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What is Critical Infrastructure?

* Critical Infrastructure (Cl): “systems and assets, whether physical or virtual,
so vital to the United States that the incapacity or destruction of such
systems and assets would have a debilitating impact on security, national
economic security, national public health or safety, or any combination of
those matters” --Section 1016(e) of the USA PATRIOT Act of 2001




Critical Infrastructure Systems:
NPS has a unique perspective and capability
We have been studying critical infrastructure for decades.
Problems of interest:
e Attack: Where to attack infrastructure to disrupt function?
 Defense: Where to ‘harden’ systems to survive attack?

* Design: How to invest limited resources (redundancy,
capacity expansion, new construction) to systems perform
even when ‘bad things’ happen (mission assurance)?

* Recovery: What to fix, in what order, how to plan?

* Resilience: for operation of critical systems



National policy for “operational resilience”

U.S. National Strategy for Homeland Security (2007)

“We will not be able to deter all terrorist threats, and it is
impossible to deter or prevent natural catastrophes. We can,
however, mitigate the Nation’s vulnerability to acts of
terrorism, other man-made threats, and natural disasters by
ensuring the structural and operational resilience of our
critical infrastructure and key resources” (p. 27)

“We must now focus on the resilience of the system as a whole
—an approach that centers on investments that make the
system better able to absorb the impact of an event without
losing the capacity to function” (p.28)

Most recently: U.S. Presidential Policy Directive (PPD)-21: Critical Infrastructure
Security and Resilience, 2013.
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Infrastructure Service Recovery Timeline — Electricity
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= USVI

Hurricane Recovery and
Resilience Task Force

Report 2018

228 proposed initiatives across
a variety of sectors:

e Climate Analysis (5)
 Energy(17)

e Private Sector Comms (14)

e Public Sector Comms (11)

* Transportation (24)

 Water (11)

e SolidWaste and Wastewater (26)
 Housing and Buildings (11)

e Health (21)

~ * \Vulnerable Populations (12)

https://www.usvihurricanetaskforce.org/

* Education (20)
 Economy (9)

* Non-profit, Philanthropy, and
Voluntary Organizations (6)

 Government Response (41)
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228 proposed initiatives across
a variety of sectors:
e Climate Analysis (5)

* Energy (17
Lots of proposed changes! . 8y {17
* Private Sector Comms (14)

.  Public Sector Comms (11
Open Questions: (11)

* Transportation (24)

 Water (11)

e SolidWaste and Wastewater (26)
 Housing and Buildings (11)

e Health (21)

* Vulnerable Populations (12)

| * Education (20)

 Economy (9)

* How to assess the impact of
| these changes (good/bad)?

How to prioritize?

= * Non-profit, Philanthropy, and
Voluntary Organizations (6)

 Government Response (41)

https://www.usvihurricanetaskforce.org/ 15



228 proposed initiatives across
a variety of sectors:
e Climate Analysis (5)

Agenda for this talk: * Energy(17)

* Private Sector Comms (14)

-:‘V_i L PUbIIC Sector Comms (11)
| © Develop water-power

* Transportation (24)
operator models.

 Water (11)

e SolidWaste and Wastewater (26)
 Housing and Buildings (11)

e Health (21)

* Vulnerable Populations (12)

| * Education (20)

 Economy (9)

| * Study interdependent
failures.

* Non-profit, Philanthropy, and
Voluntary Organizations (6)

 Government Response (41)

https://www.usvihurricanetaskforce.org/ 16



Our research is part of a broader team effort
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Our work in the USVI: several related research efforts

27 Feb 2018 Project Start (funds available)

21 Mar remote participation in USVI Energy Roundtable
26-30 Mar 15t NPS site visit to STX, STT

11-15 Jun 2"d NPS site visit to STX, STT

14-15 Jun UVI/VITEMA Hazard Mitigation Workshop

21 Sep MS Thesis by LCDR Brendan Bunn

20 Oct Technical report (final draft)

22-26 Oct 34 NPS site visit to STX, STJ, STT

 Bunn BB, 2018, “An Operational Model of Interdependent Water and
Power Distribution Infrastructure Systems,” M.S. Thesis in Operations
Research, Naval Postgraduate School, Monterey, CA, September 2018.

* Alderson DL, Bunn BB, Eisenberg DA, Howard AH, Nussbaum DE,
Templeton JC, “Interdependent Infrastructure Resilience in the U.S. Virgin
Islands: Preliminary Assessment,” NPS Technical Report, Naval
Postgraduate School, Monterey, CA, October 2018 (forthcoming).



