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Birth-death-suppression Markov process and wildfires
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Birth and death Markov processes can model stochastic physical systems from percolation to disease
spread and, in particular, wildfires. We introduce and analyze a birth-death-suppression Markov process as a
model of controlled culling of an abstract, dynamic population. Using analytic techniques, we characterize
the probabilities and timescales of outcomes like absorption at zero (extinguishment) and the probability of
the cumulative population (burned area) reaching a given size. The latter requires control over the embedded
Markov chain: this discrete process is solved using the Pollazcek orthogonal polynomials, a deformation of the
Gegenbauer/ultraspherical polynomials. This allows analysis of processes with bounded cumulative population,
corresponding to finite burnable substrate in the wildfire interpretation, with probabilities represented as spectral
integrals. This technology is developed to lay the foundations for a dynamic decision support framework.
We devise real-time risk metrics and suggest future directions for determining optimal suppression strategies,
including multievent resource allocation problems and potential applications for reinforcement learning.
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I. INTRODUCTION

Markov processes provide simple but robust models of
many real-world stochastic phenomena. The birth and death
process is a continuous-time Markov process describing the
dynamics of an abstract population including its possible ex-
tinction. Birth-death processes have been applied to queueing
theory, epidemiology, mathematical biology, and even ther-
modynamic diffusion; see Refs. [1–4] for general review and
applications. In a recent work [5], the authors introduce a
modified birth-death process as a model of the dynamics of a
wildfire under suppression, i.e., firefighting. Here, we extend
this work and establish the analytical solution of the specific
Markov process.

The technical focus of this work is on the solution of
the birth-death-suppression process, but a guiding motivation
is wildfire modeling. Dealing with wildfires at a regional
level requires allocation of a finite amount of suppression
resources—firefighters, trucks, aircraft—across potentially
many active wildfire events of varying intensity and risk.
There is an ongoing need for decision support tools that in-
corporate new conditions and allow for optimization-based
assessment of trade-offs in suppression strategies. Markov
processes have previously been applied to multiple facets of
wildfire management, including fire spread, risk to infrastruc-
ture, and fire mitigation, among others [6–14].

We stress that the introduction of the present model is
not meant to replace or even compare to the high-fidelity,
physics-based fire modeling tools employed by agencies
today. Instead, the model is meant to capture important
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trade-offs in time-dependent resource management in a simple
environment, where simulation is cheap and analytical results
are available. As it contains no spatial information about
the spread of a wildfire, the birth-death-suppression model
is effectively a ‘mean-field’ approach to describing wildfire
dynamics.

More generally, the birth-death-suppression process can
model any population with a natural and an artificial source
of eradication: the rate of the former being proportional to
the size of the population and the latter independent of it.
For example, one could interpret the process as modeling the
size of an infected population in the presence of treatment
efforts. Indeed, the dynamical equations of the susceptible-
infectious-recovered (SIR) model of an epidemic are known
to reduce to those of a birth-death process in certain regimes
[15]. The model we consider describes populations in a linear
growth stage, where no dynamical limit to their growth exists,
and where there is no chance of resurrection after complete
eradication.

The main subject of our model is a discrete stochastic vari-
able j(t ) we call the population, representing in the wildfire
interpretation the number of actively burning (spatial) parcels
of fire, or firelets; one may take a single firelet to represent,
e.g., a burning acre of land. In Fig. 1, the population j(t ) is
shown in red (light gray), both as a stochastic variable and
schematically as the actively burning area of a wildfire.

As time progresses, the variable j undergoes stochastic
nearest-neighbor transitions j → j ± 1 with probabilities de-
pendent only on the previous state. The transitions j → j ± 1
represent births and deaths in the population. There is an
aggregate birth rate β · j of parcels per unit time which may
change to reflect local conditions: fuel and weather in the
fire interpretation or virulence in an epidemic interpretation.
There is also a suppression parameter γ which reduces the
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FIG. 1. A simulated birth-death process (left) alongside the
schematic representation as a wildfire (right). (A) The state of the
simulated process at the time t1, with all J parcels in one of the three
states: unburned, burning, burned. (B) The corresponding spatial
representation: a small fire at an early time t1, the active population
shown in red (light gray). (C) Most parcels of the simulated process
have entered the burned state. (D) Depiction of the same fire at the
later time t2; the footprint (black) has grown to almost fill the total
burnable region (dark gray).

size of the overall population, representing the application of
eradication resources; firefighting or treatment. A reference
table of these parameters, their definitions and interpretations
is included in Table I.

If at some time the process reaches the state j = 0, then
the population has died out and the process is terminated.
Estimating the probability of this event, and the time at which
it happens, is a primary concern. However, fires propagate,
and their associated risk is related to how much total area they
burn, not just their active size. A fire could maintain a small
active size but still propagate and burn a very large area before
going out. Similarly, the severity of an epidemic is generally
defined as the cumulative number of cases, not the number
of currently infected individuals. The cumulative population

is a new stochastic variable F (t ), which we refer to as the
footprint. This variable shares all the positive transitions of
the population j(t ): if j → j + 1, then F → F + 1, but if
j → j − 1, F is unchanged. The footprint, as the area burned
by a wildfire, is shown in black in Fig. 1, where one can see its
monotonic increase in size as the process (left) or fire (right)
progresses in time.

To be sensitive to the cost associated with a large burned
area, one can ask whether the footprint F likely remains
below some threshold value J . Asking whether the footprint
satisfies F � J is the type of question relevant for fires in the
wildland-urban interface. When the footprint reaches F � J ,
one interprets the fire as having reached the built infrastruc-
ture. While the model is purely temporal, the threshold J
incorporates the spatial notion of a burned area: the corre-
spondence between this implicit spatial representation and the
continuous-time Markov process is the subject of Fig. 1, with
snapshots of the “fire” juxtaposed with a simulated birth-death
process. The purpose of suppression is to keep F � J , thereby
containing the cumulative size of the fire or epidemic. To this
end we aim to compute the escape probability that F � J at
the end of the process, for any finite J .

Some immediate credence for the introduction of the birth-
death-suppression model in the context of fire dynamics is
supplied by the known statistics of fire footprints: if P(F � J )
is the probability of a given fire having footprint F greater
than or equal to J , a power law P(F � J ) ∼ J−α is observed.
In particular, measurements of the area burned by real fires
suggests that the exponent α of the empirical footprint distri-
bution is close to α ≈ 1/2 [16]. This power-law distribution
is reproduced in our birth-death model for fire close to the
critical threshold where the birth and death rates are equal.

Power-law distributions have heavy tails, which means that
large or rare events dominate the total cost of such events.
The presence of a power-law distribution is common to many
types of natural phenomena and various mechanisms exist
which explain the origin of such scaling [17–22]. These
notably include the idea of “highly optimized tolerance,” a
model of systems which have evolved or been organized in
some fashion [23,24]. Intuitively, highly optimized systems
are tolerant to common events but unprepared for rare, catas-
trophic events. This results in the “cost” or “loss” associated
to such rare events comprising the majority of the total loss

TABLE I. Reference of the parameters (β, δ, γ , N, J) and variables ( j, F, T ) of the birth-death-suppression model. Included are their
interpretations as describing wildfire, as in Ref. [5]; and epidemic dynamics, as in Ref. [15]. Setting δ = 1 fixes the units of time. The lifetime
T is defined as the exact time of absorption (reaching the state j(T ) = 0). The process pictured in Fig. 1 has parameters N = 10, J = 500,
β/δ = 1.1, and γ = 0.

Quantity Symbol Definitions Wildfires Epidemics

Birth rate β β > 0 Spread rate Infection rate
Death rate δ set δ = 1 (Natural) Extinguish rate Recovery rate
Suppression rate γ γ � 0 Firefighting rate Treatment rate
Initial population N j(0) = F (0) = N Seed ignition size Initial outbreak size
Threshold J F � J Burnable area Susceptible population
Population j(t ) j(t ) � 0 Actively burning area Infected population
Footprint F (t ) F (t ) � j(t ) Burned area Total epidemic size
Lifetime T j(t ) = 0, t � T Extinguishment time Eradication time
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experienced. The suppression-free birth-death model re-
creates the desired footprint distribution, and the suppression
parameter, once introduced, allows one to explicitly com-
pute the effect of policy choices—allocation of suppression
resources—on the distribution of possible outcomes of a fire
event.

Birth-death processes were initially studied by Kendall
[25], who introduced the cumulative population; and Karlin
and McGregor [26,27], who developed the method of orthog-
onal polynomials as a means of solution. Linear birth-death
processes, which include the birth-death-suppression process,
were further studied by Karlin and McGregor [28,29], where
the notion of the cumulative population (footprint) was ad-
dressed. However, they did not determine the dynamics of
the cumulative population away from the critical point. The
analytical tools for doing so were applied by Askey and
Ismail [30] and involve analyzing the embedded discrete
birth-death process, a random walk. However, the solution
of the birth-death-suppression process—including the cu-
mulative population—has not been fully synthesized in the
literature. For other work on birth-death processes and their
properties, see also Refs. [31–34].

The birth-death-suppression process is notably similar to
the birth-death-immigration (BDI) process [1,30,35]. In the
latter one has an immigration rate parameter which represents
the growth of a population due to migration rather than births.
This plays an antipodal role to the suppression rate in our
model. The analytical methods of this work closely follow the
approach of Askey and Ismail to solving the BDI process, and
many potential applications of the birth-death-suppression
have equally strong analogs that have been studied for the BDI
process.

In fact, the birth-death-suppression process is the dual, in a
technical sense, of the BDI process [1]. The duality mapping
takes ergodic/recurrent processes (which do not terminate),
like the BDI process, to transient processes (which may ter-
minate in finite time) such as the birth-death-suppression
process. The BDI process contains as special cases many
other familiar continuous-time Markov processes: Poisson,
pure birth, pure death, and the M/M/∞ queueing model [33].
While all the aforementioned have been well-studied in the
literature, the birth-death-suppression model—their image un-
der the duality mapping—has garnered less direct attention.
This is surely related to the fact that the presence of sup-
pression complicates the standard approaches to solving the
process.

A. Outline of paper

The general goal of this work is to gain a more analytic un-
derstanding of the birth-death-suppression process as a simple
fire model, an interpretation suggested in Ref. [5] to which
the reader should refer for more background. Throughout the
paper, we will use the language of wildfire to describe the
process, though we emphasize its generality in describing
branching processes in phases of linear growth.

The paper is intended to be readable with different fo-
cuses. Section II reviews the general theory of birth-death
processes and defines precisely the model under considera-
tion. In Sec. III we review the solution of the continuous-time

TABLE II. The main results and corresponding equation numbers.

Quantity Eq.

Absorption probability (41)
Transition probability matrix (B27)
“Firewalk” polynomials (C20)
“Firewalk” orthogonality relation (C55)
Transition count at absorption (68)
Escape probability (72)

process: this includes the characterization of the absorption
times and the explicit formulas for transition probabilities.
In Sec. IV we solve the embedded random walk; it is here
that the novel results of the work are developed, in particular
the escape probability. We develop a theory of orthogonal
polynomials, which we refer to as the “firewalk” polynomials,
to forecast outcomes of the random walk. After solving the
model in question, in Sec. V we show some basic applications
and sketch future directions for the technology developed in
this work. The mathematically inclined reader may focus on
Secs. III and IV which contain the bulk of the material on the
specific Markov process itself. In the Appendices we include
a thorough review on background material, a majority of the
technical details, and review of techniques applied in the paper
such that this work is relatively self-contained. As a concise
summary, in Table II we include a reference of the main results
and their equation numbers in the text.

II. BIRTH AND DEATH PROCESSES

Defining the stochastic birth-death process begins with the
state space, which is composed of discrete parcels. These
parcels represent individual elements of the population, e.g.,
acres of land in the wildfire interpretation. Each parcel can be
in one of three states: unburned, burning, or burnt. A firelet is
a burning parcel; j(t ) therefore counts the number of firelets
at time t , and F (t ) represents the total burned area: the sum
of burning and burnt parcels. We take the convention that
N ≡ F (0) = j(0), so that F (t ) � j(t ) in general.

