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A Battery Depletion Risk Measure for
Centralized Systems With Storage Capabilities.

Dashi I. Singham and Mark D. Rodgers

Abstract—This paper develops a new metric, inspired
by the traditional loss of load probability, for evaluating
a centralized energy storage system’s performance on its
ability to satisfy demand in electricity markets. While
the loss of load probability can be used to estimate the
probability of an outage during peak usage periods, our
newly proposed battery depletion risk (or BDR) metric
considers the cumulative probability of exhausting the
centralized storage system across multiple consecutive time
periods. The analytical expression for the BDR metric
can be used in conjunction with an economic dispatch
model to determine the appropriate design parameters for
a centralized storage system needed to mitigate variation
in demand across time periods, hence reducing the overall
risk of an outage.

Index Terms—Power systems reliability, energy storage
systems, loss of load probability, power systems design and
operation

I. INTRODUCTION

AS our society becomes more technologically ad-
vanced, it is critical for centralized power systems

to provide reliable and uninterrupted access to electricity
for consumers and businesses. This has become relevant
as energy storage technologies have become more cost
effective, thus leading to their increased adoption in
recent years [1]. In the traditional sense, one of the most
commonly used metrics to quantify the risk associated
with an energy system is the loss of load probability
(LOLP) [2]. For centralized networks, this metric quan-
tifies the probability that the load exceeds the capacity
during any given time period, or the proportion of time
periods that might face a shortage. In practice, this metric
is used as a reliability threshold or design requirement in
assessing the appropriate reserve capacity requirements.

With this in mind, there is a need for a more robust
performance metric to assess the design of a centralized
network with energy storage in order to mitigate the
risk of a capacity shortfall. To address this challenge,
we introduce a new metric, which we call the battery
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depletion risk (or BDR). We define this metric as the
probability that the system will experience at least one
event over multiple consecutive time periods where the
centralized energy storage resources are depleted, given
that there exists the ability to store excess generation for
use in future time periods. The value of BDR gives the
probability that over a given time periods t = 1, . . . , T
the centralized energy system capacity will be exhausted
at least once, and thus gives a longer-term perspective
on risk and the success of the system over an extended
period of time in addition to looking at risk in a single
time period as LOLP does.

We develop a specific analytical formula for BDR in
the case of short term energy storage being available
to mitigate against demand variability. For example, a
battery may be available to store excess energy from
one time period for use in future time periods when there
may be a shortage. This type of risk mitigation is often
used in microgrids, whereby the goal is for a smaller
unit to operate with self-sufficiency. Renewable energy
resources, such as wind and solar, may also be combined
with battery storage usage due to their intermittent output
associated with uncertain weather patterns.

In Section II of this paper, we present a brief lit-
erature review that summarizes key applications and
approaches to calculate and assess the risk of a shortfall
of energy generation capacity, with particular emphasis
on the LOLP and energy storage. In Section III, the
newly proposed BDR metric is introduced in detail.
Specifically, we derive an analytical upper bound for
BDR under the assumption that load generation and
demand are normally distributed, with the surplus (as the
difference between these two variables) in any particular
time period having a normal distribution with known
mean and variance, i.e.,N (µ, σ2). We calculate the prob-
ability that excess reserves (the current state of battery
storage) drops below zero at least once during multiple
time periods, with the drop below zero signifying that
the existing system of generators is unable to satisfy
demand. The BDR metric depends on the initial state
of the charge in the first time period, SOC0, the values
of µ and σ2, and the number of time periods T . We
derive this metric using boundary crossing probabilities
of Brownian motion. In developing the BDR metric we
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will demonstrate the ability to quantify the effect of
the initial storage levels on reducing the probability of
exhausting the centralized storage system’s capacity over
multiple time periods. Section IV evaluates this metric
and illustrates its behavior via executing simulation trials
of a day-ahead economic dispatch model and studying
the resulting outputs. Key takeaways and conclusions are
presented in Section V.

II. LITERATURE REVIEW

As outlined in the exhaustive literature survey con-
ducted by [3], energy storage systems are usually eval-
uated by utilizing cost-based performance metrics. For
instance, the levelized cost of storage (LCOS), proposed
by [4], is analogous to its predecessor, the levelized
cost of electricity (LCOE), in that it is used to compare
different storage technologies by computing an average
price during discharging hours over the lifetime of the
unit in order to break even. Other researchers have pro-
posed variants of these metrics, such as in [5] who apply
traditional LCOE methods to lithium-ion and vanadium
redox flow batteries in PV systems, or [6] who compute
an annualized life cycle cost of storage (LCCOS) to
evaluate potential investment options.

