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Abstract

Batching is a classic approach for estimating the variance of the sample mean, or other sta-

tistical functionals, obtained from a stationary data process. Nonoverlapping batching (NB) has

long been the most-common foundation for statistical inference. Overlapping batching (OB),

despite its inherent statistical efficiency, has not been a popular basis for statistical inference,

primarily because batch dependence makes the classical χ2 and Student’s t coefficients inap-

propriate. Our purpose is to provide a unified foundation for OB statistical inference and

overlapping standardized time series (OSTS) inference by computing the OB-t and OSTS-t dis-

tributions, analogous to the classical Student’s t distribution. While past overlapping methods

relied on approximating degrees of freedom using the Student’s t distribution, we develop an

eigenvalue-based numerical algorithm for computing the actual distributions for the limiting OB

and OSTS estimators, which we use to present a table of quantile values for each distribution.

The associated code delivers quantiles from these distributions for direct confidence interval gen-

eration. Finally, we employ coverage functions to assess the performance of these t-distributions

compared to current approximation methods.

Keywords: Monte Carlo; output analysis; stationary processes; system simulation; confidence

intervals
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1 Introduction

Stochastic simulation experiments yield point estimates of performance-measure values. Estimating

the standard errors (the square roots of the variances) of those point estimators is at the heart

of simulation output analysis. The point and standard-error estimates can be used for statistical

inference (commonly either confidence intervals or tests of hypotheses) for the performance-measure

value and for the point estimator’s standard error.

Statistical functionals encompass a wide range of performance estimates, including the the

sample mean, quantiles, or optimal values in optimization problems. Our context for exposition

will use the sample mean of a stationary stochastic process to estimate its mean, though we later

will demonstrate our approach applies to a class of general statistical functionals. From Mechanic

(1966a,b) through Law and Kelton (1984), the focus of standard-error estimation was on fixed

sample sizes, often based on nonoverlapping batching (NB) with statistical inference based on the

classical χ2 and Student’s t sampling distributions. Meketon and Schmeiser (1984) introduced

overlapping batching (OB) as a more-efficient estimator of the sample mean’s standard error, but

overlapping batches create dependence that negate the use of the classical sampling distributions;

without a statistical-inference foundation, use of the OB estimator of the standard error languishes.

More recently, focus has been on sequential procedures, other performance measures, and other

foundations for inference, for example Alexopoulos et al. (2014, 2016), Singham and Schruben

(2012), Singham (2014). Yeh and Schmeiser (2015a,b) returned to fixed sample sizes, the mean, and

batching to argue that OB is a good basis for confidence intervals. Standardized time series (STS)

methods (Schruben 1983) also have been employed as part of overlapping batching procedures to

enable confidence interval generation via cancellation of the variance estimator (Alexopoulos et al.

2007a,b, Calvin and Nakayama 2013). But again, the lack of an exact sampling distribution for

overlapping standardized time series (OSTS) methods prohibits generation of confidence intervals

without employing approximation approaches.

Estimation of the variance of the sample mean, along with other statistical functionals by the

overlapping batching method in general, (including both OB and OSTS) has been well-developed

and extensively studied over the years. However, despite desirable statistical properties, these

methods have not gained widespread popularity among simulation practitioners. A major challenge
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lies in the difficulty in obtaining the correct distribution for the estimators derived from overlapping

batches. Many approximations rely on the use of a t-distribution with modified degrees of freedom

as a surrogate to account for the dependence between overlapping batches. This paper provides a

numerical way to calculate the CDF of OB-t and OSTS-t distributions, from which the quantile

values can be easily calculated. Once we have the variance estimate via the overlapping batching

method, all that remains is to look up the value from the table (using our associated code) of the

OB-t or OSTS-t distribution to construct confidence intervals.

Our contribution here is to define and closely approximate the OB-χ2, OB-t and OSTS-t dis-

tributions, analogous to the classical χ2 and Student’s t distributions, to provide a foundation for

OB and OSTS inferences on the standard error of the sample mean, and more generally, of sta-

tistical functionals. We present two tables that are analogous to the tables of classical Student’s

t quantile values found in statistics textbooks and online for the OB-t and OSTS-t distributions.

Additionally, we provide code delivering quantiles from a lookup table to allow for generation of

confidence intervals. This allows the user to obtain the known benefits of overlapping batches in

the well-established batched means domains when using sectioning or STS methods. Our approach

closes the gap on this long-standing hurdle to achieving the well-documented numerical benefits of

overlapping methods.

We summarize our contributions. The first contribution of this paper is to present a method

for calculating the quantiles for the OB-t and OSTS-t distributions. Recent work closely parallels

ours, and we highlight the key distinctions. Su et al. (2024) propose a general confidence interval

approach for statistical functionals using overlapping batching, but do not provide a computational

method for generating the quantiles of the t-distributions. We describe a computational method for

computing the t-distributions and provide the resulting quantiles as a lookup table. One option is to

prove limiting results for batching estimators of the sample mean under a Functional Central Limit

Theorem (FCLT). However, Su et al. (2024) broadened the class of batching estimators to include

all statistical functionals, but needed to make a more-restrictive strong invariance assumption. This

paper classifies and organizes the literature in these areas, before providing the numerical approach

which will allow each of these past theoretical results to be employed in practice.

Su et al. (2024) demonstrate convergence for OB and OSTS estimators to a t-distribution, but

omit the proof for OSTS estimators. As a second contribution, we derive the proof for OSTS
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t-distribution in this paper using a strong invariance assumption. Our third contribution is to

demonstrate the performance of the exact distributions relative to prior approximation methods

using coverage functions (Schruben 1980). These coverage functions provide a more comprehensive

analysis of overlapping batching performance compared to the usual numerical tables provided for

arbitrary confidence coefficients, and we believe they should set the standard for future evaluation

of confidence interval procedures.

The organization of this paper is as follows. In Section 2 we review simulation output analysis,

focusing on the NB, OB, and OSTS estimators’ use in statistical inference for the sample mean

with data from a stationary stochastic process. Section 3 extends the estimators for the mean to

encompass a large class of statistical functionals for which confidence intervals can be generated.

We define the OB-t and OSTS-t distributions in Section 4, which also contains the two lookup

tables of quantile values. In Section 5 we present the asymptotic OB and OSTS distributions and

provide a proof to fill a last gap in the literature. In Section 6, we discuss the method for comput-

ing the quantiles from overlapping distributions, which relies on a covariance calculation between

overlapping batches in our eigenvalue-based numerical method. In Section 7 we derive covariances

between overlapping batches in both the OB and OSTS case. Section 8 delivers numerical perfor-

mance results using coverage functions for our exact t-distribution, while Section 9 concludes. The

appendix contains proofs and supporting calculations.

2 Overlapping Batch Estimators: A Review

We begin with a review of batching estimators for the sample mean as a familiar framework. Here

we review relevant statistical analysis, including a discussion of typical data assumptions, followed

by a review of three key batching estimators: NB in Section 2.1, OB in Section 2.2 and OSTS

in Section 2.3. In Section 3, we will extend our review from sample mean analysis to general

statistical functionals, and show how overlapping batching estimators can be used to construct

confidence intervals for these functionals.

A common use of stochastic simulation is to estimate the mean µ and variance σ2 of a sta-

tionary time series Y1, Y2, . . .. For sample size n, after possibly deleting some initial data to avoid
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initialization bias, the usual point estimator of µ is the sample mean

Y = n−1
n∑
i=1

Yi

and the usual estimator of σ2 is the sample variance

S2 = (n− 1)−1
n∑
i=1

(Yi − Y )2.

Throughout this paper, we make the following assumption that the data is identically distributed

and covariance stationary, which allows related statistical-inference statements.

Data Assumption Identical. The data process Y ≡ Y1, Y2, . . . is composed of identically

distributed observations with mean µ and variance σ2. Asymptotically (as n goes to infinity) Y is

normally distributed. The asymptotic value of n var(Y ) is τ = γ0σ
2, where γ0 = 1 + 2

∑∞
h=1 ρh is

the asymptotic sum of all lag-h autocorrelations. The value of τ is finite.

Because the value of τ is seldom known, using only the data (Y1, Y2, . . . , Yn) to estimate τ is

at the heart of the analysis. In our context, simulation output analysis seeks statistical-inference

statements about the quality of Y as an estimator of µ and statements about the quality of τ̂ , the

point estimator of τ . Before continuing, we define a second data assumption, which will hold only

whenever the phrase “i.i.d. normal” is used.

Data Assumption i.i.d. normal. The data process Y ≡ Y1, Y2, . . . is composed of mutually

independent observations that are each identically normally distributed.

There are various ways that i.i.d. normal data can occur. The most common is by fiat, as is done

for the classical χ2 and Student’s t distributions. In the simulation context, where nonnormality

and autodependence are commonly encountered, i.i.d. normal data arise by assuming that the

observations are differences of Brownian Motion. Typically the Brownian Motion process is assumed

to arise via a Functional Central Limit Theorem (FCLT) that assumes asymptotically large amounts

of more-primitive data. Data Assumption i.i.d. normal is weaker than assuming that data arise from

Brownian Motion, because a Brownian Motion cumulative process implies i.i.d. normal observations

Yi, but i.i.d. normal observations imply nothing about a corresponding continuous-time process.

The i.i.d. normal assumption is used in Schmeiser (1982) to reach general conclusions about the
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desired number of NB batches.

Having i.i.d. normal data greatly simplifies the theory and application of inference. All autocor-

relations are zero, so γ0 = 1 and τ = σ2. Two classical sampling distributions arise: (a) the scaled

sample variance, (n− 1)S2/σ2, has the χ2 distribution with n− 1 degrees of freedom and (b) the

sample mean scaled by its estimated standard error, Y /(S/
√
n), has the Student’s t distribution

with n− 1 degrees of freedom.

When the data are not i.i.d. normal, an approach to statistical inference is to batch the data

and then analyze batch means rather than the original data. For j = 1, 2, . . . , n−m+1, define the

jth batch of size m to be Yj , Yj+1, . . . , Yj+m−1 and its batch mean to be the simple average

Y j = m−1
j+m−1∑
i=j

Yi. (2.1)

Batching methods can work because µ is the expected value of the observations Yi, the batch means

Y j , and the grand mean Y .

Batching methods differ primarily in which subsets of the n−m+1 batch means are used. OB

uses all n−m+1 batches to maximize statistical efficiency in estimating τ . Welch (1987) suggested

using partially overlapping batched means for computational savings because fewer batches are

used. The most common choice is NB, which uses k = ⌊n/m⌋ adjacent batches. Fox et al.