As time progresses, unburned parcels can become firelets
( j → j + 1, F → F + 1) and burning parcels can become
burnt ( j → j − 1, F → F ). Both the variables j, F are non-
negative integers, with F � N � 1. Figure 2 shows a example
simulation of the process, with j(t ), F (t ) displayed in red
(gray), black, respectively.

Recall the idea of a threshold J on the total number of
available parcels. Any process has F � J initially; reaching
the point F = J means the fire has consumed a burnable area
of size J . Beginning such a process with j(0) = F (0) = N
active firelets, one of two possible outcomes will occur first:
the process extinguishes, reaching j = 0; or it remains active
and grows its footprint until it reaches F = J . In the Markov
process literature, the state j = 0 is said to be absorbing:
once the process reaches this state it remains there for all
time. Therefore, we refer to the event of reaching the state
j = 0 as absorption. Conversely, if the footprint F exceeds
the bound J , then we say the process has escaped. “Solving”
the process means characterizing the probabilities of each of
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FIG. 2. An example birth-death fire process. Here, the population
is initially of size 10, and hence j(0) = F (0) = 10. The process
pictured has equal birth and death rates β = δ and reaches j = 0,
ending in finite time.

these outcomes—absorption or escape—in terms of the birth
and death rates of the population.

The transition probabilities define the dynamics of the sys-
tem. Consider a single, actively burning unit out of the whole
population j(t ). Let β be the rate (per unit time) at which this
single parcel ignites a new firelet. This parameter might reflect
the weather, fuel, and topographic conditions of a wildfire.
In some short time interval �t , the probability that the entire
population j(t ) sees a single birth (new ignition) is

Pr{ j → j + 1} = β j(t )�t + O(�t2), (1)

which defines the aggregate birth rate λ j ≡ β j. Define also
the aggregate death rate μ j ≡ δ j + γ . The aggregate death
rate is the rate per unit time of deaths in the population, so
that the probability of a single death (firelet burning out) in
the interval �t is

Pr{ j → j − 1} = (δ j(t ) + γ )�t + O(�t2). (2)

Here, the parameter δ is the death rate for an individual firelet
per unit time; it represents the natural process of eradication,
i.e., extinguishment by fuel exhaustion. The second param-
eter γ is the rate of suppression. It represents the action of
eradiction resources (firefighting) on the fire, again per unit
time. The effect of suppression on the aggregate death rate is
independent of the size of the fire; the suppression affects the
aggregate population, while all the individuals feel the effect
of fuel exhaustion. One can already see that the suppression
rate γ affects the aggregate death rate δ j + γ more when the
population j(t ) is small.

In some short time interval �t , the transition probabilities
are

Pr{ j → j + 1} = λ j�t, (3a)

Pr{ j → j − 1}) = μ j�t, (3b)

Pr{ j → j} = 1 − (λ j + μ j )�t, (3c)

where λ j = β j, μ j = δ j + γ . This defines the continuous-
time dynamics of the population j(t ). Processes begin with
an initial population j(0) = N > 0, after which stochastic
transitions begin to occur.

As a choice of units, we set the death rate δ = 1. The pa-
rameters β, δ, γ are defined in terms of some unit time; setting
δ = 1 is effectively a choice of time units, i.e., “minutes until

death.” Equivalently one can consider this a redefinition β →
β/δ, γ → γ /δ. One must also specify some boundary condi-
tions for the process. When j = 0, the process has absorbed.
In this case λ0 = 0, i.e., there is zero probability of another
birth. For consistency one must set μ0 = 0 for any γ so no
further deaths can occur. There is also an issue of boundary
conditions as we move towards infinity in state space. While
we consider the probability of the footprint reaching some
finite size J , the analysis does not bound the population j(t )
in any formal way, and the parameter J does not enter into the
dynamics.

A. General theory of the birth-death process

The most general birth-death process is defined by the
transition probabilities above in Eq. (3), and is studied in its
generality in, e.g., Refs. [1,2,26]. The birth-death-suppression
model is just a specific instantiation with λ j, μ j being affine
functions of the population j(t ). Consider first the population
j(t ). A natural statistic to introduce is the probability of the
population taking a certain value at a specific time:

pn(t ) = Pr{ j(t ) = n}. (4)

These population probabilities pn(t ) should satisfy 0 �
pn(t ) � 1 and

∑
n pn(t ) � 1.1 For an initial population of

definite size j(0) = N , one would write pn(0) = δn,N (here,
the Kronecker delta). As time progresses, these probabilities
will change in accordance with the transition probabilities as

d

dt
pn(t ) = λn−1 pn−1(t ) + μn+1 pn+1(t ) − (λn + μn)pn(t ),

(5)

defining a differential-difference equation. If one can solve
this equation to determine pn(t ) for an arbitrary initial dis-
tribution pn(0), then one can deduce any expectations about
the population dynamics. To this end, construct a related ob-
ject: the transition probability matrix P(t ). This matrix has
elements which are the (conditional) probability of being in
state m at time t , conditioned on starting in state n at time
t = 0:

Pnm(t ) = Pr{ j(t + s) = m| j(s) = n}, (6)

where n, m � 1. The Markov property ensures that this defini-
tion is independent of s. Note the restriction n, m � 1; this is
done because zero is a special (absorbing) state in the process.
Despite this exclusion, the probability pA(t ) of absorbing at
j = 0 can be calculated from p1(t ) via Eq. (5), giving

pA(t ) = μ1

∫ t

0
p1(τ )dτ. (7)

The absorption probability pA(t ) will be of central interest.
For an initial population of definite size j(0) = N , the

probabilities pn(t ) form a row of the matrix P(t ):

pn(t ) = PNn(t ). (8)

1In a finite state space, this would be a strict equality. The issue is
accumulation of probability measure at infinity.
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One can view pn(t ) for n � 1 as a row vector 〈p(t )|. The
initial conditions of the system pn(0) then form a vector. The
transition matrix can be used to write

〈p(t )| = 〈p(0)|P(t ),
d

dt
〈p(t )| = 〈p(t )|A, (9)

also writing the differential-difference Eq. (5) in vector nota-
tion. The (possibly infinite) matrix A is

A =

⎛
⎜⎜⎝

−(λ1 + μ1) λ1 0 0

μ2 −(λ2 + μ2) λ2 0

0 . . .
. . .

. . .

⎞
⎟⎟⎠. (10)

One should note that the probabilities pn(t ), forming an in-
finite row vector, depend on a specific initial configuration
pn(0), whereas the transition matrix P(t ) (forming an infinite
matrix) does not. Given the dynamical equation for the pn(t ),
linearity implies that the transition matrix P(t ) satisfies, for
any initial configuration pn(0), the first-order equation

d

dt
P(t ) = P(t )A, (11)

with the initial condition P(0) = Id, where Id is the iden-
tity matrix. In the Markov process literature, this is called
the Kolmogorov backward equation. For a physicist, it is a
first-order (Hamiltonian) dynamical equation, what statistical
mechanics would refer to as a master equation.2 Solving this
equation determines the dynamics of the system for any initial
configuration. The analogy between Markovian evolution and
traditional statistical mechanics has been made precise in re-
cent work, e.g., Ref. [36], or in Ref. [37], where the generality
of the master equation is discussed.

If the state space is finite, then P and A are finite-size
matrices and the master equation admits the formal solution
[38,39]

P(t ) = exp(At ). (12)

The matrix exponential is very cumbersome to compute for
state spaces of any reasonable size, numerically or otherwise.
In this paper, we take the state space to be infinite, so that
P and A are infinite matrices. In this case the matrix expo-
nential solution is not well-defined; one must take a different
approach. Thankfully, in an infinite state space, certain new
analytical tools are available.

We assume throughout that β and γ are time-independent.
Given this, the process is homogeneous and Markov. Physi-
cally, one might be interested in a situation in which the birth
rate changes for some time: this would represent, for example,
the effect of a high wind event increasing the spread rate of
a fire. This is compatible with our assumptions so long as
the birth rates are piecewise-constant. Say a process has birth
rate β for t < τ and a different birth rate β ′ for t > τ . The
transition matrices may be stitched together, taking advantage

2Since P is an infinite matrix, one can regard it as a (positive
semidefinite) operator on a Hilbert space, and interpret A as a
Hamiltonian: like a Hamiltonian, A generates time translations of
the “density” matrix of our system, P(t ).

of the Markov property to do so:

〈p(τ + t )| = 〈p(0)|P(τ ; β )P(t ; β ′). (13)

With this in mind, we take the birth and suppression rates
to be time-constant, mostly without loss of generality. Note
however that the footprint F (t ), being a cumulative variable,
does not have the same Markovian properties as the popula-
tion j(t ).

Given an expression for the transition matrix P(t ), and
hence the probabilities pn(t ), one can compute various prob-
abilistic expectations for the system: the average population,
the variance in population, or the absorption probability pA(t ).
Note that the absorption probability pA(t ) is the probability
that the population satisfies j(T ) = 0 for any T � t ; it is
monotonically increasing. The actual time T of absorption
(cf. extinguishment, eradication), which we refer to as the life-
time, is itself a variable of interest [25]. Since the absorption
probability pA(t ) is the integrated probability that T � t , the
lifetime T is distributed as

dσ (T ) ∝ d

dt
[pA(T )]dT = μ1 p1(T )dT (14)

writing dσ (T ) for the normalized probability measure on
lifetimes T . Determining this distribution dσ (T ) allows com-
putation of statistics like the average 〈T 〉 or median Tm

lifetimes. We proceed to calculate these types of quantities
in an effort to characterize the physical predictions of the
Markov model.

B. The suppression-free process

Without suppression, the model reduces to the pure linear
birth-death process with aggregate birth-death rates

λ j = β j, μ j = δ j. (15)

The dynamics of this process are well-known; they are solved
by Kendall [25] using a generating function approach. The
solution by this method and its details are reviewed in Ap-
pendix A. In this section, we discuss the phenomenology of
this suppression-free birth-death process, using the language
of the wildfire interpretation to add physical relevance to the
formulas.

First, consider the evolution of the population. Let the
process have some constant birth rate β and begin with an
initial population of j(0) = N firelets. With a death rate δ = 1,
the mean population is characterized by exponential growth or
decay depending on the value of the birth rate:

〈 j(t )〉 = Ne(β−1)t . (16)

With β < 1, births happen more slowly than deaths and the
population j(t ) reaches zero with probability 1: the fire is
extinguished after some finite (but possibly long) time. This
defines a phase of the process that we refer to as subcrit-
ical. When β > 1, the average population diverges in size
exponentially and the phase is supercritical. Finally, in the
critical β = 1 phase, the average population is constant for
all time. The dynamics of the critical population consist of
fluctuations in size around a constant average; indeed, when
β = 1 the population variance �2 j(t ) ∝ t increases linearly
in time. This type of behavior is familiar from random walks
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FIG. 3. Absorption probability—the probability of being
extinguished—versus time. Here, j(0) = N = 5 with curves
pictured for various birth rates, alongside scatter plots of simulated
data (marked with an “x”) in an ensemble of 104 processes. The
super- and subcritical curves (upper, lower) quickly approach their
asymptotic limits, whereas the critical curve (middle) does so much
more slowly. Both subcritical and critical processes approach an
absorption probability of one as t → ∞.

and is essentially Brownian motion in one dimension. Such
a fire tends to develop a large footprint while maintaining a
roughly even active size, potentially still posing a large risk.

To keep a small (or even finite) footprint, the fire must be
extinguished—the population must reach the state j(t ) = 0.
The likelihood of this is characterized by the absorption prob-
ability introduced earlier. Here, it is given by

pA(t ) =
(

1 − e(β−1)t

1 − βe(β−1)t

)N

, (17)

lim
β→1

pA(t ) =
(

t

1 + t

)N

, (18)

and is plotted in Fig. 3.
In the subcritical phase, absorption almost always occurs

after long times. Specifically, taking the asymptotic limit t →
∞ one finds

pA(∞) = lim
t→∞ G0(0, t ) =

{
β−N , β > 1,

1, β � 1.
(19)

This result states that asymptotically, fires in the critical or
subcritical phases eventually extinguish. The probability of a
supercritical fire extinguishing decreases exponentially in the
initial size of the fire and is in general less than unity.