While metrics of this class are critical to understand-
ing the value proposition of integrating these technolo-
gies into the portfolio, there is a need for a new class
of operational performance metrics to evaluate the effec-
tiveness of integrating an energy storage system into a
centralized power system network. In a traditional sense,
probabilistic methods, such as LOLP or the expected
energy not served (EENS), are often applied to study the
performance of an electric power grid. Moreover, relying
on deterministic methods alone may result in poorly
designed energy systems that struggle to satisfy network
demand upon experiencing inherent levels of uncertainty.
Additionally, in systems with centralized energy systems,
from a design and operational perspective, it is critical
for the battery to operate efficiently, in order to mitigate
against uncertainty and peak demand levels. Inspired by
the LOLP metric, our newly proposed BDR metric aims
to bridge this gap, thus enabling engineers and decision
makers to incorporate these technologies into a network
without sacrificing the ability to satisfy system load. In
light of this fact, we highlight the related literature on
derivations of LOLP under different settings, which in-
form our development of the BDR metric for centralized
energy storage systems.

The research in [7] is one of the earlier papers on
methods for calculating LOLP, and develops a graphical
capability for estimating the LOLP in terms of days
of shortage per year based on adding new generating
units to the model. In [8], uncertainty is modeled in
wind-battery systems using probability and simulation

modeling to estimate the reliability of the system using
LOLP, and the authors note that using Monte-Carlo
simulations can take a very long time for the LOLP
estimate to converge. Thus, it is important to have
analytical approximations available to quickly estimate
the risk associated with a system, which can help further
calibrate large-scale computational experiments.

One common approach is to incorporate LOLP metrics
into constraints of an optimization model. The model in
[9] incorporates a spinning reserve and develops a single-
period hybrid deterministic/probabilistic approach which
requires that an upper bound on the probability of the
loss of load due to the random outage of one or two
units is limited by some constraint. A second constraint
is defined by the expected load not served. Bernoulli
random variables are used to model the availability of the
generators. The authors model the LOLP using binary
variables for the outages which allows it to be used as
a probability constraint. In [10], the authors consider
the probability of random outage events using Bernoulli
variables. The resulting nonlinear formulation is then
converted to a linear formulation. The authors of [11]
develop a method for calculating multi-order outages
using an LOLP constraint, and describe how to linearize
that constraint to approximate the LOLP at higher-level
outages.

Uncertainty in demand or weather factors also play a
major role in modeling system risk. The work in [12]
develops an analytical framework for calculating LOLP
from expected load duration curves, and incorporates the
effects of uncertain demand and price changes, while
[13] considers probabilistic simulations of weather which
affects renewable energy supply, as well as stochastic
availability of power plants. The focus is on evaluating
LOLP using the residual load as the difference between
the electricity load due to stochastic demand and those
from renewable power. The authors then calculate aggre-
gate LOLE (loss of load expectation) over a year, and
do a thorough case study for Germany which seeks to
reduce its nuclear and coal usage.

There are also multiple papers that justify the use
of normally distributed random variables in modeling
power generation and electricity demand. One attempt
to explicitly model LOLP using probability is [14],
who develop an analytical method using the surplus
of generation as the difference between peak resource
availability and peak load. The analytical approach to
calculating LOLP in [14] treats the surplus energy value
at peak times, St, like a random variable, which could be
normally distributed as the number of generator units in-
creases by the Central Limit Theorem. [15] use a normal
distribution to model the growth in load in a given year
and the output power associated with charging electric
vehicles, while using a Weibull distribution to model
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wind speed and illumination intensity for solar sources.
In [16], the authors argue that aggregate system power
from multiple nodes in a network can be modeled as
a normal distribution using the Central Limit Theorem.
They then argue that if the demand distribution is known,
the LOLP can be calculated explicitly using probability
and translated to a deterministic model. Finally, [17]
study the sensitivity of LOLP values to demand in
different areas, and use a mixture of normal distributions
to model demand from different regions.