(1991) investigated spaced batch means, which uses fewer batches by leaving some intermediate

observations unused.

Variations exist. Bischak et al. (1993) investigates using unequal weights for the observations

within each batch. Alexopoulos et al. (2007b,a) discuss properties of more-general overlapping-

batch estimators (including OB). Standardized time series methods can also be applied to each

batch by employing cancellation in variance estimation. Our interest here, however, is to focus on

three key approaches which we review in the next sections: NB using contiguous batches, OB using

all batches (fully overlapping) and OSTS methods using fully overlapping batches. The order of

the computing efficiency is O(n) for NB, OB, and OSTS.
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2.1 The NB Estimator of τ

The NB estimator of τ partitions the data into k adjacent batches of size m, where k = ⌊n/m⌋.

The n observations Yi are used (only) to compute the batch means and the grand mean. NB

analyses assume that the batch size m is chosen to be large enough that the batch means are

i.i.d. normal and that the effect of the few observations lying in no batch can be ignored. Then,

var(Y ) = (m/n)var(Y j). Therefore, τ ≡ n var(Y ) = m var(Y j). Given at least two batch means,

var(Y j) is estimated by its sample variance to yield the NB estimator of τ

τ̂nb ≡ d−1
nb

k∑
j=1

(Y (j−1)m+1 − Y )2, (2.2)

where dnb ≡ (k − 1)/m. Statistical inference on τ is based on

V̂nb ≡ (k − 1)τ̂nb

n var(Y )
(2.3)

and statistical inference on µ is based on

Tnb ≡ (Y − µ)/
√
τ̂nb/n. (2.4)

With the assumption of i.i.d. normal batch means, properties of these random variables are well

known. Estimation of τ is unbiased; that is, E(τ̂nb/n) = var(Y ). V̂nb has the classical χ
2 distribution

with k−1 degrees of freedom and Tnb has the Student’s t distribution with k−1 degrees of freedom.

Denote vnb = ⌊n/m⌋ − 1 = k − 1 as the degrees of freedom for the NB estimator. Tables of the χ2

quantile values and Student’s t quantile values are ubiquitous in statistics textbooks and online, as

well as easily computed using statistical software.

2.2 The OB Estimator of τ

The OB estimator of τ is analogous to NB. For m = 1, both estimators are identical. Both assume

that m is large enough so that τ ≡ n var(Y ) = m var(Y j). OB, however, uses all n−m+ 1 batch
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means to estimate var(Y j); that is, the OB estimator of τ is

τ̂ob ≡ d−1
ob

n−m+1∑
j=1

(Y j − Y )2, (2.5)

where dob ≡ (n −m)(n −m + 1)/(nm). (Meketon and Schmeiser (1984) used a slightly different

denominator. With the current denominator, when n/m is an integer the means of τ̂ob and τ̂nb

are equal; the asymptotic variance of τ̂ob is two-thirds that of τ̂nb, an implied degrees of freedom

increase of fifty percent.) Note that (2.5) is referred to as the sectioning estimator which uses the

sample mean of the entire data set (Y ) as the point estimate. The batching estimator averages

the sample means of each batch as the point estimate. Because sectioning methods are generally

believed to produce better coverage due to lower bias in the point estimator (for example, see

Nakayama (2014)), we focus on sectioning results in this paper. Additionally, we always assume

fully overlapping batches using the maximum number of batches (n−m+ 1).

We need an analogy to the classical distributions’ degrees of freedom. In the NB context the

degrees of freedom is νnb = k − 1, where k = ⌊n/m⌋ is the number of NB batches of size m. To

create an analogy for the OB context, we interpret degrees of freedom to be the ratio of the number

of observations outside any particular batch, n − m, to the number within any one batch, m; in

particular,

νob =
n−m

m
.

This degrees of freedom definition allows for a common definition for both NB and OB contexts,

since for m = 1 NB and OB are identical. When n/m is an integer, the degrees of freedom for NB

and OB are the same. OB degrees of freedom, however, can be fractional, including being less than

one. Analogous to NB, define

V̂ob ≡
(n−mm )τ̂ob

n var(Y )
(2.6)

and

Tob ≡ (Y − µ)/
√
τ̂ob/n. (2.7)

Even for i.i.d. normal data, for m > 1 the batch means are dependent because observations lie in

multiple batches. Therefore V̂ob does not have a classical chi-squared distribution and Tob does not
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have a Student’s t distribution.

Properties of V̂ob are evaluated in Yeh and Schmeiser (2015a) using Monte Carlo experiments.

For estimating τ , OB performs better than NB for every statistical measure considered. Several of

the improved measures arise because compared to the NB’s classical chi-squared distribution, the

sampling distribution of V̂ob is closer to the normal distribution (Yeh and Schmeiser 2015a).

Despite OB’s efficiency advantage, the sampling distributions of V̂ob and Tob have not been

developed. Rather, approximations have been used, usually reflecting the observation that the

asymptotic ratio of the OB and NB variance estimators is 2/3, so increasing the Student’s t de-

grees of freedom by 50% is a quick and reasonable approximation. Alexopoulos et al. (2007c) res-

cued, via a personal-communication reference, the degrees of freedom formula νob = (3/2)νnb[1 +

ν
−0.5−0.6(νnb+1)
nb ], where νnb = (n −m)/m, which was obtained by Schmeiser in 1986 to match the

observed (via Monte Carlo) variance of V̂ob with the Student’s t variance of νnb/(νnb − 2).

2.3 The Overlapping Standardized Time Series Estimator of τ

Standardized time series were introduced in Schruben (1983) as a cancellation method for con-

structing confidence intervals. While the STS estimator can be applied to non-overlapping batches,

here we focus on the overlapping case, OSTS. Construct for each batch j of size m (consisting of

samples Yj , . . . , Yj+m−1 with mean Y j) a standardized time series:

Tj(t) =
⌊mt⌋√
m

Y j −
1

⌊mt⌋

j+⌊mt⌋−1∑
k=j

Yk


for t ∈ [0, 1]. A weighted area estimator can be computed using a weight function w : [0, 1] → R.

For simplicity in future derivations, we assume a constant weight function w(t) =
√
12 which meets

the required properties described in Schruben (1983), though more complex weight functions could

also be employed. For each batch, we compute the weighted area estimator as

Aj =

[
1

m

m∑
k=1

w

(
k

m

)
Tj

(
k

m

)]2
.
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The final overlapping batched area estimator is

τ̂osts ≡
1

n−m+ 1

n−m+1∑
j=1

Aj .

Define β := m/n as the proportion of the batch size to the total sample size. Also let W (u) be

standard Brownian motion over 0 ≤ u ≤ 1. Then, let Bu(t) be a Brownian bridge over u ≤ t ≤ β

as Bu(t) = W (u + t) −W (u) − t
β [W (u + β) −W (u)]. From Alexopoulos et al. (2007b) we have

convergence in distribution of the variance estimator as m,n→ ∞:

τ̂osts⇒
τ

β3(1− β)

∫ 1−β

0

[∫ β

0
w(t)Bu(t)dt

]2
du, (2.8)

where ⇒ denotes weak convergence. We define the degrees of freedom νosts = n/m which is νob+1.

For nonoverlapping STS estimators, the degrees of freedom is n/m = νnb + 1, so we define the

degrees of freedom for overlapping standardized time series analagously, as νosts = νob +1. We can

again define the inference parameters:

V̂osts ≡
( nm)τ̂osts

n var(Y )

and

Tosts ≡ (Y − µ)/
√
τ̂osts/n.

As with OB, OSTS estimators exhibit dependence between batches due to overlapping.

3 Confidence Intervals for Statistical Functionals

While the above discussion focuses on the classical example of using batching for mean estimation,

we highlight the details of a few key papers that further the development of overlapping batching

estimators for values other than sample means. Calvin and Nakayama (2013) develop confidence

intervals for quantiles using standardized time series, including employing estimators using over-

lapping batches. Pasupathy et al. (2022) develop confidence regions for multidimensional quantile

vectors finding coverage benefits from overlapping batches, and this work is extended to infinite-

dimensional confidence regions for the quantile field in Pasupathy et al. (2024). Critically, Su et al.
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(2024) provides a comprehensive study of the limiting behavior of overlapping batch estimators

when deriving confidence intervals for general statistical functionals, and we will rely on a similar

limiting analysis here. Their paper considers a large batch setting where the batch sizes mn change

with the sample size and limmn/n > 0, and also a small batch setting where limmn/n = 0. In

this paper, we consider the large batch setting in our limiting results, as Su et al. (2024) already

show the elegance of the small batch setting resulting in consistent estimation of the variance and

convergence to normal random variables. Su et al. (2024) omits the proof for the large batch setting

when using standardized time series estimators, and we include it here for completeness.

We next provide a brief summary of statistical functionals and their associated confidence

intervals to establish the conditions for when the OB-t and OSTS-t distributions exist. A func-

tional is, in essence, a function whose domain is a space of functions rather than real numbers.

Specifically, it takes a function as input and returns a corresponding value. In nonparametric es-

timation, the quantity of interest θ is often expressed as a functional, denoted by θ(P ), where P

is a probability measure specifying the law that generates the underlying stationary data process.

A statistical functional is a mapping from a collection of probability measures to real numbers:

given a probability measure, it returns a numerical value. One advantage of statistical functionals

is that they provide a straightforward way to estimate the quantity of interest by substituting Pn

for P in their expression, where Pn denotes the empirical measure constructed from the output

sequence {Y1, . . . , Yn}. That is, θ(Pn) serves as the plug-in estimator θ̂n for θ(P ). For example,

if θ(P ) is the η-quantile of Yi, F
−1(η) := min{y : F (y) ≥ η}, then the natural point estimator

θ̂n := θ̂({Yi, 1 ≤ i ≤ n}) is the η-th empirical quantile min{y : Fn(y) ≥ η}, where F is the CDF

of Yi and Fn(y) =
∑n

i=1 I{Yi≤y}, y ∈ R. Many statistical functionals are applicable to confidence

intervals estimation via the batching method, e.g. expectations, quantiles, conditional value at risk;

see Su et al. (2024) for more.

The idea of batching can be extended to a broader range of statistical functionals beyond just

the mean. Let θ̂i,m := θ̂({Yj , j = i, . . . , i+m−1}), i = 1, . . . , n−m+1 be the estimator constructed

from the i-th batch of the observations Yi, . . . , Yi+m−1. The OB estimator for statistical functionals
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is defined in a manner analogous to 2.5, with Y j and Y replaced by θ̂i,m and θ̂n, respectively

τ̂ob ≡ d−1
ob

n−m+1∑
i=1

(θ̂i,m − θ̂n)
2, (3.1)

where dob ≡ (n −m)(n −m + 1)/(nm). The standardized time series for a statistical functional

can be defined similarly,

Ti,m(t) :=
⌊mt⌋

(
θ̂i,⌊mt⌋ − θ̂i,m

)
√
m

, (3.2)

where t ∈ [0, 1].

