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 A B S T R A C T

Coordinated Entry is designed to provide a single access point for people experiencing homelessness to enter a 
Continuum of Care. Some regions, including the County of San Francisco, offer a scoring assessment to potential 
program participants to determine their relative need for housing. This score is then used to route participants 
to the appropriate housing resource. The goal is to achieve equity in assigning the most intensive resources 
to the most vulnerable people, while balancing efficiency in quickly housing as many people as possible. We 
create a queueing simulation model to directly compare policies that attempt to balance tradeoffs between 
equity and efficiency. In particular, we model scoring threshold policies for routing participants, as well as 
jockeying policies for reallocating participants as additional housing inventory becomes available. Finally, we 
apply an extensive experimental design to rigorously compare the policies while incorporating wide-ranging 
input uncertainty. This produces recommendations on how effective routing policies can be designed under 
changing conditions, with applications to healthcare and other tiered service systems.
1. Introduction

Homelessness remains a pervasive and complex issue across many 
regions in the United States, presenting significant challenges for local 
governments and service providers. Addressing this issue requires a 
comprehensive approach due to the different needs of the homeless 
population and the varying availability of housing resources. Each 
county may possess different types of housing solutions, ranging from 
emergency shelters to long-term supportive housing, aimed at serv-
ing populations with distinct needs. In this context, the Coordinated 
Entry (CE) system, which serves as a centralized process designed to 
streamline the management of homeless care systems, has emerged as 
a pivotal mechanism to manage the intake, assessment, and allocation 
of housing resources to the appropriate persons in the system [1].

Homelessness in San Francisco has escalated into a critical issue, 
driven by high housing costs, economic disparities, and systemic social 
challenges. Despite being a region of substantial economic power, it 
hosts a significant portion of the nation’s unsheltered homeless popula-
tion, with recent estimates indicating over 38,000 homeless individuals 
on any given night. Moreover, approximately 35% of the 38,000 home-
less people in the city are chronically homeless, ten percentage points 
higher than the rest of the nation that stands at 25% [2]. The COVID-
19 pandemic further exacerbated this crisis, straining already limited 
resources and highlighting the urgent need for innovative solutions and 
substantial investment in housing and supportive services.
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This paper will build a queueing simulation model based on the 
San Francisco CE system to test the effects of routing policies. In this 
section, we describe CE systems, present our research contributions, 
and provide a brief literature review of related research.

1.1. Coordinated entry

CE is ‘‘a consistent, community-wide process to match people ex-
periencing homelessness to available community resources that are the 
best fit for their situation’’ [3]. In the United States, the Department 
of Housing and Urban Development (HUD) established guidelines so 
each Continuum of Care (CoC) may manage CE operations [3]. To some 
extent, counties follow a first-in-first-out system so that those who have 
been waiting longest should be served first. However, prioritization is 
also an important part of allocating housing. HUD has defined four 
main parts of CE: accessibility, a standardized assessment approach, 
prioritization, and a referral process to housing.

Upon arrival at CE, the CoC should administer an assessment pro-
cess to determine the needs of a potential program participant. The 
assessment method should be uniformly administered, though there are 
certain type of distinctions allowed by HUD. For example, unaccompa-
nied youths may go through a separate assessment process from adults. 
Prevention is also an important component of the CoC, so people at 
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imminent risk of becoming homeless may be eligible for prevention 
assistance. While HUD requires that CoCs use an assessment tool, the 
tools may vary across regions [3].

Prioritization is explicitly a part of HUD policy, in that ‘‘the group 
of persons with the highest priority is offered housing and support-
ive services projects first’’ [3]. In the prioritization step, clients with 
extreme levels of need may be served first if they are unlikely to 
survive without housing. As a result, there are often different types of 
housing allocated for clients with different types of needs. Criteria to 
evaluate priority could include health challenges and vulnerability to 
illness and death, high use of crisis or emergency services (emergency 
departments or jails), and vulnerability to victimization (for example, 
human trafficking or sexual violence). While some CoCs will maintain 
separate priority lists according to subpopulations, HUD suggests that 
CoCs may operate more efficiently using a single list ranked by priority 
with all persons in the region [3]. There is a potential tradeoff between 
aligning people exactly with the correct resource, against efficiency in 
moving people into resources as quickly as possible.

1.2. Research contributions

We present three main research contributions. The first contribution 
develops a queueing simulation model for CE systems with multiple 
classes of housing based on priority. This model is inspired by the 
system used in San Francisco and builds on the literature for rout-
ing of participants through homeless care systems (to be discussed 
in Section 1.3). Our second contribution implements and compares 
policies which attempt to balance equity (alignment of participants 
with the correct type of housing resource) and efficiency (reduced 
waiting times for housing) in allocating resources. These policies as-
sess the effect of changing the thresholds required for participants to 
receive different tiers of housing, and involve reallocating members 
of one housing queue to another to potentially increase throughput 
via jockeying. Because only simple threshold models are amenable 
to closed-form analytical methods, we employ simulation to estimate 
how these more-complex policies might be implemented. The third 
contribution constructs a robust design of experiments to assess how 
the model performs under a range of uncertain inputs. This analysis 
reveals how different input factors affect the tradeoffs between equity 
and efficiency.

1.3. Literature review

The San Francisco Bay Area has been the focus of many streams of 
research due to high levels of homelessness. Paul et al. [4] conduct a 
qualitative study on the relationships between race and homelessness 
on older adults in Oakland, CA. Research in Sacramento, CA, suggests 
COVID-19 may have had as great or greater economic impact on the 
homeless population than the effects of the virus itself [5]. There has 
been much research on the general health outcomes of interventions in 
the homeless population, for example, with HIV testing [6]. Singham 
et al. [7] develop simulated queueing models for the flow of people 
through a CoC in Alameda County, CA, which resides in the East Bay 
area of San Francisco and includes the city of Oakland. The details of 
the types of housing options are modeled to test different allocations 
of resources across the system. This work is motivated by efforts 
to improve racial equity for support of the homeless population as 
described in [8]. Direct exploration of the amount of shelter needed 
as a backstop for a lack of housing was tested in [9] using a quantile 
field estimation method.

