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Forecasting and decisions in the birth-death-suppression Markov model for wildfires
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As changing climates transform the landscape of wildfire management and suppression, agencies are faced
with difficult resource allocation decisions. We analyze tradeoffs in temporal resource allocation using a simple
but robust Markov model of a wildfire under suppression: the birth-death-suppression process. Though the
model is not spatial, its stochastic nature and rich temporal structure make it broadly applicable in describing
the dynamic evolution of a fire including ignition, the effect of adverse conditions, and the effect of external
suppression. With strong analytical and numerical control of the probabilities of outcomes, we construct
classes of processes which analogize common wildfire suppression scenarios and determine aspects of optimal
suppression allocations. We model problems which include resource management in changing conditions, the
effect of resource mobilization delay, and allocation under uncertainty about future events. Our results are
consistent with modern resource management and suppression practices in wildland fire.
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I. INTRODUCTION

Wildfires pose an increasing risk to life, property, and
infrastructure [1–3]. In the United States (US), the problem
of understanding and mitigating wildfire risk falls on state
and federal agencies, local governments, and firefighting per-
sonnel, representing a multiscale challenge across public and
private sectors. Every level of response to a fire event in-
volves a series of operational and tactical decisions, often
made under uncertainty. Decision makers integrate field ex-
perience, resource availability, weather forecasts, protection
of assets and persons, and the cost of applying suppression
resources into their strategy. At a high level, disaster re-
sponse agencies are faced with difficult decisions related to
the deployment, allocation, and retrieval of fire suppression
resources [4].

Changing climates across the globe have contributed to
increased prevalence and severity of wildfire events over the
last few decades [5–7], and the anthropogenic origin of some
of these effects is likely to worsen in the near future [8].
The cost of these wildfires, both in their damage and the
cost of their suppression, has also increased [9–11] as human
populations grow in fire-prone areas, expanding the wildland-
urban interface (WUI). Data from the National Interagency
Fire Center [12] show that US federal firefighting costs, com-
bined between the United States Forest Service (USFS) and
Department of Interior (DOI), have been steadily increasing,
as depicted in Fig. 1.

Particularly in California, shifting rain patterns have exac-
erbated the risk posed by autumnal offshore wind events [13].
Low fuel moisture and strong katabatic winds pose extreme
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fire danger late in the season [14,15]. In the Western U.S.,
downslope winds driven by hot inland conditions—such as
Santa Ana, Diablo, and others—are associated with numer-
ous historical extreme fire events [16]. These offshore flows
have been analyzed as a driver and even predictor of wind-
driven fires in the brushy, chaparral ecosystem characteristic
of Mediterranean climates like Southern California [17–19].
If a wind event is forecasted, then management agencies must
both prepare for potential ignitions as well as keep active fire
events under control. Recent projections indicate that not only
are fires likely to increase in severity, but the likelihood of
simultaneous large fire events will also increase [20].

Wildfire management encompasses multiple practices
from ignition mitigation to active suppression [21]. This work
focuses on suppression-oriented management, where suppres-
sion resources are deployed during, after, or in anticipation
of a fire event. An increasingly common practice in wild-
land fire management is prepositioning, where suppression
resources are preemptively deployed in high-risk areas to
reduce response time to a potential ignition. The National
Interagency Coordination Center (NICC) provides predictive
analytics, as well as resource management tools, to assist
cooperation between agencies like USFS and the US DOI
in their prepositioning efforts [22]. Optimization-based strate-
gies for prepositioning assets have been directly addressed in
the literature in recent years [23–25].

Whereas prepositioning is relevant before a fire event be-
gins, the question of resource removal arises towards the end
of a fire event: After adverse conditions have subsided, when
is it appropriate to remove suppression resources from a fire?
The question of resource removal is crucial both for cost
management and maintaining the ability to respond to other
potential events. Optimizing resource removal has received
significantly less attention in the disaster response literature
than prepositioning.

2470-0045/2025/111(2)/024318(16) 024318-1 ©2025 American Physical Society

https://orcid.org/0000-0002-2328-7572
https://orcid.org/0000-0002-1641-5302
https://orcid.org/0000-0003-3271-8175
https://ror.org/02t274463
https://ror.org/033yfkj90
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.024318&domain=pdf&date_stamp=2025-02-27
https://doi.org/10.1103/PhysRevE.111.024318


HULSEY, ALDERSON, AND CARLSON PHYSICAL REVIEW E 111, 024318 (2025)

FIG. 1. Gross federal expenditure ($B), adjusted by yearly CPI,
of the U.S. Forest Service and Department of Interior on wildfire
suppression from 1985 to 2023 [12]. The five-year moving average
(dashed) shows growth in suppression spending which has acceler-
ated in recent years.

The resource allocation decisions associated with wildfire
suppression can be quantitatively addressed through a sim-
ple but robust stochastic model: the birth-death-suppression
Markov process. The model is extremely general and de-
scribes the temporal evolution of a fire, taking a mean-field
theory approach to the spatial fire dynamics. The model ad-
dresses temporal tradeoffs: when to apply suppression, when
to remove it, and how strategies are affected in the face of
forecasted changes in conditions or uncertainty about the fu-
ture. In contrast, the spatiotemporal evolution of a wildfire is
a very difficult modeling problem. By considering only the
temporal dimension, the analysis is designed to be robust to
detailed and unpredictable small-scale spatial variations.

The focus of this paper is not on spatial suppression
strategy. Decisions about, e.g., where to locate firebreaks,
where firefighters can actively suppress the spread of the
fire, and where aerial assets may deploy retardant depend on
hyper-local conditions and field officer discretion. Instead this
analysis is geared toward higher-level decisions for which the
temporal dimension—when to send resources and when to
pull back—is of principal concern.

As with many systems with complex dynamics, wildfire
modeling often begins with simple, abstracted models. High
fidelity spatial models offer more comprehensive descriptions
of dynamics than temporal models, but are computationally
unwieldy and for the most part incapable of directly integrat-
ing fire suppression. Modern analysis of the optimization of
fire suppression includes [26], where a queueing process—a
model highly analogous to a birth-death process—is used to
describe the arrival and dispatch of helicopter suppression
resources. Other work [27] studies the temporal evolution
of the fire perimeter and defines optimization problems over
the temporal allocation of resources. Both approaches reduce
the spatial problem to a temporal one in the same fashion
as we do here. The Rothermel model [28], the backbone of
many modern dynamical fire models, simply provides a recipe
for computing a spatial rate of spread from local fuel and

topographic quantities, with no native ability to incorporate
suppression effects.

Like wildfire, epidemic spread occurs in spatially struc-
tured systems in which the introduction of new units to the
population depends on detailed spatial dynamics. While fun-
damentally a spatiotemporal process, as a function of time,
the rate of introduction of new units (new infections in an
epidemic model) is fundamentally related to the current size
of the epidemic. The spatial dynamics that underlie the intro-
duction of new units are so varied as to be almost stochastic
in nature and are not of principal concern to a high-level
agent managing the process. Birth-death processes have often
been used to describe the temporal evolution of epidemics
[29,30], and also to describe aspects of the optimal control
of epidemics, i.e., Ref. [31]. In these approaches the spatial
degrees of freedom are implicitly ‘integrated out’ in favor
of a purely temporal description. This paper takes the same
approach to describing wildfire spread, leaving temporal anal-
ysis of spatial evolution to future work.

II. BIRTH-DEATH-SUPPRESSION PROCESS

Introduced in Ref. [32], the birth-death-suppression pro-
cess is a linear Markov birth-death process that describes
the stochastic evolution of an abstract population j(t ). In the
present context, the population j(t ) represents the number of
actively burning spatial units of fire (e.g., acres), which we
refer to as firelets. While our focus here is describing the size
of a wildfire, this process, and birth-death processes more gen-
erally, can also be used to model the dynamics of epidemics
or other human population-oriented phenomena [33].