To better understand the timescales of absorption, consider
the distribution of lifetimes, where the lifetime T is defined
as the exact time of absorption. With a subcritical fire, it is
most likely that absorption occurs early; the lifetime distri-
butions have medians near Tm ∼ log N . The critical process,
however, tends to take a much longer time to absorb, with
the median critical lifetime going like Tm ∼ N . Such long-
lived fires would generically result in a large footprint. Note
that because the distributions in question are conditioned on
absorption occurring, the median lifetime in the supercritical

(a)

(b)

FIG. 4. Lifetime statistics versus birth rate for processes which
end in absorption; exact results alongside simulated data (marked
with an “x”) from an ensemble of 104 processes. In the case N = 10,
105 simulated processes were needed to obtain sufficiently condi-
tioned data. (A) Average and median lifetimes versus birth rate β

and with j(0) = N = 1. At criticality, the average lifetime diverges.
(B) Median process lifetime for various initial population sizes, on
a logarithmic scale. The dependence on the initial population N is
strongest at criticality β = 1.

phase also goes like Tm ∼ log N , with Tm → 0 as β → ∞.
These properties are demonstrated by the lifetime statistics in
Fig. 4.

The distributions of absorption times for the suppression-
free process share universal behavior with other absorbing
Markov processes, and are in fact Gumbel-distributed [40].
This universality class is defined by processes where the
birth/death rates decrease linearly as one approaches the ab-
sorbing state. This is true for the zero-suppression process in
all phases, as was noted in Ref. [41].

It may seem counterintuitive that the supercritical median
and average lifetimes are so comparable to the subcritical
ones. This is because most supercritical fires are not absorbed
at zero; those that do become absorbed likely reached j = 0
quickly, as a rare downward fluctuation. Hence the lifetime
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FIG. 5. Average footprint 〈F (t )〉 versus time on a logarithmic
scale for various birth rates β, compared with simulated data (marked
with an “x”) from an ensemble of 103 processes. Each curve has
N = 5. The subcritical processes terminate with a finite average
footprint while in the critical and supercritical phases, the average
footprint continues to grow for all time, exceeding any finite bound
J .

distributions, being predicated on absorption occurring, are
quite similar away from criticality. In fact, it can be shown that
supercritical processes with birth rate β, when conditioned
on eventual absorption, behave like subcritical processes with
birth rate 1/β [42,43]. When absorption does not happen, the
processes are formally of infinite lifetime.

Basic statistics of these lifetime distributions are shown in
Fig. 4, where one can see that proximity to criticality leads
to the longest-lived eventually absorbing processes. For high
supercritical birth rates, the vast majority of processes do
not absorb. The distributions of lifetimes are therefore condi-
tioned on extremely rare events, which means they have little
physical importance. This is evidenced by the degeneration of
the numerical data on the right-hand side of Fig. 4(b), which
was generated from an ensemble of 105 simulated processes.

Along with the timescale of absorption, one ideally would
understand the timescale and probability of escape: when (and
if) the footprint reaches some given size J . Exact results on the
joint distribution of j(t ) and F (t ) can be obtained using the
method of the generating function, though most calculations
using this method are out of practical reach [25]. The average
footprint 〈F (t )〉, a tractable quantity, evolves as

〈F (t )〉 = N

β − 1
(βe(β−1)t − 1), (20)

lim
β→1

〈F (t )〉 = N (t + 1). (21)

In the subcritical phase there is a finite asymptotic limit
whereas in the critical and supercritical phases the average
footprint grows without bound, surpassing any finite size J .
This behavior is demonstrated in Fig. 5. However, this quan-
tity only minimally describes the distribution of footprints.

Finally, consider the asymptotic distribution of footprints.
Empirically it is observed that the cumulative distribution of
wildfire footprints is a power law; the probability P(F � J )

that a given fire has footprint larger than or equal to J goes like
∼J−1/2 [16]. The same is true for the near critical birth-death
process. In the large footprint F, J � 1 regime, one approxi-
mately has3

P(F∞ � J ) ≈ J−1/2

√
π

+ (1 − β )

2

(
J−1/2

√
π

− 1

)
, (22)

expanding to first order below the critical point β = 1.
By F∞ we mean the asymptotic limit of F (t ), i.e., F∞ =
limt→∞ F (t ). The power-law scaling is correctly reproduced,
and is stable to leading order in (1 − β ).

These results characterize the probability of absorption,
its timescales, and the asymptotic distribution of footprints
for the linear birth-death process without suppression. Since
absorption occurs with probability 1 in the subcritical and
critical phases, we have described these dynamics of these
phases completely. In the following sections, we repeat this
analysis for the birth-death process with suppression.

III. THE POPULATION DYNAMICS

We now turn to the full birth-death-suppression process,
where we solve the master equation

d

dt
P(t ) = P(t )A, (23)

in which the matrix A, defined in Eq. (10), has elements given
by the birth and death rates λ j = β j, μ j = δ j + γ (with
δ = 1) for each value of the population j(t ). For reasons of
convention, we introduce a new variable k to index the state
space defined simply as k = j − 1. In terms of this new index
the birth-death rates are

λk = β(k + 1), μk = k + γ + 1, k � 0. (24)

The reason for this relabeling is to be consistent with the
wider literature on birth-death processes and the conventions
for orthogonal polynomials. Note that now the state j = 0 or
k = −1 is absorbing, and that a process with one initial unit
of the population N = 1 has j(0) = 1, k(0) = 0.

With zero suppression the method of generating function
can be used to find the occupation probabilities for the pop-
ulation j(t ). In the presence of a nonzero-suppression factor
γ = 0, an inhomogeneous term is introduced to the generating
function equation preventing a direct solution by this method,
as demonstrated in Appendix A. Given this obstacle, to com-
pute the transition matrix P(t ) one must turn to a different
approach: the method of Karlin and McGregor, making use of
orthogonal polynomials, which is nothing more than solving
Eq. (23) by eigenvector decomposition.

A. The method of Karlin and McGregor

The (infinite) matrix A, and the matrix P(t ), are almost
symmetric. To be precise, there exists a set of constants πn

such that the matrix P(t ) satisfies the symmetry condition

πnPnm = πmPmn, (25)

3To get this result one approximates a sum by an integral and enters
the asymptotic regime J, F � 1.

014110-7



HULSEY, ALDERSON, AND CARLSON PHYSICAL REVIEW E 109, 014110 (2024)

where the πn are defined as

π0 = 1, πn = λ0λ1 · · · λn−1

μ1μ2 · · ·μn
, n, m � 0. (26)

This symmetry relation (also referred to as the condition of
detailed balance) describes the intuitive fact that the process
is time-reversed if one swaps λ ↔ μ. Together, the backward
Eq. (23) and the symmetry condition (25) imply that the tran-
sition matrix P(t ) satisfies the Kolmogorov forward equation,
that is

d

dt
P(t ) = AP(t ). (27)

The strategy is to solve the above by eigendecomposition of
the matrix A. Assume A has a complete set of eigenvec-
tors4 |Q(x)〉 with eigenvalues −x and x � 0: the eigenvalues
must be nonpositive so that matrix elements of P(t ) remain
bounded as t → ∞. We seek an explicit form of the eigenvec-
tors |Q(x)〉. To make this characterization, write the abstract
equation −x|Q(x)〉 = A|Q(x)〉 in its component form:

Q0 = 1, (28)

−xQ0 = −(λ0 + μ0)Q0 + λ0Q1, (29)

−xQk = −(λk + μk )Qk + λkQk+1 + μkQk−1. (30)

The components Qk (x) are defined by a three-term recurrence
relation, where deg Qk (x) = k; they are a family of orthogonal
polynomials in x on the real half line x � 0. Indeed, Favard’s
theorem states that any Qk (x) satisfying a three-term recur-
rence relation like the above are orthogonal polynomials with
respect to some positive spectral measure dσ (x) [44]. The
polynomials Qk (x) are therefore the object of central interest.
They satisfy the normalized orthogonality relation∫ ∞

0
Qn(x)Qm(x)dσ (x) = δnm

πm
, (31)

which may be derived from their recurrence relations. From
these polynomials, and their associated spectral measure
dσ (x), the matrix elements of P(t ) are given by the integral

Pnm(t ) = πm

∫ ∞

0
e−xt Qn(x)Qm(x)dσ (x). (32)

This is the spectral form of the transition matrix and can easily
be seen to solve the forward Eq. (27) by virtue of the recursion
satisfied by the polynomials Qk (x).

However, determining the polynomials Qk (x) and their
spectral measure may not be straightforward. For the process
λk = β(k + 1), μk = k + γ + 1, the polynomials in question
can be identified—as done by Karlin and McGregor [28]—as
a known set of polynomials of the Askey scheme, a classifi-
cation of hypergeometric orthogonal polynomials [45]. To be
precise, the polynomials of interest are of the Meixner and
Laguerre families. Defined in Appendix B, each polynomial

4To be precise, one can define the symmetric operator H with
matrix elements Hnm = πnAnm to apply a version of the spectral
theorem for self-adjoint operators.

family is associated with a different phase of the process:
β > 1, β = 1, β < 1.

Given the known expressions and identities for these poly-
nomials one can derive explicit expressions for the transition
matrix elements Pnm(t ). The following subsections make use
of these results to compute statistics of the suppressed birth-
death process, and to analyze the effect of suppression on the
population.

B. Lifetime statistics

The starting point for determining the distribution of life-
times and hence the probability of absorption is computing
the transition matrix element Pn0(t ), a result appendicized
in Eq. (B27). The element Pn0 represents the probability of
transitioning from a state j = n + 1 to the j = 1 state, which
physically represents a fire with a single active firelet.

In the right coordinates, the measure on lifetimes takes a
particularly simple form. The random variable T , the lifetime
or exact time of absorption, for processes with j(0) = N is
distributed as ∝ PN−1,0(T )dT . In terms of the variable s(t ) =
e(β−1)t , the matrix element PN−1,0 is

PN−1,0(s) = (γ + 2)N−1

(N − 1)!
sγ+1

(
1 − β

1 − βs

)γ+2( 1 − s

1 − βs

)N−1

.

(33)

This formula is valid for both the super- and subcritical cases.
It is convenient to define yet another variable z(t ) as

z(t ) = 1 − e(β−1)t

1 − βe(β−1)t
= 1 − s(t )

1 − βs(t )
, (34)

lim
β→1

z(t ) = zc(t ) = t

1 + t
. (35)

The coordinate z(t ) is equivalent to the probability of ab-
sorption in the zero suppression, single initial firelet process,
and so satisfies 0 � z(t ) � 1 always. Additionally, for any
phase of the process, z(t ) is monotonically increasing in time.
Asymptotically,

lim
t→∞ z(t ) ≡ z∞ =

{
1, β � 1,

1
β
, β > 1.

(36)

The measure on lifetimes dσ (T ) ∝ PN−1,0(T )dT , after a
change of variables T → z(T ), may be written

dσ (T ) ∝ (1 − z)γ zN−1dz(T ), (37)

where the proportionality is fixed by normalization. The nor-
malized measure is

dσ (T ) = 1

B(z∞; N, γ + 1)
(1 − z)γ zN−1dz(T ). (38)

The normalization is an incomplete β function. Defined by the
integral

B(x; a, b) =
∫ x

0
dt ta−1(1 − t )b−1, (39)

for x = 1 it coincides with the classical β function of Euler:

B(1; a, b) = B(a, b) = �(a)�(b)

�(a + b)
. (40)
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The lifetimes are therefore β-distributed, or approximately so,
with shape parameters N and γ + 1. The absorption probabil-
ity pA(t ) is simply the cumulative distribution function, which
here is given by the regularized incomplete β function [46]:

pA(t ) = B(z(t ); N, γ + 1)

B(N, γ + 1)
. (41)

Finally, consider the asymptotic probability of absorption.
Since γ > 0 only increases the aggregate death rate, ab-
sorption should remain asymptotically certain except in the
supercritical phase. Indeed, for β � 1, the limit is

pA(∞) = B(1; N, γ + 1)

B(N, γ + 1)
= 1, (β � 1), (42)

where the β function B(1; a, b) = B(a, b) is “completed” for
z(∞) = 1. In the supercritical case the situation is more
complicated as the β function remains incomplete; the ex-
act expression is Eq. (41) with z = 1/β. In the special case
N = 1, the expression simplifies to

pA(∞) = 1 −
(

β − 1

β

)γ+1

, (β > 1). (43)

Note that this expression, the probability of the process ending
at j = 0, is the complementary probability to the process end-
ing “at infinity.” The measure at infinity and its interpretation
will be discussed further in Sec. IV.

