected profit.
Table 3
Optimal solutions for different values of k when the distributions of em and cc take
the form U[μ − kσ, μ + kσ] with μem = 0.5 Mt, σem = 0.1 Mt, μcc = $50/tonne, and
σcc = $10/tonne.

k con⁎ (Mt) prc⁎ ($/tonne) E[profit] (millions) E[CO2 stored] (Mt)

0 0.50 $50.00 $21.50 0.50
0.5 0.51 $45.00 $18.82 0.50
1 0.52 $40.00 $16.14 0.50
2 0.54 $39.61 $11.85 0.38
3 0.56 $44.44 $10.48 0.30
4 0.58 $49.66 $9.97 0.25



Table 4
Expected optimal solutions for different values of σ / μ for N μ;σð Þ with μem = 0.5 Mt
and μcc = $50/tonne.

CoV con⁎ (Mt) prc⁎ ($/tonne) E[profit] (millions) E[CO2 stored] (Mt)

0 0.50 $50.00 $21.50 0.50
1/6 0.52 $40.93 $14.13 0.42
1/5 0.53 $40.37 $13.45 0.42
1/4 0.53 $40.20 $12.26 0.39
1/3 0.54 $40.40 $11.21 0.36
1/2 0.57 $45.58 $10.04 0.28
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To better view the profit function over choices of price and contract
amount, we plot the expected profit over both dimensions. Fig. 1 shows
a contour plot of the expected profit under the different options of (prc,
con). We see that for many solutions, the expected profit to the storage
operator is negative. This reinforces our belief that the decision of the
amount of CO2 to store, and the best price to charge the emitter, are
important for making this venture Profitable.

5.3. Correlated distributions

Lastly, we use the simulation optimization to estimate optimal solu-
tions for cases where the distributions of the emissions quantity and
capture cost are correlated. For example, economies of scale in CO2

emissions capturing may lead to a lower capture cost, suggesting that
em and ccmight be negatively correlated.

By jointly simulating cc and em according to correlated distributions,
we can capture the potential dependence in the randomness and esti-
mate the appropriate optimal solution. As an example, we simulate
em and cc from the same normal distributions as used in the previous
section with CoV values of 1/6 as in Fig. 1, but with correlations
of −0.7 and 0.7. Fig. 2 shows the contour plots of the expected profit
function for the correlated cases.

Our simulation results demonstrate that correlation between the
emissions quantity and capture cost has no effect on the optimal con-
tract amount. However, the left plot of Fig. 2 shows that a higher expect-
ed profit can be obtained by the storage operator when the emissions
quantity and capture cost are negatively correlated. This is because
larger plants that emit more tend to have lower capture costs and so
are more likely to accept the contract for a given price, leading to a
higher expected revenue for the storage operator. When the emissions
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Fig. 1. Contour plot of E[Π] over prc and con using normal distributions with a CoV of 1/6.
quantity and the capture cost are positively correlated, however, larger
plants tend to have very high costs and are thus less likely to accept the
contract. As a result, the storage operator's expected profit is lowered.
This intuition is supported by the right plot of Fig. 2.

6. Conclusions

We propose a stylized model to address the problem of incentivizing
both the storage operator and the emitters to participate in CCS. While a
tax on emissionswould encourage power plants and other emitters to re-
duce the level of CO2 released into the atmosphere, in order for CCS to
contribute to this reduction it must be profitable for an independent
party to invest in the transportation and storage infrastructure. Our
paper shows that profit maximization policies not only facilitate the stor-
age operator to decide the optimal contract volume to commit to and the
optimal service price to charge, but also provide estimation of the likely
amount of CO2 that could be stored if such a party was to take advantage
of a carbon tax. Given the relative newness of such contracts and CCS
technology, uncertainty in our models allow for both parties to better
deal with the risk associated with the “pay at the gate” business model.

The methodology used in this paper for designing optimal contracts
between the storage operator and the emitter can be extended in sever-
al directions. A natural extension is to study the optimal contract design
between one storage operator andmultiple emitters, each of whom has
a different profile in terms of emissions quantity, capture cost, and
distance from the storage site. We can then examine whether a risk-
pooling effect exists; that is, whether the storage operator could
increase the expected amount of CO2 stored and consequently achieve
a higher expected profit when compared to serving each emitter inde-
pendently. Another direction is to incorporate in our model other
costs or revenues, whether deterministic or stochastic, of both the stor-
age operator and the emitters. As an example, because CO2 is currently
used to improve oil recovery from oil and gas reservoirs, both the stor-
age operator and the emitters can make profits (or offset costs) by
selling a portion of captured CO2 to oil and gas companies. It is thus
worth evaluating the impact of this option on the emitters' willingness
to participate in CCS as well as on the storage operator's expected
amount of CO2 stored and the associated profit. In addition, we can
consider competition amongmultiple storage operatorswho arewilling
to serve multiple emitters, and evaluate whether a shared pipeline
network could be beneficial for all parties over dedicated pipelines.