The model is temporal, with transitions (births and deaths)
j → j ± 1 occurring over time. These births and deaths rep-
resent the ignition and extinction of individual firelets. The
time evolution of the model depends on three parameters:
the birth rate β, characterizing the number of new ignitions
per firelet per unit time, the death rate δ, characterizing the
number of natural extinctions per firelet per unit time, and
the suppression rate γ , representing the effect of external
suppression on the fire. For a population of size j(t ), births
occur on aggregate at a rate λ j = β × j(t ) and deaths occur
on aggregate at a rate μ j = δ × j(t ) + γ , per unit time. In
what follows, we explicitly set the death rate δ = 1. This
corresponds to choosing units of time such that the interval
�t = 1 is the average time until a single firelet extinguishes
due to fuel exhaustion.

In previous work [34], the theory of the model is stud-
ied in detail; explicit analytical expressions for the transition
probabilities and asymptotic outcomes of the process are
developed. The birth-death-supppression process and related
Markov processes have been studied by numerous authors in
the mathematical literature [35–39]; for more, see Ref. [34]
and the references therein.

The Markov process is absorbing at zero, in the sense
that processes terminate once the population reaches the state
j(t ) = 0; this represents the complete extinguishing of a fire.
The process is transient: populations either eventually absorb
or diverge in size. However, considering only the actively
burning size of the fire neglects the cumulative nature of the
burned area of the fire. To track the total burned area (the
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cumulative number of ignitions), one must consider the foot-
print F (t ), defined as the variable which shares all births of
the population: transitions occur jointly as ( j → j + 1, F →
F + 1) and ( j → j − 1, F → F ).

The footprint represents the cumulative spatial extent of the
fire. A principal outcome of interest is escape, defined here
as the footprint exceeding some threshold F (t ) � J . Escape
represents the fire growing above a reasonable containment
size or growing large enough to impact built infrastructure.
The escape probability Pr{F � J} is a diagnostic of the risk-
iness of the process and is a focus of much of the analytics
in this work. Integral expressions exist for the asymptotic
distribution of footprints, and hence the escape probability,
for a process with some initial size and arbitrary parameters
β, γ � 0. The mathematical details of these formulas are re-
viewed in Appendix B, and a more detailed exposition of the
birth-death-suppression process is available in Ref. [34].

The goal of this paper is to quantitatively address com-
mon scenarios in wildfire resource management by modeling
them with the birth-death-suppression process, over which we
have strong analytical and numerical control. The focus is on
problems of resource management which arise with variable
conditions, where the birth rate β of the process changes in
time, modeling the drastic changes in fire conditions that can
be brought on by high-wind events. The benefits of resource
prepositioning are considered by studying the effect of sup-
pression delay on outcomes of the process, as are related
questions of suppression allocation under uncertainty about
future fire events. The results are consistent with the conven-
tional and practical wisdom of fire suppression, specifically,
the importance of “initial attack” and the concentration of
suppression resources.

A. The dynamics of the process

The birth-death-suppression process fundamentally de-
scribes the time evolution of the population j(t ) from some
initial size j(0) ≡ N . As the population grows, births occur at
a rate proportional to its size, and deaths occur by two mech-
anisms: natural extinction, proportional to j(t ), and external
suppression, proportional to the suppression rate γ . In the
absence of suppression (γ = 0), on average, the population
experiences either exponential growth or decay:

〈 j(t )〉 = Ne(β−1)t . (1)

The footprint, which counts all births of the population, either
grows exponentially with the population (in the case β > 1)
or saturates at an asymptotic value (in the case β < 1). It is
generally true, for any γ , that the average footprint 〈F (t )〉
solves the differential equation

d〈F (t )〉
dt

= β〈 j(t )〉, (2)

which reflects the fact that the average footprint grows exactly
as the average aggregate birth rate of the process 〈λ j〉 =
β〈 j(t )〉. Simple integration gives the average footprint with
zero suppression as

〈F (t )〉 = N

β − 1
(βe(β−1)t − 1). (3)

The critical point of the process occurs when births and
deaths happen with equal probability (β = 1). In Ref. [34],
an explicit expression for the asymptotic escape probability
Pr{F∞ � J} in the case β = 1, N = 1 is found:

Pr{F∞ � J} = �(J − 1/2)�(1 + γ /2)√
π�(J + γ /2)

. (4)

Asymptotically in the escape threshold J , this probability is a
power law:

Pr{F∞ � J} ∼ �
(
1 + γ

2

)
√

πJ1+γ
+ O(J−3/2). (5)

One motivation for the use of this model to describe wildfire is
the empirical distribution of wildfire footprints (burned areas),
which is known to be approximately power-law distributed
P(F � J ) ∼ J−α with exponent α ≈ 1/2 [40]. The same dis-
tribution is found in the birth-death-suppression model near
the critical point, as in Eq. (5) where α = 1/2 + γ /2.

Analytical formulas for asymptotic probabilities like
Eq. (5) when β 
= 1 can be found by the method of orthogonal
polynomials [35], but in general, they are expressed as highly
complex integrals which must be evaluated numerically. To
study the dynamics of the process one must therefore fix
numerical values of the parameters.

B. Choice of numerical parameter scales

The most general birth-death-suppression process includes
a death rate δ such that λ j = β j, μ j = δ j + γ . Setting
δ = 1 effectively chooses units of time t such that the inter-
val �t = 1 is the average time-to-death of a single unit of
the population.1 Converting the duration �t = 1 to physical
time units, i.e., minutes, is roughly equivalent to specifying
the spatial extent of one “unit” of the population: an acre, a
square kilometer, etc. Timescales are fixed to values T � 10
for numerical simplicity. Thus, if one takes a firelet to be a
single acre, then here we consider timescales equivalent to the
average time it takes 10 acres to naturally extinguish.

Numerical values of the birth rate are chosen which are
close to β = 1(= δ), where the statistics of the footprint dis-
tribution match the empirically observed statistics of wildfire
sizes. Numerical values of the suppression rate γ implic-
itly represent multiples of the death rate: γ = 2 means that
suppression of the fire results in the entire population being
reduced by two firelets in the time it takes one firelet to
naturally extinguish.

Finally, we often use an initial size of j(0) = 10 for
the population. This choice ensures that the median process
evolves for a time consistent with the specified timescales
T � 10. When N, γ � 1, the median lifetime of a process is
approximately

Tm ≈ 1

1 − β
log

[
1 + N

γ
(1 − β )

]
, (6)

1To restore the death rate δ to any formulas, one simply makes the
replacements t → δt, β → β/δ, γ → γ /δ. Any product βt, γ t is
therefore unaffected by setting δ = 1.
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FIG. 2. Schematic illustration of the high-wind scenario. The
scenario begins with moderate conditions which become dangerous
at time T1. Later, at time T2, the conditions relax. A strategy consists
of a suppression allocation (γ1, γ2, γ3) for each epoch in addition to
a time Trem after which no more suppression is applied.

which in the critical limit β → 1 reduces to Tm ≈ N/γ . There-
fore, with the numerical timescales, an initial size N = 10 and
values of the suppression rate γ � 10 are all numerically con-
sistent and result in dynamics which are generally bounded
but still include a variety of behaviors and outcomes.

III. HIGH-WIND SCENARIO

This paper focuses on the structure of time-dependent
tradeoffs in suppression allocation for a birth-death-
suppression process. These tradeoffs are studied through a
multistage scenario with changing birth rates over time and
a discrete set of decision epochs where a given suppression
rate γ can be applied to control the process.