Section 5 will explicitly define the Functional Central Limit Theorem (FCLT) assumption and

the Strong Invariance (SI) assumption, but we motivate their uses here. The strong invariance

assumption is a more stringent condition than the FCLT which ensures a Wiener process approxi-

mation holds for a sequence {θ̂n, n ≥ 1} of batching estimators. The SI assumption specifies how

large the sampling error is and how it behaves as n → ∞. Traditional asymptotic results, e.g.

the Central Limit Theorem, state that
√
n(θ̂n − θ) follows a normal distribution. This only de-

scribes “convergence in distribution” and does not provide precise sample-wise error bounds. The

SI assumption goes further by constructing an almost sure approximation. Instead of saying that

the sampling error approximately follows a normal distribution, one can explicitly approximate the

sampling error by a Wiener process plus a small remainder, where the remainder often grows more

slowly than the Wiener process. This provides an explicit error bound on how closely a sequence of

sampling errors of batching estimators tracks a Wiener process. Although these statistical function-

als require more stringent regularity conditions, the implication for confidence interval estimation

via batching is substantial. Our study shows that given a batching type, e.g., overlapping batches,

the distributions of the pivotal statistics corresponding to different statistical functionals, used to

construct confidence intervals via batching, converge to a known distribution.

Next, we provide a brief overview of confidence interval calculation. One example of a statistical

functional is using the sample mean Y as an estimator for µ. Then, having (somehow) an estimate,

τ̂ , of τ , one has an estimate of the standard error of Y ; in particular, ŝte(Y ) =
√
τ̂ /n. This value can

be used in its own right to report the precision of an observed Y . Song and Schmeiser (1994, 2009)

discuss using the estimated standard error to determine the number of digits to report. Song and
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Schmeiser (2011) suggest format displays for point estimates and their standard-error estimates.

For a general statistical functional where θ̂n is the estimator, we have ŝte(θ̂n) =
√
τ̂ /n where τ̂

is the estimate of the variance constant of the statistical functional. The more-traditional approach

to statistical inference is to calculate a confidence interval for (or, equivalently, test a hypothesis

on) the performance measure of interest. The usual two-sided confidence interval for θ is

θ̂n ± sν;α
√
τ̂ /n, (3.3)

where the interval procedure is designed to cover θ with nominal probability 1− α. Define sν;α as

the 1 − α quantile of the appropriate random variable with ν degrees of freedom. For estimating

the mean µ using i.i.d. normal data, high statistical efficiency (that is, actual coverage matches

nominal coverage and intervals are narrow) occurs with m = 1 (when NB and OB are identical)

and sν,α = tn−1,α, the Student’s t quantile with n−1 degrees of freedom. For other data, NB uses k

large batches so that the batch means are approximately i.i.d. normal and therefore sν,α = tk−1,α is

appropriate. OB procedures, in contrast, commonly use the approximation of Student’s t quantiles

with increased degrees of freedom as discussed in Section 2.2.

Statistical inference can also make statements about the quality of the estimate of the variance

constant τ when estimating the mean µ using Y . The usual two-sided confidence interval for τ is

(ντ̂/cψ,1−α/2, ντ̂/cψ,α/2), (3.4)

where the interval is designed to cover τ with nominal probability 1−α and ψ degrees of freedom.

The discussion is analogous to that for the mean, µ. For i.i.d. normal data, high statistical efficiency

occurs with m = 1 and cψ,α/2 = χ2
n−1,α/2 and cψ,1−α/2 = χ2

n−1,1−α/2, the classical chi-squared

quantiles. For other data, NB uses k large batches so that the batch means are approximately

i.i.d. normal and therefore chi-squared quantiles with k−1 degrees of freedom are appropriate. OB

procedures, in contrast, commonly use the approximation of chi-squared quantiles with increased

degrees of freedom.
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4 Overlapping t Distributions

We present the resulting tables for the t-distribution for OB in Section 4.1, and OSTS in Section

4.2. The method for calculating these tables is presented in the remainder of the paper.

4.1 The OB-χ2 and OB-t Distributions

We now define and present the sampling distributions of the OB estimators V̂ob (which we call

OB-χ2) and Tob (which we denote OB-t). The OB-χ2 and OB-t distributions are analogous to the

classical chi-squared (for V̂nb) and Student’s t (for Tnb) distributions. Quantiles from these OB

distributions are appropriate choices for the c and s confidence-interval coefficients in Section 3.

There could be many OB-χ2 and OB-t distributions. In particular, the distribution of τ̂ob

depends upon the data process. In keeping with the foundation of the classical distributions, in

this section we invoke Data Assumption i.i.d. normal. In addition to the data process, τ̂ob depends

functionally upon both the run length n and the batch size m. These values are known to the

practitioner, so the specific sampling distribution could be computed for that particular (n,m)

value using a Monte Carlo approach.

Our goal, however, is to construct the OB analogies to the two classical families of distributions.

Therefore, we define the OB distributions to correspond to the limit as m goes to infinity. In the

definitions, the νob degrees of freedom is a fixed distribution parameter. Therefore m going to

infinity implies that the run length n = m(νob + 1) goes to infinity. Also, the number of batches

n−m+ 1 = mνob + 1 goes to infinity. We next define the OB-χ2 and OB-t distributions.

Definition OB-χ2. Under Data Assumption i.i.d. normal, the OB-χ2 distribution with νob

degrees of freedom is the sampling distribution of V̂ob as m→ ∞ with νob = (n−m)/m constant.

Definition OB-t. Under Data Assumption i.i.d. normal, the OB-t distribution with νob degrees

of freedom is the sampling distribution of Tob as m→ ∞ with νob = (n−m)/m constant.

Table 1, analogous to the commonly encountered Student’s t table, contains the OB-t distribu-

tion’s quantiles. Each row corresponds to a particular value of νob; each column corresponds to a

quantile. We can construct a similar table for the quantiles of the OB-χ2 distribution, but since

these quantiles are not often used we omit it for brevity.

Both Student’s t and the OB-t distributions have ranges on the real-number line and density
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Table 1: Numerically computed quantile values of the OB-t distribution.

0.75 0.9 0.95 0.975 0.98 0.99 0.995 0.9975 0.999 0.9995

df 1 0.753 1.572 2.175 2.784 2.982 3.604 4.233 4.869 5.719 6.367
2 0.739 1.513 2.062 2.603 2.777 3.317 3.859 4.404 5.128 5.678
3 0.723 1.456 1.960 2.450 2.606 3.089 3.572 4.055 4.696 5.184
4 0.713 1.419 1.893 2.347 2.491 2.933 3.371 3.809 4.388 4.828
5 0.706 1.394 1.848 2.277 2.412 2.825 3.232 3.635 4.168 4.570
6 0.701 1.376 1.816 2.227 2.356 2.747 3.130 3.509 4.006 4.380
7 0.698 1.363 1.792 2.190 2.314 2.689 3.055 3.414 3.883 4.236
8 0.695 1.353 1.774 2.162 2.282 2.645 2.997 3.341 3.788 4.123
9 0.693 1.345 1.760 2.140 2.257 2.610 2.950 3.282 3.712 4.033

10 0.691 1.339 1.748 2.122 2.237 2.582 2.913 3.235 3.651 3.960
11 0.689 1.334 1.739 2.107 2.220 2.559 2.883 3.196 3.600 3.900
12 0.688 1.329 1.731 2.095 2.206 2.539 2.857 3.164 3.558 3.849
13 0.687 1.326 1.725 2.084 2.194 2.523 2.835 3.136 3.521 3.806
14 0.686 1.322 1.719 2.075 2.184 2.508 2.816 3.112 3.490 3.769
15 0.685 1.320 1.714 2.068 2.175 2.496 2.800 3.092 3.463 3.737
16 0.685 1.317 1.709 2.061 2.168 2.485 2.786 3.074 3.440 3.708
17 0.684 1.315 1.706 2.055 2.161 2.476 2.773 3.058 3.419 3.684
18 0.684 1.313 1.702 2.050 2.155 2.468 2.762 3.044 3.400 3.661
19 0.683 1.312 1.699 2.045 2.150 2.460 2.752 3.031 3.384 3.642
20 0.683 1.310 1.696 2.040 2.145 2.453 2.743 3.020 3.369 3.624
21 0.682 1.309 1.694 2.037 2.140 2.447 2.735 3.010 3.356 3.608
22 0.682 1.307 1.692 2.033 2.136 2.442 2.728 3.000 3.343 3.593
23 0.682 1.306 1.690 2.030 2.133 2.436 2.721 2.992 3.332 3.580
24 0.681 1.305 1.688 2.027 2.129 2.432 2.715 2.984 3.322 3.567
25 0.681 1.304 1.686 2.024 2.126 2.428 2.709 2.977 3.312 3.556
26 0.681 1.303 1.684 2.022 2.124 2.424 2.704 2.970 3.304 3.546
27 0.681 1.303 1.683 2.019 2.121 2.420 2.699 2.964 3.296 3.536
28 0.680 1.302 1.682 2.017 2.118 2.417 2.695 2.958 3.288 3.527
29 0.680 1.301 1.680 2.015 2.116 2.413 2.691 2.953 3.281 3.519
30 0.680 1.301 1.679 2.013 2.114 2.411 2.687 2.948 3.275 3.511
40 0.679 1.296 1.670 2.000 2.099 2.389 2.659 2.912 3.228 3.455
50 0.678 1.293 1.665 1.992 2.090 2.377 2.642 2.891 3.200 3.422
60 0.677 1.291 1.662 1.987 2.084 2.368 2.631 2.877 3.182 3.400
70 0.677 1.290 1.659 1.983 2.079 2.362 2.623 2.867 3.169 3.384
80 0.677 1.289 1.658 1.980 2.076 2.358 2.617 2.859 3.159 3.372
90 0.676 1.288 1.656 1.978 2.074 2.354 2.612 2.854 3.151 3.363

100 0.676 1.287 1.655 1.976 2.072 2.351 2.609 2.849 3.145 3.356
200 0.675 1.284 1.650 1.968 2.063 2.339 2.592 2.828 3.117 3.323

1000 0.675 1.282 1.646 1.962 2.056 2.329 2.579 2.811 3.096 3.297
∞ 0.674 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090 3.291

functions that are symmetric about zero. Both have identical last rows, containing standard-normal

quantiles. The Student’s t and OB-t distributions differ in that OB-t has a smaller variance and

kurtosis. When degrees of freedom are large, the OB-t quantiles for νob degrees of freedom are

similar to the Student’s t quantiles for νnb = 3νob/2 degrees of freedom; for example, tob20,0.9995 =

3.624 and tnb30,0.9995 = 3.646. As with the Student’s t distribution, when νob is large OB-t quantiles

can be approximated with the normal distribution. Substituting νnb = 3νob/2 into the Student’s t

variance νnb/(νnb−2) yields OB-t variance 3νob/(3νob−4). Therefore, tobνob,α ≈ zα
√
3νob/(3νob − 4).
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4.2 The OSTS-t Distributions

We can similarly calculate the OSTS-χ2 estimator using V̂osts and the OSTS-t estimator using

Tosts. Table 2 displays our calculation of the quantiles of the OSTS-t distribution. As in the

OB-t calculation, we assume m and the corresponding value of n = mνosts go to infinity, and the

underlying data is i.i.d. normal. Again, we see that the limit as νosts approaches infinity is the

standard normal quantile as expected. The OSTS-t distribution appears to have a slightly smaller

variance than the OB-t distribution by way of smaller quantile values.