Simulation and statistical research are often used to model health-
care outcomes as they apply to homeless populations. For exam-
ple, Chapman et al. [10] employs simulation to model the transmission 
of COVID-19 in homeless shelters, and Ingle et al. [11] uses a prob-
ability model to project the amount of shelter beds needed due to 
COVID-19. Reynolds et al. [12] uses discrete-event simulation to assess 
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the quality of care for homeless patients in a health clinic. Dai and Zhou 
[13] show the mutual causality between homelessness and poor health 
outcomes in the United Kingdom.

Optimization models have also been used with success to deter-
mine resource allocation. Kaya et al. [14] employ mixed integer linear 
programming to determine the optimal allocation and expansion of 
resources in a system modeling youths at risk of being trafficked due to 
homelessness. Maass et al. [15] solve a mixed integer linear program 
under different cases to determine the optimal placement of shelters 
for people at risk of being trafficked. Most recently, Burgess et al. [16] 
optimize the investment into housing and shelter over time using a fluid 
model while incorporating policy-based constraints.

Additionally, the importance of using queueing models to align 
resources with the needs of the population has been analyzed. Rah-
mattalabi et al. [17] study the effect of matching policies to allocate 
resources to program participants using a queueing model. Further-
more, there have been a few streams of research on how to manage 
resources to support populations that are homeless after a natural 
disaster. Liao et al. [18] uses agent-based simulation to determine the 
effects of humanitarian logistics structures used to shelter populations, 
while Souza et al. [19] employs multi-period optimization for allocation 
of people to shelters and corresponding use of relief items.

Threshold policies have been studied in the queueing literature 
to determine when optimal policies may exist. Teh and Ward [20] 
demonstrate the asymptotical optimality of threshold policies for dy-
namic routing in queueing networks, whereby customers are routed to a 
particular server as long as its queue is smaller than some threshold. Ar-
mony [21] study dynamic routing of customers who are allocated to the 
faster servers first, i.e., sending the customer at the front of the line 
to the server which is the fastest. The author demonstrates when this 
policy is optimal under a regime that balances quality of service with 
efficiency. Argon et al. [22] explore dynamic routing policy heuristics 
in systems with multiple different server types, where some customers 
must be served by dedicated servers, and others can be served by 
any server. Optimal threshold policies under uncertainty in the arrival 
and departure rates are studied in [23]. Chen et al. [24] determine 
optimal threshold routing policies for multi-class server systems with 
heterogeneous customer types. They are able to show conditions when 
pairwise dominant policies exist between assigning a customer to the 
faster server, a slow server, or rejecting the customer from the system.

A recent stream of research has directly focused on routing policies 
in queueing systems for at-risk youth in New York City. Kaya and Maass 
[25] prioritize different levels of risk in order to allocate limited shelter 
beds to runaway and homeless youths at risk of becoming trafficked. 
Their model manages a global probability of abandonment across all 
heterogeneous types of clients, and also suggests the number of beds 
that should be allocated to bound the waiting time of clients. The 
paper’s objective with equity is to increase access for higher-risk clients 
while remaining fair to clients who may be less vulnerable. A second 
paper, Kaya and Maass [26], simulates different queueing policies that 
route runaway youths to different shelters based on their combination 
of needs. Different shelters have different capabilities, and while ideally 
each client would be quickly served by a shelter that can address all 
their needs, in reality limited resources must be allocated in order to 
best align the right resources with each client. The risk of abandonment 
from the queue and downstream effects of a mismatch of resources to 
client needs are also modeled. This paper addresses the tradeoffs be-
tween equity and efficiency through a comparison of different queueing 
policies, and, similar to our approach, relies on simulation to account 
for complex implementation details that are experienced in practice.

The remainder of the paper is outlined as follows. Section 2 dis-
cusses CE with an emphasis on aspects unique to San Francisco, while 
Section 3 presents the simulation model and threshold policies tested. 
Section 4 displays the experimental results and Section 5 contains the 
main conclusions.
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2. San Francisco Coordinated Entry system

Although the County of San Francisco is located directly across the 
San Francisco Bay from Alameda County, each county has its own 
approach for structuring CE and allocating housing options. General 
principles must apply across all CE systems according to federal guide-
lines [3]. These guidelines include the following: the county must 
conduct a fair assessment of clients entering the system, establish a 
clear method for prioritization of limited resources, and plan methods 
of referral of clients to housing resources. However, each county may 
employ different specific approaches and policies in their CE systems 
given the particular needs of their population. Singham et al. [7] de-
scribes an approach in Alameda County, where there may be up to eight 
different pathways taken through the system to address different types 
of need. Some people may require extensive intervention and access to 
temporary shelter while waiting for housing to become available, while 
others may only require rental assistance or other financial support to 
remain housed. This section describes the CE approach taken by San 
Francisco.

When we refer to a client, person, or program participant, we are 
generically referring to either an individual, or a family unit treated as a 
single group to be housed together. Program participants refer to people 
who are enrolled in the housing system. San Francisco employs a multi-
stage approach for clients arriving at a CE access point. There are three 
general categories of clients. The first is an adult, who is someone over 
the age of 18, or someone under 18 who has been legally emancipated. 
The second is a family, meaning adults with minor children or adults 
who are pregnant. The third group consists of transitional age youths 
between ages 18–24, ages 25–27 (if they entered CE before the age 
of 25), or youths under 18 who are legally emancipated. Clients falling 
into more than one category are eligible for services from each potential 
system. There may be different CE locations designated for each type 
of client to enable matching of resources appropriately. Survivors of 
violence and people who are pregnant are able to enter CE at any access 
point.

In San Francisco, the CE system facilitates a consistent assessment 
process and prioritizes individuals based on their Housing Primary 
Assessment (HPA), which evaluates individuals’ needs and vulnerabil-
ities to determine their priority for housing services. The HPA score 
considers three main factors: chronicity (the length and recurrence 
of an individual’s homelessness), vulnerability (an individual’s health, 
safety and risk of harm), and barriers to housing (legal issues, income, 
or resource availability). The threshold for HPA scores is set based on 
the anticipated amount of housing inventory that will be available in 
90 days. The county may become aware of new housing being built or 
made available in order to plan around anticipated inventory. The idea 
is to assign those with the highest level of need to the housing with the 
most-intensive services. Those who score above the minimum threshold 
for their household type are placed in Housing Referral Status, making 
them eligible for housing queues based on their HPA score. Those 
below the minimum threshold are not prioritized and do not enter the 
housing queues. The specific threshold scores can vary from zero to 
160, with a score of 160 implying maximum need as evaluated across 
the assessment. The HPA asks questions about where the client resided 
over the past year, whether the client is experiencing physical or 
sexual violence, whether the client has disabling conditions (disability, 
mental health problems, substance abuse issues), and information about 
income and arrest records. The responses are then compiled into an 
HPA score [27].