With problems of resource allocation that arise in wildfire
management in mind, a “high-wind scenario” birth-death-
suppression process is constructed. In this setup, a process
begins at T = 0 with a moderate, but not supercritical,2 birth
rate (β � 1). After some finite time T1, a forecast calls for the
worsening of conditions, which is interpreted as the onset of a
high-wind event. For some time, the conditions are dangerous,
and the birth rate is increased (β > 1) so that the process
is in a supercritical regime, representing the effect of high
winds on the spread of the fire. After another finite interval,
at time T2, the conditions relax, and the birth rate lowers,
moving the process back into a subcritical regime (β < 1). A
schematic of this multistage event is shown in Fig. 2. The aim
of this scenario is to model a temporally localized wind event.
As a particular example, katabatic wind events vary in their
duration but can be temporally localized, as is the case with
‘sundowner’ winds observed on the California coast [41].

2For any γ , we refer to the phase β > 1 as supercritical, the
β = 1 point as critical, and the β < 1 phase subcritical. Only in the
supercritical phase is asymptotic absorption at the state j = 0 not a
certainty.

TABLE I. Parameter choices used for simulation in this section.
Here we use j(0) = F (0) = 10.

Stage 1 (before) 2 (wind event) 3 (after)

Birth rate βi 0.95 1.5 0.9
Duration �Ti 3 = T1 3 = T2 − T1 Trem − T2

We are interested in understanding optimal strategies and
tradeoffs for effective management of this scenario, that is,
prevention of undesirable outcomes such as the fire reaching
some specified total size. Here, a strategy is defined by a
choice of suppression rate (γ1, γ2, γ3) for each interval shown
in Fig. 2 in addition to a choice of removal time Trem > T2

after which no suppression is applied (γ = 0). By zero sup-
pression, we do not literally mean a complete absence of fire
suppression resources. Instead γ = 0 is a proxy for a large
attenuation in suppression effort. Since the final phase of the
process is subcritical, the process is guaranteed to end in a
finite time regardless of the suppression applied.

The scenario is meant to highlight multiple tensions in
the choices of how to allocate suppression to a dynamically
evolving process. Broadly, with a nonzero cost for suppres-
sion resources, one always has a tradeoff between the cost of
suppression and the cost of undesirable outcomes. However,
due to the differing conditions across the event, one also must
consider when to send a given amount of resources, especially
if only a finite amount of suppression is available.

Because the parameters γi are suppression rates, the total
amount of suppression resources used over a time interval
�T is proportional to γ�T . Therefore, another tension arises
between fast and aggressive strategies (γ � 1, T � 1) or
slow and sustained strategies (γ � 1, T � 1), each of which
may use the same gross amount of resources.

Finally, near the end of the process, the parameter Trem

represents when suppression resources may be removed. This
is an increasingly relevant question in wildland fire manage-
ment. Failing to remove suppression at an appropriate time
consumes resources that could be better spent, with higher risk
reduction, on other existing or potential events. Despite this,
even fires which on average are shrinking in active size can be
dangerous if they are in close proximity to infrastructure and
persons.

A. Simulating the process

To better understand the behavior of the multistage pro-
cess we fix some of the parameters and observe simulated
outcomes. There are three decision epochs each with an as-
sociated birth rate βi and duration �Ti, and in each epoch one
may choose a suppression rate γi.

The process begins at T = 0 with initial size j(0) =
F (0) = 10 and with birth rates constant over specified time
intervals according to Table I.

In the following, an ensemble of 5000 multistage processes
is simulated, each described by the schematic of Fig. 2 and
with parameters given by Table I. To characterize the evo-
lution of outcomes, four quantities of interest are recorded:
the absorption probability pA(t ), the escape probability
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FIG. 3. Zero suppression. Outcomes for an ensemble of 5000
simulated processes of the high-wind scenario with zero applied
suppression. The average population 〈 j(t )〉 and footprint 〈F (t )〉 are
shown on the left axis, and the probability of absorption Pr{ j(t ) = 0}
and escape Pr{F (t ) � J} are shown on the right axis. Each decision
epoch is shaded corresponding to the schematic of Fig. 2. The prob-
ability of absorption Pr{ j(t ) = 0} (solid blue) remains low while
the probability of escape Pr{F (t ) � J} (solid red) climbs quickly.
The effect of the high birth rate (during T1 � t � T2) on the average
population and footprint 〈 j(t )〉, 〈F (t )〉 is apparent.

EJ (t ) = Pr{F (t ) � J} (shown here with J = 50), and the av-
erage population and footprint 〈 j(t )〉, 〈F (t )〉. For the latter
two quantities, we also record the interquartile range of their
empirical distributions and show these as intervals about the
mean.

Figure 3 shows a simulated process with zero suppression.
The dynamics introduced in Sec. II are clearly visible. The
average population (red, dash-dot, with quartiles shaded) ex-
hibits exponential growth or decay dependent on the birth rate
β in each stage. Similarly, the onset of of the wind event in
the second stage, T1 � t � T2, causes the average footprint
(black, dash-dot, with quartiles shaded) to explode in size.
This is consistent with the behavior of modestly sized fires
after the onset of high-wind conditions. The escape probabil-
ity Pr{F (t ) � J} (orange-red, solid) is always increasing and
saturates by the final stage, where the footprint of a majority
of processes exceeds the threshold J = 50. The probability of
absorption (blue, solid) remains small throughout, reflecting
that in the absence of suppression, the wind event has made it
quite unlikely that any given process will terminate on its own
before the end of the timeframe pictured.

As an initial investigation, it is instructive to compare
the outcomes of the unsuppressed process to simulations in
which different suppression strategies are applied. Two such
strategies are considered: “constant” and “preemptive.” Here,
we use preemptive to refer to suppression in the first epoch
(yellow in Fig. 3), before the onset of the high wind (red
in Fig. 3). To meaningfully compare the outcomes of dif-
fering strategies one should fix some maximal amount of
suppression resources

∑
i γi�Ti. Assuming Trem = 9, we set∑

i γi�Ti = 15.

FIG. 4. Constant suppression. Outcomes for a simulated ensem-
ble with a constant suppression schedule applied. The probability
of absorption Pr{ j(t ) = 0} (solid blue, shown on right axis) is now
larger than the probability of escape Pr{F (t ) � J}. The growth of the
average footprint 〈F (t )〉 (dashed, black) is closer to linear, in stark
contrast to the unsuppressed results.

First, define the constant strategy as (γ1, γ2, γ3) =
(5/3, 5/3, 5/3): a constant total amount of suppression γi�Ti

is applied in each stage, i = 1, 2, 3. Simulated outcomes using
this suppression strategy are shown in Fig. 4. With steady
suppression applied, the growth of the footprint is severely
blunted and the probability of escape F � 50 drops to just
under 40%, having been almost 80% at the end of the unsup-
pressed process.

Clearly, the presence of suppression has drastically altered
the outcomes. But how does this constant suppression strategy
compare to a preemptive strategy, at least with the parameter
choices made here? In particular, we consider allocating all
available suppression to the first stage of the process, defining
the preemptive strategy by (γ1, γ2, γ3) = (5, 0, 0) so that the
total suppression resource usage is identical in both strategies.
Simulated results of this strategy are shown in Fig. 5.

The preemptive strategy is clearly more effective in the
specified parameter regime. By using more resources early,
the effect of the worsening conditions in the middle epoch has
been blunted. However, preemptive attack is not always fea-
sible or guaranteed to be optimal. There may be mobilization
constraints or a lack of knowledge about future conditions. If
the wind event is not expected in advance or its occurrence is
deemed unlikely, then there may be less reason for preemp-
tive suppression. The problem of allocation under uncertainty
about future events is addressed in Sec. IV.