Table 2: Numerically computed quantile values of the OSTS-t distribution.

0.75 0.9 0.95 0.975 0.98 0.99 0.995 0.9975 0.999 0.9995

df 2 0.730 1.481 2.005 2.516 2.680 3.186 3.693 4.202 4.876 5.390
3 0.709 1.402 1.861 2.295 2.431 2.847 3.255 3.659 4.187 4.585
4 0.699 1.367 1.799 2.199 2.324 2.700 3.065 3.423 3.887 4.234
5 0.693 1.348 1.764 2.146 2.263 2.617 2.957 3.288 3.714 4.031
6 0.690 1.336 1.742 2.111 2.225 2.564 2.888 3.201 3.602 3.899
7 0.688 1.327 1.727 2.088 2.198 2.527 2.839 3.140 3.524 3.806
8 0.686 1.321 1.716 2.071 2.179 2.500 2.804 3.095 3.466 3.738
9 0.684 1.316 1.707 2.057 2.164 2.479 2.777 3.061 3.422 3.685

10 0.683 1.313 1.701 2.047 2.152 2.463 2.756 3.034 3.387 3.644
11 0.683 1.310 1.695 2.039 2.143 2.450 2.738 3.013 3.359 3.610
12 0.682 1.307 1.691 2.032 2.135 2.439 2.724 2.995 3.335 3.582
13 0.681 1.305 1.687 2.026 2.128 2.430 2.712 2.980 3.316 3.559
14 0.681 1.303 1.684 2.021 2.123 2.422 2.702 2.967 3.299 3.539
15 0.680 1.302 1.681 2.017 2.118 2.415 2.693 2.956 3.284 3.522
16 0.680 1.300 1.679 2.013 2.114 2.410 2.686 2.946 3.272 3.507
17 0.680 1.299 1.677 2.010 2.110 2.405 2.679 2.938 3.261 3.494
18 0.679 1.298 1.675 2.007 2.107 2.400 2.673 2.930 3.251 3.482
19 0.679 1.297 1.673 2.004 2.104 2.396 2.668 2.923 3.242 3.472
20 0.679 1.297 1.672 2.002 2.101 2.392 2.663 2.917 3.234 3.462
21 0.679 1.296 1.671 2.000 2.099 2.389 2.659 2.912 3.227 3.454
22 0.678 1.295 1.669 1.998 2.097 2.386 2.655 2.907 3.221 3.446
23 0.678 1.295 1.668 1.996 2.095 2.384 2.651 2.903 3.215 3.439
24 0.678 1.294 1.667 1.995 2.093 2.381 2.648 2.898 3.210 3.433
25 0.678 1.293 1.666 1.993 2.091 2.379 2.645 2.895 3.205 3.427
26 0.678 1.293 1.665 1.992 2.090 2.377 2.642 2.891 3.200 3.422
27 0.678 1.293 1.665 1.991 2.089 2.375 2.640 2.888 3.196 3.417
28 0.678 1.292 1.664 1.990 2.087 2.373 2.637 2.885 3.192 3.412
29 0.677 1.292 1.663 1.989 2.086 2.371 2.635 2.882 3.189 3.408
30 0.677 1.291 1.663 1.988 2.085 2.370 2.633 2.880 3.185 3.404
40 0.677 1.289 1.658 1.981 2.077 2.359 2.619 2.861 3.161 3.375
50 0.676 1.287 1.655 1.976 2.072 2.352 2.610 2.850 3.147 3.358
60 0.676 1.286 1.654 1.974 2.069 2.348 2.604 2.843 3.137 3.347
70 0.676 1.286 1.652 1.972 2.067 2.345 2.600 2.838 3.131 3.339
80 0.676 1.285 1.651 1.970 2.065 2.342 2.597 2.834 3.125 3.333
90 0.675 1.285 1.651 1.969 2.064 2.341 2.595 2.831 3.122 3.328

100 0.675 1.284 1.650 1.968 2.063 2.339 2.593 2.829 3.118 3.324
200 0.675 1.283 1.647 1.964 2.058 2.333 2.584 2.818 3.104 3.307

1000 0.675 1.282 1.645 1.961 2.055 2.328 2.578 2.809 3.093 3.294
∞ 0.674 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090 3.291
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5 The Existence of the OB and OSTS Distributions

The OB-t and OSTS-t tables in Section 4 are intended to be accurate representations of the asymp-

totic (as batch size m goes to infinity) distributions of Tob and Tosts for general data processes.

Other than numerical computing error, there are two error sources to explain why the OB tables

might not be accurate. First, the batch size m might not be large enough for the sequences of

random variables Tob and Tosts to approach their limits (assuming that those limits exist). Second,

the sample size n might not be large enough for the cumulative data process to be well represented

by Brownian Motion (with implied i.i.d. normal observations).

Previous work demonstrates that the limits exist for these overlapping variance estimators and

that therefore the OB-t and OSTS-t distributions exist. The original proofs assume an FCLT that

allows for estimation of the mean, while recent work makes an SI assumption yielding estimation of

any statistical functional. Additionally, there are separate results for OB and OSTS methods. Table

3 summarizes the key papers. Aktaran-Kalayci (2006) and Alexopoulos et al. (2007b) establish the

limits of overlapping variance estimators for OB and OSTS respectively, under the FCLT case. More

recently, Su et al. (2024) establishes the both OB and OSTS limits under the SI case, extending

the mean estimators to include statistical functionals.

Table 3: Summary of convergence proofs for overlapping batch estimators.

Assumption Estimator OB OSTS

FCLT mean only Aktaran-Kalayci (2006) Thm 10 Alexopoulos et al. (2007b) Thm 3

SI statistical functionals Su et al. (2024) Thm 5.1 Su et al. (2024) Thm 7.1 (claimed)
This paper, Thm 5.4 (proof)

In this paper, we provide a unified computational method for computing the quantiles of the t-

distributions associated with the above estimators for confidence interval calculations. This allows

for direct implementation of the limits derived in past work without relying on approximation

methods. We briefly summarize the limiting results in this section. For the OSTS case under the

SI assumption, we provide a proof of Theorem 5.4 which was omitted in Su et al. (2024).

We assume the data process satisfies Data Assumption Identical but not Data Assumption i.i.d.

normal. Notationally, let D[0, 1] denote the space of functions on [0, 1] that are right-continuous

with left limits, ⇒n→∞ denote weak convergence, and W (·) denote standard Brownian Motion on
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[0, 1]. First, we formally define the FCLT assumption, then present the key theorems using our

notation.

Assumption FCLT The sequence of random functions

Xn(t) =
⌊nt⌋ (

∑⌊nt⌋
j=1 Yj/⌊nt⌋ − µ)
√
τn

for t ∈ [0, 1] and n = 1, 2, . . . satisfies Xn(·) ⇒n→∞ W (·).

Theorem 5.1. (FCLT for OB - Adapted from Aktaran-Kalayci (2006)) For θn = Y , n = (νob +

1)m = m/β, and a fixed degree of freedom νob ∈ Z+, Assumption FCLT implies

τ̂ob ⇒n→∞
τ

β(1− β)2

∫ 1−β

0
[W (u+ β)−W (u)− βW (1)]2du, (5.1)

where β = limm,n→∞m/n ∈ (0, 1).

Theorem 5.2. (FCLT for OSTS - Adapted from Alexopoulos et al. (2007b)) For θn = Y , n =

νostsm = m/β, and a fixed degree of freedom νosts ∈ Z+ \ {1}, Assumption FCLT implies

τ̂osts ⇒n→∞
12τ

β3 (1− β)

∫ 1−β

0

{∫ β

0
W (u+ v)−W (u)− v

β
[W (u+ β)−W (u)] dv

}2

du, (5.2)

where β = limm,n→∞m/n ∈ (0, 1).

Next, we formally define the SI assumption and present the two theorems for OB and OSTS.

Assumption of Strong Invariance The sequence {θ̂n, n ≥ 1} of batching estimators satisfies the

following strong invariance principle. There exists a standard Wiener process {W (t), t ≥ 0} and

a stationary stochastic process {Ỹn, n ≥ 1} d
= {Yn, n ≥ 1} defined on a common probability space

such that as n→ ∞,

∣∣∣τ−1/2
(
θ̂⌊n⌋ − θ(P )

)
− n−1W (n)

∣∣∣ ≤ Γn−1/2−δ√log n a.s., (5.3)

where the constant δ > 0 and the real-valued random variable Γ satisfies E[Γ] <∞.

This assumption is used in Su et al. (2024) to prove overlapping batch estimator results for

statistical functions (under sectioning, batching, and standardized time series) and to construct
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the limiting t-distributions T̃ob and T̃osts. We highlight the key theorem for the large batch regime

for sectioning. Note that the authors define b∞ as the limiting number of batches, which can be

infinite or finite. The version using a finite number of batches will be useful our numerical approach.

Theorem 5.3. ( SI for OB - Adapted from Su et al. (2024), Theorem 5.1) For statistical functional

θn, n = (νob + 1)m = m/β, and a fixed degree of freedom νob ∈ Z+, Assumption SI implies

τ̂ob ⇒n→∞


τ

β(1−β)2
∫ 1−β
0 (W (u+ β)−W (u)− βW (1))2 du, for b∞ = ∞;

τ
β(1−β)b∞

∑b∞
j=1 (W (cj + β)−W (cj)− βW (1))2 , for b∞ ∈ N \ {1},

(5.4)

where cj := (j−1) 1−β
b∞−1 which converges to (j−1)/n when b∞ → n−m+1 in the fully overlapping

case. Furthermore,

T̃ob ⇒n→∞
W (1)√
τ̂ob/τ

. (5.5)

We next present the statistical functional limiting result for the OSTS case, and provide the proof

in the appendix.