Developing Water-Power Operator Models for the USVI

First-Order Effects Second-Order Effects Third-Order Effects

Factors/Forces
ontributing to Energy
Crisis in California

Qil
Production

Cogen-

* Deregulation eration

Policies

* New Energy Curtailed Reduced Steam Reduced Heavy
Marketplace Natural Gas Injection for Heavy Oil Production
Dynamics é@ » Production Oil Production

« Tight, High-Cost QQ-@*
Gas Supplies Refineries

« Utility Financial
Crisis Shortages of Specially
Formulated Gasoline

Inventory Buildup;
» Substantial Curtailed Operations

Load Growth

Pipelines

Electric

« Lack of New Cower Ll Storage
Generating and Supply/ el Al Terminals
T et Demand Pipelines
ransmission Imbalance ) :
Capacity Inventory Drawdown; Disruption of

Shortages of Gasoline Flight Schedules

* Aging Fleet of and Jet Fuel

Power Plants

* Low Hydro

Conditions Banking and

Finance

« Transmission/
Environmental
Constraints

Financial
Losses

Disruption of
Irrigation Pumps

Crop Losses

Figure 4. Examples of nth-order interdependencies and effects.
Rinaldi, Steven M., James P. Peerenboom, and Terrence K. Kelly.
"Identifying, understanding, and analyzing critical infrastructure
interdependencies." IEEE Control Systems 21, no. 6 (2001): 11-25.



Developing Water-Power Operator Models for the USVI
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CDR Cory Dixon, “Assessing Vulnerabilities in Interdependent Infrastructures Using Attacker-Defender
Models,” M.S. Thesis, NPS, September 2011.



Developing Water-Power Operator Models for the USVI

Boundary: Engineered Water, Electricity, Wastewater systems

I 1
Evaporativd | Delivered Water P : >
losses | Collectable, Q
S 1 .
(—i— Engineered wastewatey Lubega, William N.,
I .
T water supply € Non- . and Amro M. Farid.
N on-potable N o
: | system Potable Recycled Wastewater Recvcled 1 . Quantitative
| 2 Wastewater | engineering systems
! c r» 1 Heat for - ! modeling and analysis
! 5] cogeneration Electrical energy for 3 ] of the energy—water
i = D 2 i nexus." Applied
|2 5 : Energy 135 (2014):
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Fig. 1. System context diagram for combined electricity, water and wastewater systems.
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Generation — Oversized and Inefficient

Demand Peaks STX - 2016 (kw)

W—’\/—H\o

W

Jun-16

—8— Peak Load

—8— Min Load

Aug-16  Oct-16 Nov-16  lan-17

Gas Turbine Generators STX Power System

Unit Fuel Type Capacity (MW) Unit Type
10 #2 Fuel Oil 10 Worthington STG
11 #2 Fuel Oil 19.1 GE STG
16 Dual (#2 or LPG) 20.9 GE MS5001P CT
17 Dual (#2 or LPG) 21.9 Alstom
19 Dual (#2 or LPG) 22.5 GE5001
20 Dual (#2 or LPG) 225 GE5001
Blackstart Emergency Generators
Unit Fuel Type Capacity (MW) Unit Type
#2 Fuel Oil 0.75 GE6F09802

Flat electric power
needs across the
entire year.

Oversized generation
turbines are used in
inefficient ways.
Susceptible to gen-
demand & volt-freq
Imbalances



Transmission & Distribution —
Single Generation Plant Leaves Communities Vulnerable

« Centralized electricity
Production

« Aging generation,
transmission, and
distribution
infrastructure




Critical Loads — (Mis)match with Community Needs

MW Feeder 9A

Feeder 8

(B)

Typical Government Services Building
(e.g., Dept. of Transportation)
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Critical Loads — (Mis)match with Community Needs
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Feeder 8

(B)

Typical WAPA Office

Wl o

Community
Industrial /
commercial
and residential
loads have
regular
characteristics

Some critical
loads do not
match
community
needs



Economics — Volatile and Expensive Electricity Prices

~$120 * Imported fuels are

$0.35 WAPA . . .
s OiPice  _c100 _ expensive and the price is
§ $0.30 g volatile
g u= i - g » Customer electricity prices
Levelized Ener .
g 02 P Adjustment | -$60 G are remarkably high
- Clause (LEAC @ :
501 Ee— ., 3 leading (~$0.40 per kWh).
$0.10 5% « Defections are common
$0.05 -
$0.00
Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12
2018 (ending 10/01) 2017 2016
Revenues (in thousands) $ % Total $ % Total $ % Total
Levelized Energy Adjustment Clause (LEAC)| 129,668 57| 114,562 58] 135,799
All Other (incl. sales and surcharges) 95,927 43 83,523 42 88,450
Total| 225,595 --| 198,085 | 224,249




Water Distribution — Unfortunately Similar Issues

Centralized
production
Aging
infrastructure st em= "
Conflicting
consumer
demands
High costs
Consumer
defections

|
7 Miles




Interdependent Operations and Failures

POWER WATER

*Outage » Pump power
loss

Bus load Demand spike*

increase

Bus load drop « Demand drop*

Excursions are denoted by originating failure events (asterisk) and their conse-

quences across system boundaries.