C. The effect of suppression

Having computed the distributions of lifetimes and prob-
ability of absorption, one can now ask: What is the effect
of suppression γ > 0 on the population dynamics? Without
suppression, the average population 〈 j(t )〉 is characterized by
exponential growth or decline depending on the phase of the
process. With N = 1, the average population with suppression
is

〈 j(t )〉 = e(β−1)t [1 − z(t )]γ , (44)

lim
β→1

〈 j(t )〉 =
(

1

1 + t

)γ

. (45)

With γ � 0 and z(t ) < 1, the average population in the pres-
ence of suppression is always less than it would be with
γ = 0, and the average population goes to zero in the limit
of infinite suppression γ → ∞ for any fixed value of β.
Indeed, the presence of suppression greatly increases the
chance that small fires absorb at zero, decreasing the time at
which the absorption probabilities become reasonably close
to their asymptotic values. This is demonstrated in Fig. 6,
where one can see that suppression also significantly increases
the asymptotic probability of absorption for supercritical
processes.

To see the interplay between the initial size N of the fire
and the suppression γ , consider the normalized distribution of
lifetimes for β � 1. Here, z(T ) runs from 0 to 1 with the β

distribution

dσ (T ) = 1

B(N, γ + 1)
(1 − z)γ zN−1dz(T ), (46)

(a)

(b)

FIG. 6. Absorption probabilities versus time at nonzero suppres-
sion γ alongside simulated data (marked with an “x”) from an
ensemble of 104 processes. Shown is the effect of suppression on the
probability of absorption in a subcritical process (A, with β = 0.8)
and a supercritical process (B, with β = 1.2). Both began with an
initial population N = 5. In B, with a supercritical birth rate, sup-
pression increases limiting value of the absorption probability and
hence the overall share of absorbing processes.

where the lifetime T may be found from z(T ) via

T = 1

β − 1
log

[
1 − z(T )

1 − βz(T )

]
. (47)

When N becomes large compared to γ , the mass of the distri-
bution (46) becomes concentrated around z � 1. This means
that lifetimes in this regime are likely to be longer, consistent
with the physical expectation that larger fires burn out more
slowly. In the strict large size limit N � 1, suppression is
negligible: the aggregate death rate μ j = j + γ is dominated
by the first term proportional to N . The limit as γ → 0 is
not singular and commutes with the limit N � 1. However,
when γ is large compared to N , the distribution becomes
peaked near z � 0, telling us that highly suppressed processes
absorb quickly. None of this is physically surprising and is
demonstrated by the left-hand and right-hand distributions of
Fig. 7.
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FIG. 7. The exact distribution of lifetimes for various values of
the initial population N and suppression rate γ . Lifetimes are β-
distributed with respect to the coordinate z(T ) defined in Eq. (34);
here the measures are pictured with β = 1. The normal limit of the β

distribution is apparent in the center distribution, where N � 1 and
γ � 1.

However, there is another limit: simultaneously taking
N � 1 and γ � 1. Recalling that γ is defined in units of the
death rate of a single firelet, this limit corresponds to a large
initial population coupled with suppression which eradicates
the population much more quickly than natural deaths would
occur (a physically reasonable regime for fire suppression). In
this limit, the distribution on lifetimes converges to a normal
distribution with mean 〈z〉 = N/(N + γ ) and variance which
scales like ∼1/N . The measure (46) is shown in Fig. 7 for
different values of the parameters N, γ , demonstrating the
different regimes.

The median and mean coincide in the simultaneous limit
N, γ � 1 and one has the median lifetime

Tm ≈ 1

1 − β
log

[
1 + N

γ
(1 − β )

]
, (48)

lim
β→1

Tm ≈ N

γ
. (49)

As in the zero-suppression case, the median lifetimes display
a logarithmic dependence on the initial population N away
from criticality which at criticality is enhanced to a stronger,
linear dependence. However, the suppression rate γ now acts
as a multiplicative dressing which reduces the effective initial
population. Therefore, to obtain a median lifetime which is
O(1), the suppression rate, as multiples of the natural death
rate, must be of the same order as the initial size. The median
lifetime may be represented exactly as an inverse regularized
β function; a contour plot of the exact median lifetime Tm in
the β, γ plane is shown in Fig. 8.

The statistics on lifetimes describe only those processes
which eventually absorb. However, the time until absorption
may be infinite: at criticality, it is on average infinite. Any
process with an infinite lifetime is clearly unrealistic—it does
not consider any physical bound on the population j(t ) or the

FIG. 8. Contour plot of the median lifetime in the (β, γ ) plane,
pictured for a fire with N = 5 and conditioned on eventual ab-
sorption. The longest-lived finite processes are near unsuppressed
criticality.

footprint F (t ). In a real modeling scenario, systems are not
of infinite size; there will be a finite effective size J to any
system. The presence of this threshold prevents sojourns of
infinite time. In the following section, we develop the theory
of the footprint F (t ) and address these issues of infinitude.

IV. PREDICTING THE FOOTPRINT

Recall that the footprint F (t ) is defined to share all the
positive transitions of j(t ). It is therefore cumulative, mono-
tonically increasing ad infinitum unless absorption at j =
0 occurs. The notion of a cumulative population for the
birth-death process was introduced by Kendall [3,25], where
its interpretation was that of measuring the severity of an
epidemic. In the wildfire interpretation, the cumulative pop-
ulation (or footprint) counts the total burned area and serves
as a measure of the overall severity of the fire event.

In Appendix A, generating function methods are used to
obtain predictions about the asymptotic distribution of foot-
prints in the zero-suppression process, re-creating the results
of Kendall. As before, for the population dynamics, this ap-
proach is unsuitable for the suppressed process with γ > 0.
The generating function equation depends on an unknown
function.

The assumption is that the goal of suppression is to extin-
guish a fire while keeping the footprint F (t ) less than some
threshold J . To make this precise, define the escape probabil-
ity, or PJ (N ), by

PJ (N ) = {probability of F (∞) � J|ȷ(0) = N}. (50)

This is the probability that the footprint at some point exceeds
the threshold J of burnable substrate. Minimizing the escape
probability is a natural metric for successful suppression.

A process which escapes, having F (∞) � J , may or may
not eventually absorb, while a process which does not escape
(with F (∞) < J) must end in absorption. The definition of the
escape probability does not reference time (or time of absorp-
tion) but rather the asymptotic outcome of a given process.
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Computing PJ (N ) is therefore a matter of counting transitions
of the Markov process rather than time. However, being ag-
nostic to the time of absorption, this quantity alone does not
give any estimate of when the footprint F (t ) may reach some
value. With no time variable, the birth-death process becomes
a random walk on the state space. We turn now to analyzing
this random walk.

A. Random-walk polynomials

For any continuous-time birth-death process with rates
(λk, μk ) with k � 0 (recall k = j − 1 where j is the number
of firelets) there exists an embedded Markov chain: the jump
chain. It is a random walk on the state space where the transi-
tion probabilities are

pk ≡ Pr{k → k + 1} = λk

λk + μk
, (51)

qk ≡ Pr{k → k − 1} = μk

λk + μk
. (52)

The continuous-time process solved in the previous section is
just this jump chain coupled with holding times in each state
which are exponentially distributed �t ∝ exp((λk + μk )−1).
This is how one simulates a continuous-time process on a
computer.

Let k(n) be the state of the process after n transitions: in the
present context, j = k + 1 still represents the actively burning
population, but we are no longer keeping track of time t . The
state depends instead on the transition count n. Consider the
aggregate birth and death rates given by

λk = β(k + 1), μk = k + γ + 1. (53)

Recall that here, the k = −1 state is absorbing, with p−1 =
q−1 ≡ 0. The jump variable absorbs after some number of
transitions nT , i.e., k(nT ) = −1, after which there are no fur-
ther transitions. The goal is to characterize the distribution of
transition counts nT at absorption: this will also determine
the distribution of footprints at absorption. The problem is
analogous to determining the distribution of lifetimes T in the
continuous-time process, except now one seeks a distribution
over the positive integers.

In the embedded jump chain, the object of interest is the
n-step transition matrix S(n) with elements

S�,�′ (n) = Pr{k(m + n) = �′|k(m) = �}, �, �′ � 0, (54)

with the analogy S(n) ∼ P(t ). It obeys a semigroup condition

S(n + 1) = S(1)S(n) (55)

instead of a master equation.
In the absence of suppression, the random walk associated

to the birth-death process is a simple random walk: the prob-
abilities pk, qk are independent of the state k. The transition
matrix S(n) can therefore be determined either by the method
of generating function or standard binomial arguments: it be-
comes equivalent to the “gambler’s ruin” problem; see, e.g.,
Ref. [47]. However, with a nonzero-suppression factor, the
probabilities pk, qk are state-dependent and the random walk
is not simple. As with the continuous-time process, the pres-
ence of a suppression term introduces an unknown function to

the generating function equation and renders a direct solution
infeasible; these more standard approaches will not work.

The master equation governing the continuous-time pro-
cess was solved by eigenspace decomposition. This amounted
to defining and determining a set of orthogonal polynomials,
an approach introduced by Karlin and McGregor [27]. In the
later work [48], the same authors show that the orthogonal
polynomial approach can also solve the random-walk prob-
lem.

The procedure is essentially the same as in the continuous-
time process: the transition probabilities define a set of
polynomials Wk (x) via the relations

W0(x) = 1, (56)

xW0(x) = p0W1(x), (57)

xWk (x) = qkWk−1(x) + pkWk+1(x). (58)

The structure of these recurrence relations and the relation
pk + qk = 1 implies that the Wk (x) are orthogonal on the
interval [−1, 1] with respect to some even measure dσ (x):∫ 1

−1
W�(x)W�′ (x)dσ (x) = h�δ��′ . (59)

Given the polynomials Wk (x) and their spectral measure
dσ (x), the n-step transition matrix elements have the spectral
form

S�,�′ (n) = 1

h�′

∫ 1

−1
xnW�(x)W�′ (x)dσ (x). (60)

The immediate focus is to compute this object, followed by
relating properties of this matrix S(n) to the distribution of
footprints F .

Previously, when applying the method of orthogonal
polynomials to the continuous-time process, the polynomial
families of interest were known and classified: they were
Meixner polynomials away from criticality and Laguerre
polynomials at criticality. Both these fall into the Askey
scheme of hypergeometric orthogonal polynomials [45]. The
identification was made by examining the recurrence relation
given by the birth and death rates and comparing it to known
recurrence relations for previously classified polynomials. In
the present case, the recurrence is

xWn(x) = β(n + 1)

(β + 1)(n + 1) + γ
Wn+1(x)

+ n + γ + 1

(β + 1)(n + 1) + γ
Wn−1(x). (61)

The recurrence has two parameters β, γ , and a particular
(rational) dependence on n in its coefficients. An examina-
tion of all the polynomials in the Askey scheme reveals that
this recurrence is not so classified. However, the Wn(x) are
equivalent to a previously studied set of polynomials outside
the Askey scheme5: the Pollazcek polynomials [49,50]. The

5We are indebted to W. Van Assche for his correspondence, point-
ing out this equivalence.
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Pollazcek polynomials Pλ
n (x; a, b) have been studied in nu-

merous physical [51,52] and mathematical contexts [53–57].
The exact correspondence is

Wn

(
2
√

β

β + 1
x

)
= Pλ

n (x; a, b)β−n/2, (62)

where the parameters λ, a, b are related to the birth-death-
suppression parameters as

b = 0, λ = 1 + γ

2
, λ + a = 1 + γ

β + 1
. (63)

Expressions for the Pollazcek polynomials and their measure
of orthogonality have been found by various methods, but the
parametrizations used are quite different from the present set.
In the interest of examining the structure of these polynomials
from the perspective of the birth-death-suppression process, in
Appendix B 3 we explicitly construct the polynomials Wn(x)
and their measure analytically. The reader is directed to the
Appendices for background, while in the present section we
will continue to build calculational tools from those results.