The model for Alameda County implemented in [7] assumed that 
each client arrived to the system with a particular type of need, and 
their homelessness would only be resolved once they received assis-
tance in a particular form suited to them. However, the model for San 
Francisco takes into account some flexibility among clients who could 
be supported by multiple types of resources. Clients with extremely 
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high service needs may still require high levels of intervention. How-
ever, some clients may benefit from lower levels of intervention that 
are available sooner, rather than waiting in a long queue for more 
expensive services. Additionally, San Francisco attempts to adjust the 
thresholds for different queues based on the anticipated amount of 
resources available. This means that if additional housing is anticipated 
to be available in a particular housing category, more people could 
be directed towards that resource, even if they are ideally suited for 
another resource with limited capacity.

The overall flow of the San Francisco CE system is represented in 
Fig.  1. When people enter CE, there are many potential approaches that 
can be taken to resolve their homelessness. ‘‘Problem solving’’ involves 
using preventative measures like helping the client find or obtain 
transportation to housing through their network. Other short term 
resources may be employed so that the person may quickly return to 
housing. The goal with problem solving is to enable the person to find 
their own housing solution by linking them with different types of con-
nections to employment or community services. The housing primary 
assessment is then collected, and this determines eligibility for housing. 
Rapid rehousing (RRH) delivers limited rental assistance and services to 
enable self-sufficiency and keep people housed. Permanent supportive 
housing (PSH) is ‘‘affordable housing designed for people experiencing 
homelessness with chronic illnesses, disabilities, mental health issues, 
and/or substance use disorders who have experienced long-term or 
repeated homelessness’’. Usually, there are additional services provided 
along with housing in PSH [29]. We note that transitional living spaces 
may also be available through separate programs [30] which serve 
people outside of our considered PSH and RRH resources, but clients 
may still seek PSH while at these facilities. Transitional living and 
shelter spaces are an important part of the homeless response system, 
but are not considered in this queueing model for housing.

There are many other types of specialized resources available, for 
example temporary shelter may exist while clients are waiting for a 
housing solution. People are in a ‘‘housing referral status’’ when they 
are assigned to a queue for either PSH or RRH. The process of housing 
navigation assists people with collecting documents like identification 
and income verification so that they are able to move into a housing 
unit when it is available. Many other solutions may be offered to people 
seeking services who do not qualify for a housing referral status, though 
this research focuses exclusively on PSH and RRH.

We now offer more details on how the HPA is used to determine 
which queue a potential program participant should join. A threshold 
policy is applied to the HPA score to determine if a participant’s score 
is high enough to qualify for PSH. Fig.  2 shows how a distribution of 
potential housing scores could determine where a client is routed in 
the system, with the highest scores referred to PSH (the green area) 
and moderate need referred to RRH (the blue area). The left-most 
dotted line shows the minimum threshold required to be placed in 
a Housing Referral Status, while those scoring below this threshold 
are placed in a Problem Solving status. The right-most dotted line 
representing the threshold between PSH and RRH can be modified 
as time progresses based on anticipated changes to housing inventory 
with the intention of keeping queue lengths balanced across housing 
resources. However, this could potentially lead to inequity in allocating 
the most comprehensive housing to those who need it most. In this 
paper, we will explore this tradeoff between equity and efficiency using 
threshold policies for simulated queueing systems.

The San Francisco Department of Homelessness and Supportive 
Housing determines the ranges of score values which determine the 
type of housing a person is eligible for. For example, in the fall of 
2022, a family with a score between 75 and 160 was eligible to join 
the queue for PSH, while a score of 50–74 makes the family eligible 
for RRH. For scores lower than 50, CE will continue to work with 
them through problem solving or housing referral to ensure each person 
has a pathway to a housing solution. The ranges for housing referral 
assignment will be different for adults, veterans, and youths. The 
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Fig. 1. General flow of San Francisco CE System.
Source: From [28], adapted from [1].
Fig. 2. Illustration of thresholds used to allocate housing resource decisions, with green 
HPA scores referred to PSH, blue scores to RRH, and gray scores to a Problem Solving 
status.
Source: From [28].

thresholds that determine which assessment scores are referred to PSH 
and RRH queues are adjusted over time, depending on the anticipated 
supplies of housing. This means that if more PSH units will be made 
available, the lower bound on the threshold for PSH can be reduced to 
accommodate more people. Next, we construct a simulation model of 
this system to implement different threshold policies.

3. Simulation model for policy testing

This section presents a simulation model for the CE system described 
in Section 2. As described in the literature review, housing systems for 
homeless populations can be thought of as queueing systems. Rather 
than modeling the details of a particular CE location, we model the 
aggregate process of people entering the system, waiting for a housing 
resource, entering housing, then eventually leaving the resource. Sing-
ham et al. [7] was the first such approach to model the aggregate flow 
of people through an entire CoC, with a focus on Alameda County in 
the East Bay of San Francisco. This model had eight separate pathways 
for the different housing types through the system. The San Francisco 
model in this paper only considers two main housing types. We model 
additional complexity by considering a threshold routing policy based 
on vulnerability of the client, with the threshold changing when ad-
ditional housing is anticipated. In both counties, CE is just the first 
entry point of the CoC, and the correct allocation of resources to 
4 
Fig. 3. The queueing model for the CE system.

people entering at this stage is critical to ensuring they are served 
appropriately downstream.

3.1. Model layout

In order to model the CE process in San Francisco, we build a 
simulation model to represent the flow of people through the system. 
Simulation is an effective tool for analyzing systems with random 
arrivals and constrained resources. Discrete-event simulation is an ef-
fective way of constructing queueing systems because of its efficiency 
in modeling large numbers of entities flowing through constrained 
resource systems. It provides a way to track the time people wait 
for housing in congested systems, and enables fast testing of different 
housing policies.