In both Figs. 4 and 5, the interquartile ranges do not nec-
essarily include the average population or average footprint
curves, and there is a natural reason for this. The footprint,
counting the births of the process, is a sum of many Pois-
son processes3 with differing scales, and is approximately
δ-distributed at any given time. Its support at large values/slow

3In a given state, births occur as a Poisson process, in the sense that
the waiting time until a transition is exponentially distributed.
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FIG. 5. Preemptive suppression. Outcomes for a simulated en-
semble with a preemptive suppression schedule applied. While using
the same gross amount of suppression, the higher suppression rate
before the process enters dangerous conditions during times T1 �
t � T2 is extremely effective at reducing the probability of escape
prF (t ) � J (solid red) and keeping the size of the process 〈F (t )〉
(dashed, black) extremely small in aggregate.

asymptotic decay gives the distribution of footprints excess
kurtosis. Heavy-tailed statistics are one reason these models
are of interest for wildfire risk, where a minority of large
events may be associated with the majority of costs. A similar
effect is observed for the population distribution. While many
processes absorb at j = 0, those that do not absorb tend to
grow increasingly large at a rate increasing with their size.
Therefore, while the support of the population distribution is
mostly concentrated near zero, the presence of large outliers
at high values brings the mean population/footprint value up,
even above, the interquartile range.

B. Forecasting outcomes in the birth-death-suppression process

To forecast outcomes, and thereby compare the effective-
ness of different suppression strategies, we use a composite
numerical and analytical approach. With changing conditions
over time, analytically forecasting the joint evolution of the
population j(t ) and footprint F (t ) is beyond the reach of
closed-form solution. While ensemble simulation of the pro-
cess is one possibility for numerically estimating the joint
distribution, it is an inefficient and noisy way to compute
probabilities. Instead, a better method is a discretization of the
first-order differential equation obeyed by the joint probability
matrix P j,F (t ), defined as

P j,F (t ) = Pr{ j(t ) = j, F (t ) = F }. (7)

For aggregate birth, death rates λ j, μ j , possibly with time
dependence, one has the differential-difference equation

d

dt
P j,F (t ) = λ j−1P j−1,F−1(t ) + μ j+1P j+1,F (t )

− (λ j + μ j )P j,F (t ). (8)

In the present model, the aggregate birth and death rates
are λ j = β(t ) j(t ) and μ j = j(t ) + γ (t ) along with the

boundary conditions λ−1 = μ0 = 0. The characteristic
timescale of transitions is ∼1/(λ j + μ j ). For O(1) parameters
β, γ , transitions tend to occur on timescales of order ∼1/ j(t ).
A high-fidelity discretization timestep should be dominated
by this scale: �t � 1/ j(t ). If we are considering processes
with j ∼ O(10), then choosing �t � 10−3 will be sufficiently
high-resolution to be numerically stable and faithfully
represent the evolution of the process defined by Eq. (8).

With a discretization timestep �t , one truncates the state
space to j � jmax, F � Fmax, and the differential-difference
equation becomes a finite-dimensional array update in the
natural way:

P j,F (t + �t )

= (1 − �t (λ j + μ j ))P j,F (t ) + (λ j−1�t )P j−1,F−1(t )

+ (μ j+1�t )P j+1,F (t ). (9)

Here, the changing conditions of the multistage process are
captured in the time-dependence of β(t ), γ (t ). This dis-
cretized array update is implemented numerically to forecast
finite-time outcomes. Once computed, the matrix P (t ) can
be marginalized to obtain the distributions over states of
j(t ), F (t ) individually, and from there to determine any statis-
tic of interest. The numerical work was done in compiled
Python using numba [42], which gave huge speedups in com-
putation over base Python loops.

However, this discretization approach is not well-suited to
forecasting the asymptotic outcomes. After the time Trem when
suppression is removed, the process in the high-wind scenario
evolves freely towards eventual absorption. To compute the
asymptotic probability of escape, one first uses the numerical
approach to determine P (Trem ). Then, one makes the decom-
position

Pr{F∞ = F } =
∑
j,F

Pr{F∞ = F | j(0) = j, F (0) = F }

× P j,F (Trem ), (10)

and computes the CDF of this distribution to find the escape
probability as a function of escape threshold J . Analytical
formulas exist for the exact computation of the asymptotic
probability in the summand for arbitrary β, γ . They are
included for reference in Appendix B, Eq. (B17), along with a
brief review of the mathematical objects required to construct
and evaluate them.

The forecasting strategy for analyzing outcomes in the
high-wind scenario is a combination of the numerical dis-
cretization of the exact joint probability matrix at finite times
and the analytical expressions for the asymptotic states to
forecast the final state of the process. These two approaches
work efficiently in their respective domains and when com-
bined allow reliable analysis of the evolution of the process
over time.

C. Decomposing the scenario

Assuming one has suitably defined a utility function en-
compassing both the cost of suppression resources and the
cost of undesirable outcomes, optimal strategies could be
investigated by simulating many processes and finding those
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which maximize utility. A more refined analysis may use
some kind of value or policy iteration approach in lieu of a
brute-force search across strategies, and hope to converge to a
utility-optimal choice. In this work we take a more systematic
approach.

To study the high-wind scenario, we break it into parts,
each of which represents a different aspect of the suppression
allocation decision process. The rest of the paper is structured
around this decomposition as follows.

1. Allocation optimization

The first part of the scenario is the onset of the high-
wind event, where the moderate conditions in the first stage
0 � t � T1 worsen when the high winds occur during the
interval T1 � t � T2. An allocation (γ1, γ2) must be made to
the first two stages after an ignition occurs at time T = 0;
this is Case 1 in Fig. 2. This defines the first optimal strategy
subproblem we call the “allocation” problem, addressed in
Sec. IV; we temporarily ignore the latter part of the process
at times t > T2. Simple cost functions are constructed and
optimal strategies are analyzed which focus suppression ei-
ther before or during the wind event. A related problem of
suppression allocation under uncertainty about potential new
fire events/ignitions is also studied.

2. Suppression removal

After discussing the allocation problem, in Sec. V we ad-
dress the end of the process from time T2 onwards, labeled
“removal” in Fig. 2. Here, a strategy is a choice of suppression
rate γ3 in addition to a choice of duration, or equivalently a
removal time Trem. This subproblem is addressed in Sec. V.
In the removal problem, the tradeoff of interest is between
aggressive strategies, characterized by high suppression rates
over short times, versus sustained strategies, with low sup-
pression rates over long times.

3. Prepositioning

Finally, in Sec. VI, we study a related problem, that of
resource prepositioning. Prepositioning is the practice of de-
ploying suppression resources ahead of any ignition to tactical
locations. The motivation of prepositioning is to, at some de-
ployment cost, reduce the response time to an ignition, should
it occur. We model prepositioning by delayed introduction of
suppression to an active process and compare the benefits of
fast response versus the amount of suppression deployed.

These subproblems are approached independently; the
different types of strategies required in each subproblem mo-
tivate different types of analysis. The results are combined to
make statements about optimal strategies for the high-wind
scenario as a whole, considering for context conventional
wisdom and practice in the management of disaster resources.

IV. ALLOCATION PROBLEM

The allocation problem is the choice of a suppression al-
location before and during the high-wind stage. That is, one
chooses suppression rates (γ1, γ2) for the scenario of Fig. 2
up to time T2. Allocations of suppression resources balance
the cost of the resources, their ability to be deployed, and

FIG. 6. Effect of preemptive and reactive suppression on the
escape probability. Contours of escape probability Pr{F (T2) � J} at
time T2 with a threshold J = 50; this represents the probability of
escape by the end of the second stage in the scenario of Fig. 2.
In this case, preemptive suppression (γ1 > 0, γ2 = 0) is clearly
more effective than reactive suppression (γ1 = 0, γ2 > 0) for a fixed
amount of resources.

the effect they have on a fire event. The risk associated with
the state of the process at time T2 can be quantified by the
probability of certain undesirable outcomes at time T2. The
first such quantity is the probability of no absorption by time
T2, which is simply

Pr{no absorption} = 1 − pA(T2), (11)

where pA(t ) is the probability that j(t ) = 0. The second quan-
tity is the probability of escape by the end of the wind event:

Pr{escape by T2} = Pr{F (T2) � J}. (12)

Both the probability of no absorption and the probability of
escape are lowered by the introduction of suppression; at fixed
parameters N, β and J � 1, the asymptotic probability of
escape is exponentially decreasing in the suppression rate γ .

