

Resilient Islands and Installations: Interdependent Infrastructure in the US Virgin Islands

Dan Eisenberg, PhD

Research Assistant Professor | Operations Research Deputy Director | Center for Infrastructure Defense daniel.eisenberg@nps.edu

Unclassified. Distribution A: Unlimited

Naval Postgraduate School (NPS)

America's national security research university

History Highlights

- 1909 Founded at U.S. Naval Academy
- 1951 Moved to Monterey, CA Operations Research Curriculum
- Facilities of a graduate research university
- Faculty who work for the U.S.
 Navy, with clearances
- Students with fresh operational experience

FY2017:

- 65 M.S. and 15 Ph.D. programs
- 612 faculty
- 1432 resident students includes (166 international / 47 countries)
- 909 distributed learning students

NPS Center for Infrastructure Defense (CID) **Operations Research Department**

David Alderson

Associate Professor, OR Director, NPS Center for Infrastructure Defense Ph.D., Stanford University, 2003

Daniel Eisenberg

Research Assistant Professor, OR **Deputy Director, NPS CID**

Ph.D., Arizona State University, 2018

W. Matthew Carlyle Professor & Chair, OR

Ph.D., Stanford University, 1997

Robert Dell Professor, OR

Ph.D., S.U.N.Y. Buffalo, 1990

Gerald Brown Distinguished Emeritus Professor, OR Member, National Academy of Engineering Ph.D., U.C.L.A., 1974

Javier Salmerón Associate Professor, OR

Ph.D., Universidad Politécnica (Spain), 1998

Cross-Campus Collaborators

Jefferson Huang Assistant Professor. OR

Ph.D., Cornell, 2017

Alan Howard

Deputy Director, NPS Energy Academic Group

MBA/MIM in International Management, 2000

Justin Rohrer Assistant Professor, CS

Ph.D., University of Kansas, 2011

Research is Part of a Broader Team Effort

NAVAL Postgraduate School

Source: https://www.usvihurricanetaskforce.org/

How Bad Was It?

Estimated \$10B in damages

• \$6.9B to infrastructure

Roads

- Curfew restrictions
- Traffic lights out
- Sevenfold increase in crashes

Electricity

- 90% of above ground lines damaged
- Over 50% of poles knocked down

Water

- Reserves dropped to 3-day volume
- Service restored after a month

Telecommunications

- 80% of towers down
- Public radio/tv out for months

Infrastructure Mission in the DoD

DOD Directive 3020.40: Mission Assurance (2016)

DOD has recently reorganized its efforts to protect defense-related critical infrastructure under a broader program of *mission assurance*

Key recognition

- <u>Assets</u> work together as <u>systems</u> to provide <u>function</u>
- Function enables *capability*
- Capability supports *mission*

Focus needs to remain on the relationship between the infrastructure asset and the missions it supports

Resilient Islands and Installations

Infrastructure Provision within the DoD

Infrastructure Understood via Two Key Performance Indices:

- FCI Facility Condition Index (measure of quality)
- MDI Mission Dependency Index (measure of capability)

New DOD Requirements for Installation Resilience:

- NAVFAC: 7 Days Energy (NAVFAC P-602, 2017)
- ARMY: 2 Weeks Energy + Water (Army Directive 2017-07)
- USAF: 7 Days Energy (USAF Directive 90-17)
- USMC: 2 Weeks Energy + Water (Logistics, Comms, & Food)

Infrastructure Service Recovery Timeline – Electricity

Resilience Depends on System Design – STT/STJ

Electricity Distribution System

Water Distribution System

Resilience Depends on System Design – STT/STJ

Electricity Distribution System

Water Distribution System

Relating Islands to Military Installations

Figure 3.1. Conceptual Diagram of CONUS Base Electric Power Physical Infrastructure

Narayanan, Anu, Debra Knopman, James D. Powers, Bryan Boling, Benjamin M. Miller, Patrick Mills, Kristin Van Abel, Katherine Anania, Blake Cignarella, and Connor P. Jackson. *Air Force Installation Energy Assurance*. RAND Corporation, 2017.