III. BATTERY DEPLETION RISK

This section describes a proposed metric, battery de-
pletion risk (BDR), and begins by relating it to the com-
monly used loss of load probability (LOLP) metric. The
loss of load probability is defined as the probability that
the demand load on a system is not met at a given point
in time. Typically, this is estimated by comparing the
maximum capacity of a system to the peak demand. A
power system that is built to adequately manage risk will
have a low LOLP such that the probability of demand
exceeding the capacity is very small because there is
adequate margin reserve built into the system. The LOLP
can be estimated using simulation, or using a probability
calculation that incorporates stochastic availability of a
generator combined with varying demand levels.

One way to apply the LOLP to energy storage systems
is to consider the probability that the battery is depleted
at any point over a given time horizon. This implies
that the network of generators, inclusive of the storage
system, may have difficulty satisfying system demand.
While it is certainly possible the amount of energy stored
in the battery could approach zero while simultaneously
satisfying system demand using the remaining generation
capacity, upon experiencing peak demand instances or
network uncertainties, battery depletion may be indica-
tive of a potential loss of load event. Furthermore, while
looking at battery depletion risk at a particular snapshot
in time is an important metric, it does not take into
account the risk associated with multiple time periods,
whereby the main benefit of battery storage is to store
excess from low demand periods to assist in time periods
with unusually high demand. In this instance, there is a
critical need for a cumulative measure, which quantifies
the risk across dependent time periods.

We define battery depletion risk (BDR) as the prob-
ability that the battery is depleted at least once in T
time periods using a battery with an initial state of
charge SOC0. Similar to [14], we treat the surplus
energy St at each time period as a normally distributed
random variable, where in that paper LOLP is estimated
as the probability this surplus is smaller than zero, or
P (St < 0). Suppose Dt is the demand for energy in
time period t and is normally distributed, while Wt is

the energy production generated at each time period,
also normally distributed. The surplus at each period
St = Wt −Dt is assumed to be N (µ, σ2), and Section
IV will test this assumption on sample data.

As noted in Section II, a common assumption is that
the generation and demand are normally distributed,
hence the difference between them (the surplus) can
also be assumed to be normally distributed. However,
we note that our probability measure could also be
employed in non-i.i.d. normal settings as the number of
time periods increases towards infinity. This is the case
for many probability results, in that even under weak
dependence or non-normality, mean measures appear
normally distributed over long time periods because of
the Central Limit Theorem. However, for clarity in our
derivation, and because our goal is to assess battery
performance over finite time periods, we assume i.i.d.
normal values of St. Of course, simulation methods can
be used to estimate BDR if these assumptions do not
apply, but the goal of this paper is to derive a formula
that can be quickly used to assess battery risk.

We highlight the major difference between BDR and
LOLP. BDR is the probability that a battery is exhausted
in at least one time period during t = 1, . . . , T given
charging/discharging schedules resulting from the output
of an economic dispatch model. Thus, while storage is
available to reduce the risk in a given time period, we
calculate the probability that at least one shortage will
occur during time periods 1, . . . , T , not just at a single
peak period t as LOLP does. This provides a cumulative
measure of shortfall risk occurring during a given day
or week, etc, rather than simply looking at a single
time period. Figure 1 shows an example of the current
cumulative surplus stored in a battery over time, which
is the state of the charge at time t, or SOCt. BDR is
the probability this surplus ever drops below zero, which
upon experiencing such an event, implies that a loss of
load event occurs assuming the remaining generators in
the network cannot satisfy the load.

We begin the run with an initial battery reserve
SOC0 > 0 at the start of T time periods. We will
quantify the effect of starting with this initial reserve on
BDR, because having a starting buffer will help manage
uncertainty due to high demands. If the state of charge
at time t is defined as the cumulative surplus plus initial
battery storage, then we have

SOCt = SOC0 +

t∑
i=1

Si. (III.1)

Define BDR as one minus the probability there is never
a battery depletion during T time periods. There is never
a battery depletion when SOCt ≥ 0 for all time periods
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Fig. 1: Sample realization of the state of charge over one
day. BDR is calculated as the probability that the surplus
stored in the battery, SOCt, ever goes below 0.

t ∈ 1, . . . , T :

1− BDR = P

 ⋂
1≤t≤T

SOCt ≥ 0

 .