Theorem 5.4. (SI for OSTS - Adapted from Su et al. (2024), Theorem 7.1) For statistical func-

tional θn, n = νostsm = m/β, and a fixed degree of freedom νosts ∈ Z+ \ {1}, Assumption SI

implies

τ̂osts ⇒n→∞


12τ

β3(1−β)
∫ 1−β
0

(∫ β
0 (W (u+ v)−W (u)− v

β (W (u+ β)−W (u))dv
)2

du, for b∞ = ∞;

12τ
β3b∞

∑b∞
j=1

(∫ β
0 W (cj + v)−W (cj)− v

β (W (u+ β)−W (u))dv
)2
du, for b∞ ∈ N \ {1},

(5.6)

where cj := (j−1) 1−β
b∞−1 which converges to (j−1)/n when b∞ → n−m+1 in the fully overlapping

case. Furthermore,

T̃osts ⇒n→∞
W (1)√
τ̂osts/τ

. (5.7)

Proof: See Appendix A.
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6 Computing the OB and OSTS Tables

We now discuss the computation of the OB-t and OSTS-t quantiles the tables in Section 4. First,

we compute the inverse of the OB-χ2 cdf Fχ
2

ob (s; νob) ≡ P(Ṽob ≤ s) which allows us to compute the

inverse of the the OB-t cdf F tob(s; νob) ≡ P(T̃ob ≤ s). Similar calculations will be performed for

deriving the OSTS tables in Section 7.2.

The values are computed numerically, as discussed in Section 6.1. Then, in Section 6.2 we

discuss approximating the tables with Monte Carlo experiments. In Section 6.3, we explain our

choice of batch sizes m large enough to approximate (either numerically or with Monte Carlo) the

quantiles.

We will need an additional result. The Continuous Mapping Theorem yields Corollary 6.1,

showing that a limiting distribution analogous to the χ2 exists.

Corollary 6.1. For positive batch size m and n = (νob + 1)m, Assumption FCLT implies

V̂ob =
(n−mm )τ̂ob

n var(Y )

⇒m→∞
νobτ̂ob
τ

≡ Ṽob.

(6.1)

Then, another application of the CMT implies that the distribution of OB-t exists, and the OB-t

random variable can be also written as

T̃ob≡
Z√

Ṽob/νob

. (6.2)

6.1 Our Numerical Method

We pursue a deterministic numerical method to compute the inverse of the OB-χ2 cdf Fχ
2

ob (s; νob)

and the inverse of the OB-t cdf F tob(s; νob). We describe our numerical method using five building

blocks: (1) express Ṽob as a linear combination of n − m + 1 squared standard-normal random

variables, (2) for the batch size m, compute n − m + 1 eigenvalues as the weights of the linear

combination, (3) for any quantile value x, use Laplace transforms to invert the linear combination

to obtain P(Ṽob ≥ x), (4) for the same quantile x, numerically integrate (across standard-normal

realizations z) the product of conditional (on Z = z) OB-t probabilities and standard-normal
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probabilities to obtain P(T̃ob ≥ x), and (5) if a quantile is desired, use numerical root finding to

search across x values to find the desired quantile.

6.1.1 Building Block 1: Linear Combination of Independent χ2(1)

The first building block is to write the OB variance estimator Ṽob as a linear combination of n−m+1

independent chi-squared random variables, each with one degree of freedom. This approach arose

from ideas in Mathai and Provosts (1992). The decomposition into the linear combination is as

follows. Define a discrete difference map Qm,n :W ∈ D[0, 1] 7→ Qm,nW ∈ D[0, (n−m)/n]

Qm,nW (u) :=W

(
⌈un⌉ − 1 +m

n

)
−W

(
⌈un⌉ − 1

n

)
− W (1)

n/m

for u ∈ [0, (n−m)/n], and a continuous difference map Q :W ∈ D[0, 1] 7→ QW ∈ D[0, 1−β] where

QW (u) :=W (u+ β)−W (u)− βW (1), u ∈ [0, 1− β].

Recall from Corollary 6.1 that

Ṽob ≡ νob τ̂ob
τ

.

Let D denote the n−m+ 1 vector of Standard Brownian Motion differences with components

Dj = Qm,nW

(
j

n

)
.

Then, from Theorem 5.3 Ṽob has a discrete approximation cDTD, where c = 1/ [β(1− β)(n−m+ 1)].

Let Σ denote the (n−m+ 1)× (n−m+ 1) matrix containing the covariances between Di and Dj

which will be calculated in Section 7.1. The vector D has a multivariate normal distribution with

mean zero and covariance matrix Σ. Define U = Σ−1/2D. Then,

Ṽob = cUTΣU.

Decompose Σ = P TΛP where P TP = PP T = I and Λ is the diagonal matrix whose elements are

the eigenvalues of Σ. Then

Ṽob = cUTP TΛPU.
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Defining Z = PU yields

Ṽob = cZTΛZ = c
n−m+1∑
i=1

λiZ
2
i ,

where the eigenvalues of Σ, λi, are nonnegative because the covariance matrix Σ is positive semi-

definite. Because the data are centered on the sample mean, one eigenvalue is zero. The Zi variables

are standard normal, so each Z2
i is chi-squared with one degree of freedom; also the Zi variables

are independent since cov(Z) = cov(PΣ−1/2D) = PΣ−1/2cov(D)Σ1/2P T = I.

6.1.2 Building Block 2: Eigenvalues

The second building block is to compute the eigenvalues λi for i = 1, 2, . . . , n − m + 1. This

block is straightforward; see, for example, Smith et al. (2013). It does, however, require order

O((n−m+ 1)3) computing time and order O((n−m+ 1)2) storage. Fortunately, the eigenvalues

are computed only once for every value of νob to create the t-tables.

6.1.3 Building Block 3: Laplace Transforms

The third building block is to invert the convolution of λiZi with a Laplace transform to obtain

P(Ṽob ≥ x) for any constant x ≥ 0. See, for example, Abate and Whitt (1995). The Laplace

transform can be inverted relatively quickly to obtain the OB-χ2 cdf Fχ
2

ob (x; νob) for any specified

set of x values.

6.1.4 Building Block 4: Numerical Quadrature

The fourth building block is to write the OB-t cdf in a tractable way for numerical integration

across the standard-normal values. Let ϕ denote the standard-normal density function. For t ≥ 0

the cdf, from Corollary 6.1, is

F tob(t) = P
( Z√

Ṽob/νob

≤ t
)
.

Condition on Z to obtain

F tob(t; νob) =

∫ ∞

−∞
P
( Z√

Ṽob/νob

≤ t|Z = z
)
ϕ(z)dz.
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Because the normal density function is symmetric around zero, we need to integrate for only z > 0,

yielding

F tob(t; νob) = 1/2 +

∫ ∞

0
P
(
z ≤ t

√
Ṽob/νob

)
ϕ(z)dz.

Rewrite the integrand to obtain

F tob(t; νob) = 1/2 +

∫ ∞

0
P
(
Ṽob ≥ νobz

2

t2
)
ϕ(z)dz.

Substituting the OB-χ2 cdf, which we know how to compute from Building Block 3, yields

F tob(t; νob) = 1/2 +

∫ ∞

0
[1− Fχ

2

ob (x; νob)
(νobz2

t2
; νob

)
]ϕ(z)dz.

This last integral is evaluated using numerical quadrature. See, for example, Press (2007).

6.1.5 Building Block 5: Root Finding

If quantiles are needed, as they are for the OB tables, the fifth building block is to use one-

dimensional root finding to invert the cdfs. That is, find the pth OB-χ2 quantile by solving for x

in Fχ
2

ob (x; νob) = p and/or find the pth OB-t quantile solving for t in F tob(t; νob) = p. The resulting

quantile values in the lookup table can be called using the supporting code.

We have described the approach for calculating the OB-t tables. The same procedure can be used

to calculate the OSTS-t tables by simply changing Σ to represent the covariance matrix of batches

Di formed from the standardized time series batching method, and adjusting νosts accordingly.

6.2 Monte Carlo Verification

Because Monte Carlo requires one-hundred times more computing to estimate to one more digit of

precision, the precision required to create the four-digit t-tables in Section 4 would have required

massive computing resources. Also, we wanted software that could quickly and accurately compute

any t-quantile, not just those in the t-tables. However, t-quantile values can be estimated with a

Monte Carlo experiment. For each degree of freedom νob, the experiment generates many replica-

tions of τ̂ob, and from those many replications of V̂ob and Tob. These values are placed into two

fine-grid histograms, for example, one for OB-χ2 and one for OB-t. When the sampling is complete,
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the histogram is counted left to right to estimate the requested quantiles. The logic for each Monte

Carlo observation of τ̂ob is to generate n standard normal i.i.d. observations Yj and compute τ̂ob

using batches of size m.

The Monte Carlo software was verified by using m = 1 to estimate quantiles in the classical

tables. In turn the Monte Carlo results were used to verify the more-precise and quicker-to-compute

results from the numerical method in Section 6.1. Development and implementation of our approach

in Section 6.1 was more involved than the Monte Carlo approach, but the numerical results are

deterministic and accurate.

6.3 Choosing Batch and Sample Sizes

There has been some research on how to choose the batch size m, and this continues to be an

ongoing topic of research. Song (1988) and Song and Schmeiser (1995) discuss the mean-squared

error (mse) optimal batch size m. For several batching estimators, the quadratic-form graphs in

Song and Schmeiser (1993) illustrate the bias-variance tradeoff as m changes. Yeh and Schmeiser

(2004) showed that OB batch-size choice is more robust (as measured by the mse) than NB (and

other estimators of τ). Pedrosa (1994) develops the 121-OBM algorithm for estimating mse-optimal

batch size from a single vector of observations Y . Yeh (2002) discusses dynamic batch sizing

with limited storage as more observations become available. Schmeiser (2004) contains additional

discussion and references in that research thread.

Both Monte Carlo and our numerical method require that m and n = m(νob + 1) be finite

integers. Because (for the OB tables) we are interested in the limit m → ∞, for each desired

degrees of freedom νob ∈ (0,∞) the value of m needs to be chosen large enough to approximate

asymptotic behavior and small enough to be computationally reasonable. After testing sensitivity

for the four-digit precision of our OB tables, we chose to use m = ⌊1000/√νob⌋ + 1. Thus, in our

table computations the largest batch size, m = 1001, was used for νob = 1; similarly, the smallest

batch size, m = 32, was used for νob = 1000.