We model this system using a process flow paradigm in Simio to 
track the flow of entities through the system. Simio is a discrete-
event simulation software program which enables intelligent objects 
to be used to model complex queueing systems [31]. When clients 
arrive to the system, an HPA score is simulated for them. This score, 
combined with a threshold for eligibility for PSH, determines whether 
they will receive PSH or RRH. Because we lack specific distributional 
HPA data, we assume all scores in the lower Problem Solving range 
will be treated as eligible for RRH housing to simulate a worst-case 
scenario where RRH is in high demand. This results in a focused model 
where we focus on changing the threshold between PSH and RRH. Fig. 
3 shows the general queueing structure modeled. Thus, we can consider 
parallel server systems which contain different types of housing to serve 
different populations. We define some key notation. Let 𝑇𝑃𝑆𝐻  be the 
determined threshold of need so that clients with HPA scores higher 
than 𝑇𝑃𝑆𝐻  are deemed eligible for PSH. Otherwise, clients are directed 
to the queue for RRH.

Next, we describe some buffer parameters that determine jockeying 
in the system. We allow both input buffers for PSH and RRH to have 
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infinite capacity. Let 𝐵𝑃𝑆𝐻  be a parameter related to the input buffer 
for the PSH server and 𝐵𝑅𝑅𝐻  be a parameter related to the input 
buffer for the RRH server. Let 𝑄𝑃𝑆𝐻  and 𝑄𝑅𝑅𝐻  be state variables 
that represent the number of people in the PSH and RRH queues, 
respectively. We will compare the number in the queue to 𝐵𝑃𝑆𝐻  and 
𝐵𝑅𝑅𝐻  to determine if jockeying should occur, where a client may move 
from the queue for RRH to the queue for PSH if they have waited longer 
than 90 days, and 𝑄𝑅𝑅𝐻 > 𝐵𝑅𝑅𝐻  and 𝑄𝑃𝑆𝐻 < 𝐵𝑃𝑆𝐻 . In Fig.  3 we 
show that these parameters represent some fixed number in the buffer, 
though they are not the actual buffer limits.

This queueing system faces many unique challenges. The system is 
often unstable, in that the arrival rate to the system is higher than the 
service rate. We first discuss what causes a high arrival rate by look-
ing at data collected on the homeless population. Point-In-Time (PIT) 
counts are conducted to estimate the number of people experiencing 
homelessness which includes the unsheltered and sheltered popula-
tion. PIT counts usually occur overnight by having outreach workers 
walk through the city to record the number of homeless individuals 
encountered. The following PIT information is found at [32]. While San 
Francisco has had high levels of people experiencing unshelteredness, 
the PIT count on January 30, 2024 suggested a 1% decline in the 
unsheltered population since the 2022 PIT count, and a 16% decrease 
since 2019. Even though the unsheltered population declined during 
this time, since 2022 total homelessness increased by 7% because the 
sheltered population increased by 18%. Overall, the amount of people 
served through housing and shelter has increased over time, with an 
estimated 7500 clients served and exiting the homelessness system to 
successful independent housing between 2022 and 2024. However, it is 
estimated that three people become homeless for each person housed. 
While approximately 20,000 people seek homeless services each year, 
it is not clear how many people are new arrivals versus returns to 
the system [32]. Despite the increase in the number served by the 
system, the lack of recent decline in the unsheltered population implies 
increased arrivals. Thus, this queueing system was likely unstable in 
recent years because the high arrival rate outpaced the rate that people 
could be served by limited housing resources. We continue to model 
the system as unstable to reflect known past conditions, even if recent 
developments could lead to stability.

Next, we discuss the service rate. Because the intention is for clients 
to remain housed indefinitely, service rates are very slow. In the 
queueing literature, many of the routing decisions in heterogeneous 
server systems are made based on the assumption that one server is 
faster than the others, and that server should be prioritized in order 
to maximize the flow of clients through the system. However, in our 
setting, we want to match clients to servers according to their need, 
and the more desirable server (PSH) may be much slower, in terms of 
service speed, due to the needs of its clientele to stay for longer periods. 
This motivates one main approach to reducing homelessness: increasing 
the amount of housing resources available. This is accomplished by 
increasing affordable housing, supportive housing, or shelter to serve 
the demand for housing. Counties face many challenges in attempt-
ing to build housing, including difficulty finding financial resources, 
locating physical space amid zoning regulations, or obtaining public 
support for new housing. Given that the quantity of housing resources 
available to be allocated to homeless populations is limited, counties 
have developed methods for allocation and prioritization of limited 
current and future inventory. Our model will explicitly consider the 
effects of adding additional housing resources to the system.

3.2. Policies

We explore three policies using our simulation model. The intent 
is to determine whether better results can be achieved by redirecting 
clients based on available resources, while also trying to keep prioriti-
zation aligned with relative need of clients, so that people with higher 
HPA scores still receive PSH housing as quickly as possible.
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1. The first policy is the baseline policy. In this policy, we model the 
HPA threshold, 𝑇𝑡𝑟𝑢𝑒 above which clients should be directed to 
PSH based on an assessment of need. 𝑇𝑡𝑟𝑢𝑒 is meant to reflect 
the level of client need as measured by the HPA score that 
would qualify them for PSH, and is defined in more detail in 
Section 4.1. We set 𝑇𝑃𝑆𝐻  equal to 𝑇𝑡𝑟𝑢𝑒, and this threshold 
remains constant throughout the model run, even as additional 
housing inventory is added to PSH. This is the policy displayed 
in Fig.  3.

2. The second policy is a dynamic policy which changes the thresh-
old for PSH when more inventory is added, so the value of 𝑇𝑃𝑆𝐻
begins with the value 𝑇𝑡𝑟𝑢𝑒 but can change at only one time 
period chosen midway through the model run. In practice, San 
Francisco may lower the value of 𝑇𝑃𝑆𝐻  to allow more people 
to enter the queue for PSH in anticipation of increased housing 
being available. We assume that once someone is placed in a 
housing referral status so that they are in the queue for a housing 
resource, they will remain in that queue even if the thresholds 
change.

3. The third policy employs jockeying, whereby if the queue for 
RRH becomes longer than 𝐵𝑅𝑅𝐻  and the PSH queue is smaller 
than 𝐵𝑃𝑆𝐻 , clients will be redirected from the RRH queue to the 
PSH queue (i.e., jockeying occurs from RRH to PSH if 𝑄𝑃𝑆𝐻 <
𝐵𝑃𝑆𝐻  and 𝑄𝑅𝑅𝐻 > 𝐵𝑅𝑅𝐻 ). The client must wait in the RRH 
queue for 90 days before being allowed to move to PSH.