Relating Islands to Military Installations

Figure 3.1. Conceptual Diagram of CONUS Base Electric Power Physical Infrastructure

(Telecom) to Operate

Project Goals:

Water & Electric Power Distribution:

- Cascading failures across water and electric power systems
- Operations and management to alleviate blackout & drought impacts

Transportation & Supply Chain:

- Community access to disaster relief during and after hurricanes
- Drainage infrastructure condition, roadway flooding, and traffic impacts

Internet & Fiber Backbone:

- Hardline internet structure and vulnerability assessment
- Wireless cellphone & internet coverage post-hurricanes

Community Engagement & Capacity Building:

• University of the Virgin Islands – Island Infrastructure Fellowship Program

Data Collection & Construction for St. Croix

- 26-30 Mar 1st NPS site visit to STX, STT
- 11-15 Jun 2nd NPS site visit to STX, STT
- 14-15 Jun UVI/VITEMA Hazard Mitigation Workshop
- 22-26 Oct 3rd NPS site visit to STX, STJ, STT
- 24-25 Oct Sandia Microgrid Workshops
- 24-29 Mar 4th Site Visit to STX, STJ, STT
- 09-13 Sept Planned: 5th Site Visit & 2nd HMP Workshop
- Bunn BB, 2018, "An Operational Model of Interdependent Water and Power Distribution Infrastructure Systems," M.S. Thesis in Operations Research, Naval Postgraduate School, Monterey, CA.
- Alderson DL, Bunn BB, Eisenberg DA, Howard AH, Nussbaum DE, Templeton JC, 2018, "Interdependent Infrastructure Resilience in the U.S. Virgin Islands: Preliminary Assessment," NPS Technical Report, Naval Postgraduate School, Monterey, CA.

Data Collection & Construction for St. Croix

Recreating Google Maps for Disaster Relief

Recreating Google Maps for Disaster Relief

Running program: ShortestPath.py AllPoints file: ../Data/Working/STX/ModelPostTrip/AllPointsSTX.json AdjList file: : ../Data/Working/STX/ModelPostTrip/AdjDict.json Origin Node: 0001 Destination Node: G025

The distance from 0001 to G025 is 31.164 km.

Linking the Infrastructure Together

- No Data on Hardline Cables Connecting Infrastructure Together
- No Data on Traffic Flow (on island and throughout the region)

Integrating Customer Demand Data Sets

Integrating Customer Demand Data Sets

Relating electric power demand locations to census data... goal to estimate related electric power, transportation, and water demands

Fixing Electric Power Models for Analysis

Issues with Electricity Utility Data

- Incorrect per-unit voltage for infrastructure
- Recirculation issues (mislabeled delta & wye transformers)
- Customers outside normal voltage constraints

Creating a Water Model from Disparate Data Sets

Issues with Water Utility Data

- Past EPANET model "lost"
- Mixture of GIS + AutoCAD Data \rightarrow Skewed and Disjoint
- Limited Flow Meter Data All meters destroyed in the storms

Interdependent Water-Power Failure Simulation

Excursions are denoted by originating failure events (asterisk) and their consequences across system boundaries.

Bunn BB, 2018, **"An Operational Model of Interdependent Water and Power Distribution Infrastructure Systems,"** M.S. Thesis in Operations Research, Naval Postgraduate School, Monterey, CA.

Pyomo Models for Water & Electricity Distribution

Klise et al., Using WNTR to Model Water Distribution System Resilience. (2017)

Pyomo Models for Water & Electricity Distribution

Approved for public release. Distribution is unlimited.