When νob is very large, both Monte Carlo and our numerical method are computationally slow.

Fortunately, the normal approximations from Section 4 can be used. A fast Matlab function for

returning the OB-t and OSTS-t values from the tables in Section 4 available at https://faculty.

nps.edu/dsingham/OB_Code.zip. To calculate these values, we employed parallel computing over
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64 cores to distribute the calculation of Σ for large m across multiple processors, since this matrix

can become quite large. Parallelization was also used to distribute calculations across multiple

values of νob and p. We conduct the same computations for OSTS, however numerical integration

is needed in this case to calculate the covariance matrix, and we employ additional parallelization

here.

7 Covariances of Overlapping Batch Means

The fundamental difference between NB and OB is that overlapping batches have observations in

common, which causes positive dependence between batch means. The OB correlation structure is

needed to analyze the behavior of τ̂ob, and the OSTS correlation structure is needed for τ̂osts. We

will first perform the calculation of Σ for the OB estimator in Section 7.1, and then for the OSTS

estimator in Section 7.2.

7.1 OB batch covariances

Here we derive covariances Σ of Di for finite batch size m and n = (νob + 1)m. Batch indices i

and j range from 1 to n−m+ 1. Recall that we use β = m/n to denote the batch-size proportion

relative to the entire data length, so when rescaling the data to a standardized time series on [0, 1],

the batch length relative to that unit interval is β. For fixed m,n, we have

cov(Di, Dj) = cov
(
Qm,nW (i/n), Qm,nW (j/n)

)
= cov

(
W

(
i− 1

n
+ β

)
−W

(
i− 1

n

)
− βW (1),W

(
j − 1

n
+ β

)
−W

(
j − 1

n

)
− βW (1)

)
.

(7.1)

As m,n → ∞, the covariances can be estimated using the fact that the cumulative data process

converges to Standard Brownian Motion, for which cov
(
W (s1),W (s2)

)
= min{s1, s2}, while 0 ≤

s1, s2 ≤ (n−m)/n. For example, considering the first cross-term in (7.1) with s1 = (i− 1)/n, s2 =
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(j − 1)/n, and assuming s1 ≤ s2, we have:

cov
(
W (s1 + β)−W (s1),W (s2 + β)−W (s2)

)
= cov

(
W (s1 + β),W (s2 + β)

)
− cov

(
W (s1+β),W (s2)

)
− cov

(
W (s1),W (s2 + β)

)
+ cov

(
W (s1),W (s2)

)
= min{s1 + β, s2 + β} −min{s1 + β, s2} −min{s1, s2 + β}+min{s1, s2}

= β + 2min{s1, s2} −min{s1 + β, s2} −min{s1, s2 + β}

= β + s1 −min{s1 + β, s2}

= max{0, β − s2 − s1}.

(7.2)

Completing similar calculations for the other cross-terms in (7.1) yields, as m,n→ ∞,

cov(Di, Dj) → β

(
max

{
0, 1− |i− j|

m

}
− β

)
. (7.3)

These covariances are used in Building Block 1 of our numerical algorithm, as discussed in

Section 6.1.1. As discussed in Section 2, a cumulative Brownian Motion data process implies i.i.d.

normal observations; other than for scaling, Brownian Motion covariances hold true under Data

Assumption i.i.d. normal, as used in the definitions of the OB sampling distributions.

7.2 OSTS batch covariances

Next, we calculate Σ for the OSTS case. Let Bs(t) denote the Brownian bridge starting from s and

ending at s + β over s ≤ t ≤ s + β, constructed by the standard Brownian motion on [0, 1] and

β = limm,n→∞m/n. We can write a discrete approximation of the OSTS variance estimator from

Theorem 5.4 using the constant weight function as

τ̂osts =
12τ

β3(1− β)

∫ 1−β

0

[∫ β

0
Bs(t)dt

]2
ds (7.4)

≈ 12τ

β3(n−m+ 1)

n−m+1∑
j=1

[∫ β

0
Bj/n(t)dt

]2
. (7.5)

Again, we approximate Ṽosts ≡ νostsτ̂osts/τ by cDTD where c = 12/
[
β3(n−m+ 1)

]
and Dj =
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[
∫ β
0 Bj/n(t)dt], so it remains to derive the matrix Σ using covariances between batches [

∫ β
0 Bs1(t)dt]

and [
∫ β
0 Bs2(t)dt] where s1 = (i− 1)/n and s2 = (j − 1)/n for all i, j ∈ 1, . . . , n−m+ 1. Consider

the following two Brownian bridges starting at s1 and s2,

Bs1 (t1) =W (s1 + t1)−W (s1)−
t1
β
[W (s1 + β)−W (s1)]

Bs2 (t2) =W (s2 + t2)−W (s2)−
t2
β
[W (s2 + β)−W (s2)] ,

where 0 ≤ s1, s2 ≤ 1− β and 0 ≤ t1, t2 ≤ β. Therefore,

Cov

[∫ β

0
Bs1 (t1) dt1,

∫ β

0
Bs2 (t2) dt2

]
=

∫ β

0

∫ β

0
Cov [Bs1 (t1) ,Bs2 (t2)] dt1dt2 (7.6)

by Fubini’s theorem. Appendix B shows how Fubini’s theorem can be be applied, and derives some

closed-form representations of (7.6).

8 Numerical Results

To show the quality in performance gained by using the exact overlapping batch distributions, we

employ coverage functions (Schruben 1980) to compare observed coverage to nominal coverage.

Coverage functions deliver vastly more information than tables which arbitrarily choose a value

of 1 − α, for example 90% or 95% intervals, and report observed coverage at that value. This is

because nominal coverage should be achieved for all α ∈ (0, 1). Coverage functions are calculated by

collecting, for each simulated replication, the observed coverage (the confidence coefficient needed

to exactly cover the true value), and taking the empirical cumulative distribution function of these

coverage values. For a confidence interval procedure to be valid, the coverage function should

match the uniform distribution, so that the exact desired coverage level is achieved for any desired

confidence coefficient. For our experiments, most coverage functions are generated using 10,000

independent replications to ensure sampling uncertainty has been smoothed away (note the effect

of coverages estimate variability from low macro-replications is not always visible in standard

coverage tables for singular α values). All of our experiments will construct confidence intervals for

the mean to compare classical procedures using OB-t and OSTS-t distributions.

Next, we define “approximate” overlapping methods which exist in the past literature. Because
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overlapping t-distributions were not previously available, researchers obtained the benefits of over-

lapping batches by using an adjusted degrees of freedom applied to the Student’s t distribution.

First, we take two approximate methods tested in Yeh and Schmeiser (2015a) for the OB method.

The first one is taken from Meketon and Schmeiser (1984) and sets the degrees of freedom

a1 = 1.5
( n
m

− 1
)
.

This corresponds to a 50% increase in degrees of freedom derived from belief that the variance of

the overlapping method is approximately two-thirds that of the non-overlapping estimator. How-

ever, Yeh and Schmeiser (2015a) adjust this further to obtain a second approximate method with

improved numerical performance using

a2 = −0.4a21 + 1.3a1 + 2

when 0 < a1 ≤ 2, otherwise

a2 = a1 + 4/a21.

We refer to these approximate methods as OB-a1 and OB-a2. Next, we describe an approximate

OSTS method from Alexopoulos et al. (2007a) which similarly adjusts degrees of freedom by care-

fully observing the limit of the overlapping batch means estimators using OSTS methods. For

b = 1/β = n/m and weight function w(t) =
√
12, we obtain an approximate method OSTS-a which

employs degrees of freedom

a = round

(
2

(24b− 31)/(35(b− 1)2)

)
. (8.1)

Note that for large β the value of a may be negative meaning the approximation cannot be

used. We are now ready to present coverage functions comparing performance of these approximate

methods to the derived OB and OSTS t-quantiles. First, we show coverage functions for the OB

approach for i.i.d. normal data with mean 0 and variance 1 in Figure 1. We use a time series of

n = 1000 data points with varying batch sizes to test the effect of overlapping. For m = 100, we

see that all three OB methods appear to deliver nominal coverage, which is unsurprising given the
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nature of the data and lower levels of overlap in the batches. However, as m increases to 500 and

900, we see that using the exact OB-t distribution continues to deliver nominal coverage, while

the approximate methods OB-a1 and OB-a2 exhibit overcoverage, with OB-a1 showing extreme

overcoverage.

Figure 1: Coverage functions with actual coverage plotted against nominal coverage. Method: OB,
Data: N (0, 1), n = 1000, Replications: 10000.

Next, we plot the results comparing OSTS-t to the approximate degrees of freedom method,

OSTS-a. Figure 2 displays results for i.i.d. normal data. We see that as m increases, coverage

generally improves, with OSTS-t achieving better coverage than the approximate method for m =

750. This implies larger batches may perform better when using OSTS methods. Furthomore, the

approximate method does not work for larger m (relative to n) because the degrees of freedom

calculation in (8.1) becomes negative. Thus, we cannot employ OSTS-a when m = 900.

Figure 2: Coverage functions with actual coverage plotted against nominal coverage. Method:
OSTS, Data: N (0, 1), n = 1000, Replications: 10000.

Next we explore highly dependent data by simulated the waiting times in an M/M/1 queue

with utilization ρ = 0.9. Figure 3 displays the results using an overall run length of n = 50000,

with varying large overlapping batches of m = 10000, 20000, 30000. Smaller batch sizes than 10000

led to greater levels of undercoverage, and all three methods have almost identical coverage for
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values of m smaller than 10000. As the batch sizes increase, we see that the naive method OB-

a1 again exhibits overcoverage, while the OB-t method approaches nominal coverage from below.

Interestingly, OB-a2 gives the best results with coverage closest to nominal. We separately ran

similar experiments with n = 10000 and found coverage behaved similarly, except coverage was

lower than that in Figure 3 which used n = 50000. In the separate experiment with n = 10000,

when using extremely large batch sizes (β = 0.9) coverage started to decrease again.

Figure 3: Coverage functions with actual coverage plotted against nominal coverage. Method: OB,
Data: M/M/1, ρ = 0.9, n = 50000, Replications: 10000.

Figure 4: Coverage functions with actual coverage plotted against nominal coverage. Method:
OSTS, Data: M/M/1, ρ = 0.9, n = 20000, Replications: 2000.