Then, using (III.1) this translates to:

1− BDR = P

 ⋂
1≤t≤T

{
SOC0 +

t∑
i=1

Si ≥ 0

} .

(III.2)

We now present a formula for an upper bound on BDR.

Theorem 3.1. Let Φ be the cumulative distribution func-
tion of the standard normal distribution, and SOC0 > 0
be the initial battery reserve. Then, the upper bound on
BDR over T time periods is

(III.3)
exp

(
−2SOC0µ

σ2

)
Φ

(
µ
√
T

σ
− SOC0√

Tσ

)

+ Φ

(
−µ
√
T

σ
− SOC0√

Tσ

)
.

The proof is presented in Appendix A. It relies on
approximating the cumulative surplus (SOCt) as Brow-
nian motion, and employs boundary-crossing results to
estimate the probability of a battery depletion. This type
of probability result was first developed in [18], but did
not allow for the ability to include an initial starting
level for the cumulative process. We will see that having
larger initial charge levels will significantly reduce BDR.
The upper bound in the theorem comes from applying
continuous Brownian motion results to a discrete system
evaluated at time increments t, and this bound becomes
tight as T increases, i.e., as T →∞ then BDR is equal to
(III.3). Additionally, as T become large the assumptions

on strict independence and normality of the St values
can be relaxed.

Numerical tests applied to (III.3) reveal what we
would expect. As the starting reserve SOC0 increases,
BDR decreases because there is more of a buffer to
smooth over unexpected shortfalls. As the mean surplus
µ increases, BDR decreases since we don’t expect as
many discharges from the battery, while when the surplus
variability σ2 increases, BDR increases due to the added
uncertainty in the surplus.

IV. IMPLEMENTATION EXAMPLE

In this section, we show how the BDR metric can be
used to evaluate performance in a centralized network.
Given a set of sequential demand forecasts, an opti-
mization model can be constructed to find the optimal
dispatch schedule, inclusive of the corresponding charge
and discharge frequency of a centralized energy storage
system. However, the guaranteed success of this plan
assumes the demand forecasts are accurate without any
uncertainty.

For a given optimal dispatch plan with an initial state
of charge SOC0, we can estimate the distribution of the
output surplus values St to the battery as i.i.d. N (µ, σ2)
using the generation output. Then using SOC0, µ, and
σ2 we calculate an upper bound for BDR using (III.3).
This estimates the risk of battery depletion given un-
certainty in the sequential surplus energy charged to (or
discharged from) the battery over time. By replicating
this calculation using simulated demands, we can esti-
mate a range of potential BDR values, and will find that
battery depletion risk can be significant given demand
uncertainty.

In the following subsections, to illustrate the BDR
metric, we briefly present a day-ahead, hourly economic
dispatch model from [19]. Specifically, we outline the
model’s assumptions, define key input parameters and
decision variables, present the mathematical model, and
display numerical results from applying the optimization
model across multiple simulated inputs.

A. Model Formulation

Tables 1, 2, and 3 define the model paramaters and
decision variables. In addition, we make the following
assumptions listed below.

1) All dispatch and curtailment decisions are made by
a centralized planner who manages all decisions
made within the network.

2) All decisions are made on an hourly basis over a
24-hour time horizon.

3) All thermal units have deterministic characteristics
and cost parameters.
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TABLE I: Model Parameters and Cost Definitions

J Number of generating units (indexed by
j)

T Number of time periods (indexed by t)
aj Quadratic cost coefficient for thermal

generation from unit j ($/MWh2)
bj Linear cost coefficient for thermal gener-

ation from unit j in ($/MWh)
cj Constant cost coefficient for thermal gen-

eration from unit j ($)

TABLE II: Operational Parameters

PMIN j Minimum generation from unit j
(MWh)

PMAXj Maximum generation from unit j
(MWh)

RURj Periodic ramp-up rate for unit j
(MWh)

RDRj Periodic ramp-down rate for unit j
(MWh)

SOCMIN t Minimum available charge required
in period t (MWh);

SOCMAXt Maximum available charge required
in period t (MWh);

SOC0 Starting available charge in period
t; (user defined)

PCMIN t Minimum charge in period t
(MWh)

PCMAXt Maximum charge in period t
(MWh)

PDMIN t Minimum discharge in period t
(MWh)

PDMAXt Maximum discharge in period t
(MWh)

α Charging efficiency (percentage)
β Discharge efficiency (percentage)
Dt Electricity demand in period t

(MWh)

4) No costs are incurred upon charging or discharging
from the energy storage system.