A. Optimizing allocation

In the following, we work with parameters as given in
Table I for the scenario of Fig. 2 up to time T2 to numerically
study the optimal allocations.

Figure 6 shows the contours of the escape probability at
time T2, as in Eq. (12), as a function of the preemptive sup-
pression rate γ1 (occurring before the wind event, t � T1) and
the reactive suppression rate γ2 (occurring during the wind
event, T1 � t � T2).

It is clear that preemptive suppression (γ2 = 0) has a
greater effect on the probability of escape than reactive sup-
pression (γ1 = 0). This is not surprising: the (cumulative)
footprint always increases in time, and so does the probability
of escape. Waiting to apply a given amount of suppression
therefore can only increase the probability of escape, regard-
less of the other parameters of the process.
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FIG. 7. Minimizing nonabsorption. Categories of optimal strate-
gies which minimize the probability of no absorption plus a linear
cost to suppression, parametrized by relative cost r and cost weight
q as in Eq. (14). In the majority of parameter space mixed strategies
are not optimal, and at equal cost to suppression r = 1, preemptive
strategies are completely favored.

Some reasons that an optimal allocation would not pre-
fer exclusively preemptive suppression are uncertainty about
future conditions and/or constraints. Constraints may include
limits on the ability to deploy preemptive suppression or cost
constraints. Cost can be included through simple, linear cost
functions of the form

C(γ1, γ2; r) = γ1 + rγ2. (13)

Here, the parameter r represents the relative cost of preemp-
tive or reactive suppression. At r = 1, the cost in each stage is
equal. Taking r < 1, for example, could represent a decrease
in suppression cost as mobilization of resources allows more
cost-effective deployment.

Here a risk-neutral utility function U (γ1, γ2) is constructed
by combining the probability of a bad outcome (no absorp-
tion, or escape) with the cost of suppression and a weighting
parameter q:

−U (γ1, γ2) = Pr{outcome} + qC(γ1, γ2; r). (14)

The variable q can be interpreted as an overall cost weight; as
q → 0, the utility is dominated by the probability of the bad
outcome, while when q � 1 the utility is dominated by the
cost of suppression.

Optimal allocations (γ 

1 , γ 


2 ) are found by maximizing the
utility U (γ1, γ2). Depending on the values of the parameters
r, q in the utility function, optimal allocation strategies may
prefer preemptive suppression γ1 > 0, reactive suppression,
γ2 > 0, or a mix of the two. In Figs. 7 and 8 these differing
strategy ‘phases’ are color-coded as parameters q, r in the cost
function are varied.

FIG. 8. Minimizing Escape. Categories of optimal strategies
which minimize the probability of escape Pr{F (T2) � 50} subject to
cost as in Eq. (14). Compared to the phase diagram of Fig. 7, mixed
strategies now form a larger share of the parameter space, but at r = 1
preemptive strategies are still preferred.

In a vast majority of cases, no mixed strategy is preferred.
Indeed, at r = 1, where the cost of suppression in each stage
is equal, a preemptive strategy is always preferred, subject to
cost; see Fig. 7. Furthermore, the phases have extremely sharp
boundaries: At low cost weight q ≈ 0.1, strategies transition
very quickly from preemptive to reactive as the relative cost
parameter r is modulated. These behaviors are also true when
the outcome considered is escape, as shown in Fig. 8.

When the bad outcome is escape (here with threshold
J = 50), a larger regime is occupied by mixed strategies at low
cost weight and low relative cost. However, in the regime of
equal suppression cost in each stage r = 1, the conclusions are
robust: preemptive strategies are preferred. Similar behavior
is observed for nonlinear cost functions such as C(γ1, γ2) ∝
(γ1 + rγ2)α for α > 1.

What does the existence of sharp phase boundaries say
about general suppression strategies? In any situation, a mixed
strategy results in a lower amount of suppression concentrated
in a given stage. That these strategies are only preferred
under low-cost conditions indicates that suppression is most
effective when concentrated. In the present context, the most
effective concentration is in the preemptive regime.

The operational cost of fire suppression is a complex func-
tion of the existing suppression assets and their availability.
It is unlikely that realistic cost functions are continuous:
when suppression requirements necessitate a new modality
of equipment, like aerial support, the cost and the available
resources may increase sharply, with no ability to interpolate
between low suppression (e.g., hand crew) regimes and high
suppression (e.g., aerial tanker) regimes. Even if these details
were incorporated into the utility function of Eq. (14), it would
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not change the effectiveness of preemptive versus reactive
suppression.

B. Allocations under uncertainty

The effectiveness of preemptive strategies in mitigating
bad outcomes subject to cost is not surprising: the longer a
process evolves unencumbered, the more likely a catastrophic
outcome becomes. Only when the cost of later suppression is
very low do optimal strategies hold back initial suppression.
A large attenuation in suppression cost over the course of
a process is not a likely scenario in practice. However, in
the situation just analyzed, allocations were made with per-
fect information about the future. There was no doubt if or
when the wind event would occur, and therefore, no doubt
that preemptive suppression would be both risk-reducing and
cost-effective.

In practice, when fires begin, not all available resources
are immediately allocated to an initial attack. Some resources
are withheld to respond to another potential fire. With the
understanding that preemptive attack is crucial for keeping
risk low, in the presence of uncertainty about future ignitions,
optimal resource allocation to a given fire must hold back
some suppression to respond quickly to another event, should
it occur.

A simple model using the birth-death-suppression process
can be created to illustrate this logic. Imagine that some num-
ber τ = λT of ignitions is expected to occur in the future.
Specifically, let ignitions occur as a Poisson process with rate
λ, and therefore λT ignitions are expected over a finite time
period T . In this time period T , there is an amount γT of sup-
pression available to allocate to all ignitions. The probability
of n ignitions in this timeframe T is

Pr{n ignitions} = τ n

n!
e−τ . (15)

Let each ignition nucleate a birth-death-suppression process
with N = 1, β = 1. If a fraction xi of the available suppres-
sion γT is allocated to the ith event, then the probability of
escape with threshold J is given by

pesc(xi; γT , J ) = �(J − 1/2)�(1 + xiγT /2)√
π�(J + xiγT /2)

. (16)

This exact expression for the N = 1, β = 1 escape prob-
ability is derived in Sec. IV B of Ref. [34]. We fix β = 1
here for numerical convenience, but there is no obstacle in
principle to modulating its value. In this setup, an allocation
of resources is a choice of a function xn such that

∑
xn = 1:

one chooses what fraction of available suppression γT to
allocate to the nth event. The optimal allocation x


n should
minimize the expected number of escaped processes over
the timeframe T . This quantity can be expressed straightfor-
wardly as

E[escapes in time T ](x) =
∞∑

n=1

τ n

n!
e−τ

n∑
i=1

pesc(xi ). (17)

Here, we assume that different ignitions are spatially sep-
arated and hence independent events; their only interaction is
through the suppression allocated between them. By truncat-
ing this sum at a reasonably large value n � τ , the constrained

FIG. 9. Optimal suppression allocations for a series of poten-
tial ignitions. Gross suppression allocations γn = xnγT for the nth
ignition are plotted with τ = 10, J = 10 for different amounts
of available suppression γT . While increased available suppression
naturally allows more resources to be allocated to each event, the
optimal allocation also extends these resources farther into the future.

optimization problem of minimizing Eq. (17), subject to∑
n xn = 1, can be solved numerically by standard methods.

The optimal gross allocations γT x

n are shown in Fig. 9,

and the optimal allocation fraction x

n(γT ) for various values

of the available suppression γT is shown in Fig. 10.
The profiles of the optimal allocations x


n show that, as
expected, uncertainty about future events causes some sup-
pression to be held back from initial events despite high
likelihood of their occurrence. That is, initial events receive
most but not all available suppression. As the available sup-
pression is increased, the optimal allocations save increasingly
more resources for future events of relatively low likelihood.