ASSESSING THE OPERATIONAL RESILIENCE OF ELECTRICAL DISTRIBUTION SYSTEMS

Clark Petri Lieutenant Commander, United States Navy B.S., Oregon State University, 2005

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL September 2017

Electricity generation, transmission, and distribution

Source: Adapted from National Energy Education Development Project (public domain)

Water System

Power System

Power System

Time Step (hour)

Time Step (hour)

A more realistic (USVI) water distribution system

IEEE 13-bus electricity distribution network

Current Goals: Setting a Baseline Through Past Events March 2019 STX West Coast Water Outages

Buck Island

Current Goals: Setting a Baseline Through Past Events March 2019 STX West Coast Water Outages

- 1. Contentment Pumping Station Pumps Stop Working at Full Capacity
- 2. Concordia Pumping Station Circuit Breaker Blew / Offline
- 3. Kingshill Tank Drains Frederiksted Loses Water
- 4. New Pumps Installed & Tested at All Major Pumping Stations
- 5. Water Level in Kingshill Tank Regained Frederiksted with water
- 6. Island-wide Blackout Loss of 2 Feet at Kingshill

Next Steps:

Water & Electric Power Distribution:

- Cascading failures across water and electric power systems
- Operations and management to alleviate blackout & drought impacts

Transportation & Supply Chain:

- Community access to disaster relief during and after hurricanes
- Drainage infrastructure condition, roadway flooding, and traffic impacts

Internet & Fiber Backbone:

- Hardline internet structure and vulnerability assessment
- Wireless cellphone & internet coverage post-hurricanes

Community Engagement & Capacity Building:

• University of the Virgin Islands – Island Infrastructure Fellowship Program

Backup Slides

The Mission Dependency Index

Fixing Electric Power Models for Analysis

Issues with Electricity Utility Data

- Incorrect per-unit voltage for infrastructure
- Recirculation issues (mislabeled delta & wye transformers)
- Customers outside normal voltage constraints

Creating a Water Model from Disparate Data Sets

Issues with Water Utility Data

- Past EPANET model "lost"
- Mixture of GIS + AutoCAD Data → Skewed and Disjoint
- Limited Flow Meter Data All meters destroyed in the storms

Generation – Oversized and Inefficient

Gas Turbine Generators STX Power System								
Unit	Fuel Type	Capacity (MW)	Unit Type					
10	#2 Fuel Oil	10	Worthington STG					
11	#2 Fuel Oil	19.1	GE STG					
16	Dual (#2 or LPG)	20.9	GE MS5001P CT					
17	Dual (#2 or LPG)	21.9	Alstom					
19	Dual (#2 or LPG)	22.5	GE5001					
20	Dual (#2 or LPG)	22.5	GE5001					
Blackstart Emergency Generators								
Unit	Fuel Type	Capacity (MW)	Unit Type					
	#2 Fuel Oil	0.75	GE6F09802					

- Flat electric power needs across the entire year.
- Oversized generation turbines are used in inefficient ways.
 Susceptible to gendemand & volt-freq imbalances

Transmission & Distribution –

Single Generation Plant Leaves Communities Vulnerable

- Centralized electricity
 Production
- Aging generation, transmission, and distribution infrastructure

Critical Loads – (Mis)match with Community Needs

 Community industrial / commercial and residential loads have regular characteristics

(B)

Some critical loads match community needs

Critical Loads – (Mis)match with Community Needs

Community industrial / commercial and residential loads have regular characteristics

٠

Some critical loads do not match community needs

Economics – Volatile and Expensive Electricity Prices

- Imported fuels are expensive and the price is volatile
- Customer electricity prices are remarkably high leading (~\$0.40 per kWh).
- Defections are common

	2018 (ending 10/01)		2017		2016	
Revenues (in thousands)	\$	% Total	\$	% Total	\$	% Total
Levelized Energy Adjustment Clause (LEAC)	129,668	57	114,562	58	135,799	61
All Other (incl. sales and surcharges)	95,927	43	83,523	42	88,450	39
Total	225,595		198,085		224,249	

Water Distribution – Unfortunately Similar Issues

- Centralized
 production
- Aging infrastructure
- Conflicting consumer demands
- High costs
- Consumer defections