Next, the mathematical formulation for the model
from [19] is presented. The model is formulated as
a nonlinear program (NLP) and is solved using the
open-source solver COIN-OR via GAMS. The objective
function of the model is the total dispatching costs over
the planning horizon in (IV.1):

z =

J∑
j=1

T∑
t=0

(
ajx

2
j,t + bjxj,t + cj

)
. (IV.1)

TABLE III: Decision Variables

xj,t Electricity generated by thermal
unit j in period t (in MWh)

chgt Excess electricity sent to charge the
battery in period t (MWh)

dchgt Electricity discharged from the bat-
tery in period t (MWh)

SOCt Battery “state of charge” in period
t (MWh)

Wt Minimum output from all thermal
units at time t (MWh)

We now present the constraints. First, (IV.2) is the load
balancing constraint which implies that total generation
and discharge from the storage unit must satisfy total
demand:

J∑
j=1

xj,t + dchgt ≥ Dt + chgt, ∀t. (IV.2)

Additionally, all excess generation is used to charge
the battery. Minimum thermal generation output re-
quirements from all thermal units and individualized
minimum and maximum thermal generation limits are
given in (IV.3) and (IV.4) respectively:

J∑
j=1

xj,t ≥Wt, (IV.3)

PMIN j ≤ xj,t ≤ PMAXj , ∀j, ∀t. (IV.4)

Ramping rates are provided in (IV.5) and (IV.6):

xj,t+1 − xj,t ≤ RURj , ∀j, ∀t, (IV.5)

xj,t−1 − xj,t ≤ RDRj , ∀j, ∀t. (IV.6)

Next, the state of the storage unit’s charge is presented
in (IV.7):

SOCt = SOC0 + SOCt−1 + αchgt −
dchgt
β

, ∀t. (IV.7)

The minimum and maximum limits for charging levels,
discharging levels, and the state of charge are provided
in Equations (IV.8), (IV.9), and (IV.10) respectively:

PCMIN t ≤ chgt ≤ PCMAXt, ∀t, (IV.8)

PDMIN t ≤ dchgt ≤ PDMAXt, ∀t, (IV.9)

SOCMIN t ≤ SOCt ≤ SOCMAXt, ∀t. (IV.10)

Finally, (IV.11) displays the nonnegativity constraints:

xj,t, chgt, dchgt, SOCt, Wt ≥ 0, ∀j, ∀t. (IV.11)
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B. Numerical results

In this section, the optimization model is applied to
a test case to evaluate the impact of system character-
istics on the BDR metric as well as an hourly dispatch
schedule. The test case in this section is adapted from
[19], where a system with four thermal generators and a
centralized energy storage system are dispatched hourly
to satisfy the demand. To demonstrate our framework, we
run the model with 11 different values of SOC0, which
is varied from 0 MWh to 1000 MWh in increments of
100 MWh. For each tested value of SOC0, we execute
the optimization model 100 times employing common
random numbers to test the same set of 100 simulated
hourly demand sequences against all values of SOC0.
The demand values are simulated from an i.i.d. normal
distribution with a mean of 647.5 MWh and a standard
deviation of 94.9 MWh as calibrated from the example
in [19].

Operational details of the energy storage system are
given in Table IV. In this numerical study, we allow
essentially unlimited values for SOCt with SOCMAXt

being set very high since our BDR metric does not
place limits on excess surplus. Similarly, we do not place
limits on charging and discharging amounts to align with
our assumptions calculating the metric. These relaxations
allow the battery to operate with as few restrictions as
possible to store and discharge electricity as required.
Thus, in reality, the BDR values could be worse than
those calculated here if there are limits placed on how
much can be stored in a given time period.

TABLE IV: Energy Storage System Operational Details

Parameter Value
SOCMIN t 0 MWh
SOCMAXt 1200 MWh
PCMIN t 0 MWh
PCMAXt SOCMAXt

PDMIN t 0 MWh
PDMAXt SOCMAXt

α 95%
β 90%

As evidenced by Figure 2, as the initial state of
charge increases, the total output from thermal units
in the system decreases in a nearly linear fashion. In
Figure 3, as SOC0 increases, the mean surplus (or
difference between total thermal output and demand)
decreases accordingly. This relationship appears to be
linear in nature, and is indicative of the fact that the
system becomes increasingly dependent on the energy
storage system to satisfy demand, because less thermal
generation is needed when the system starts with a high
level of initial charge.

