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The decentralized cooperative exploration problem necessarily involves commu-
nication among agents, while the spatial separation inherent in this task places
fundamental limits on the amount of data that can be transmitted. However, the
impact of limited communication on the exploration process has not been fully
characterized. No known exploration algorithm realistically models the tradeoff
between rapid expansion (which allows more rapid exploration of the map) and
maintaining close relative proximity among agents (which facilitates communica-
tion). This work is a first step toward characterizing the impact of limited commu-
nication on this cooperative estimation task by considering a static version of the
problem. The mathematical properties of the information form of the Kalman filter
are leveraged in the development of two approximate algorithms for selecting highly
informative portions of the information matrix for transmission. One algorithm,
a fully polynomial time approximation scheme, provides provably good results in
computationally tractable time for problem instances of a particular structure. The
other, a heuristic-based method applicable to instances of arbitrary matrix struc-
ture, performs very well in simulation for randomly-generated problems of realistic
dimension.

I. Introduction

One of the fundamental issues facing autonomous mobile robots is the necessity of operating in
a priori unknown environments. The ability to autonomously build a map of an environment and, if
necessary, estimate the robot’s own location within that map is regarded as a primary prerequisite
for fully autonomous robots. This challenge is captured by the well-known simultaneous localization
and mapping (SLAM) problem.20

Scalability is an important characteristic in algorithms for collaborative mobile robot teams.19

The magnitude of problem parameters and the number of robots available to perform tasks are both
unknown a priori in many problems of interest.10 Without the ability to adapt a solution structure
to problem instances of practical scale, the full benefit of using multiple robots is not realized. The
need to create cooperative algorithms that scale well with the size of a robot team and with the
magnitude of problem parameters (e.g. the number of features in a mapping problem) has led to
a widespread interest in decentralized and approximate algorithms for many problems.3,4, 12

In feature-based exploration and mapping problems, true scalability implies the ability of a
large number of robotic agents to cooperatively estimate the location of a large number of features
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spread over a large area. Large numbers of agents generally rely on decentralized algorithms in
which communication among agents facilitates the coordination of planning.1 However, when the
number of features is very large, it is impossible for all agents to communicate all information to
all other agents. Furthermore, because of the spatially distributed nature of the exploration task,
communication may be hindered by large separations between agents. The effects of path loss,
which increase with separation distance,16 result in decreasing data rate for a fixed transmission
power as distance between agents increases. Thus, it is necessary that decentralized algorithms
for autonomous mapping account for the fact that not all information can be transmitted between
agents, and that agents must be able to act in situations where only partial information is available.

II. Background

The exploration problem has been examined, in various forms, for many years. Some early
work was done by Smith, Self and Cheeseman,18 and Leonard,13 Durrant-Whyte and Thrun22

continue to be major contributors to the field. Significant work has also been done on the mapping
problem; that is, the problem of deriving a probabilistic representation of the world from sensor
measurements and other observations. A particular challenge in this area is the problem of merging
maps from various sources, as occurs in the decentralized exploration problem. Work in this area
has been done by Konolige and Fox.9 Also of relevance are techniques for combining estimates
in provably consistent ways, such as covariance intersection24 and various modifications to this
technique.

While the mapping problem has been studied in great detail, and in fact decentralized algo-
rithms exist for performing mapping,27,28 none of these techniques adequately address the issue of
communication among agents or capture the tradeoff between agents expanding their separation
(in order to examine the map more quickly) and staying close to one another (in order to maintain
adequate communication links). Some approaches in this direction have involved, for example,
constraining the amount of information that can be sent between agents in any one time step.
This approach does not allow agents to take advantage of close proximity to send large amounts
of data, nor does it realistically model the cost of communicating over very large distances. Other
approaches have involved setting a maximum inter-agent distance in order to maintain connectivity,
but this approach does not balance the reward of information gained by increasing inter-agent sepa-
ration with the increased cost of communicating: the inter-agent separation is set a priori and does
not depend on specific characteristics of the map, or the status of the exploration process. Thus,
our eventual aim is to develop an algorithm that explicitly balances these competing objectives.