San Francisco implements a policy similar to our dynamic policy. 
Housing planners across Bay Area counties also informally consider 
the effects of jockeying to balance queues and allow clients to be 
served quickly. Discussions with these planners motivate our policy 
choices. While the model layout in Fig.  3 for the baseline policy appears 
straightforward, implementing the logic for the dynamic and jockeying 
policy involves complex logic using add-on processes in Simio. Simio 
enables each client to retain its HPA score information as it travels 
through the housing servers, and add-on processes behind the model 
layout interface allow for individual jockeying decisions to be made. 
In all policies, the server capacity for PSH is increased at a certain time 
midway through the model run to represent an increase in resources. 
In the dynamic policy, the HPA threshold for PSH eligibility is also 
changed 90 days before this anticipated increase in inventory. In the 
jockeying policy, the model is constructed so that clients will jockey 
from the RRH queue to the PSH queue after 90 days if 𝑄𝑃𝑆𝐻 < 𝐵𝑃𝑆𝐻
and 𝑄𝑅𝑅𝐻 > 𝐵𝑅𝑅𝐻 . This means that if the RRH queue is relatively 
long, clients will move to the PSH queue if it is relatively short. This 
will allow for balancing of queues if the PSH server system is operating 
more efficiently than the RRH system.

3.3. Measures of performance

In order to assess the effect of different policies, we evaluate the 
model according to two types of metrics: equity and efficiency. Equity 
ensures that people are matched with the resource that is right for 
them, as one of the goals of prioritization is to give those with the 
greatest need easier access to housing with the most services. We 
measure equity as the proportion of people who are matched with 
the correct resource given their HPA score according to the original 
threshold 𝑇𝑡𝑟𝑢𝑒 which is determined by need, rather than anticipated 
inventory. Equity can be calculated as the proportion of clients who are 
correctly served by the resource intended for them according to 𝑇𝑡𝑟𝑢𝑒: 

Equity =
∑

𝑖 𝟏𝑃𝑆𝐻𝑖 × 𝟏{HPA𝑖≥𝑇𝑡𝑟𝑢𝑒} + 𝟏𝑅𝑅𝐻𝑖 × 𝟏{HPA𝑖<𝑇𝑡𝑟𝑢𝑒}
# total clients (3.1)

where HPA𝑖 is the score of client 𝑖 and 𝟏𝑃𝑆𝐻𝑖  is 1 if client 𝑖 is served 
by PSH and 0 otherwise. Similarly 𝟏𝑅𝑅𝐻𝑖  is 1 if client 𝑖 is served by 
RRH and 0 otherwise. We let 𝟏{𝐴} be the standard indicator function 
which is 1 when event 𝐴 is true and false otherwise. The baseline 
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policy that does not vary the threshold from 𝑇𝑡𝑟𝑢𝑒 or redirect clients 
will have an equity score of 1 (equivalently, 100%). In reality, clients 
may not end up in the exact housing type designed for them due to 
friction in the system and constraints on resources affecting imple-
mentation decisions, so equity is not 100% in practice. However, this 
research assumes perfect implementation to establish a baseline policy 
for comparison. Furthermore, we note that we have explicitly chosen to 
model equity as the proportion of people receiving the correct resource 
designed for them (according to 𝑇𝑡𝑟𝑢𝑒) based on discussions we had 
about tiered queues with stakeholders. More generally, equity metrics 
could incorporate ideas of housing as many people as possible, though 
this was not considered in this paper.

For the dynamic policy, there is some luck in assignment based on 
when people arrive to the system, as the threshold can change over 
time. This means that it is possible for someone with a lower assessment 
score than 𝑇𝑡𝑟𝑢𝑒 to end up in PSH if they arrive after the threshold is 
decreased, compared to someone with a higher score who arrived when 
the threshold was higher and was referred to the RRH queue. Similarly 
with jockeying, clients originally assigned to one type of housing based 
on the threshold 𝑇𝑡𝑟𝑢𝑒 may end up served by a different resource than 
the one originally assigned to them. Thus, the dynamic and jockeying 
policies allow for the possibility that equity will be less than 100%.

The second measure of performance is efficiency of the system, 
which can be measured in different ways. One main queueing metric 
is the waiting time to receive service (or the time in the queue, 
denoted by PSH_Wait and RRH_Wait). Note that PSH_Wait refers to 
waits experienced by clients who should receive PSH housing based on 
their HPA score compared to 𝑇𝑡𝑟𝑢𝑒. RRH_Wait refers to waiting times 
for clients who should originally have received RRH, but could also 
have waited for PSH because a dynamic or jockeying policy was used. 
Higher efficiency implies lower wait times. A second method is to look 
at the overall throughput of the model, with higher numbers of clients 
successfully entering housing implying better efficiency. We anticipate 
that the dynamic and jockeying policies which redirect clients to hous-
ing servers with more space may lead to better efficiency, at the cost 
of reduced equity. We will use our model and associated experiments 
to evaluate this tradeoff.

4. Experimental results

This section describes the experiments conducted to compare the 
effectiveness of the three policies using our equity and efficiency met-
rics. The threshold for PSH may vary for different types of clients. 
For example, veterans housing may have different thresholds than 
family housing. Details on thresholds for different populations used 
are available at [27]. The housing inventory available to the system is 
updated regularly, and it can be hard to anticipate when and how much 
housing will be available. Because the threshold 𝑇𝑡𝑟𝑢𝑒 varies across 
populations and over time, we conduct experiments on the simulation 
model varying 𝑇𝑡𝑟𝑢𝑒 and other key inputs to compare the effects of the 
three policies under uncertain conditions.

First, we explain the model parameters chosen in Section 4.1. 
Section 4.2 compares the three policies in a baseline experiment. 
Section 4.3 describes the experimental design used to vary key policy 
parameters and presents the main results. Finally, Section 4.4 explores 
regression results and highlights factors that have large influences on 
the results.