Fig. 2: SOC0 vs. Total Thermal Output

Fig. 3: SOC0 vs. µ

Fig. 4: SOC0 vs. BDR

Finally, we calculate the BDR metric for each replica-
tion using the estimated mean and variance of the surplus
values derived from the optimal dispatch schedule. As
depicted in Figure 4, as the SOC0 values increase,
the corresponding BDR metric declines at a decreasing
rate. This implies that the risk of depleting the storage
system can be mitigated by increasing the initial state of
charge, and numerical tests reveal that increasing SOC0
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to infinity will lead to a BDR of zero. In studying these
results in tandem with the output displayed in Figure 3,
at smaller SOC0 values, the thermal generation output
exceeds the demand in efforts to charge the battery
for future energy requirements. Additionally, taking the
results from Figure 2 into consideration, as the SOC0

values increase in magnitude, the system becomes less
reliant on the existing thermal generation capabilities
and more reliant on the energy storage system to meet
system demand. Ultimately, from a design perspective,
increasing the initial state of charge of the energy storage
system yields tangible performance benefits with respect
to the electricity supply network’s ability to satisfy
demand, even under volatile demand realizations.

C. Normality Tests
We test the assumption of normality on our opti-

mization model output. Many probability results rely
on the assumptions of normally distributed data, and as
mentioned above, past research has assumed normally
distributed demand, generation and surplus values. In
reality, these values can be non-normal and dependent
across time periods and it is highly unlikely that they
come from a true normal distribution. However, the
absence of true normality and dependence can still
be managed. As the sample size approaches infinity,
approximate normality in mean values can sometimes be
achieved. Otherwise, simulation can be used to estimate
BDR rather than using the result of Theorem 3.1.

Using the output from the optimization runs, we test
our assumption that the surplus St = Wt − Dt is ap-
proximately normally distributed. For each of the 1,000
scenarios run, we test the normality of the 24 generated
St values over the course of a day using the Shapiro-
Wilks test. We find the mean p-value is 0.05, implying
that many of the optimally generated surplus values
would be close to being rejected as normal at the 95%
confidence level. However, we note that the p-values
can be much lower for data that is clearly nonnormal.
For example, testing 1,000 simulated sets of 24 random
exponential variables yields a mean p-value of 0.02,
so exponential data is much more likely to be rejected
than the St data. Additionally, we note that many of
the optimally generated values of St are 0, because the
model is designed to generate just enough power to cover
demand to minimize costs. The presence of multiple
zeros in a run will likely decrease the appearance of
normality, whereas in reality system uncertainty makes
it unlikely for Wt and Dt to exactly coincide in practice.

V. CONCLUSION

Inspired by the LOLP metric, the newly proposed
BDR metric outlined in this paper estimates the prob-
ability that the capacity energy storage system will be

exhausted over the planning horizon. While an hourly
electricity dispatch plan can be developed using demand
forecasts, uncertainty in demand projections increase the
risk of a shortage. We show how increasing the initial
state of charge in the energy storage system can serve
as a mitigation strategy to ensure that the generation
network is able to fully satisfy demand over a sequence
of time periods, and derive an analytical formula which
can be used to quickly assess the storage system’s
performance in the generation portfolio.

The BDR metric allows for power systems planners
to evaluate the efficiency of centralized storage systems
with respect to their ability to mitigate against demand
variability by controlling the battery capacity and starting
charge levels at the beginning of a high demand period.
While the current state-of-the-art energy storage metrics
are critical in evaluating the value proposition of their
integration, the BDR metric is the first quantitative op-
erational performance measure for this class of problems.
However, in order to fully assess system performance in
its entirety, this metric must be considered in tandem
with traditional reliability metrics, such as LOLP and
EENS. Furthermore, while the newly proposed BDR
metric is a quantitative measure of risk, from a manage-
rial perspective, more research is required to translate its
numerical output into a qualitative scale and actionable
insights for practitioners.
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APPENDIX A
PROOF OF THEOREM 3.1

We derive an expression for BDR using (III.2) which
is repeated next, but using notation R as the initial
reserve SOC0 for brevity in what follows:

1− BDR = P

 ⋂
1≤t≤T

{
R+

t∑
i=1

Si ≥ 0

} . (A.1)

Equation (A.1) is the probability that for all days
t ∈ 1, . . . T there will nonnegative energy stored in
the battery. It will be easier to work with cumulative
averages to invoke the translation to Brownian motion.
Rearranging terms and dividing by t yields:

1− BDR = P

 ⋂
1≤t≤T

{
−1

t

t∑
i=1

Si ≤
R

t

} .