Work has been done by Nettleton et al.15 in the area of decentralized estimation under com-
munication constraints. In the algorithm presented in their work, the information to be sent from
the sender’s information matrix Y is selected as the single submatrix containing the features about
which the sender has learned the most since the previous transmission. This is a reasonable ap-
proach, but it may be improved upon. This will be discussed further in Section B.

The work presented in this paper leverages the properties of the information filter, which is
mathematically equivalent to the traditional Kalman filter but which possesses properties of value
for the decentralized exploration problem.6,14 The information matrix and information vector are
defined as Y = P−1 and y = P−1x̂, where P is the covariance matrix in the traditional Kalman
filter, and x̂ is the state vector. Compared to the covariance filter, the information filter essentially
exchanges complexity in the update step for complexity in the prediction step.

Denoting the state transition matrix by F , the observation matrix by H, the process noise
covariance matrix by Q, and the observation noise covariance matrix by R, the prediction step of

2 of 16

American Institute of Aeronautics and Astronautics



the information filter can be written as

Y (k|k − 1) = [F (k)Y −1(k − 1|k − 1)F T (k) + Q(k)]−1 (1)
y(k|k − 1) = Y (k|k − 1)F (k)Y −1(k − 1|k − 1)y(k − 1|k − 1) (2)

and the measurement update step is:

Y (k|k) = Y (k|k − 1) + HT (k)R−1(k)H(k) (3)
y(k|k) = y(k|k − 1) + HT (k)R−1(k)z(k) (4)

The information filter is particularly well suited for decentralized sensor fusion problems in which
many measurement updates may take place in a single time step.6,14 This additive structure also
facilitates the development of the algorithms described in this paper.

III. Model

The act of exploring an unknown environment involves agents moving, sensing the locations of
features, and communicating with one another (or with a central repository) about the locations
of features. In the case of decentralized exploration, it is also beneficial for agents to exchange
information about their planned future actions.1 All of these activities require energy, a resource
that is often tightly constrained for small mobile robots. The relatively small robotic agents that
tend to be utilized most often for decentralized schemes are the very ones that are most challenged in
terms of power. Thus, expected energy expenditure provides a reasonable cost metric for potential
plans under consideration, and in this work all costs in the mapping problem are modeled in terms
of energy expenditure.

Exploration is, in essence, an information-gathering process. If a probabilistic representation
of the map estimate is assumed,21 the quality of a map estimate can be expressed as its Shannon
entropy, or the degree to which the probability distribution of feature location estimates is compact
or spread. In the case of a Gaussian distribution, the entropy of the distribution is also related to
the mean squared error of the estimate, a quantity of importance in control applications. Therefore,
entropy is the quality metric used for this work.

The centralized version of the mapping problem can be expressed as a minimization of entropy,
subject to an energy constraint:

min
mit,sit,cit

UT (mit, sit, cit) (5)

subject to
n∑

i=1

T∑
t=0

E(mit, sit, cit) ≤ Emax (6)

where mit denotes agent i’s motion at time t, sit denotes agent i’s sensing at time t, cit denotes
agent i’s communication to other agents or to a central repository at time t, UT denotes entropy
at a central repository at the final time T , and E denotes energy. Note that although total energy
is minimized in this formulation, other formulations are also of interest, including minimization
of the maximum energy expenditure by any agent. An alternative problem formulation involves
minimizing energy expenditure subject to an entropy constraint:

min
mit,sit,cit

n∑
i=1

T∑
t=0

E(mit, sit, cit) (7)

subject to UT (mit, sit, cit) ≤ Umax (8)
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It is desirable that a solution to this problem scale well with the number of map features, the
spatial dimension of the map, and the number of agents performing the exploration. However, it
rapidly becomes intractable to solve this problem to optimality for large numbers of agents, and
communication limitations make it impractical for a central decision-maker to maintain adequate
communication with all agents across large distances. In order to ensure scalability it is therefore
appropriate to consider a decentralized version of the exploration problem, in which decision mak-
ing takes place at an agent level rather than through a central decision-maker. In this case, an
appropriate figure of merit is the average entropy of the estimates of all agents in a team rather
than the entropy of the estimate at a central repository, and each agent is subject to its own energy
constraint.