FIG. 10. Optimal fractional suppression allocations for a series
of potential ignitions. Fractional suppression allocations xn for the
nth ignition minimizing the expected number of escaped processes
as in Eq. (17), with J = 10, τ = 10. As the amount of available
suppression γT increases, later events are allotted a greater fraction
of suppression.
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This remains true even as the suppression allocated to early
events grows as the available suppression is increased.

In realistic suppression scenarios, the true cost of suppres-
sion incorporates both the cost of deployment as well as the
opportunity cost of allocating resources to one event under
uncertainty about the occurrence of another, potentially more
dangerous event.

V. TRADEOFFS IN SUPPRESSION REMOVAL

Having looked at allocations of two suppression rates over
fixed time intervals, we now consider the “removal” problem,
the third stage of the scenario illustrated in Fig. 2. In the
removal problem, a suppression rate γ3 is chosen and applied
until the chosen removal time Trem, after which the process
evolves freely. This represents the final stage (t � T2) of the
high-wind scenario. Assuming that the process at time T2 is
in a state ( j0, F0) of definite population and footprint size,
one must make a decision of a final allocation γ3 and a
duration T ≡ Trem − T2 over which to apply the suppression.
The choice of allocation and duration will be informed by
the proximity of F0 to the escape threshold J , the probability
of the population absorbing, and any cost considerations or
constraints that may be present on the amount of available
suppression γ3.

The fundamental tension addressed by this subprob-
lem is that between fast, aggressive suppression strategies
(γ3 � 1, T � 1) and slow, sustained suppression strategies
(γ3 � 1, T � 1). By comparing the contours of constant
asymptotic outcomes of the process, e.g., the average foot-
print 〈F (∞)〉, one may find a nonzero gradient in resource
usage along the contours of constant outcome. That is, at a
fixed value of the product γ3T , asymptotic outcomes may
differ between the fast/aggressive suppression regime and the
slow/sustained suppression regime.

Here, cost is assumed to depend directly on the total
amount of suppression γ3T and not the suppression rate or
duration of suppression independently. The existence of a
cost gradient, and hence a cost-optimal strategy, is completely
independent of the specific cost function, and holds even if
the set of allowed suppression values is restricted to a discrete
subset.

Finding cost gradients

Since in subcritical conditions β < 1 asymptotic absorp-
tion is a certainty, the focus in this section is on outcomes
related to the footprint: the asymptotic probability of escape
EJ (∞) = Pr{F∞ � J} and the asymptotic average footprint
〈F (∞)〉. The former is computed by the numerical strategy
outlined in Eq. (10), while the latter can be determined from
the joint distribution P j,F (t ) at the removal time Trem. Recall
that the average footprint 〈F (t )〉 solves

d

dt
〈F (t )〉 = β〈 j(t )〉. (18)

This equation can be integrated from Trem to asymptotic time,
during which γ = 0, to obtain the following expression:

〈F (∞)〉 = 〈F (Trem )〉 + β

1 − β
〈 j(Trem )〉. (19)

FIG. 11. Tradeoffs in escape probability. Contours of constant
total suppression γ3T (gray, dashed) overlaid on contours of constant
asymptotic escape probability EJ (∞) ≡ Pr{F∞ � J} in the (γ3, T )
plane. At a fixed escape probability, strategies which apply a high
suppression rate for a short amount of time are more cost-effective
than applying a lower suppression rate over a longer period.

Both EJ (∞) and 〈F (∞)〉 are computed across a range of
suppression rates γ3 and removal times Trem, and the contour
plots of these outcomes are compared to the contours of
constant total suppression γ3(Trem − T2) = γ3T , as in Fig. 11.
We plot contours of constant total suppression (dashed) which
coincide with contours of constant escape probability in the
fast/aggressive regime (upper left). As these curves of con-
stant total suppression travel into the slow/ sustained regime, it
is clear that they fall below the contours of escape probability.
The contours of constant escape probability move up the cost
gradient (pictured as filled contours in the background of
Fig. 11) as they proceed into the slow-sustained regime.

Said another way, there is a cost gradient along contours
of constant escape probability from the slow/sustained regime
(higher cost) to the fast/aggressive regime (lower cost). At
high values of the escape probability, fast/aggressive and
slow/sustained strategies appear to be approximately equiv-
alent in terms of total suppression used. The cost gradient is
strongest at low values of the asymptotic escape probability.
These exact same conclusions are borne out when studying
the contours of constant asymptotic average footprint, as in
Fig. 12.

This result is consistent with what was found in the
allocation problem, where early, preemptive strategies are
generally preferred and concentrated suppression is almost
universally preferred. In the present case, the most resource-
effective strategies concentrate suppression early and relax
thereafter, rather than maintaining a consistent but lower level
of suppression for an extended time. However, this effect is
less pronounced for riskier outcomes: in Fig. 12, the con-
tours of constant average footprint at high values display
much stronger cost-parity between the fast/aggressive and
slow/sustained regimes. As one’s risk tolerance decreases,
concentrated strategies become more preferable.
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FIG. 12. Tradeoffs in final footprint. Contours of constant
asymptotic average footprint with overlaid contours of constant total
suppression γ3T (gray, dashed). Fast/aggressive strategies (top left)
are lower cost at fixed outcome compared to slow/sustained strate-
gies (lower right); this cost gradient is more pronounced at smaller
footprint values, corresponding to a lower likelihood of undesirable
outcome.

VI. EFFECT OF PREPOSITIONING

Prepositioning of emergency relief assets for disaster re-
sponse is a well-known practice that is used globally by
disaster management agencies. By prepositioning resources,
response time for potential events is lowered, but at a resource
cost. In the context of wildfire, the phase of “initial attack,”
or initial suppression, can be a deciding factor in whether
a fire grows to extreme size and presents a danger to in-
frastructure and populations [43]. The problem of optimizing
prepositioning of resources based on cost and mobility con-
straints is inherently a spatial one and has been addressed by
numerous works in the operations research literature [24,25].
In the birth-death-suppression model, the focus is instead on
the principal temporal aspect of prepositioning: the effect of
suppression delay on outcomes.

In this section we consider the effect of prepositioning.
Here, the situation is one where an ignition is unexpected
and the process begins with no suppression effort present.
We model the effect of prepositioning by through resource
delay: If suppression resources are effectively prepositioned,
then there will be a decreased delay until they can effectively
suppress the fire. The delay therefore serves as a temporal
proxy for the spatial aspect of prepositioning.

Specifically, we consider a birth-death-suppression process
that begins with initial size N = 10 and has a constant birth
rate. The process evolves freely until some time Tdelay, after
which a initial suppression rate γ0 > 0 is introduced to the dy-
namics. The effect of the delayed arrival of initial suppression
resources on the severity of the fire event is then quantified
by the (asymptotic) escape probability Pr{F∞ � J} with an
escape threshold of J = 50. This quantity is plotted in Fig. 13
versus the delay time Tdelay for different values of the birth rate
representing mild, critical, and dangerous conditions.

The results indicate that delay is more decisive than the
rate of suppression: Even if large amounts of suppression are
deployed, if the delay is sufficiently long, there is a minor
effect on the overall probability of escape as compared to the
unsuppressed process. In the intermediate delay regime, there
is an approximately linear relationship between the delay
and the probability of escape. Similar results were found in
Ref. [32], where after a large enough delay, the amount of
suppression required to keep the escape probability constant
increases exponentially.

In each plot of Fig. 13, one can see that low, immedi-
ately deployed initial suppression, i.e., γ0 = 1 at Tdelay = 0,
is more effective at reducing the probability of escape than
substantial but highly delayed initial suppression, i.e., γ0 = 10
at Tdelay = 5. This observation has some operational ramifica-
tions. While heavy suppression always reduces risk, response
time for initial attack can have an even greater effect than the
magnitude of the suppression. This suggests that suppression
resources should be geospatially distributed, thereby minimiz-
ing response time. This is consistent with both conventional
wisdom and empirical studies that stress the importance of
initial attack, particularly when ignitions occur in dangerous
conditions.