(A.2)

Adding the average surplus to both sides

1− BDR = P

 ⋂
1≤t≤T

{
1

T

T∑
i=1

Si −
1

t

t∑
i=1

Si

≤ R

t
+

1

T

T∑
i=1

Si

} ,

and multiplying by t/
√
T yields

1− BDR = P

 ⋂
1≤t≤T

{
t√
T

(
1

T

T∑
i=1

Si −
1

t

t∑
i=1

Si

)

≤ R√
T

+
t

T
√
T

T∑
i=1

Si

} .

(A.3)

Under mild conditions on the Si (weak dependence is
acceptable, i.i.d. normality not required), then

1

T

T∑
i=1

Si −
1

t

t∑
i=1

Si (A.4)

can be converted to the skeleton of a standardized time
series as defined by [20]. Essentially, the cumulative
mean process 1

t

∑t
i=1 Si can be rescaled to converge

to Brownian motion as T increases. In [20], the author
defines standardized time series as continuous functions
over u ∈ [0, 1]:

XT (u) =
bTuc

(
1
T

∑T
i=1 Si − 1

bTuc
∑bTuc

i=1 Si

)
σ
√
T

, u ∈ [0, 1].

The process XT (u) converges to a Brownian bridge
B(u), which is a stochastic process that is Brownian
motion over u ∈ [0, 1] that takes the value of zero at both

endpoints. In our context, the time periods t = bTuc are
the discrete realizations of the process, while XT (u) is
a continuous process. [21] demonstrates that when Si

is i.i.d. normal, the discrete process (A.4) has the same
joint distribution as the corresponding skeleton points of
a continuous Brownian bridge. Thus converting the left
hand side of the inequality in (A.3) to a standardized
time series yields

1− BDR =

P

 ⋂
1≤t≤T

{
σXT (t/T ) ≤ R√

T
+

t

T
√
T

T∑
i=1

Si

} .

Following a similar type of calculation from Eqns.
(2.2)-(2.5) of [18] means we can translate the probability
calculation to one involving Brownian bridges using
XT (u)→ B(u), u ∈ [0, 1] as T →∞. However, for Si

as an i.i.d. normally distributed variable, we don’t need
to take T to infinity and can directly apply Brownian
bridge results since the distributions at the skeleton
points are the same. Setting u = t/T and converting to
a Brownian bridge in continuous time, B(u), u ∈ [0, 1],
we have

1− BDR ≥

P

 ⋂
u∈[0,1]

{
σB(u) ≤ R√

T
+ u

(
1√
T

T∑
i=1

Si

)} .

(A.5)

Note that (A.5) is the probability that a standard
Brownian bridge rescaled by σ crosses a linear boundary
with a positive intercept of R/

√
T at 0. The inequality

leading to the bound 1−BDR ≥ in (A.5) exists because
a continuous process is more likely to cross the bounds
than its skeleton which is a discrete process. Thus the
probability of not having a battery depletion will be
smaller under a continuous Brownian bridge than the
corresponding discretized process, but this discrepancy
decreases to zero as T →∞.

Next, let X =
∑T

i=1 Si/
√
T and note that this

term has distribution N (µ
√
T , σ2). Define fX(x) as the

density of this normal random variable X at value x.
Continuing and writing (A.5) in terms of an upper bound
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for BDR yields

BDR ≤

1− P

 ⋂
u∈[0,1]

{
σB(u) ≤ R√

T
+ u

(
1√
T

T∑
i=1

Si

)}
= P

 ⋃
u∈[0,1]

{
σB(u) ≥ R√

T
+ u

(
1√
T

T∑
i=1

Si

)}
=

∫ ∞
−∞

P

 ⋃
u∈[0,1]

{
σB(u)≥ R√

T
+ ux

} fX(x)dx.