The analysis required to construct the polynomials is in-
spired by the closely related Sec. 4 of Askey and Ismail
[30] which does the same for the birth-death-immigration
(BDI) process. This closely related process has aggregate
birth and death rates λ j = β j + m, μ j = δ j, where m is
interpreted as an immigration rate: the j-independent rate at
which new units are added to the population. The suppression
rate is roughly the opposite of the immigration rate, where
the suppression γ is the j-independent rate at which units
are removed from the population. As mentioned in the in-
troduction, the ergodic continuous-time BDI process is dual
to the continuous-time birth-death-suppression process.6 As
a result, the phenomenology of the orthogonal polynomials
for the BDI process is very similar to that of the birth-death-
suppression process analyzed here. However, the duality of
the two continuous-time processes does not naturally descend
to a duality between the embedded jump chains of the two
processes.

B. Footprint

The Pollazcek polynomials Wn(x) characterize the jump
chain dynamics of the birth-death-suppression process. Their
explicit description and complete orthogonality relation (C55)
is derived and given in Appendix B 3. The phenomenology
of the polynomials changes between the phases of the pro-
cess. In the subcritical and critical phase β � 1, they have
a continuous measure of orthogonality supported only on
the closed interval [−Iβ, Iβ] where Iβ = 2

√
β/(1 + β ). At

criticality β = 1, they are equivalent to the Gegenbauer poly-
nomials Cλ

n (x) as

W c
n (x; γ ) = C1+γ /2

n (x), (64)

and are supported on the whole interval [−1, 1]. The Gegen-
bauer polynomials fall in the Askey scheme; they are a special

6There exists a duality mapping processes with μ0 > 0 to those
with μ0 = 0; see Sec. 8.2 in Ref. [1].

case of the Jacobi polynomials. Their measure of orthogonal-
ity is given by

dσ (x) = �
(

γ

2 + 2
)

√
π�

(
γ+3

2

)(
1 − x2

)(γ+1)/2
dx. (65)

However, in the supercritical phase β < 1, the continuous
support retracts back to |x| � Iβ . In its place a discrete
measure develops at infinitely many points xk with discrete
measure weights �k . In the zero-suppression limit γ → 0, the
weights of the discrete measure also disappear.

An explicit expression for Wn(x) is given in Eq. (C20). The
continuous measure w(x)dx is given in Eq. (C39) and the
discrete measure weights �k in Eq. (C54). The elements of
the n-step transition matrix S(n) therefore have the spectral
form

S�,�′ (n) = 1

h�′

∫ Iβ

−Iβ

xnW�(x)W�′ (x)w(x)dx

+ 1

h�′

∞∑
k=0

(xk )n�kW�(xk )W�′ (xk )

+ 1

h�′

∞∑
k=0

(−xk )n�kW�(−xk )W�′ (−xk ). (66)

The constants hn, which are analogous to the (reciprocal of
the) constants πn are given by

hn = (γ + 2)n

βnn!
· 1 + β + γ

γ + (β + 1)(n + 1)
, h0 = 1. (67)

With all this machinery one can now explicitly (numerically)
compute arbitrary matrix elements of S(n). In turn these ma-
trix elements describe aspects of the footprint dynamics.

To see this connection, consider first the analog of the
lifetime distribution: the distribution of transition counts nT

at absorption. In particular, let Rn
N be the probability that,

given j(0) = N , the process absorbs with exactly n transitions
[28,48]. This quantity, analogous to the absorption probability,
is given by

Rn
N = q0SN−1,0(n − 1) (68)

= γ + 1

β + γ + 1

∫ 1

−1
xn−1WN−1(x)dσ (x). (69)

The Rn
N are directly related to the footprint F at absorption.

Take a process which begins with an initial population N and
absorbs after nT transitions. From the perspective of the jump
chain, the entire process is just a sequence of births j → j + 1
and deaths j → j − 1, in some particular order. If the total
number of births is nB and the total number of deaths is nD,
the process, ending in absorption, must have nD − nB = N , in
addition to the basic statement nB + nD = nT . The footprint F
at absorption, by definition, is the number nB of births plus the
initial size N . One therefore has the direct constraint

nT = 2F − N, (70)

relating the number of transitions nT of an absorbing process
to the initial population N and the footprint F at absorption.
Therefore, the probability that a process with j(0) = N has

014110-12



BIRTH-DEATH-SUPPRESSION MARKOV PROCESS AND … PHYSICAL REVIEW E 109, 014110 (2024)

FIG. 9. The probability of a finite footprint versus birth rate.
Equivalently, the probability of eventual absorption, pictured for
a fire with N = 10 and three values of suppression γ ; simulated
results (marked with an ‘x’) from an ensemble of 104 processes
with a footprint threshold J = 500. The critical birth rate β = 1 is
demarcated as a dashed line. The difference between the curves and
1 is the probability measure ‘at infinity.’ Suppression extends the flat
portion of the curves on the left where almost all processes have finite
footprint, which is true of all processes with β < 1.

footprint equal to F at absorption is equivalent to the proba-
bility that the process absorbs in exactly 2F − N transitions,
or just R2F−N

N .
While all subcritical processes eventually absorb, a large

number of supercritical processes continue population growth
without bound. To quantify this behavior, one can use the
Rn

N to compute the probability of absorbing with a finite
number of transitions, or equivalently a finite footprint. This
is simply the sum over n of all the Rn

N , a quantity which is
not necessarily equal to 1. It is of course equivalent to the
asymptotic probability of absorption, as any process with a
bounded footprint must eventually absorb. We therefore have
in all phases of the process the equality

Pr{F < ∞| j(0) = N} = Pr{ j(∞) = 0| j(0) = N}

q0

∫ 1

−1

WN−1(x)

1 − x
dσ (x) = B(z∞; N, γ + 1)

B(N, γ + 1)
, (71)

where z∞ = min(1, 1/β ). This quantity is plotted in Fig. 9
versus birth rate for a few values of the suppression parameter;
it is clear that once the supercritical regime is entered, a
significant amount of measure accumulates quickly at infinity.

The escape probability of Eq. (50), that F � J at absorp-
tion, parametrizes by J a portion of the complement to a finite
process. This includes the measure at infinity. The probability
PJ (N ) can thus be expressed in terms of a spectral integral as

PJ (N ) = 1 −
2J−N∑
n=0

Rn
N

(72)

= 1 − q0

∫ 1

−1

(
1 − x2J−N

1 − x

)
WN−1(x)dσ (x).

As a demonstration of this machinery, we briefly revisit the
asymptotic distribution of footprints. With zero suppression
this was given by the power law PJ ∼ J−1/2 near criticality.
Here, consider the N = 1 escape probability (72) at criticality
β = 1. Using the Gegenbauer measure of Eq. (C4), by direct
integration one finds

PJ (1) = �(J − 1/2)�(1 + γ /2)√
π�(J + γ /2)

∼ �(1 + γ

2 )√
πJ1+γ

+ O(J−3/2),

(73)

where the correct power law, with a modification due to the
suppression factor, emerges in the J � 1 limit. For small ini-
tial sizes, nonzero suppression strongly affects the absorption
probability and hence the distribution of footprints at large J .
If N is large compared to γ , then this effect will be attenuated.
However, finding simple analytic results in this regime is not
straightforward.

In the critical case one can explicitly compute the aver-
age number of transitions at absorption 〈nT 〉, which is by
linearity related to the average footprint at absorption 〈F 〉 =
(N + 〈nT 〉)/2. For a single initial firelet N = 1 at critical
conditions β = 1, the average number of transitions is given
by the integral

〈nT 〉 =
∞∑

n=1

nRn
1

= γ + 1

γ + 2

∫ 1

−1

�
(

γ

2 + 2
)

√
π�

(
γ+3

2

) ·
(
1 − x2

)(γ+1)/2

(1 − x)2
dx

= γ + 1

γ − 1
, γ > 1. (74)

Interestingly, the average transition count (and hence average
footprint) diverges for γ � 1. We showed earlier that the
unsuppressed critical process had an infinite average lifetime.
This reiterates that result (at zero suppression) but takes into
account that for γ > 1 one has λ1/μ1 � 1/2, which causes
sufficiently many processes to absorb early that the transition
and hence footprint distribution has finite mean.

The transition count and thus footprint at absorption is not
the only quantity over which the matrix S(n) affords traction.
The matrix element Si j (n) describes the probability of tran-
sitioning from state i to state j after n transitions. This is
equivalent to the probability of transitioning from state i to
state j after increasing the footprint by nB = (n + j − i)/2,
i.e., after nB births j → j + 1. By combining these dynamics
with the continuous-time transition matrix, it could be possi-
ble to make statements about the time-dependent distribution
of footprints rather than only its asymptotic behavior. This is
beyond the scope of the current work.

Finally, in a modeling scenario one may need to compute
the escape probability for an ensemble of processes, possi-
bly with varying footprints. Without perfect knowledge of
the time-dependent footprint distribution, this must be done
approximately. If a process begins with a definite population
N and threshold J , after some finite time t0 it evolves to
give probabilities pn(t0) for each possible population state

014110-13



HULSEY, ALDERSON, AND CARLSON PHYSICAL REVIEW E 109, 014110 (2024)

(a) (b)

(c) (d)

FIG. 10. Dynamic risk estimation over the lifetime of a fire event. Pictured are simulated birth-death-suppression processes (A, C) and
the escape probability PJ (N ) recomputed after each transition, serving as a real-time risk metric (B, D). Both processes have β = 1.1, N =
10, J = 100. The process which escapes (A) has γ = 1, while the process which absorbs (C) has γ = 2.

j(t0) = n.7 By the Markov property, one may regard this as
an ensemble of new processes with different initial popula-
tions Ni, each with an ensemble probability pNi (t0). However,
the footprint variable is cumulative. Therefore, the ensemble
process with initial population Ni should already have foot-
print Fi � max(N, Ni ). This is an underestimate of the true
footprint distribution. The escape probability at time t0 is thus
(under)estimated by

PJ (t0; N ) �
N∑

n=1

PJ−N (n)pn(t0)

+
J∑

n=N+1

PJ−n(n)pn(t0), (75)

an approximation that we will make use of in the following
section.

Having determined the relevant polynomials and their mea-
sures, computing essentially any probabilistic prediction of
the continuous-time or discrete birth-death-suppression pro-
cess is now a matter of arithmetic, or rather computing
spectral integrals. This concludes the theoretical development
of the solution of the process. In the final sections we show
some sample applications and describe some future directions.

7Strictly speaking one should have J � N � 1 and t0 small so that
the probability of absorption is small and almost no processes have
already saturated the bound F � J .

With numerical traction over the continuous-time and
discrete-time processes, one can begin to ask questions about
bounded, finite-lifetime birth-death-suppression processes.
Developing the theory of the cumulative population or “foot-
print” is crucial to being able to bound these processes to
some finite threshold. These tools allow one to predict the
expected time until extinguishment, the distribution of foot-
prints, and the effects of differing levels of suppression all
in a dynamic framework. Having developed the theory of the
population j(t ) and the footprint F (t ), we turn to applying
these concepts with the wildfire interpretation at front of mind.
Within the scope of the probabilistic predictions developed
here the model exhibits clear trade-offs and optimal policy
choices—tensions and strategies that are also reflected in de-
cision processes related to actual fire events.

V. DYNAMIC RISK AND OPTIMIZATION

1. Dynamic risk estimation

As a first application of the technology developed in this
work, we show how the “escape” probability of Eq. (72)
can be dynamically computed alongside the stochastic tra-
jectory of a birth-death process. Figures 10(b) and 10(d)
show the escape probability recomputed after each transi-
tion of the stochastic trajectories in Figs. 10(a) and 10(c),
which show simulated birth-death-suppression processes. The
escape probability PJ (N ) quantifies the chance that the fire
expands to have footprint above some bound J . In the wildfire
interpretation, J represents the amount of burnable substrate
or effective distance to built infrastructure. In an epidemic
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interpretation, the bound J may represent the severity at which
a certain containment protocol must be enacted, for example.