IV. The Static Problem

A first step toward developing a sequential decision-making algorithm is understanding the
implications of a single decision. In the case of deciding the amount of energy to expend making
communication transmissions in the exploration problem, one must know (or have an estimate
of) the additional information that can be gained for a given amount of information transmitted
before deciding whether it is worthwhile to transmit this amount of information. This prompts
the question: what is the maximum amount of information that can be gained by transmitting a
quantity of information not more than bandwidth B?

To answer this question, inter-agent communication problem is examined in a static sense. As
discussed above, the exploration problem is a multi-step process in which agents must decide their
motion, sensing, and communication plans sequentially at every time step. A challenging sub-
problem is simply to decide, for a single pair of agents in a single time step, what information
should be communicated between them in order to minimize the entropy of the agents’ probability
distributions after incorporating the communicated information. Given a solution, or approximate
solution, to this problem, one can then construct a dynamic planning algorithm which uses this
greedy communication strategy. While the greedy strategy does not necessarily provide the best
solution to a multi-step problem, it does provide valuable insights into the nature of the utility of
information in the decentralized estimation problem.

In the problem under consideration in this paper, two agents jointly estimate the location of a
number of stationary features. Without loss of generality, one agent is designated as the sender and
the other the receiver. Both agents represent their feature estimates as Gaussian distributions, in
the inverse covariance form. It is assumed that the sender has a perfect estimate of the receiver’s
information matrix, and the goal is simply to choose the most beneficial elements of the receiver’s
own information matrix to send to the receiver. The utility of information is evaluated in terms of
the reduction in entropy of the estimate, which in the Gaussian case is represented by

U =
1
2

log[(2πe)n|det(P )|] =
1
2
[log((2πe)n) + log(|det(P )|)] (9)

=
1
2
[log((2πe)n) + log(

∣∣∣det(Y −1)
∣∣∣)] =

1
2
[log((2πe)n) + log(

1
|det(Y )|

)] (10)

=
1
2
[log((2πe)n)− log(|det(Y )|)] (11)

where P is the receiver’s covariance matrix, and Y is the information matrix, after the receiver has
incorporated the information transmitted by the sender.

It is assumed that it is not possible for the agents to exchange an arbitrarily large amount of
information. In particular, the sender has a limit on the amount of information that can be sent,
denoted by bandwidth B. For simplicity of modeling, assume that each element of the information
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matrix requires a single unit of bandwidth to send. There is also a certain amount of communication
overhead required to provide the receiver with labels describing which diagonal elements are being
sent, and this cost is modeled as one unit of bandwidth per diagonal element. (It is assumed and
both agents are estimating the location of a common set of features, and that they share a system
for labeling them.) Note that for a given set of diagonal elements to be communicated, the sender
must choose whether to send information about off-diagonals, compounding the difficulty of the
problem. Given the entropy metric and the bandwidth cost model, if the covariance intersection
algorithm is used to combine the receiver’s information matrix with the transmitted submatrices,
the sender’s problem is

minimize cT x + log(det(Y (x)−1))
subject to Y (x) > 0

Y (x) =
M∑
i=0

xiyiYi

M∑
i=1

yiBi ≤ B (12)

yi ∈ {0, 1} i = 1, ...,M

y0 = 1
0 ≤ xi ≤ 1 i = 0, ...,M
M∑
i=0

xi = 1

where Y0 is the receiver’s initial information matrix; Yi is the ith candidate submatrix, extracted
from the original information matrix as described in [15]; yi is a binary decision variable indicating
that the ith submatrix is selected for transmission; xi is the weighting coefficient used in the
covariance intersection algorithm; Bi is the bandwidth requirement of sending submatrix Yi; N is
the number of map features; and M is the number of submatrices of the information matrix.