4.1. Parameter values

This section describes the parameters that were used in the simu-
lation model. First we describe values that were calibrated from data 
and fixed throughout the model run, and then present parameters 
that were varied using an experimental design. Table  1 shows the 
system parameters used in all model runs. The initial inventory and 
queue values were calibrated using values available from online data 
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Table 1
Model baseline parameters. Parameters below the line will be varied in Section 4.3.
 Parameter Value  
 Initial PSH inventory 11 267 units  
 Initial PSH queue 2500 people  
 Initial RRH inventory 2082 units  
 Initial RRH queue 2000 people  
 Distribution of PSH housing time Exponential(mean 6 years)  
 Distribution of RRH housing time Exponential(mean 9 months)  
 Distribution of HPA score Uniform(0,160)  
 Model warmup period 2 years  
 Time of threshold change 2.5 years  
 Time of inventory change 2.75 years  
 Total model runtime 3.5 years  
 Arrival rate Exponential(rate 10 people/day) 
 𝑇𝑡𝑟𝑢𝑒 112  
 New PSH inventory 12 000  
 𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 proportion 0.8  
 𝐵𝑃𝑆𝐻 1300  
 𝐵𝑅𝑅𝐻 300  

from [27]. The arrival rate and service times are estimated from general 
Bay Area values used in past analysis. The distribution for PSH is chosen 
to represent long stays in housing, while the distribution for RRH 
represents shorter-term assistance. The mean HPA score is estimated 
to be 84 from aggregate data online. Given the scores can range from 0 
to 160, we choose a uniform distribution between (0,160) to allow for 
high variability with a mean near 84. The normal distribution was also 
tested, but would have to be truncated to limit observations outside 
the allowable range. However, we note that different distributions 
could easily be implemented in the model if data were available for 
calibration. Finally, we note that we need to model the current queue 
in the system at the start of the model run to avoid initialization bias. 
After modeling this influx of clients to the system, we run the model 
with a warmup of 2 years to allow entities to circulate through the 
system. We change the threshold at 2.5 years in anticipation of a change 
in inventory 3 months later at 2.75 years, and run the model for an 
additional year to capture the effects of the change. These values can be 
easily modified in the model as updated information becomes available.

Next, we discuss the parameters below the line in Table  1 that 
will eventually be varied in an experimental design. The arrival rate 
is the rate of arrivals to the system, often estimated to be 10/day, 
though this value is highly uncertain. We next define 𝑇𝑡𝑟𝑢𝑒 as the HPA 
score threshold that determines if the client is eligible for PSH housing, 
and set the baseline as an example taken from [27]. The value of 
𝑇𝑡𝑟𝑢𝑒 should be based on the absolute need of the client (ignoring the 
current queues in the system) so that clients are appropriately aligned 
with the correct resource. This value may change over time as the 
nature of the housing resources and HPA scoring method changes, so 
we wanted to allow for variability in our experiments. In practice, this 
threshold determining client routing may vary based on current system 
performance, so 𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 is the new HPA score threshold used by CE in 
anticipation of new PSH housing, measured as a proportion of 𝑇𝑡𝑟𝑢𝑒. 
Thus, the value of 𝑇𝑃𝑆𝐻  in Fig.  3 will start as 𝑇𝑡𝑟𝑢𝑒, and be changed to 
𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 ∗ 𝑇𝑡𝑟𝑢𝑒 as the system progresses. We start with a baseline 0.8 
(80%) to represent a 20% drop in the threshold. Finally, the jockeying 
policy baseline values are set as 𝐵𝑃𝑆𝐻 = 1300 and 𝐵𝑅𝑅𝐻 = 300, 
respectively.

4.2. Policy comparison

In order to compare the performance of all three policies, we 
conduct a one-way Analysis of Variance (ANOVA) F-test to compare the 
means of the three groups for the Equity, Total_Wait, and Total_Served 
metrics. Total_Wait is computed as the weighted sum of PSH_Wait and 
RRH_Wait and is measured in weeks. Total_Served is computed as the 
total number of clients served by either server. The ANOVA will test the 
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Fig. 4. Empirical distributions of equity by policy.

hypothesis that the three group means are equal. This is followed by a 
Student’s t-test for each pair of policies, testing if there is a significant 
difference between them [33].

The first assumption of the ANOVA test, independence of observa-
tions within each group, holds because each result was independently 
simulated. The other assumptions are normality of the results within 
each group and equal variance across the groups. We note that ANOVA 
is robust to moderate deviations from the normality and equal vari-
ance assumptions, particularly with large and equal sample sizes. One 
hundred observations within each group meets the large and equal 
sample size requirement. We next show the empirical distribution of 
each metric by policy to demonstrate that there is not severe departure 
from either the normality or equal variance assumptions.

Fig.  4 shows the distribution of Equity for the dynamic and jockey-
ing policies. As mentioned previously, Equity, by design, will always 
equal 1 for the baseline policy, and a statistical test is not actually 
needed to demonstrate that it is significantly different from the dy-
namic or jockeying distributions. Fig.  4 indicates that the dynamic 
and jockeying distributions do not demonstrate severe departures from 
the normality or equal variance assumptions. Figs.  5 and 6 show the 
distribution of Total Wait and Total Served, respectively, by policy. 
These figures indicate that the distributions do not demonstrate severe 
departures from the normality or equal variance assumptions. We next 
discuss the result of the ANOVA test for each metric.

Fig.  7 shows the mean equity with confidence diamonds for each 
of the policies, and the non-overlapping circles illustrate that there are 
statistically significant differences between the policies with respect to 
equity. We see that the baseline policy has the best equity scores of 1 
(by construction) relative to the dynamic and jockeying policies which 
have significantly lower equity scores, with jockeying having the lowest 
due to more clients being able to move from RRH to PSH.

Fig.  8 shows the mean Total_Wait with confidence diamonds for 
each of the policies, and the non-overlapping circles illustrate that there 
are statistically significant differences between the policies with respect 
to Total_Wait. We see that the dynamic and jockeying policies have 
significantly lower wait times than the baseline policy, suggesting that 
these policies improve efficiency at the expense of some loss in equity.

Fig.  9 shows the mean Total_Served with confidence diamonds for 
each of the policies, and the non-overlapping circles illustrate that there 
are statistically significant differences between the policies with respect 
to Total_Served. Again, we see a potential improvement in efficiency 
using the dynamic and jockeying policies because they significantly 
7 
Fig. 5. Empirical distributions of total wait by policy.