To be precise, the right-hand plots in Fig. 10 do the fol-
lowing: one first computes the escape probability PJ (N ) for
a process of initial size N with a cumulative threshold J .
After each transition, one updates J → J − j(t ) + F (t ) and
N → j(t ) and recomputes the escape probability. This takes
advantage of the Markov property of the population dynamics
and accounts for the previous growth of the footprint. As the
outcome of the fire (being extinguished or escaping) becomes
almost certain at later times, the predicted risk curves ap-
proach either zero or one. One can see that small changes in
the actively burning population can have a large effect on the
escape probability overall.

This type of calculation represents a real-time risk met-
ric which takes into account the burnable substrate J , the
cumulative footprint F (t ), and the size of the actively burn-
ing population j(t ). It is updated immediately as conditions
change and new information is available. This is a simple
example of using the birth-death-suppression model for real-
time risk forecasting. By modulating the suppression rate γ

used to compute the escape probability, one can dynamically
compare the effects of policy choices by observing the effect
on the escape probability.

In future work, we aim to describe in greater detail the
trade-offs and dynamic optimization problems associated with
a changing suppression rate over the course of a process. This
elevates the dynamics from a homogeneous Markov chain to
a Markov decision process over which reinforcement learn-
ing could identify optimal policies. Of course, such learning
requires a cost (or reward) function. Real suppression is not
free: there is a cost, and the cost could even be the removal of
suppression from another, simultaneous event. The presence
of a cost or reward will create optimal strategies. The nature
of the cost function and hence of the optimal strategies is an
important consideration in the application of this work.

2. Optimal suppression and adverse conditions

As a crude example of policy optimization, consider a
policy which consists of choosing a constant suppression rate
γ for the entire lifetime of a fire. A primitive measure of
the severity of a fire event is given by the escape probability
PJ (N ):

C0(γ ) = PJ (N ; γ ), (76)

which of course depends on the applied suppression γ . To
begin, let the process be in a subcritical phase with a constant
birth rate; for definiteness we take β = 0.9 with N = 20 initial
firelets in a burnable area of size J = 100. Physically, this
represents a modestly sized ignition in mild fire conditions,
where it will eventually self-extinguish. Of course, the greater
the suppression, the lower the escape probability. In this case,
applying more suppression always yields diminishing returns;
the “cost” function C0(γ ) is convex. This is the green (dotted)
curve in Fig. 12.

The situation becomes more interesting if one considers an
onset of dangerous fire conditions, i.e., if at some time t the
birth rate increases into a supercritical phase β → β ′ > 1, as
depicted in Fig. 11. This models the impact of a wind event

FIG. 11. The onset of dangerous conditions modeled as a step-
function birth rate. We begin with β = 0.9 until t = 2, at which
point the birth rate increases to β ′ > 1, reflecting, e.g., a wind event
increasing the spread rate of a fire. Two different increases are shown.

on the spread of the fire. After this increase, one recomputes
the escape probability, now with the higher birth rate β ′. This
is done in ensemble, using the expected distribution of active
populations, as described at the end of Sec. IV.

Recomputing the escape probability in the face of a wind
event yields new cost curves which are pictured in Fig. 12
alongside the ‘no wind’ curve. With changing conditions, the
escape probability exhibits an inflection point, also marked
in Fig. 12. The inflection point is the point of diminishing
returns, which is now nonzero. This reflects the intuitive idea
that early, prewind event suppression may pay off dispropor-
tionately in the face of dangerous conditions. By decreasing
the active size of the fire early on, one decreases the impact

FIG. 12. Escape probability versus suppression rate. Here we
have an initial population N = 20 and threshold J = 100. The green
(lower, dotted) curve has a constant birth rate β = 0.9 while the
orange (middle), red (upper) curves transition to a higher birth rate
β ′ > 1 at time t = 2 as in Fig. 11. The point of diminishing returns
is shown.
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FIG. 13. Optimal suppression policies coincide with minima of
the cost function. The cost is computed as in Eq. (77) with γ = 10
using the escape probability curves of Fig. 12. The optimal (constant)
suppression strategy corresponds to the minimum γo in the cost
versus suppression curve. The red (upper) curve also displays a local
maximum.

that an increased birth rate has on the overall severity of the
fire event.

With no cost to suppression, the obvious (and unrealistic)
optimal strategy is to apply as much suppression as possible.
A slightly more realistic cost function is obtained by adding a
(linear) cost profile to suppression. If the maximum available
suppression is γ, then a nicely scaled cost function is

C(γ ) = PJ (N ; γ ) + γ /γ. (77)

The addition of a cost to suppression immediately creates
local minima and hence optimal (constant) suppression strate-
gies, shown in Fig. 13. Beyond the local minima, the red
(upper) curve (corresponding to an onset of high wind con-
ditions) actually displays a local maximum: the cost of mild
suppression γ ≈ 1, 2 is greater than the cost of zero suppres-
sion. This happens because the effect of such low suppression
is minimal on the escape probability, but does incur a cost.
The cost is lower if nothing is done. Realistically, the choice
of whether to apply suppression to a given event will include
the choice to not apply it elsewhere. By identifying local
maxima in cost functions, one can determine when removing
suppression from one event in favor of another may be the best
policy choice.

The cost function and constant suppression strategies out-
lined here are extremely coarse, and essentially the simplest
possible choices: constant suppression, a linear cost profile,
etc. Lots of generalizations exist. The suppression rate may
become time dependent and react to conditions. A wind event
as modeled in Fig. 11 could be forecasted for only a finite
time, changing the eventual outlook for the fire. The cost func-
tion can be modified with a nonlinear profile with respect to
suppression or made risk-averse by considering the variance
in the population and penalizing high-variance scenarios.

This is all at the level of analyzing strategies for a sin-
gle, isolated fire event. One may furthermore extend the

analysis to a set of multiple birth-death processes, modeling
the management of resources across a multifire event. This
allows resource allocation between events with dynamic risk
predictions, including the time-delay associated to transfer-
ring resources between events. A multievent model of this
type would provide a quantitative and dynamically updating
decision support tool to agencies which manage a set of fires
of varying sizes, conditions, and risk levels.

VI. CONCLUSION

In this work we review and extend the theoretical results
of Karlin and MacGregor [28] and Kendall [25] on the birth-
death-suppression Markov process. This process is closely
related to many similar linear birth-death processes which
were solved by various authors in relatively quick succession
many years ago. For historical or accidental reasons, the birth-
death-suppression process considered here was less studied
in the present parametrization and went without the present
wildfire interpretation.

We derive explicit expressions for the transition matrices
for both the continuous-time and discrete-time birth-death-
suppression processes. To obtain the latter, we applied a
resolvent-based complex-analytic approach. This introduced
a set of polynomials equivalent to the Pollazcek orthogonal
polynomials; we describe their computation, asymptotics and
measure of orthogonality in terms of the birth and suppression
parameters. These polynomials are used to express physi-
cal predictions about the process as spectral integrals which
can be evaluated numerically and in some cases exactly. In
particular, the polynomials allow us to determine the asymp-
totic distribution of footprints (the cumulative population) as
functions of the global parameters of the process. This had
previously only been done in the zero-suppression process
[25].

The analysis is in general closely related to and inspired
by work on the birth-death-immigration (BDI) process, the
process studied by Askey and Ismail [30]. Whereas the sup-
pression rate appears as an additive increase in the aggregate
death rate, in the BDI process the immigration rate appears
as an additive increase to the aggregate birth rate. One could
interpret an immigration rate as characterizing “spotting” or
new ignition in the wildfire context, and could theoretically
solve the process with both “immigration” and suppression.

The BDI process has also been extended to capture the
dynamics of immigration between multiple population centers
[1,58]. This same type of generalization could be made to the
birth-death-suppression process, with the fire interpretation
of describing the management of multiple simultaneous fire
events. Already in previous work this type of resource alloca-
tion optimization was carried out for a two-fire event [5]; the
n-fold generalization should be just a matter of bookkeeping.
Another important aspect of the tools developed here is their
Markovian property, which makes them dynamic. Not only
can one describe the probabilities of certain outcomes of the
process parametrically, but these probabilities can be contin-
uously updated as new information about a given real-life
stochastic process is obtained. The simplicity of the model
means that these updates and recalculations can occur imme-
diately and with minimal computational cost.
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There exist a wide array of questions related to resource
allocation, dynamic policy optimization, and the analysis of
trade-offs that can now be quantitatively addressed. We have
focused on the wildfire interpretation, but we stress that the
model is general enough to describe a range of phenomena.
The original motivation for the introduction of a cumulative
population or “footprint,” as we have referred to it, was in the
context of mathematical biology [3]. Indeed, one can draw an
analogy between the wildfire interpretation and, for example,
the susceptible-infectious-recovered (SIR) model of disease
dynamics. The firelets j(t ) are the “infectious” states, the
burnable substrate J − F (t ) is the “susceptible” population,
and the footprint F represents the “recovered” group. One
could apply the same formulas used in this work in the context
of wildfire to ask questions about SIR dynamics: what is the
probability of infecting all susceptible individuals in a finite
group? What is the optimal level of treatment (suppression) to
maximize the probability of eradication (absorption at j = 0)
with some cost profile to the treatment? There exist a wide
range of applications of which this type of stochastic model
affords quantitative analysis.

The focus of the work has been to develop the theory of
the birth-death-suppression process, but the motivation and
guiding context for the authors remains wildfire modeling.
As a model of fire, our process is temporal in nature: its
main credence comes from its universality as a model of
any continuously fluctuating population, not from its accu-
rate representation of the spatial dynamics of fire. There of
course exist far more accurate and widely used high-fidelity
physics-based fire models [59–66] which far outperform the
present model in the simulation of physical fire. Some of
the analysis herein could reasonably be augmented by such
high-fidelity models, and they could be applied to gain a
quantitative understanding of the relationship between the
Markov process parameters and the measurable data of real
fires, fuels, topography, and weather conditions. The practical
reality of firefighting is far removed from the decision analysis
presented herein. However, it is our hope that the dynamic
risk forecasting and quantitative control we have developed
here lead to tools which support streamlined, quantitatively
informed decisions that help us live in the modern climactic
reality.
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APPENDIX A: ZERO-SUPPRESSION PROCESS

The zero-suppression process is the linear birth-death pro-
cess with aggregate birth and death rates

λ j = β j, μ j = δ j. (A1)

This process has been solved by a variety of methods [1]. For
the solution as the limit of a finite system, see Ref. [38]. Here,
we focus on the generating function approach of Ref. [25],

and show how results cited in Sec. II B may be derived such
that the work is self-contained.

The present focus is to determine the population probabil-
ities pn(t ) ≡ Pr{ j(t ) = n} given definite initial configurations
pn(0) = δn,N [equivalently j(0) = N]. The dynamics are gov-
erned by

d

dt
pn(t ) = λn−1 pn−1(t ) + μn+1 pn+1(t ) − (λn + μn)pn(t ).

(A2)

This differential-difference equation may be solved by em-
ploying a generating function; define

G(t, z) =
∞∑

n=0

pn(t )zn (A3)

in terms of the population probabilities, where p0(t ) ≡ pA(t )
is the absorption probability. By ansatz this generating func-
tion is analytic as z → 0. For an initial population j(0) =
N , the generating function satisfies the boundary condition
G(0, z) = zN . The function G(t, z) allows computation of
many quantities of interest:〈

jk (t )
〉 = lim

z→1

(
z

∂

∂z

)k

G(t, z), (A4)

pn(t ) = 1

n!
lim
z→0

∂n

∂zn
G(t, z). (A5)

Equation (A2) defines relations between the series coefficients
of G(t, z). For the moment, keep γ = 0 and use the birth-death
rates λn = βn, μn = n + γ . Taking the time derivative of
G(t, z) and applying the recurrence relation descends to a
partial differential equation for the generating function:

∂G

∂t
= (βz − 1)(z − 1)

∂G

∂z

+ γ

(
1 − z

z

)
(G(t, z) − pA(t )). (A6)

This is a linear, nonhomogeneous first order equation; in
theory, it may be solved by the method of characteristics.
The term proportional to γ appears to display a singularity
as z → 0. This nonanalytic divergence is removed by the
subtraction of the absorption probability pA(t ) from G(t, z).
However, without an explicit form of the absorption probabil-
ity pA(t ), one cannot solve Eq. (A6) explicitly. In the presence
of nonzero suppression different techniques are needed. How-
ever, setting γ = 0, the simple linear process of Eq. (A1) gives
the homogeneous PDE

∂G

∂t
= (βz − 1)(z − 1)

∂G

∂z
. (A7)

For an initial population j(0) = N , and hence G(0, z) = zN ,
this equation is solved by

G(t, z) =
[

(z − 1)e(β−1)t − βz + 1

β(z − 1)e(β−1)t − βz + 1

]N

. (A8)

Taking the limit as β → 1 gives the critical generating func-
tion

Gc(t, z) =
[

z + t (1 − z)

1 + t (1 − z)

]N

. (A9)

014110-17



HULSEY, ALDERSON, AND CARLSON PHYSICAL REVIEW E 109, 014110 (2024)

1. Population statistics

The average population is given by

〈 j(t )〉 = lim
z→1

∂zG(z, t ) = Ne(β−1)t , (A10)

which defines the supercritical β > 1 and subcritical β < 1
phases of exponential growth and extinction, respectively. In
the critical case β = 1, the mean population is constant in
time. The population variance is given by

� j2(t ) = lim
z→1

(
∂2

z G(z, t ) + ∂zG(z, t ) − [∂zG(z, t )]2
)

= β + 1

β − 1
Ne(β−1)t (e(β−1)t − 1). (A11)

For β > 1, the variance grows exponentially at late times,
and is monotonically increasing. The critical variance is linear
in time � j2

c = 2Nt and similarly increases without bound.
However, the subcritical variance peaks at some finite time.