This problem rapidly becomes difficult as the number of features to be mapped increases. For
an N × N information matrix, the number of possible combinations of diagonal elements that
could be sent is 2N . Given a selection of diagonal elements, there is also a decision to be made
regarding which cross-correlation terms should be sent. Thus, the optimal combination of data to
send cannot be found through brute force search. A more intelligent strategy is needed, and we
turn our attention to this topic.

A. Block-Diagonal Case

We first consider the case of a natural measurement scenario that results in a structured information
matrix that is not fully populated. Assume that a mobile robot, the location of which is adequately
known (through GPS or other means), is taking measurements of feature locations through an
imprecise means. In this example, bearing-only measurements of feature locations are taken by
means of a camera whose exact angle relative to the robot is not known, but is only estimated to
within a few degrees.

If the locations of the features are being estimated in a two-dimensional plane, the x and y
locations of each feature are correlated through the uncertainty in the camera angle when mea-
surements of the feature are taken. Because the robot’s location is known, however, there is no
correlation from feature to feature. Thus, the information matrix is block-diagonal with 2×2 blocks:
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Y =



a1 c1 0 0
c1 b1 0 0
0 0 a2 c2 . . .

0 0 c2 b2
...

. . .


(13)

Recall that the term in the entropy equation that can be altered is log(det(P )), which is to be
minimized, or equivalently log(det(Y )), which is to be maximized. Because there are exponentially
many possible values for Y , it is typically not feasible to solve this problem optimally, nor is there
an obvious approximation algorithm for this problem. For the case of a block diagonal matrix,
however, the objective decomposes into a sum of terms:

log(det(Y )) = log

(∣∣∣∣∣ a1 c1

c1 b1

∣∣∣∣∣
)

+ log

(∣∣∣∣∣ a2 c2

c2 b2

∣∣∣∣∣
)

+ . . . + log

(∣∣∣∣∣ am cm

cm bm

∣∣∣∣∣
)

(14)

For each block in this matrix, there are five possible decisions that can be made by the sender. The
sender could send:

1. Information about a only,
2. Information about b only,
3. Information about a and b with no off-diagonal information,
4. Information about a and b coordinates with cross correlation information, or
5. Nothing at all.

Under our communication model, the possible transmissions would require a bandwidth of 2, 2,
4, 5, and 0 units, respectively, and they would result in estimated reductions in entropy that
are computable given an estimate of the receiver’s information matrix. A brute force approach
to solving this problem would still involve searching over O(5m) combinations of transmissions.
However, because the objective function is now additive, the problem takes on the form of a
multiple-choice knapsack problem.

The multiple-choice knapsack problem is a variant of the traditional knapsack problem in which
each item belongs to one of several disjoint classes, and the goal is to choose exactly one item from
each class such that the total profit of these items is maximized. This problem is NP -hard, but
there exist fully polynomial-time approximation schemes (FPTASs) for solving it.8 In the case of
the map communication problem there is an item class for each feature, and the items correspond
to specific decisions that may be made by the sender. The item weights are represented by the
bandwidth required to send the information (including zero if no information is communicated
about a given feature), and the values of the items are represented by the expected reduction in
the receiver’s entropy resulting from their communication.

Using a dynamic programming-based FPTAS for this problem based on that of Lawler,11 a
performance guarantee of (1 − ε) can be achieved with a running time of O(ml

ε ), where m is the
number of item classes and l is the number of items per class. That is, if the value of the optimal
solution to this problem is E∗ and the value of the solution generated by our algorithm is Ẽ, then
it is guaranteed to be the case that

(1− ε)E∗ ≤ Ẽ ≤ E∗ (15)

if the profits involved are integers, with a straightforward modification necessary in the case of non-
integer profits. In order to evaluate the performance of this algorithm, it is compared to a simple
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greedy strategy. In the greedy strategy it is assumed that only complete feature submatrices will
be transmitted, i.e. 2× 2 blocks that lie along the diagonal of the sender’s information matrix. In
order to choose blocks to send, the difference in magnitude between the diagonal elements of the
sender’s information matrix and the receiver’s information matrix is used as a ranking heuristic,
and the block with the greatest total difference is ranked highest.