Table 2
Mean performance for each policy.
 Policy Equity Total_Wait (weeks) Total_Served 
 Baseline 1.000 21.8 29375  
 Dynamic 0.916 20.0 29994  
 Jockeying 0.904 19.3 30093  
 ANOVA 𝑝-value <0.0001 <0.0001 <0.0001  

increase the total number of clients that are able to be served by the 
housing resources.

Table  2 summarizes these tests, providing the mean of each metric 
for each policy and the 𝑝-value of the ANOVA test. These tests indicate 
that both the dynamic and jockeying policies provide an improvement 
over the baseline with respect to both efficiency and throughput, 
coming at the expense of some loss of equity. Jockeying yielded the 
best mean efficiency and throughput but also resulted in the lowest 
mean equity.

The results in this section highlight the broad effects that might be 
achieved when implementing the three policies, and provide intuition 
about how the policies affect the tradeoffs between equity and effi-
ciency. However, given these results depend on particular parameter 
choices, we next explore an experimental design to reduce dependency 
on the baseline parameters.

4.3. Experimental design

To quantify the impact of uncertainty in key parameters in the 
simulation model, we design and run three experiments, each tailored 
to one of the three policies. Leveraging the power of the design of 
experiments methodology allows us to systematically investigate the ef-
fects of multiple factors on outputs of a simulation model, enabling the 
discovery of broad insights that would otherwise not be possible [34].
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Table 3
Experiment factor settings for policies in the CE simulation.
 Parameter Baseline Low High Increment Policy Type  
 𝑇𝑡𝑟𝑢𝑒 112 75 125 5 All 11-level 
 New_PSH_Inventory 12 000 11250 14000 250 All 12-level 
 Arrival rate (1/day) 10 6 15 1 All 10-level 
 𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 proportion 0.8 0.6 0.9 0.05 Dynamic 7-level  
 𝐵𝑃𝑆𝐻 1300 500 2000 100 Jockeying 16-level 
 𝐵𝑅𝑅𝐻 300 100 1000 100 Jockeying 10-level 
Fig. 6. Empirical distributions of total served by policy.

The first step in designing an experiment is determining the model 
inputs or parameters to be varied (called factors) and the range or levels 
over which each will be varied. These factors are provided in Table  3, 
and were chosen either because they were highly uncertain, or because 
they are important choices to be made as part of our routing policies. 
This experiment was conducted with the goal of determining policies 
around managing queues in the face of a potential increase in PSH 
housing. Because PSH housing is more intensive, it may make sense to 
allow more clients to access that resource if extra inventory is available. 
Thus, we explore routing policies that would enable more clients to 
enter the PSH queue if additional inventory becomes available. Table  3 
outlines each parameter and the factor levels used, including the base-
line value, low and high ranges for factor settings, and the increment 
used to determine factor levels. The ranges for numeric factors were 
chosen after a series of iterative experiments to induce meaningful and 
interesting variation in the metrics while also representing a reasonable 
range of uncertainty in the real system.

There is also great uncertainty around the availability of new hous-
ing, so we vary the amount of new total inventory in the system 
(New_PSH_Inventory in Table  3) to show the new inventory levels 
varied from the baseline level of 12,000 housing units. We allow for the 
possibility of total inventory to decrease slightly with a low factor level 
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of 11,250, to allow for unforeseen circumstances where capacity in the 
system was lost. Because the arrival rate to the system is uncertain and 
will continue to change, we vary the arrival rate to be between 6/day 
and 15/day. Prevention policies could result in a decreased arrival rate, 
though given that the homeless crisis is still facing many challenges, we 
want to test whether the polices are robust to increased arrival rates 
from the current baseline estimates of 10/day. Finally, we vary the 
parameters of the buffer policy, 𝐵𝑃𝑆𝐻  and 𝐵𝑅𝑅𝐻  to be the range of 
queue values allowed for RRH clients to switch to the PSH queue.

There are many choices of design available. A well-known design is 
the full factorial which tests every possible combination of the factors. 
Though ideal, as the number of factors and levels grows, it quickly 
becomes prohibitive in terms of the runs needed, and consequently the 
time required to run the experiment. Space-filling designs are a popular 
choice for sampling the interior of a space in an effective and efficient 
manner [35]. For our experiments, we employ the 2nd Order Nearly 
Orthogonal and Balanced (NOAB) space-filling design which allows 
for a mix of factor types (continuous, discrete, or categorical) and 
provides enough degrees of freedom to fit a wide variety of complex 
metamodels while minimizing correlations between all terms in a 2nd
order regression model [36]. This design ensures that we have good and 
balanced coverage of the factor space, allowing for the independent 
assessment of each factor’s influence. The space-filling nature of the 
design allows for identification of thresholds and change points and 
its efficiency means that we can effectively sample the space using far 
fewer runs that would be required with a full factorial design. The 
custom design builder used to construct our design is available publicly 
for download at https://harvest.nps.edu.

4.4. Analysis of experiment data

We use statistical metamodeling to capture the relationship between 
experiment factors and the model output, or responses. There are many 
forms of metamodels including, for example, multiple linear regression, 
logistic regression, Gaussian process modeling, and tree-based meth-
ods [35,37]. By fitting statistical metamodels, we can thereby quantify 
the effect of the experiment factors on equity and efficiency, capturing 
the impact of uncertainty. For the analysis presented in this paper, we 
employed multiple linear regression using stepwise selection, allowing 
all terms in a second-order regression model to be considered for entry. 
In each case, we obtained a well-fitting regression model, so there was 
not a need to consider higher-order terms.

We fit regression models to PSH_Wait and RRH_Wait for the baseline 
policy experiment. For the dynamic and jockeying experiments, we 
fit models to Equity, PSH_Wait and RRH_Wait. Thus, we fit eight 
regression models in total. The tables that follow contain information 
about the significant terms in two selected regression models, one 
corresponding to the dynamic experiment and one corresponding to the 
jockeying experiment. The remaining experiments contained similar 
insights so the results are excluded here for brevity.