Appendix A

Proof of Proposition 1. Tofind theoptimal value of con thatmaximizes
the storage operator's expected profit, we first solve the unconstrained
problem and maximize the objective function (1). We take the deriva-
tive of the expected profit function with respect to con and set it equal
to 0. Applying Leibniz rule, we obtain the following equation:

∂E Π con;prcð Þ½ �
∂con ¼ prc � conð Þ f conð Þ þ

Z cap

con
α2 � f emð Þdem

− prc � conð Þ f conð Þ þ
Z ∞

cap
α2 � f emð Þdem−α1

¼
Z cap

con
α2 f emð Þdemþ

Z ∞

cap
α2 f emð Þdem−α1

¼ α2 1−F conð Þð Þ−α1 ¼ 0:

ð7Þ

We thus find the stationary point as

con� ¼ F−1 α2−α1

α2

� �
:
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Fig. 2. Contour plot of E[Π] over prc and con using normal distributions with a CoV of 1/6, and a correlation of −0. 7 (left) and 0. 7 (right) between em and cc.
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We now verify that the second order condition is satisfied at con⁎,
i.e.,

∂2E Π con;prcð Þ½ �
∂con2 con� ¼ −α2 � f conð Þjcon� ¼ −α2 � f con�� �

b0:
��

Thus, con⁎ is the optimal solution that maximizes the storage
operator's expected profit. Since the storage operator cannot set the
contract amount to exceed the maximum capacity of the operator,
and the expected profit function is concave for all values of con for
which f (con) N 0, we set the optimal contract amount to be con� ¼ min
F−1 α2−α1

α2

� �
; cap

n o
. □

Proof of Proposition 2. First we re-write E[Π(con∗, prc)] as

E Π con�
; prc

� �
 � ¼ −K−α1 � con� þ prc �
Z cap

0
em � f emð Þdem

þprc �
Z ∞

cap
cap � f emð Þdem−α2 �

Z cap

con�
em−con�� �

f emð Þdem

−α2 �
Z ∞

cap
cap−con�� �

f emð Þdem

¼ −K−α1 � con� þ prc �
�
em � F emð Þ

���cap0 −
Z cap

0
F emð ÞdemÞ

−α2 �
�

em−con�� � � F emð Þ
���capcon�−

Z cap

con�
F emð ÞdemÞ

þprc � cap � 1−F capð Þð Þ−α2 � cap−con�� � � 1−F capð Þð Þ

¼ −K−α1 � con� þ prc �
�
cap−

Z cap

0
F emð ÞdemÞ

−α2 �
Z cap

con�
F emð Þdem;

where F emð Þ is 1 − F(em).
Thus, ∂E Π con� ;prcð Þ½ �

∂prc ¼ cap−∫
cap

0
F emð Þdem. To find the optimal value of

prc that maximizes the storage operator's expected profit, take the de-
rivative of the expected profit function E[Π′] with respect to prc and
set it equal to 0:

∂E Π′ con�
; prcð Þ

h i
∂prc ¼ ∂ E Π con�

; prcð Þ½ � � G tax−prcð Þ�ð Þ
∂prc

¼ ∂E Π con�
;prcð Þ½ �

∂prc � G tax−prcð Þ

−E Π con�
; prc

� �
 � � g tax−prcð Þ

¼ G tax−prcð Þ � ðcap−Z cap

0
F emð ÞdemÞ

−g tax−prcð Þ � E Π con�
;prc

� �
 � ¼ 0:

The stationary point (prc⁎) solves the above equation.
Next, we check second order condition at prc⁎:

∂2E Π′
h i

∂prc2

�����prc� ¼ g
0 tac−prcð Þ � E Π con�

;prc
� �
 �

−2g tax−prc�
� � � ðcap−Z cap

0
F emð ÞdemÞ:

When the value of the second derivative is less than 0, prc⁎ is the opti-
mal solution that maximizes the storage operator's expected profit. In
addition, to ensure the operator's expected profit is non-negative, we
further restrict E[Π(con∗, prc∗)] ≥ 0.□

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.eneco.2014.02.003.
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