Finally, we present the results for M/M/1 data with utilization ρ = 0.9 using the OSTS dis-

tribution in Figure 4. Evaluating performance for the OSTS method requires higher computing

resources than OB for few reasons. The variance estimators themselves require OSTS computations

for each batch. Additionally, our calculation of Σ relies on numerical integration for each element,

which becomes time consuming for large matrices (large m,n). Thus, we employ n = 20000 and

only 2000 replications for each plot. Each plot takes 60 hours to generate on a supercomputer

employing 64 cores for parallelizing both for the calculation of Σ and for the macro-replications.

Despite these limitations compared to the other figures, we feel the coverage functions still present a
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much more complete picture than a simple coverage table for a single confidence coefficient. Figure

4 demonstrates coverage improvement due to increased overlapping in batching, but perhaps no

real benefit of using OSTS-t versus OSTS-a. We again note that when m/n is too large, OSTS-a

cannot be used because the proposed degrees of freedom is negative.

The “true” distributions of OB-t and OSTS-t are fundamentally characterized by two parame-

ters: n and m, along with the underlying data process. However, it is difficult to provide a single

table for simulation practitioners to use. In contrast, their asymptotic distributions depend only on

the ratio m/n rather than the individual values of n and m. A finding from the coverage functions

is that the distribution of OB-t converges significantly faster to its asymptotic distribution than

OSTS-t. The interpretation is that both OB-t and OSTS-t require the underlying data process to

converge to a Brownian motion. However, OSTS-t imposes an additional condition: the sum of

the standardized time series must converge to the time integral of a Brownian bridge. This extra

requirement makes the convergence of OSTS-t slower and more complex than that of OB-t.

9 Conclusions

We define the OB-t and OSTS-t distributions, analogous to the classical Student’s t distributions

used for NB statistical inference from stationary stochastic process data. We establish that these

distributions exist, and closely approximate the distributions’ quantile values with a numerical

method that uses eigenvalues to reflect the covariances of the overlapping batch means. Access

to these distribution’s quantiles potentially simplifies and improves statistical inference based on

the overlapping batch estimators of not just the sample mean, but general statistical functionals.

We present a unified numerical framework for generating quantiles from overlapping t distributions

along with code to enable fast confidence interval generation.

We compare the observed performance of the OB-t and OSTS-t distributions to prior approx-

imate methods using coverage functions. We find that our calculated t-distributions generally

perform favorably compared to naive inflationary methods for adjusting the degrees of freedom.

While one approximation method, OB-a2, appears to provide very good coverage, there is not a

valid justification for its use, whereas OB-t and OSTS-t now are justified.

Armed with the OB-t and OSTS-t distributions, we can now further establish the quality of over-
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lapping methods under new settings. Future work will test varying batch sizes and levels of overlap

to determine guidelines for practitioners. Additionally, recent developments in multi-dimensional

confidence or infinite-dimensional quantile fields show potential benefits from overlapping batches,

and we plan rigorously develop overlapping methods in these areas.

Acknowledgments

This research is supported by Taiwan’s Ministry of Science and Technology grant MOST 105-2410-

H-008-36 to the second author. We thank two referees, an associate editor, and an area editor for

detailed comments and suggestions on an earlier version of this paper. Finally, we acknowledge

Bruce Schmeiser for many useful discussions that contributed to this work.

References

Abate J, Whitt W (1995) Numerical inversion of Laplace transforms of probability distributions. ORSA

Journal on Computing 7(1):36–43.

Aktaran-Kalayci T (2006) Steady-state analyses: Variance estimation in simulations and dynamic pricing

in service systems. Ph.D. thesis.

Alexopoulos C, Argon NT, Goldsman D, Steiger NM, Tokol G, Wilson JR (2007a) Efficient computation of

overlapping variance estimators for simulation. INFORMS Journal on Computing 19(3):314–327.

Alexopoulos C, Argon NT, Goldsman D, Tokol G, Wilson JR (2007b) Overlapping variance estimators for

simulation. Operations Research 55(6):1090–1103.

Alexopoulos C, Goldsman D, Mokashi A, Nie R, Sun Q, Tien KW, Wilson JR (2014) Sequest: A sequential

procedure for estimating steady-state quantiles. Proceedings of the Winter Simulation Conference 2014,

662–673 (IEEE).

Alexopoulos C, Goldsman D, Serfozo RF (2007c) Stationary processes: Statistical estimation. N Balakrishnan

CR, Vidakovic B, eds., Encyclopedia of Statistical Sciences, volume 12, 7991–8006 (Hoboken, New

Jersey: John Wiley and Sons), 2nd edition.

Alexopoulos C, Goldsman D, Tang P, Wilson JR (2016) SPSTS: A sequential procedure for estimating the

steady-state mean using standardized time series. IIE Transactions 48(9):864–880.

Bischak DP, Kelton WD, Pollock SM (1993) Weighted batch means for confidence intervals in steady-state

simulations. Management Science 39(8):1002–1019.

32



Calvin JM, Nakayama MK (2013) Confidence intervals for quantiles with standardized time series. Pasupathy

R, Kim SH, Tolk A, Hill R, Kuhl ME, eds., Proceedings of the 2013 Winter Simulations Conference,

601–612 (Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.).

Fox BL, Goldsman D, Swain JJ (1991) Spaced batch means. Operations Research Letters 10(5):255–263.

Law AM, Kelton WD (1984) Confidence intervals for steady-state simulations: I. A survey of fixed sample

size procedures. Operations Research 32(6):1221–1239.

Mathai AM, Provosts SB (1992) Quadratic forms in random variables (Marcel Dekker, New York, New

York).

Mechanic H (1966a) Confidence intervals for averages of dependent data in simulations, volume 1 (Yorktown

Heights, NY: Advanced Systems Development Division, IBM Corporation).

Mechanic H (1966b) Confidence intervals for averages of dependent data in simulations, volume 2 (Yorktown

Heights, NY: Advanced Systems Development Division, IBM Corporation).

Meketon MS, Schmeiser B (1984) Overlapping batch means: Something for nothing? S Sheppard UP, Pegden

D, eds., Proceedings of the 1984 Winter Simulation Conference, 227–230 (Piscataway, New Jersey).

Nakayama MK (2014) Confidence intervals for quantiles using sectioning when applying variance-reduction

techniques. ACM Transactions on Modeling and Computer Simulation (TOMACS) 24(4):1–21.

Pasupathy R, Singham D, Yeh Y (2022) Overlapping batch confidence regions on the steady-state quantile

vector. Feng B, Pedrielli G, Peng Y, Shashaani S, Song E, Corlu C, Lee L, Lendermann P, eds.,

Proceedings of the 2022 Winter Simulation Conference (Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers, Inc.).

Pasupathy R, Singham D, Yeh Y (2024) Overlapping batch confidence regions on the steady-state quantile

field. Under Review .

Pedrosa AC (1994) Automatic batching in simulation output analysis. Ph.D. thesis, Purdue University.

Press WH (2007) Numerical recipes 3rd edition: The art of scientific computing (Cambridge University

Press).

Schmeiser B (1982) Batch size effects in the analysis of simulation output. Operations Research 30(3):556–

568.

Schmeiser B (2004) Simulation output analysis: A tutorial based on one research thread. RG Ingalls JS

MD Rossetti, Peters B, eds., Proceedings of the 2004 Winter Simulation Conference, 2004., 162–170

(Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.).

Schruben L (1980) A coverage function for interval estimators of simulation response. Management Science

26(1):18–27.

33



Schruben LW (1983) Confidence interval estimation using standardized time series. Operations Research

31(6):1090–1108.

Singham D (2014) Selecting stopping rules for confidence interval procedures. ACM Transactions on Modeling

and Computer Simulation 24(3):Article 18.

Singham D, Schruben L (2012) Finite-sample performance of absolute precision stopping rules. INFORMS

Journal on Computing 24(4):624–635.

Smith BT, Boyle JM, Garbow B, Ikebe Y, Klema V, Moler C (2013) Matrix eigensystem routines-EISPACK

guide, volume 6 (Springer).

Song WT (1988) On quadratic-form variance estimators of the sample mean in the analysis of simulation

output. Ph.D. thesis, Doctoral dissertation, Purdue University.

Song WT, Schmeiser BW (1993) Variance of the sample mean: Properties and graphs of quadratic-form

estimators. Operations Research 41(3):501–517.

Song WT, Schmeiser BW (1994) Reporting the precision of simulation experiments. New Directions in

Simulation for Manufacturing and Communications (Operations Research Society of Japan).

Song WT, Schmeiser BW (1995) Optimal mean-squared-error batch sizes. Management Science 41(1):110–

123.

Song WT, Schmeiser BW (2009) Omitting meaningless digits in point estimates: The probability guarantee

of leading-digit rules. Operations Research 57(1):109–117.

Song WT, Schmeiser BW (2011) Displaying statistical point estimates using the leading-digit rule. IIE

Transactions 43(12):851–862.

Su Z, Pasupathy R, Yeh Y, Glynn P (2024) Overlapping batch confidence intervals on statistical functionals

constructed from time series: Application to quantiles, optimization, and estimation. ACM Transac-

tions on Modeling and Computer Simulation 34(2):1–43.

Welch PD (1987) On the relationship between batch means, overlapping means and spectral estimation.

Proceedings of the 19th Conference on Winter Simulation, 320–323.

Yeh Y (2002) Steady-state simulation output analysis: MSE-optimal dynamic batch means with parsimonious

storage. Ph.D. thesis, Purdue University.

Yeh Y, Schmeiser B (2015a) OBM confidence intervals: Something for nothing? Yilmaz L, ChanWKV, Moon

I, Roeder TMK, Macal C, Rossetti MD, eds., Proceedings of the 2015 Winter Simulation Conference,

551–561 (Institute of Electrical and Electronics Engineers, Inc.).

Yeh Y, Schmeiser BW (2004) On the MSE robustness of batching estimators. Operations Research Letters

32(3):293–298.

34



Yeh Y, Schmeiser BW (2015b) VAMP1RE: a single criterion for rating and ranking confidence-interval

procedures. IIE Transactions 47(11):1203–1216.

A Proof of Theorem 5.4

As in Su et al. (2024), we assume that m and n go to ∞ with β being the limit of m/n. Because this

paper assumes fully overlapping batches, we set the number of batches is n−m+1 to simplify the

algebra. But the proof extends to the partially overlapping (arbitrary number of batches) setting

as in Su et al. (2024). From the definition of the OSTS estimator,

τ̂osts =
1

n−m+ 1

n−m+1∑
i=1

Ai

where, assuming the weight function w(t) =
√
12,

Ai,m =

√12

m

m∑
j=1

Ti,m

(
j

m

)2

.