(A.6)

Equation (A.6) is the probability of a Brownian bridge
crossing above a linear boundary R/

√
T+ux probability

weighted over the random variable X taking values
x. We know that the Brownian bridge starts below
the boundary because B(0) = 0 < R

√
T and we

assume R = SOC0 > 0. Consider two options for
the endpoint location. If the endpoint of the Brownian
bridge ends above the linear boundary, then B(1) =

0 > 1√
T

(
R+

∑T
i=1 Si

)
where u = 1. This means the

battery has failed (so BDR is 1 in this case) since it does
not have any energy in reserves at the end of time T if

R+

T∑
i=1

Si < 0, or X < −R/
√
T .

The probability of this happening is

P (X < −R/
√
T ) = Φ

(
−R/

√
T − µ

√
T

σ

)

= Φ

(
−R√
Tσ
− µ
√
T

σ

)
(A.7)

:= V,

where we define V as (A.7), which is the probability
that the cumulative generation at T plus starting battery
reserve is not enough to cover demand. The second
option is that the Brownian bridge ends below the linear
boundary, so B(1) = 0 ≤ 1√

T

(
R+

∑T
i=1 Si

)
, meaning

R+

T∑
i=1

Si ≥ 0, or X ≥ −R/
√
T

which implies that there is excess charge in the battery
at the end of T time periods. In this case, we need
to compute BDR to find the probability that there was
a depletion during some intermediate time period. The
probability that a standard Brownian bridge crosses a
linear boundary given that the starting and ending points
are both below the boundary is calculated in [22] and
[23]. Thus we can replace the probability in the integral

of (A.6) (the P (∪{}) term) with

exp

(
−2R2 − 2Rx

√
T

Tσ2

)
.

Then we can rewrite (A.6) as the probability X <
−R/

√
T (which is V ) plus the probability of crossing

conditioned on all values X ≥ −R/
√
T . Plugging in the

normal density function for fX(x) yields

BDR ≤ V +

∫ ∞
−R/

√
T

[
exp

(
−2R2 − 2Rx

√
T

Tσ2

)

∗ 1√
2πσ2

exp

(
−(x− µ

√
T )2

2σ2

)]
dx

= V +
1√

2πσ2

∫ ∞
−R/

√
T

[
exp

(
−4R2/T − 4Rx/

√
T

2σ2

)

∗ exp

(
−(x2 − 2xµ

√
T + µ2T )

2σ2

)]
dx.

(A.8)

Multiplying together the two exponential terms in the
integral in (A.8) and simplifying by completing the
square yields

exp

−
(
x2 + x(4R/

√
T − 2µ

√
T ) + µ2T + 4R2/T

)
2σ2



= exp

−
[(
x+

(
2R/
√
T − µ

√
T
))2

+ 4Rµ

]
2σ2

 .

(A.9)

Plugging (A.9) back into (A.8) and pulling out the terms
from the integral that do not depend on x yields:

BDR ≤ V +
1√

2πσ2
exp

(
−2Rµ

σ2

)
∗

∫ ∞
−R/

√
T

exp

−
[(
x−

(
µ
√
T − 2R/

√
T
))2]

2σ2

 dx.

Letting Y = µ
√
T − 2R√

T
, defining N (x, µ, σ2) as the

normal density function with mean µ and variance σ2

evaluated at x, and using N (0, 1) as a standard normal
random variable, we have

BDR ≤ V + exp

(
−2Rµ

σ2

)
∗

1√
2πσ2

∫ ∞
−R/

√
T

exp

−
[
(x− Y )

2
]

2σ2

 dx
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= V + exp

(
−2Rµ

σ2

)
∗
∫ ∞
−R/

√
T

N (x, Y, σ2)dx

= V + exp

(
−2Rµ

σ2

)
P
(
Y + σN (0, 1) > −R/

√
T
)

= V + exp

(
−2Rµ

σ2

)(
1− Φ

(
−R/

√
T − Y
σ

))
.

Substituting for V and Y , and using 1−Φ(z) = Φ(−z)
yields the result:

BDR ≤ Φ

(
−µ
√
T

σ
− R√

Tσ

)

+ exp

(
−2Rµ

σ2

)
Φ

(
µ
√
T

σ
− R√

Tσ

)
.
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