The time-dependent probability of absorption pA(t ) is triv-
ial to calculate by just plugging in z = 0 to both generating
functions:

pA(t ) =
(

1 − e(β−1)t

1 − βe(β−1)t

)N

, (A12)

lim
β→1

pA(t ) =
(

t

t + 1

)N

. (A13)

By taking the limit t → ∞, one obtains the asymptotic ab-
sorption probability:

pA(∞) = lim
t→∞ G0(0, t ) =

{
β−N , β > 1,

1, β � 1,
(A14)

which states that absorption (extinguishing) is all but certain
except in the supercritical case. Finally, consider the distribu-
tion of lifetimes until absorption ∝ p1(T )dT . With an initial
population to j(0) = N , the normalized distribution of life-
times T is

dσ (T ) = N max(β, 1)N (β − 1)2e(β−1)T

× (1 − e(β−1)T )N−1

(1 − βe(β−1)T )N+1
dT (A15)

for β = 1, reducing in the critical case to

dσ (T ) = N
T N−1

(1 + T )N+1
dT . (A16)

First, let N = 1 to analyze the small fire limit. It is convenient
to make the change of variables s = e(β−1)T ; note that the limit
limT →∞ s depends on the value of β. In particular, as T →
∞ one has s → 0 in a subcritical phase (β < 1) and s → ∞
in a supercritical phase (β > 1). The single initial population
measure for lifetimes becomes

dσ (T ) = max(1, β )|β − 1| 1

(1 − βs)2
ds. (A17)

From this one can write down expressions for the mean and
median lifetimes of the fire. Note that the median lifetime Tm

is the time such that pA(∞) = 2pA(Tm): the time after which
half of all processes in ensemble will have absorbed.

The average lifetime is infinite in the critical case, and
otherwise is given by

〈T 〉 =
{− 1

β
log(1 − β ), β < 1,

− log(1 − 1/β ), β > 1.
(A18)

Recall that this represents the average lifetime of fires which
end in absorption; it does not count the fires which formally
diverge in population size. One can also explicitly compute
the median lifetime for a fire with j(0) = 1:

Tm =
{ 1

1−β
log(2 − β ), β < 1,

1
β−1 log(2 − 1/β ), β > 1,

(A19)

where, in the above, the limit as β → 1 exists and is equal to
1. In fact, one can solve pA(∞) = 2pA(Tm) exactly to obtain
the median lifetime. In the limit of large initial size N � 1,
the leading order contributions are

Tm ≈N�1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1−β

log N − 1
1−β

log
( 1−β

log 2

)
, β < 1,

N
log 2 − 1/2, β = 1,

1
β−1 log N + 1

β−1 log
( 1−1/β

log 2

)
, β > 1,

discarding terms of order O(N−1). In the large population
limit the difference between sub- and supercritical phases is
washed out, and the lifetimes increase only logarithmically in
the size of the initial population. The next-to-leading order
terms differ between the sub- and supercritical phases and
become relevant near criticality, where the dependence on the
initial population is much stronger.

This completes discussion of the dynamics of the
suppression-free population. In Sec. II B, these results are
summarized along with some visualizations. Here, we move
on to constructing the suppression-free dynamics of the cu-
mulative population or footprint F (t ).

2. Footprint statistics

The generating function approach may also be employed to
determine at least the low moments of the footprint distribu-
tion. Recall that the footprint F (t ) shares all the births of the
population j(t ) but none of the deaths. It is natural to define
the joint probability matrix P with elements P j,F (t ) which
are the probability of having population j and footprint F at
time t . These matrix elements satisfy a differential-difference
relation as before:

d

dt
P j,F (t ) = λ j−1P j−1,F−1(t ) + μ j+1P j+1,F (t )

− (λ j + μ j )P j,F (t ).
(A20)

To solve this by generating function, define a function of three
variables

�(t, z,w) =
∑
j,F�0

P j,F (t )z jwF . (A21)

Restricting to the case γ = 0, this joint generating function
solves the differential equation

∂�

∂t
= (βz2w − z(β + 1) + 1)

∂�

∂z
, (A22)

014110-18



BIRTH-DEATH-SUPPRESSION MARKOV PROCESS AND … PHYSICAL REVIEW E 109, 014110 (2024)

where, for an initial population j(0) = F (0) = N , there is
the initial condition �(0, z,w) = (zw)N . This equation has
an exact solution, but it is difficult to determine closed form
expressions for its expansion coefficients [25]. Instead, one
can extract a few important predictions about the footprint by
solving for the cumulant generating function K (t, u, v):

eK (t,u,v) = �(t, eu, ev ). (A23)

Substituting this into Eq. (A22) shows that K satisfies the
equation

∂K

∂t
= [β(eu+v − 1) − (1 − e−u)]

∂K

∂u
(A24)

along with the initial condition K (0, u, v) = N (u + v). The
cumulant generating function, by definition, has series coeffi-
cients given by the various cumulants of the joint distribution
of j, F . To quadratic order these are

K = u〈 j(t )〉 + v〈F (t )〉 + 1
2 u2� j2(t )

+ uv Cov( j, F ) + 1
2v2�F 2(t ) + · · · (A25)

The strategy is then to solve Eq. (A24) order-by-order to
determine the low cumulants listed above. One finds

〈F (t )〉 = N

β − 1
(βe(β−1)t − 1), (A26)

lim
β→1

〈F (t )〉 = N (t + 1). (A27)

Only in the subcritical case does the asymptotic average foot-
print have a finite value. One may obtain explicit forms for the
other cumulants, but they are not especially enlightening.

Finally, consider the asymptotic distribution of footprints.
To find this, one should solve Eq. (A22) and then take the
limit t → ∞; the solution is known and the limit may be taken
explicitly. Setting z = 1, N = 1 and entering the asymptotic
time regime, one finds

�(∞, 1,w) =
∞∑

F=1

Pr{F (∞) = F }wF

= 1

2β
[1 + β −

√
(β + 1)2 − 4βw]. (A28)

For an absorbing process with β � 1, one can explicitly eval-
uate the series coefficients of the above. In the limit of large
footprint F � 1, they are approximately given by

Pr{F (∞) = F } ∼
(

4β

(1 + β )2

)F

F−3/2. (A29)

The cumulative distribution of footprints, which we call the
“escape probability” P(F � J ), is then given by the integral
of the above. The quantity P(F � J ) expresses the probability
that the footprint of a given process will end up larger than
some value J . This is the distribution which is empirically
expected to follow a power law ∼J−α with exponent close
to α ≈ 1/2.

In the eventually absorbing regime β � 1, write β = 1 − a
and consider small, positive a, expanding away from critical-
ity into the subcritical regime. The escape probability can then

be expanded to leading order in a as

P(F (∞) � J ) ≈ J−1/2

√
π

+ a

2

(
J−1/2

√
π

− 1

)
, (A30)

which reproduces the desired power-law scaling exactly in
the critical β = 1 phase, and approximately for β � 1. This
characterizes the asymptotic distribution of footprints, but not
the timescales associated with saturation. Since the solution to
Eq. (A22) is known, one could in principle compute the exact
coefficients Pj,F (t ). This is beyond the scope of this work, and
would likely be unreasonably difficult.

APPENDIX B: EXPLICIT TRANSITION MATRICES

In this section we review the method of Karlin and
MacGregor for solving the population dynamics in the birth-
death-suppression process [26,28], starting by defining some
of the families of orthogonal polynomials associated to each
phase of the process. These polynomials fall into the Askey
scheme classification of Ref. [45]. The first are the Meixner
polynomials φn(x), which are defined in terms of the Gauss
hypergeometric function:

φn(x) ≡ φn(x; b, g) = 2F1(−n,−x; b; 1 − 1/g). (B1)

Here, b > 0 and 0 < g < 1. Recall that

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (B2)

(a)n = �(a + n)

�(a)
, (B3)

so that when a is a negative integer, the Pochhammer symbol
(a)n vanishes at some order and the function 2F1 is a poly-
nomial in z. These polynomials are orthogonal with respect
to a discrete measure with atoms at k = 0, 1, 2, . . . and inner
product

∞∑
k=0

φn(k)φm(k)ρk = δnm
n!

(b)ngn
, (B4)

where the spectral measure ρk is

ρk = (1 − g)b (b)k

k!
gk . (B5)

Most importantly, the polynomials φn(x) satisfy the following
recurrence relation:

−x
(1 − g)

g
φn(x) = n

g
φn−1 −

(
n + n

g
+ b

)
φn + (n + b)φn+1.

(B6)

The other set of polynomials needed are the associated La-
guerre polynomials, defined as

Lα
n (x) = exx−α

n!

dn

dxn
(e−xxn+α ) (B7)

=
n∑

m=0

(−1)m (n + α)!

(n − m)!(α + m)!m!
xm. (B8)
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Their spectral measure is continuous, leading to the orthogo-
nality relation∫ ∞

0
e−xxαLα

n (x)Lα
m(x)dx = (n + α)!

n!
δmn. (B9)

These functions satisfy the three-term recurrence relation

−xLα
n (x) = (n + α)Lα

n−1(x) + (n + 1)Lα
n (x)

− (2n + α + 1)Lα
n (x). (B10)

It so happens that in general, the measures of orthogonality
develop discrete parts when the process moves away from
criticality.

1. Polynomials for the suppression process

Here, we identify the set of orthogonal polynomials for
each phase of the process and present their properly normal-
ized measures of orthogonality, which should satisfy∫ ∞

0
Qn(x)Qm(x)dσ (x) = δnm

πn
. (B11)

With λn = β(n + 1) and μn = n + γ + 1, the constants πn are
given by

π0 = 1; πn = βn · n!