We begin with the regression table for PSH_Wait in the dynamic 
experiment shown in Table  4. Not including the intercept, this regres-
sion model contains four main effects and four two-way interactions 
and these are listed in the table in decreasing order of impact. Impact 
is measured by the absolute value of the 𝑡-statistic, also known as 
the 𝑡-ratio, computed as the coefficient value divided by its standard 

https://harvest.nps.edu
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Fig. 7. One-way analysis of variance (Equity by policy).
Fig. 8. One-way analysis of variance (Total_Wait in weeks by policy).
Fig. 9. One-way analysis of variance (Total_Served by policy).
error. Main effects with positive coefficients increase PSH_Wait while 
those with negative coefficients decrease PSH_Wait. The term with 
highest impact is the arrival rate, which was highly significant for all 
regression models. Interaction terms represent a situation where the 
combined effects of two factors is more or less than the sum of the 
independent effects. The term with the second highest impact is the 
interaction between the arrival rate and the amount of New_PSH_Inven-
tory. Further inspection of the interaction result reveals that increased 
levels of New_PSH_Inventory do not impact PSH_Wait much at lower 
values of the arrival rate, as the increased inventory is not needed. 
Increased inventory substantially reduces PSH_Wait for higher arrival 
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rates. Specifically, when the arrival rate is set to its highest value in 
this experiment, 15/day, then increasing PSH inventory from 11,250 
to 14,000 reduces PSH_Wait by approximately 40 percent.

Interpreting the next most impactful interaction term, between the 
arrival rate and the true threshold, an increased arrival rate has a 
substantially greater impact when the true threshold is lower and 
much less of an impact when the true threshold is higher. In other 
words, the system can handle an increased arrival rate when the true 
threshold is higher. The interaction between the lowered threshold and 
New_PSH_Inventory is interpreted as: lowering the threshold increases 
PSH_Wait for higher levels of New_PSH_Inventory by approximately 20 
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Table 4
Regression table for PSH_Wait in the dynamic experiment.
 Term Coefficient Std error 𝑡-statistic 𝑝-value 
 Arrival_Rate 31.76986 1.80708 17.58 <.0001  
 Arrival_Rate*New_PSH_Inventory −0.00143 0.00013 −10.76 <.0001  
 Arrival_Rate*𝑇𝑡𝑟𝑢𝑒 −0.08306 0.00789 −10.53 <.0001  
 𝑇𝑡𝑟𝑢𝑒 −2.14939 0.28061 −7.66 <.0001  
 𝑇𝑡𝑟𝑢𝑒*New_PSH_Inventory 0.00016 0.00002 7.49 <.0001  
 New_PSH_Inventory*𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 −0.00763 0.00297 −2.57 0.0122 
 𝑇𝑙𝑜𝑤𝑒𝑟𝑒𝑑 90.27962 37.41342 2.41 0.0186 
 New_PSH_Inventory −0.00099 0.00071 −1.38 0.1718 

Table 5
Regression table for RRH_Wait in the jockeying experiment.
 Term Coefficient Std error 𝑡-statistic 𝑝-value  
 Arrival_Rate 6.10914 0.13335 45.81 <0.0001 
 𝑇𝑡𝑟𝑢𝑒 0.45741 0.02449 18.61 <0.0001 
 Arrival_Rate*𝑇𝑡𝑟𝑢𝑒 0.09698 0.00850 11.41 <0.0001 
 Arrival_Rate*Arrival_Rate 0.54689 0.05285 10.35 <0.0001 
 𝑇𝑡𝑟𝑢𝑒*𝑇𝑡𝑟𝑢𝑒 −0.00845 0.00174 −4.85 <0.0001 
 New_PSH_Inventory*Arrival_Rate −0.00041 0.00015 −2.70 0.0083  
 𝑇𝑡𝑟𝑢𝑒*New_PSH_Inventory −0.00005 0.00002 −2.09 0.0393  
 New_PSH_Inventory −0.00076 0.00045 −1.71 0.0902  

percent, because in this case, individuals who would have otherwise 
been provided with RRH services were instead sent to PSH, increas-
ing total throughput. The term listed last is the New_PSH_Inventory. 
Though not significant at the 0.05 or 0.10 level of significance as a 
main effect, it is the convention to retain it in the model because it is 
contained in several significant interactions with other factors.

We next discuss the regression for RRH_Wait in the jockeying exper-
iment, whose terms are shown in decreasing order of impact in Table 
5. This regression model contains three main effects, two quadratic 
terms, and three two-way interactions and these are listed in the table 
in decreasing order of impact. Investigation of the quadratic term for 
the arrival rate reveals that RRH_Wait experiences a polynomial rate 
of increase as the arrival rate is increased over its range from 6/day 
to 15/day, with near-zero wait at the lower end and approximately 55 
weeks at the upper end. To determine the impact of increasing PSH 
inventory, we look to the interaction between New_PSH_Inventory and 
the arrival rate. Inspection of this interaction reveals that when the 
arrival rate is set to its highest value in this experiment, 15/day, then 
increasing PSH inventory from 11,250 to 14,000 reduces RRH_Wait by 
almost ten weeks.

5. Conclusion

We build a discrete-event simulation model to explore complex 
routing policies associated with allocating limited housing resources 
to people arriving to a homeless CoC. One goal of a CE system is to 
effectively align clients with the type of housing that best suits their 
needs. We approach this goal by developing quantitative metrics of 
equity (percentage of correct housing assignments according to need) 
and efficiency (waiting time for housing and total number of clients 
served). The simulation model allows us to estimate how different 
routing policies perform according to these metrics. We explore a 
baseline threshold policy, a dynamic threshold policy that allows the 
HPA score threshold to change over time, and a jockeying policy that 
allows clients to move to a queue for a better housing resource.

A comparison of the three policies reveals that the dynamic and 
jockeying policies are able to improve efficiency in the system through 
reduced waiting times and increases in the number of clients housed, 
though at the expense of decreased equity. However, equity levels 
are still relatively high, where most clients are receiving the housing 
resource originally intended for them. Because system conditions are 
constantly changing and uncertain, we conduct a design of experiments 
to compare the policies while varying inputs to the model. This reveals 
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which input factors are key in influencing the results, and these factors 
should be carefully considered in implementation planning.

We note that the operations of CE in locations such as San Francisco 
and Alameda County are continually changing based on local condi-
tions and input from policymakers and stakeholders. While our model 
was based on general existing conditions at the time of this writing, it 
can be adapted to consider more than two types of housing resources, 
or different types of routing policies as the system evolves. Many other 
systems, such as healthcare systems, may also benefit from this type 
of exploration of routing policies that are too complex for analytical 
queueing methods. Future work will address optimization of simulation 
planning models for multi-tier CE systems.
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