The performance of these two algorithms for a fixed communication bandwidth (B = 25) and
various numbers of features m , averaged over 20 randomly generated simulation runs per data point,
is shown in Figure 1. In these simulations, the locations of m features are randomly generated in a
plane, and two agents take a predetermined series of measurements of them. These measurements
have a known uncertainty associated with them, which allows the computation of an information
matrix for each agent.

The heuristic greedy algorithm is much faster than the approximation algorithm, and for small
numbers of features, it compares fairly well in terms of performance. (Note that for B = 25, all data
may be sent for very small numbers of features presented here.) However, as the number of features
increases and a trivial solution is no longer available, the approximation algorithm surpasses the
greedy algorithm in terms of performance, while the difference in computation time between them
remains small. Of particular note is the variability in solution quality from trial to trial; the small
difference in solution quality for the approximation algorithm contrasts greatly with the high level
of variability in solution quality for the heuristic.

Figure 2 compares the performance characteristics of the two algorithms for a fixed number of
features (20) and an increasing availability of communication bandwidth. In this case, the approx-
imation algorithm makes better use of increasing availability of bandwidth, with little increase in
computation time. Again, the approximation algorithm exhibits great consistency in solution qual-
ity due to its performance guarantee, while the quality of the heuristic solution is highly variable.

B. Fully-Populated Case

The measurement scheme described in the previous section assumed perfect knowledge of vehicle
location in order to arrive at a block diagonal form for the information matrix. In a more general
scenario, the vehicle location might be unknown and would have to be estimated along with feature
locations using the same corrupted sensor measurements. This simultaneous localization and map-
ping (SLAM) problem naturally leads to a fully-populated information matrix,26 although many
terms are often small in the normalized information matrix. There exist sparsification techniques
that seek to take advantage of the small magnitude of these values in the normalized information
matrix to reach an approximate matrix which is sparse. However, some of these sparsification
techniques produce solutions that overestimate confidence in feature locations.26 Other sparsifica-
tion techniques work by managing the number of terms of cross correlation and do not explicitly
manage the size of blocks in the information matrix. Note that in the previous section, the total
number of items in the multidimensional knapsack problem was 5m because for each 2x2 block,
only five possible choices could be made. If the block size were to increase, however, the number of
choices that could be made would grow exponentially with the dimension of the block. Thus, the
solution technique applied in the previous section does not scale well as the size of the blocks in
the information matrix grows.

The case of the fully-populated information matrix has been examined in [15], in which a single
large block from the information matrix containing all diagonal and off-diagonal information is
transmitted. The features selected for transmission are those about which the sender has learned
the most since the previous transmission. However, because of the constraint that only a single
large submatrix is sent, a great deal of bandwidth is used to transmit relatively unimportant cross
correlation terms in many cases.26
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Figure 1. The performance of a simple greedy algorithm is compared to that of the fully polynomial
time approximation algorithm developed in this section for various numbers of features and a fixed
communication bandwidth of 25 units. The top figure depicts the reduction in the entropy of the
receiver’s estimate achieved by each algorithm, normalized by the maximum possible reduction in
entropy as given by the performance bound of the approximation algorithm. Each data point rep-
resents an average of 20 randomly-generated scenarios, and error bars depict the standard deviation
of performance over these trials. The bottom figure depicts the average time required to run both
algorithms.
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Figure 2. Again the performance of the greedy algorithm is compared to that of the fully polynomial
time approximation algorithm, this time for varying B and and a fixed number of features, m = 20. The
top figure shows the reduction in the entropy of the receiver’s estimate achieved by each algorithm,
normalized by the maximum possible reduction in entropy as given by the performance bound of the
approximation algorithm. Each data point represents an average of 20 randomly-generated scenarios,
and error bars depict the standard deviation of performance over these trials. The bottom figure
depicts the average time required to run both algorithms.
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Two improvements to the approach given in [15] are proposed in this work. First, rather than
evaluate the benefit of sending information by what the sender has learned the most about since the
previous transmission, this work utilizes an estimate of the receiver’s information matrix to evaluate
the value of information. It should be noted that such an estimate is not always available, but when
available it should be used to the maximum possible benefit. Second, rather than selecting a single
large submatrix for transmission, one could instead select multiple smaller submatrices. Allowing
this option causes the time complexity of the problem to increase greatly, but it also allows a
potentially more intelligent use of scarce communication bandwidth. Thus, even an approximate
solution to this more difficult problem may lead to improved performance over the existing simple
technique.