FIG. 13. The importance of fast initial suppression. Effect of delayed suppression γ0 on the escape probability Pr{F∞ � 50} for a process
with N = 10, pictured for various values of γ0 and β = 0.9, 1, 1.1. At long delays, even aggressive suppression only mildly lowers the
probability of escape. Low, immediate suppression is more effective than high suppression brought in after a significant delay.
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VII. CONCLUSION: OPTIMAL RESPONSE
IN A HIGH-WIND SCENARIO

The practice of wildfire suppression is performed by field
personnel. People with years of experience, intuition for
effective practices, and, in the modern era, a wealth of me-
teorological and geospatial data, inform the detailed motion
of suppression resources around the spatial extent of an active
wildfire. But, at a state or federal level, decisions relating to
when and where to allocate a given amount of resources can
greatly affect the cost of a fire event. Suppression expenditure
has naturally grown with fire size and severity, a trend which
only emphasizes the importance of effective resource usage
and optimal allocation.

In studying temporal resource allocations within the birth-
death-suppression process, we see that distinct suppression
strategies are regularly favored: concentrated, preemptive
suppression is cost-optimal to lower the probability of bad
outcomes. This is consistent with the widespread preposition-
ing practices of many fire management agencies. In practice,
the cost of prepositioning must be balanced against the poten-
tial hazard of delayed resource mobilization, a hazard which
we observed to depend strongly on the temporal mobilization
delay.

Tensions arise when operational constraints limit the abil-
ity to provide suppression or limit the available amount of
suppression which can be deployed. From the “removal”
problem, we saw that under total resource constraints, a lim-
ited amount of suppression should be temporally concentrated
to have the greatest effect.

The temporal tradeoffs we observed have implications for
the spatial distribution of resources and hence the optimiza-
tion of response ability. Fast response and initial attack has
a very strong effect on outcomes. Even a small amount of
immediate suppression can be more valuable than delayed
but heavy suppression. At the same time, once a fire event
has begun, the optimal strategy is to deploy a temporally
concentrated, high rate of suppression. This is similar to
the usual practice of wildland firefighting, where initial at-
tack is made by hand crews or small engines and, after
some delay, aerial suppression assets provide intensely ef-
fective but temporally concentrated bouts of suppression:
these strategies are reinforced by the birth-death-suppression
model.

While the focus of this paper is on the wildfire interpreta-
tion of the birth-death-suppression model, the process can also
be used to describe the temporal evolution of any population
of objects whose “death” rate is controlled by both natural
effects and external suppression. As an example, the popu-
lation j(t ) could represent the number of persons infected
with a disease, and the suppression rate γ would represent
the effect of medical treatment or intervention. Much of the
analysis carried out in this work could be adapted to ad-
dress similar questions of the timing, scope, and duration of
interventions for epidemic management. Birth-death Markov
processes have historically been widely used for modeling the
dynamics of disease spread [33,44].

Future work along the lines of this paper could analyze sup-
pression allocation for multiple contemporaneous processes,
extending the work of Ref. [32]. Integrating costs to resources

and resource transfer, studying multievent allocation would
naturally address many of the tensions agencies are practically
faced with in managing simultaneous fire events. Despite the
lack of explicit spatial structure in the birth-death-suppression
process, time delays and mobilization costs can implicitly
model the effect of geospatially separated events. This model,
and the general class of Markov birth-death processes, provide
a simple but robust way to model the time evolution of spa-
tial processes without being complicated by detailed spatial
dynamics. Another important direction for future work is to
study how these tradeoffs play out in more complex models
of wildfire, where spatial structure is added.

ACKNOWLEDGMENT

This work was supported in part by the Office of Secretary
of Defense Strategic Environmental Research and Develop-
ment Program (SERDP) Project No. RC21-1233.

APPENDIX A: CUMULANTS OF THE
BIRTH-DEATH-SUPPRESSION PROCESS

The connected cumulants of the population j(t ) and foot-
print F (t ) can be computed following the pioneering work
of Kendall [36], who studied the cumulants of the zero-
suppression linear birth-death process. The first step is to
define the joint probability matrix P (t ) with elements

P j,F (t ) = Pr{F (t ) = F, j(t ) = j}. (A1)

Recall that the footprint F (t ) counts the number of births, i.e.,
F → F + 1 if and only if j → j + 1. On general grounds,
the joint probabilities P j,F (t ) satisfy the dynamical (forward)
equation

d

dt
P j,F (t ) = λ j−1P j−1,F−1(t ) + μ j+1P j+1,F (t )

− (λ j + μ j )P j,F (t ). (A2)

Presently, the aggregate birth/death rates λ j/μ j are given by

λ j = β j; μ j = j + γ ; μ0 = λ−1 = 0, (A3)

with constant birth rate β and suppression rate γ . In the
case γ = 0, these reduce to the rates considered by Kendall.
However, for nonzero γ > 0, the behavior—and associated
mathematics—changes considerably. This is principally be-
cause as one approaches the absorbing state j → 0, the birth
rate linearly decreases λ → 0 while the death rate approaches
a constant value μ → γ , and lim j→0 μ j 
= μ0. This differ-
ence in limiting behavior causes the birth-death-suppression
process to remain outside the universality class of absorbing
processes to which the simple linear birth-death process be-
longs, as discussed in Refs. [45,46].

To determine the cumulants, begin by defining the joint
generating function

�(t, z,w) =
∞∑
j=0

∞∑
F=0

P j,F (t )z jwF . (A4)

The recurrence relation in Eq. (A2) implies that �(t, z,w)
satisfies the inhomogeneous
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partial differential equation

∂�

∂t
= (βz2w − z(β + 1) + 1)

∂�

∂z

+ γ

(
1 − z

z

)
(�(t, z,w) − f0(t,w)), (A5)

where the function f0(t,w) is given by

f0(t,w) =
∞∑

F=0

P0,F (t )wF . (A6)

As evident in Eq. (A5), with γ > 0 the presence of the
unknown function f0(t,w) renders a direct solution infea-
sible. Instead, consider the cumulant generating function
K (t, u, v) = log �(t, eu, ev ). After the change of variables,
one finds that K (t, u, v) solves

∂K

∂t
= (βeu+v − (β + 1) + e−u)

∂K

∂u

+ γ (e−u − 1)(1 − e−K f0(t, ev )). (A7)

To determine the lowest-order connected cumulants of
j(t ), F (t ), one solves the equation above order-by-order
in u, v. By construction, the cumulant generating function
K (t, u, v) expands as

K (t, u, v) = u〈 j(t )〉 + v〈F (t )〉 + 1
2 u2σ 2

j (t )

+ uv Cov( j, F ) + 1
2v2σ 2

F (t ) + · · · . (A8)

By equating terms at common orders in Eq. (A5), one gen-
erates a hierachy of ordinary differential equations for each
cumulant in the expansion above. Note that the function
f0(t, ev ) expands as

f0(t, ev ) =
∞∑

F=0

P0,F (t ) + v

∞∑
F=0

FP0,F (t ) + O(v2). (A9)

At order O(u), one finds an equation for the average popula-
tion 〈 j(t )〉:

d

dt
〈 j(t )〉 = (β − 1)〈 j(t )〉 − γ [1 − pA(t )]. (A10)

Here, the function pA(t ) = Pr{ j(t ) = 0} is the absorption
probability. It arises from the inhomogeneous term as

f0(t, 1) =
∞∑

F=0

P0,F (t ) = Pr{ j(t ) = 0} ≡ pA(t ). (A11)

In Ref. [34], we show that for processes with initial condition
j(0) = N , the absorption probability is given by

pA(t ) = B(z(t ); N, γ + 1)

B(N, γ + 1)
; z(t ) = 1 − e(β−1)t

1 − βe(β−1)t
, (A12)

where B(x; a, b) is the incomplete beta function. The ab-
sorption probability appears in the differential equation for
the average population because absorbed processes contribute
zero to the average over j, while the total probability mass
across the states j = 0, 1, 2, . . . is conserved. Hence, the de-
cline in population due to the suppression factor must be
discounted by what fraction of processes remain unabsorbed.