Bunn BB, 2018, “An Operational Model of Interdependent Water and Power
Distribution Infrastructure Systems,” M.S. Thesis in Operations Research,
Naval Postgraduate School, Monterey, CA, September 2018.
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Developing Water-Power Operator Models for the USVI

Simulation engines

= WNTR includes two simulation options:

@
National _
Laboratories

DD PDD Water

Hydraulics | Hydraulics | quality Lzzl=

Network
options

Simulation Control

- : Start/Stop
options options

v

EpanetSimulator v v ;
Emitters

v

v v

WNTRSimulator v

Almost all

v plus relative

alest 2l conditions

DD and PDD hydraulics

/

™|

/

/

s

s D niand-tiiven

w— Pressure-driven demand

100000 150000 200000
p (Pa)

0 p < P
Py L
d={ Di(p—p)? P<p<P

Df pEPf

Klise et al., Using WNTR to Model Water
Distribution System Resilience. (2017)

I

w— eak diameter = 0.5 cm
e | i diatneelen

Leak diameter = 1.5 cm

=1.0un

Leak model

200000

2
df.ea.k — Cd Apa -
\) p
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Developing Water-Power Operator Models for the USVI

Approved for public release. Distribution is unlimited.

S I m u | a t I O n e n g I n e S ASSESSING THE OPERATIONAL RESILIENCE OF ELECTRICAL

DISTRIBUTION SYSTEMS
= WNTR includes two simulation opf

DD PDD Water Clark Petri
Hydraulics | Hydraulics | quality Lieutenant Commander, United States Navy

B.S.. Oregon State University, 2005

EpanetSimulator v v

WNTRSimulator Submitted in partial fulfillment of the
requirements for the degree of

DD and PDD hydraulics
MASTER OF SCIENCE IN OPERATIONS RESEARCH

/ from the
™|

_— NAVAL POSTGRADUATE SCHOOL

/ September 2017
e Dt AN -trive . .
——pressure-criven demand |
Substation
Transformer

100000 150000 200000
p (Pa)

p< Py / \
1 Switch 1,3 .
) : Pp<p< Pf witc Switch 2,4

p=> Py

& — 0

4 Service

Transformer



D L

Treatment
Plant

Note: Pumps and valves are located at a variety of locations throughout
the distribution system.

i)
-©

E =Nodal Elevation (m)
BD =Base Demand (m3/s)
D = Pipe Diameter (m)

L =Pipe Length (m)

R =H-W Roughness

243 E

Pump

0.45 ~\ 335

Tank
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100
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213

2) 60

0.018

Junction



Legend

b__ 1 Tank
? (D—
E BD 4 ?
R
E =Nodal Elevation (m)
plt BD =Base Demand (m3/s)
|® D = Pipe Diameter (m) 259
L =Pipe Length (m)
R R = H-W Roughness
} Treatment
| e 0.45 L 60
100 D

Note: Pumps and valves are located at a variety of locations throughout 0.45 N\ 335
the distribution system. 100 \3;
243 213 0.018

Source Pump Junction
Electricity generation, transmission, and distribution
ransmission liNes carry
power plam 40 Transmission Distribution
Qenaranes eeciicity RN S0 GINNSN. serbusion fnes carry Demand Demand
. alactrcity 1o houses
(o z A A
/ \ E — ——
A _// N 5 ® ¢
) ' L3 Generatlon .
{ l transformers on poles
3 ted 816p Jown eleciacaty Distribution
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Summary and Conclusions

* An operator model is needed to guide resilience initiatives

« Too many Iinitiatives to grasp for a single org
 Need to understand the USVI before the hurricanes

« USVI Infrastructure Operations & Chronic Problems
 Issues In system design, operation, and economics
« Recovery / redesign requires knowledge about
Interdependent vulnerabilities and plans

* Need for interdependent models that match context
« Existing water-power models designed with
Inappropriate physics / needs
« Lack of standard models for testing and validation
* Initial results show that simple interdependencies =
systemic changes in operations
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Ongoing work: Scaling up to St. Croix
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Our work in the USVI: several related research efforts

Effort 1 - Modeling and analysis of interdependent critical
infrastructure systems

— Energy (emphasis on electric power)

— Water (emphasis on potable storage and distribution)

— Transportation

— Telecommunications

Effort 2 - Support for development of a new Hazard Mitigation
and Resilience Plan
— in partnership with UVI / VITEMA

Effort 3 - Capacity building & workforce development program
— in partnership with UVI



Contact Information

* Dr. Daniel Eisenberg
Research Assistant Professor
Department of Operations Research
Naval Postgraduate School
831-656-2358, daniel.eisenberg@nps.edu
http://faculty.nps.edu/deisenberg

e NPS Center for Infrastructure Defense
Director: Dr. David Alderson
http://www.nps.edu/cid



e Backup, unused slides
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What is Critical Infrastructure?

* Critical Infrastructure (Cl): “systems and assets, whether physical or virtual,
so vital to the United States that the incapacity or destruction of such
systems and assets would have a debilitating impact on security, national
economic security, national public health or safety, or any combination of
those matters” --Section 1016(e) of the USA PATRIOT Act of 2001




Critical Infrastructure Systems:
NPS has a unique perspective and capability

We have been studying critical infrastructure for decades.

We look at our own domestic infrastructure through the
eyes of intelligent adversaries.

We have conducted over 150 “red team analyses” to plan
attacks on our own infrastructure (and determine how to
mount effective hardening and defensive efforts)
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Goals For This Session

* 10 key ideas for how to assess and improve
operational resilience of critical infrastructures

* Ongoing work in applying these ideas to the USVI