Because of the difficulty of solving the more flexible version of the problem, both heuristics and
a relaxation approach are utilized in the submatrix-selection algorithm presented in this paper.
In order to solve a relaxed version of the problem, work done initially by Vandenberghe et al.25

is leveraged. If the sender’s problem as stated in Section IV is relaxed so that the bandwidth
constraint and binary decision variables are eliminated, the formulation becomes

minimize cT x + log(det(Y (x)−1))
subject to Y (x) > 0 (16)

Y (x) =
M∑
i=0

xiYi

0 ≤ xi ≤ 1 i = 0, . . . ,M
M∑
i=0

xi = 1

This formulation, an extension of the semidefinite programming problem, admits an efficient solu-
tion to the relaxed version of the problem under consideration.7 Note, however, that this formu-
lation includes a decision variable for every possible submatrix of the information matrix. This is
an intractably large number for even moderate numbers of map features. Thus, some technique
must be found for identifying promising candidate submatrices for consideration in the relaxed
algorithm.

Recall that the algorithm in [15] selects a single large submatrix for transmission. We also allow
large submatrices to make up some of the transmission candidates. To allow flexibility in the size
of candidate submatrices, however, candidates of other sizes are also selected. In this work, large
submatrix pairs are also considered in which one submatrix takes up approximately two thirds of
the available bandwidth and the other takes up one third, as well as submatrix pairs in which each
submatrix takes up approximately half of the available bandwidth.

Selection of these candidate submatrices is accomplished using a stochastic selection heuristic.
Candidate submatrices are generated feature by feature in a probabilistic fashion. The first feature
is selected according to a probability distribution determined by the magnitudes of the differences
between the diagonal elements of the sender’s and receiver’s information matrices. The next feature
is selected according to a distribution based on the magnitude of the cross correlation between the
unselected diagonal elements and the previously selected element. Subsequent features are selected
in the same fashion, according to a distribution based on the sum of the off-diagonal terms between
selected and unselected terms. This process is repeated until the desired number of features for
the candidate have been selected. The rationale behind this selection heuristic is that it favors the
selection of submatrices containing highly correlated features, which increases the informativeness
of the transmitted submatrix.

Transmitting any of these large submatrices (or submatrix pairs) utilizes most of the available
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bandwidth for cases of interest. However, when significant bandwidth is left over, we use the same
stochastic selection heuristic to select multiple smaller candidate submatrices of appropriate size.

Following selection of candidate submatrices, the relaxed problem described above is solved to
decide among these candidates. For each set of large submatrices, the relaxed problem is formulated
with multiple small submatrices. The small submatrices with the highest weightings in the solution
to the relaxed problem are selected for inclusion in a second instance of the relaxed problem, this
time subject to the bandwidth constraint. In this second problem, the optimal weightings for the
covariance intersection algorithm are found, and a post-transmission entropy is calculated for this
set of submatrices. This process is repeated for all large submatrices selected by the stochastic
selection heuristic, and the set of large and small submatrices with the lowest post-transmission
entropy is selected for transmission.

To summarize, the algorithm proposed for the case of a fully-populated information matrix
consists of the following steps:

1. A set of large candidate submatrices is selected using a heuristic method; in this paper, a
stochastic metric is considered that is based on the magnitude of differences in the sender’s
and receiver’s information matrices.

2. For each large candidate submatrix (or pair of submatrices), multiple small candidates are
generated according to the same heuristic.

3. For each large candidate submatrix (or pair of submatrices) and its associated small subma-
trices, a relaxed version of the transmission problem is formulated, and this problem is solved
with no bandwidth constraint.

4. The small submatrices that received the highest weighting in the relaxed problem are selected
to accompany the large submatrix, and the problem is re-solved to find the optimal weights
for covariance intersection. Entropy for this set of submatrices is calculated. The submatrices
with the lowest post-transmission entropy are ultimately selected for transmission.