The standardized time series for statistical functional estimators of θ is

Ti,m (t) =
⌊mt⌋

(
θ̂i,⌊mt⌋ − θ̂i,m

)
√
m

,

i = 1, . . . , n−m+ 1 and 0 ≤ t ≤ 1. The OSTS estimator can be rewritten in terms of θ̂i,j as

τ̂osts =
12

n−m+ 1

n−m+1∑
i=1

 1

m

m∑
j=1

j
(
θ̂i,j − θ̂i,m

)
√
m

2

. (A.1)

Let B̃i,j = j−1 [W (i− 1 + j)−W (i− 1)] , i = 1, . . . , n −m + 1, and j = 1, . . . ,m. Consider the
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terms inside the square of the OSTS estimator. Adding and subtracting terms yields

1

m

m∑
j=1

j
(
θ̂i,j − θ (P ) + θ (P )− θ̂i,m

)
√
m

− j
√
τ√
m

(
B̃i,j − B̃i,m

)+
1

m

m∑
j=1

j
√
τ√
m

(
B̃i,j − B̃i,m

)

=
1

m

m∑
j=1

j
(
θ̂i,j − θ (P )

)
√
m

− j
√
τB̃i,j√
m

+
1

m

m∑
j=1

j√τB̃i,m√
m

−
j
√
τ
(
θ̂i,m−θ (P )

)
√
τm


+

1

m

m∑
j=1

j
√
τ√
m

(
B̃i,j − B̃i,m

)
.

(A.2)

We will show that the first and second terms in (A.2) converge to zero almost surely and the third

term converges to the area of a Brownian bridge process, i.e., the integral of a Brownian bridge

process with respect to time. Except for a set of measure zero in the probability space implied by

the stationary invariance assumption, we show that there exists Γ(ω) such that the first term goes

to zero uniformly in j . From the SI asumptions, the first term is equivalent in distribution (using

independent increments) as:

∣∣∣∣∣∣
j
(
θ̂i,j − θ (P )

)
√
τm

− W (j)√
m

∣∣∣∣∣∣ ≤ Γ (ω) (log j)1/2
j1/2−δ

m1/2
≤ Γ (ω) (logm)1/2

m1/2−δ

m1/2

= Γ (ω) (logm)1/2
1

mδ
.

Note that when δ > 0,

lim
x→∞

(lnx)1/2

xδ
lim
x→∞

(
lnx

x2δ

)1/2

=

(
lim
x→∞

lnx

x2δ

)1/2

=

(
lim
x→∞

1/x

2δx2δ−1

)1/2

=

(
lim
x→∞

1

2δx2δ

)1/2

= 0,

so we have ∣∣∣∣∣∣ 1m
m∑
j=1

j
(
θ̂i,j − θ (P )

)
√
m

−
√
τW (j)√
m

∣∣∣∣∣∣ ≤ √
τΓ (ω) (logm)1/2

1

mδ
→ 0,

as m→ ∞. Similarly, we can write the second term in (A.2) using a distributional equivalent and

employing the SI assumption to reach the following inequality,

∣∣∣∣∣j
(
θ̂i,m − θ (P )

σ
√
m

− W (m)

m
√
m

)∣∣∣∣∣ ≤ Γ (ω) (logm)1/2 j m−1−δ ≤ Γ (ω) (logm)1/2
1

mδ
.
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Then, we have

∣∣∣∣∣∣ 1m
m∑
j=1

j

[
θ̂i,j − θ (P )√

m
−

√
τW (m)

m
√
m

]∣∣∣∣∣∣ ≤ √
τΓ (ω) (logm)1/2

1

mδ
→ 0,

as m → ∞. Hence, the first and second terms converge to zero almost surely. Next, define

the lattice {0, δm, 2δm, . . . , ⌊1/δm⌋δm} with resolution δm := 1/m and corresponding projection

operator ⌊t⌋δm := max{kδm : t ≥ kδm, k ∈ Z}, where t ∈ [0, 1− δm]. The third term of (A.2) is

1

m

m∑
j=1

j
√
τ√
m

(
B̃i,j − B̃i,m

)

=
1

m

m∑
j=1

√
τ√
m

{
W (i− 1 + j)−W (i− 1)− j

m
[W (i− 1 +m)−W (i− 1)]

}

d
=

√
τ

m

m∑
j=1

{
W

(
i− 1

m
+

j

m

)
−W

(
i− 1

m

)
− j

m

[
W

(
i− 1

m
+ 1

)
−W

(
i− 1

m

)]}

=

√
τ

m

∫ 1−δm

0

{
W

(
i− 1

m
+ ⌊t⌋δm

)
−W

(
i− 1

m

)
− ⌊t⌋δm

[
W

(
i− 1

m
+ 1

)
−W

(
i− 1

m

)]}
1

δm
dt

=
√
τ

∫ 1−δm

0

{
W

(
i− 1

m
+ ⌊t⌋δm

)
−W

(
i− 1

m

)
− ⌊t⌋δm

[
W

(
i− 1

m
+ 1

)
−W

(
i− 1

m

)]}
dt

→δm→0

√
τ

∫ 1

0

{
W

(
i− 1

m
+ t

)
−W

(
i− 1

m

)
− t

[
W

(
i− 1

m
+ 1

)
−W

(
i− 1

m

)]}
dt

d
=
√
τ

∫ β

0

1√
β3

{
W

(
i− 1

n
+ v

)
−W

(
i− 1

n

)
− v

β

[
W

(
i− 1

n
+ β

)
−W

(
i− 1

n

)]}
dv,

because δm → 0 as m→ ∞.

Define another lattice {0, δn, 2δn, . . . , ⌊1/δn⌋δn} with resolution δn := 1/n and a corresponding

projection operator ⌊u⌋δn := max{kδn : u ≥ kδn, k ∈ Z}, where u ∈ [0, 1− β − δn]. Then, returning
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to our original estimator in (A.1), we have

τ̂osts=
12

n−m+ 1

n−m+1∑
i=1

τ

β3

{∫ β

0
W

(
i− 1

n
+ v

)
−W

(
i− 1

n

)
− v

β

[
W

(
i− 1

n
+ β

)
−W

(
i− 1

n

)]
dv

}2

=
12

n−m+ 1

τ

β3

∫ 1−β−δn

0

{∫ β

0
W (⌊u⌋δn + v)−W (⌊u⌋δn)−

v

β
[W (⌊u⌋δn + β)−W (⌊u⌋δn)] dv

}2
1

δn
du

=
12n

n−m+ 1

τ

β3

∫ 1−β−δn

0

{∫ β

0
W (⌊u⌋δn + v)−W (⌊u⌋δn)−

v

β
[W (⌊u⌋δn + β)−W (⌊u⌋δn)] dv

}2

du

→δn→0
12τ

(1− β)β3

∫ 1−β

0

{∫ β

0
W (u+ v)−W (u)− v

β
[W (u+ β)−W (u)] dv

}2

du

because δn → 0 as m,n→ ∞.

B Covariance of STS

First, we show Fubini’s theorem can be applied in (7.6). We need to show that

E [|Bs1 (t1)Bs2 (t2)|] ≤ E
[
B2
s1 (t1)

]1/2
E
[
B2
s2 (t2)

]1/2
=

√
t1

(
1− t1

β

)
t2

(
1− t2

β

)
(B.1)

is uniformly bounded on [0, 1] × [0, 1]. The right-hand equality of (B.1) is derived next. First,

expand B2
s1(t1):

B2
s1(t1) = [W (s1 + t1)−W (s1)]

2 +
t21
β2

[W (s1 + β)−W (s1)]
2

− 2
t1
β
[W (s1 + t1)−W (s1)] [W (s1 + β)−W (s1)]

=W 2 (s1 + t1) +W 2 (s1)− 2W (s1 + t1)W (s1)

+
t21
β2
[
W 2 (s1 + β) +W 2 (s1)− 2W (s1 + β)W (s1)

]
− 2

t1
β

[
W (s1 + t1)W (s1 + β)−W (s1 + t1)W (s1)−W (s1)W (s1 + β) +W 2 (s1)

]
.
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Then, calculate the expectation as

E
[
B2
s1(t1)

]
= s1 + t1 + s1 − 2s1 +

t21
β2

[s1 + β + s1 − 2s1]− 2
t1
β
[s1 + t1 − s1 − s1 + s1]

= t1 −
t21
β

= t1

(
1− t1

β

)
,

which completes the derivation of (B.1). Next we return to (7.6) by expanding:

Cov [Bs1 (t1) ,Bs2 (t2)]

= Cov

[
W (s1 + t1)−W (s1)−

t1
β
[W (s1 + β)−W (s1)] ,W (s2 + t2)−W (s2)−

t2
β
[W (s2 + β)−W (s2)]

]
.

Expanding the cross-terms in the covariance yields Bs1(t1)× Bs2(t2)

= [W (s1 + t1)−W (s1)][W (s2 + t2)−W (s2)]−
t2
β
[W (s1 + t1)−W (s1)] [W (s2 + β)−W (s2)]

− t1
β
[W (s1 + β)−W (s1)] [W (s2 + t2)−W (s2)] +

t1t2
β2

[W (s1 + β)−W (s1)][W (s2 + β)−W (s2)]

=W (s1 + t1)W (s2 + t2)−W (s1 + t1)W (s2)−W (s1)W (s2 + t2) +W (s1)W (s2)

− t2
β
[W (s1 + t1)W (s2 + β)−W (s1 + t1)W (s2)−W (s1)W (s2 + β) +W (s1)W (s2)]

− t1
β
[W (s1 + β)W (s2 + t2)−W (s1 + β)W (s2)−W (s1)W (s2 + t2) +W (s1)W (s2)]

+
t1t2
β2

[W (s1 + β)W (s2 + β)−W (s1 + β)W (s2)−W (s1)W (s2 + β) +W (s1)W (s2)] .

Using the fact that the expectation of a Brownian bridge is zero yields

Cov [Bs1(t1),Bs2(t2)] = min {s1 + t1, s2 + t2} −min {s1 + t1, s2} −min {s1, s2 + t2}+min {s1, s2}

− t2
β
[min {s1 + t1, s2 + β} −min {s1 + t1, s2} −min {s1, s2 + β}+min {s1, s2}]

− t1
β
[min {s1 + β, s2 + t2} −min {s1 + β, s2} −min {s1, s2 + t2}+min {s1, s2}]

+
t1t2
β2

[min {s1 + β, s2 + β} −min {s1 + β, s2} −min {s1, s2 + β}+min {s1, s2}] .

This expression is used to construct Σ for generating the OSTS-t distribution.
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