Continuing to order O(v), the average footprint 〈F (t )〉
satisfies

d

dt
〈F (t )〉 = β〈 j(t )〉, (A13)

expressing the intuitive fact that the footprint grows with the
births of the population. One can exactly solve each of these
equations and the corresponding equation for the population
variance, but determining higher-order cumulants requires
knowledge of the first order behavior of the function f0(t, ev ).

Below, we compute and present the integral expressions for
the connected cumulants of the population j(t ) and footprint
F (t ) in the birth-death-suppression process. We make no as-
sumptions about the initial state of the process save that the
cumulants may be computed in the initial state.

1. Average population

The average population solves the differential equation

d

dt
〈 j(t )〉 = (β − 1)〈 j(t )〉 − γ [1 − pA(t )]. (A14)

The general solution is given by

〈 j(t )〉 = 〈 j(0)〉e(β−1)t − γ

∫ t

0
dτe(β−1)(t−τ )(1 − pA(t )),

(A15)

where the absorption probability is defined as pA(t ) =∑
j p j (0)Pj0(t ). In the case that the process begins in an initial

state of definite population, one has 〈 j(0)〉 = N for some
integer N . In this case, we can write an exact expression for
the integral in the above. Recall the following identity satisfied
by the regularized incomplete beta function [47]:

Ix(N, b) = 1 −
N−1∑
a=0

xa(1 − x)b

aB(a, b)
= B(x; a, b)

B(a, b)
, (A16)

which holds for integral N and arbitrary b. This identity,
along with the expression for the absorption probability (A12)
allows one to write∫ t

0
e−(β−1)τ (1 − pA(τ ))dτ = 1

γ

N∑
n=1

Iz(t )(n, γ ), (A17)

from which the exact expression

〈 j(t )〉 = e(β−1)t

[
N −

N∑
n=1

Iz(t )(n, γ )

]
(A18)

follows for integer j(0) = N .

2. Average footprint

The average footprint solves the equation

d

dt
〈F (t )〉 = β〈 j(t )〉, (A19)

from which the solution may be directly integrated to yield

〈F (t )〉 = 〈F (0)〉 + β

∫ t

0
dτ 〈 j(τ )〉. (A20)
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Since we can exactly forecast the average population across
piecewise-constant birth and suppression rates, we can simi-
larly exactly forecast the average footprint.

APPENDIX B: GLOSSARY OF FORMULAS
FOR THE BIRTH-DEATH-SUPPRESSION PROCESS

This section reproduces important formulas from our pre-
vious work [34] which are referenced or used in the present
analysis of the distribution of footprints. Throughout this sec-
tion, the birth rate is β, the suppression rate is γ , and we
work in time units where the death rate δ = 1. To restore the
formulas to physical units, one should make the substitutions
β → β/δ, γ → γ /δ, t → tδ.

To begin, define the auxiliary functions

z(t ) = 1 − e(β−1)t

1 − βe(β−1)t
, (B1)

and, with s(t ) = exp [(β − 1)t],

X (s) = (βs − 1)(s − β )

β(s − 1)2
. (B2)

1. Distributions of the population

The population j(t ) has transition matrix elements
given by

Pk�(t ) = π�

πk
βksγ+1

(
1 − β

1 − βs

)γ+2( 1 − s

1 − βs

)k+�

Fk�(t ), (B3)

with

Fk�(t ) = �(k + � + γ + 2)

�(� + 1)�(k + γ + 2)

× 2F1(−k,−�; −1 − k − � − γ ; X [s(t )]). (B4)

From this, the absorption probability is pA(t ) = PN0(t ) if the
population is in a definite state j(0) = N at time t = 0. This
function is succintly written as

pA(t ) = B(z(t ); N, γ + 1)

B(N, γ + 1)
, (B5)

where B(x; a, b) is the incomplete beta function. Its asymp-
totic limit may be computed as

pA(∞) =
{

1, β � 1;
B(1/β;N,γ+1)

B(N,γ+1) , β > 1.
(B6)

2. Footprint orthogonal polynomials

Computing the asymptotic footprint distribution and the
corresponding asymptotic escape probability relies on a fam-
ily of orthogonal polynomials Wn(x) related by a change of
variables to the Pollazcek polynomials [48]. We repeat these
definitions here for reference. For more details on the Pol-
lazcek polynomials and their properties, see Refs. [49–53].

We start by defining the following quantities:

D(x) =
√

x2(β + 1)2 − 4β, (B7)

Iβ = 2
√

β

1 + β
, Iβ � 1; (B8)

u = x(β + 1)

2
+ D(x)

2
, v = x(β + 1)

2
− D(x)

2
, (B9)

A = −γ + 2

2
− xγ (β − 1)

2D(x)
, (B10)

B = −γ + 2

2
+ xγ (β − 1)

2D(x)
. (B11)

The polynomials Wn(x) may be evaluated as

Wn(x) = (γ + 2)n

n!
u−n

2F1(−n,−B, γ + 2; −uD(x)/β ),

(B12)

although numerically, they are more efficiently evaluated
using their recursion relation outlined in Ref. [34].

The polynomials Wn(x) are orthogonal with respect to a
measure dσ (x) with continuous and discrete support; the
continuous portion w(x) ≡ dσ/dx is given by

w(x) = β + γ + 1

2π i
uAvB (u − v)−A

(v − u)B+1

�(−A)�(−B)

�(γ + 2)
(B13)

and supported on the interval [−Iβ, Iβ ]. When β > 1 and γ >

0, the measure dσ (x) is additionally supported on an infinite
set of point ±xk which satisfy

x2
k = β(γ + 2(k + 1))2

(γ + (k + 1)(β + 1))(βγ + (k + 1)(β + 1))
.

(B14)

At the points ±xk the measure has weight

�k = β + γ + 1

βγ+3
(uk )−k (vk )k+γ+ (γ + 2)k

k!
· Dγ+4

k

2γ (β − 1)
,

(B15)

leading to the complete orthogonality relation

∫ Iβ

−Iβ

dx w(x)Wn(x)Wm(x) +
∞∑

k=0

�kWn(xk )Wm(xk )

+
∞∑

k=0

�kWn(−xk )Wm(−xk ) = hnδn,m. (B16)

3. Asymptotic footprint distributions

The footprint F at absorption is linearly related to the
initial population size j(0) = N and the number of transitions
nT that occurred in the lifetime of the absorbing process. The
probability of a process absorbing with footprint F is written
as a spectral integral

Pr{F∞ = F } = γ + 1

β + γ + 1

∫ 1

−1
dσ (x) x2(F−F0 )+N−1WN−1(x).

(B17)

Here F0 = F (0) is the initial footprint of the process and
dσ (x) is the complete measure of orthogonality, including
both continuous and discrete elements as applicable to the
phase of the process.
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To compute the probability of escape EJ ≡ Pr{F∞ � J} at
some escape threshold J , one writes

EJ = 1 −
J−1∑

F=F0

Pr{F∞ = F }, (B18)

subtracting from unity as only the complementary probability
measure of EJ is compactly supported. This quantity can be

expressed directly in an integral form as

EJ =1 − γ + 1

β + γ + 1

∫ 1

−1
dσ (x)

xN−1 − x2(J−F0 )+N−1

1 − x2
WN−1(x).

(B19)

These integrals may be performed numerically by standard
quadrature methods.
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