Figures 3 and 4 depict the performance of this algorithm. As in Section A, the results of a
number of randomly-generated scenarios are shown. In each scenario, sequences of measurements
of N features are taken by the sender and the receiver. The sender then uses the algorithm described
above to select information for transmission to the receiver. Additionally, a slightly modified version
of the algorithm developed in [15] is used as a benchmark. As described above, the features selected
in [15] are those about which the sender has accumulated the most information since the previous
transmission. Because our formulation considers the results of a single transmission, features in the
modified benchmark algorithm are selected based on the magnitude of the difference in information
between the sender’s and the receiver’s information matrices, rather than between the sender’s
current information matrix and the sender’s previous information matrix at the time of the last
transmission. This selection process is similar to that of [15] in that a single large submatrix is
selected.

The metric by which the algorithms are compared is the reduction in the entropy of the re-
ceiver’s estimate after incorporating the transmitted submatrices, normalized by the entropy re-
duction achieved by transmitting submatrices selected through an exhaustive search over all large
submatrices. That is, a value of 0.9 in these figures indicates that the algorithm in question resulted
in a reduction in the receiver’s entropy that was 90% as large as that achieved through exhaustive
search; this result would be superior to a value of 0.8, for example.

In Figure 3, the amount of bandwidth available is held constant at B = 15 units while the
number of map features varies. Note that the algorithm described in this paper achieves reductions
in entropy that are very close to those achieved through an exhaustive search, even when no small
submatrices are considered. When small submatrices are considered, the algorithm outperforms the
exhaustive search over large submatrices by a significant margin. (An exhaustive search including
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small submatrices was not performed due to the excessive time that would be required.) Although
the performance of this algorithm is comparable to that of an exhaustive search, its computation
time is dramatically reduced and scales well with problem size.

Figure 4 shows the algorithm’s performance for varying availability of communication bandwidth
and a fixed number of features (N = 10). Again, performance is good, and computation time
increases gracefully with problem size.

Figure 5 compares the performance of the algorithm presented in this paper to the performance
of the benchmark algorithm based on that in [15] for maps of realistic dimension (N ranging from
10 to 100). These trials are too large to reasonably include an exhaustive search, but the relative
performance of the two heuristic algorithms is similar to their performance in the smaller cases,
indicating that our algorithm also performs well for large problems. As the figure indicates, the the
algorithm developed in this paper consistently achieves up to a 35% greater reduction in entropy
than benchmark algorithm.

V. Conclusions and Future Work

The ability to explore and map an unknown environment is seen as a capability of central
importance in autonomous robotics, and it is widely acknowledged that in many instances, this
task will be done cooperatively and in a communication-limited environment. Yet, the impact of
limited communication on the fulfillment of this task has not been adequately studied, nor have
algorithms been developed to fully take advantage of the communication bandwidth available.

This work provides insight into the way to best utilize limited communication capabilities in
information-sensitive tasks, as well as the performance one can hope to achieve with a limited
amount of communication capability. While some work has been done in this area previously,
the algorithms presented in this paper provide significant improvements in performance with rel-
atively small increases in computational complexity. In the case of a block-diagonal information
matrix, a performance guarantee is given for the algorithm developed in this paper. In the case
of a fully-populated information matrix, the algorithm developed in this paper demonstrates good
performance in simulation for problems of realistic complexity.

The algorithms described in this paper provide a good solution to the static problem described
in Section IV, but they do not address the dynamic decision problem set forth in Section III. Future
work will utilize the work described here in the solution of this dynamic decision problem.

Throughout this work it has been assumed that the sender possesses an accurate estimate of the
receiver’s information matrix, and this has played a key role in the development of the algorithms
presented in this paper. In practice, the quality of this estimate is unknown. Future work will
examine the degradation of the solution quality with declining accuracy in the sender’s estimate.
However, in the case of a very poorly-known information matrix, a simple metric such as that of
Nettleton et al. can still be used in the sequential decision-making process.
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