(γ + 2)n
, (B12)

where the index n runs over 0, 1, 2, . . ., with n = j − 1 where
j is the number of firelets. The polynomials Qn(x) satisfy the
three-term recurrence relation

−xQn(x) = (n + γ + 1)Qn−1(x) + β(n + 1)Qn+1(x)

− (n + βn + β + γ + 1)Qn(x). (B13)

a. Critical phase

In the critical phase β = 1, the recursion reduces to

−xQn(x) = (n + γ + 1)Qn−1(x) + (n + 1)Qn(x)

− (2n + γ + 2)Qn(x). (B14)

Comparing to the Laguerre recurrence in Eq. (B10), one can
easily identify Qn(x) = Lα

n (x), where α = γ + 1. Thus, for
the critical process, the desired family of orthogonal polyno-
mials is

Qn(x) = Lγ+1
n (x). (B15)

The normalized measure of orthogonality is

dσ (x) = 1

�(γ + 2)
e−xxγ+1dx, (B16)

which is continuous over the real half-line.

b. Subcritical phase

Now consider the case β < 1. Define a modified form of
the Meixner polynomials

ξn(x) = (b)n

n!
φn

(
x

1 − β
− b + 1; b, β

)
, (B17)

which satisfy a recurrence relation slightly modified from
(B6), working out as

−xξn(x) = (n + b − 1)ξn−1(x) + β(n + 1)ξn+1(x)

− (βn + β + n + b − 1)ξn(x). (B18)

This matches the recursion for the Qn(x) provided b = γ + 2.
So, in the β < 1 case, the polynomials are

Qn(x) = (γ + 2)n

n!
φn

(
x

1 − β
− γ − 1; γ + 2, β

)
. (B19)

Their normalized measure of orthogonality is discrete with
support at ρk ≡ (1 − β )(k + γ + 1) for k ∈ Z+; it may be
written

dσ (x) = (1 − β )γ+2
∞∑

k=0

(γ + 2)k

k!
βkδ(x − ρk )dx. (B20)

c. Supercritical case

For β > 1, define an altered set of Meixner polynomials by

Tn(x) = (b)n

n!βn
φn

(
x

β − 1
− 1; b,

1

β

)
, (B21)

which satisfy the same recursion as the ξn(x), again identify-
ing b = γ + 2. The difference is the arguments of the φn. The
conclusion is that, for the supercritical β > 1 case, one has the
orthogonal polynomials

Qn(x) = (γ + 2)n

n!βn
φn

(
x

β − 1
− 1; γ + 2,

1

β

)
. (B22)

The normalized measure of orthogonality has atoms at rk ≡
(β − 1)(k + 1) for k ∈ Z+ and is given by

dσ (x) =
(

β − 1

β

)γ+2 ∞∑
k=0

(γ + 2)k

βkk!
δ(x − rk )dx. (B23)

2. Explicit transition matrices

With explicit forms of orthogonal polynomials for the pro-
cess (λn, μn) = (β(n + 1), n + γ + 1), all that is left is to
apply the spectral formula for the transition matrix:

Pnm(t ) = πm

∫ ∞

0
e−xt Qn(x)Qm(x)dσ (x). (B24)

We leave out the computation and simply state the results
of Ref. [28], correcting various errata and writing in our
parametrization. All of the expressions given here are valid
only for 0 � k � �; by using the transposition formula Pk� =
(π�/πk )P�k one can easily generate all other elements. While
these expressions are cumbersome, they can be easily evalu-
ated numerically.

a. Noncritical cases

Recall the auxiliary variable s(t ) = exp((β − 1)t ). When
β < 1, we have s(∞) = 0; when β > 1, instead one has
s(∞) = ∞. Define also the auxiliary function

X (s) = (βs − 1)(s − β )

β(s − 1)2
, (B25)
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which has the limits X (0) = X (∞) = 1. This becomes the
argument of the following hypergeometric function:

Fk�(t ) = �(k + � + γ + 2)

�(� + 1)�(k + γ + 2)

× 2F1(−k,−�; −1 − k − � − γ ; X [s(t )]). (B26)

Numerically, this expression is poorly scaled and trouble-
some: one should take logarithms for stability. The full
transition matrix is the expression

Pk�(t ) = π�

πk
βksγ+1

(
1 − β

1 − βs

)γ+2( 1 − s

1 − βs

)k+�

Fk�(t ),

(B27)

which is valid for both cases of β = 1 and in the above form
for k � �.

b. Critical case

To find the critical transition matrix elements, one may
simply take the limit as β → 1 of the above expressions. One
finds

lim
β→1

X (t ) = 1 − 1

t2
; lim

β→1

1 − s

1 − βs
= t

1 + t
. (B28)

Defining the auxiliary function

F c
k�(t ) = �(k + � + γ + 2)

�(� + 1)�(k + γ + 2)

× 2F1(−k,−�; −1 − k − � − γ ; 1 − 1/t2), (B29)

the critical transition matrix elements are

Pc
k�(t ) = π�

πk

(
1

1 + t

)γ+2( t

1 + t

)k+�

F c
k�(t ). (B30)

Python code which implements these functions for easy eval-
uation is available on request.

3. Low-population moments

The generating function G(t, z) for the occupation proba-
bilities pn(t ) satisfies the inhomogeneous equation

∂G

∂t
= (βz − 1)(z − 1)

∂G

∂z

+ γ

(
1 − z

z

)
(G(t, z) − pA(t )). (B31)

The cumulant generating function, defined as K (t, u) =
log G(t, eu), therefore satisfies the related equation

∂K

∂t
= (βeu − (β + 1) + e−u)

∂K

∂u

+ γ (e−u − 1)[1 − e−K pA(t )]. (B32)

Expanding the function K (t, u) to quadratic order

K (t, u) = 〈 j(t )〉u + 1
2� j(t )2u2 + O(u3), (B33)

and solving order-by-order yields coupled equations for the
average population 〈 j(t )〉 and the variance � j(t )2. The first
of these, governing the average population 〈 j(t )〉, is

∂

∂t
〈 j(t )〉 = (β − 1)〈 j(t )〉 + γ (pA(t ) − 1), (B34)

which is solved by

〈 j(t )〉 = Ne(β−1)t + γ

∫ t

0
dτ e(β−1)(t−τ )[pA(τ ) − 1]. (B35)

In the simple case N = 1, we have

pA(t ) = 1 − [1 − z(t )]γ+1; z(t ) = 1 − e(β−1)t

1 − βe(β−1)t
, (B36)

which leads to the average population

〈 j(t )〉 = e(β−1)t [1 − z(t )]γ . (B37)

APPENDIX C: RANDOM-WALK POLYNOMIALS

In this Appendix we construct analytically the random-
walk polynomials for the birth-death-suppression process.
These polynomials are equivalent under reparametrization to
the Pollaczek polynomials, as discussed in Sec. IV. We use
the method of Stieltjes inversion to construct the measure of
orthogonality given expressions for the polynomials Wn(x).

1. The critical polynomials

To begin, consider the critical phase: when β = 1, the
recurrence relation Eq. (61) simplifies to

xW c
n (x) = n + 1

2(n + 1) + γ
W c

n+1(x) + n + γ + 1

2(n + 1) + γ
W c

n−1(x).

(C1)

The critical polynomials W c
n (x) are equivalent to a known set

of orthogonal polynomials: the Gegenbauer or ultraspherical
polynomials Cλ

n (x). The exact correspondence is

W c
n (x; γ ) = C1+γ /2

n (x). (C2)

A generalization of the spherical harmonics, the Gegenbauer
polynomials fall in the Askey scheme and many of their
properties are well-known (for reference, see Sec. 1.8.1 in
Ref. [45]). They are a special case of the Jacobi polynomials.
Their generating function is

1

(1 − 2xz + z2)1+γ /2 =
∞∑

n=0

W c
n (x; γ )zn. (C3)

These critical random-walk polynomials are orthogonal with
respect to the normalized, continuous measure

dσ (x) = �
(

γ

2 + 2
)

√
π�

(
γ+3

2

) (1 − x2)(γ+1)/2dx. (C4)

supported on the interval [−1, 1]. One could proceed to
immediately calculate with these expressions. Instead, their
introduction here will be used to verify the noncritical results
by showing that they agree in the critical limit.

a. The noncritical polynomials

Away from criticality the Wn(x) do not admit a simple
hypergeometric formula. For convenience, we now refer to
the general, noncritical polynomials Wn(x; β, γ ) ≡ Wn(x) as
the firewalk polynomials, recalling of course that they are
equivalent to the Pollazcek family. One can find an expression
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for these firewalk polynomials Wn(x; β, γ ) by the method of
generating function: define

�(z, x; β, γ ) =
∞∑

n=0

Wn(x; β, γ )zn. (C5)

The recurrence relation (61) satisfied by the Wn descends to a
differential equation for the generating function:

∂�

∂z
= x(β + γ + 1) − z(γ + 2)

z2 + β − xz(β + 1)
�, (C6)

along with the boundary condition �(0, x; β, γ ) = W0(x) =
1. First, consider the singular points of the equation above.
These occur at the roots of the quadratic z2 − xz(β + 1) + β.
The discriminant D(x) of this quadratic is

D(x) =
√

x2(β + 1)2 − 4β, (C7)

where for consistency we take the positive root always. The
discriminant vanishes at x = Iβ , where

Iβ = 2
√

β

1 + β
, Iβ � 1. (C8)

Specifically, D(x) is real for |x| � Iβ and pure imaginary
otherwise. The bound Iβ = 1 only at criticality when β = 1.
To solve Eq. (C6), one computes the partial fraction decom-
position

x(β + γ + 1) − z(γ + 2)

z2 − xz(β + 1) + β
= A

z − u
+ B

z − v
. (C9)

The roots u, v of the quadratic z2 − xz(β + 1) + β are

u = x(β + 1)

2
+ D(x)

2
, v = x(β + 1)

2
− D(x)

2
, (C10)

noting the transformation rule u(−x) = −v(x). The relative
magnitude of these roots depends on x: if x ∈ [−Iβ, Iβ ] the
discriminant D is pure imaginary and |u| = |v|. If x > Iβ , then
|v| < |u|; by symmetry for x < −Iβ one has |u| < |v|. The
dominant root (that of smallest magnitude) is relevant when
constructing the measure of orthogonality. The coefficients
A, B of the partial fraction decomposition (C9) are given by

A = −γ + 2

2
− xγ (β − 1)

2D(x)
, (C11)

B = −γ + 2

2
+ xγ (β − 1)

2D(x)
, (C12)

where under x �→ −x the coefficients A ↔ B are inter-
changed. The equation to be solved is thus rewritten as

∂�

∂z
=

(
A

z − u
+ B

z − v

)
�, (C13)

which, along with the boundary condition �(0, x) = 1, deter-
mines

�(z, x; β, γ ) = (1 − z/u)A(1 − z/v)B. (C14)

A first check is that this function reproduces the generating
function (C3) in the limit β → 1. In the critical limit, the

parameters reduce to

lim
β→1

A = lim
β→1

B = −(1 + γ /2), (C15)

lim
β→1

u = x + i
√

1 − x2, (C16)

lim
β→1

v = x − i
√

1 − x2, (C17)

which allows one to verify that, indeed, as β → 1 the gener-
ating function � simplifies to

lim
β→1

�(z, x; β, γ ) = 1

(1 − 2xz + z2)1+γ /2 , (C18)

agreeing with the Gegenbauer generating function in Eq. (C3).
The firewalk or Pollazcek polynomials Wn(x; β, γ ) can
therefore be considered a deformation of the Gegenbauer
polynomials parametrized by the birth rate β. To find a
closed form, one must determine the n-th series coefficient
of Eq. (C14). An expression is

Wn(x) = (−B)n
v−n

n!
2F1(−n,−A; −n + B + 1; v/u). (C19)

By the use of some hypergeometric identities [46,49], this is
equivalent to the form

Wn(x) = (γ + 2)n

n!
u−n

2F1(−n,−B, γ + 2; −uD(x)/β ).

(C20)

While this expression does not obviously give polynomials in
x, direct calculation shows

W1(x) = x(β + γ + 1)

β
, (C21)

W2(x) = x2(β + γ + 1)(2β + γ + 2) − β(γ + 2)

2β2
,

(C22)

noting that the Wn are odd for odd n and even for even n,
consistent with their measure of orthogonality being even.
But determining this expression for the firewalk polynomials
Wn(x) is only the first step. To evaluate matrix elements of the
jump chain transition matrix S(n), we also must determine the
correct measure of orthogonality.

2. Measure by Stieltjes inversion

By Favard’s theorem there exists a real, even, positive
measure of orthogonality dσ (x) on [−1, 1] associated to the
firewalk polynomials Wn(x). From such a measure, the Stielt-
jes transformation defines a function χ (z), the resolvent via

χ (z) =
∫ 1

−1

dσ (x)

z − x
. (C23)

This function is analytic in the complex z plane away from
the interval [−1, 1], where certain singularities arise exactly
where the measure of orthogonality is supported. Generically,
the measure may be a mix of continuous and discrete parts:

dσ (x) = w(x)dx +
∑

k

�kδ(x − xk )dx, (C24)

χ (z) =
∫

w(x)

z − x
dx +

∑
k

�k

z − xk
. (C25)
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At points xk where the measure has some discrete atomic
weight �k the resolvent χ (z) therefore has a simple pole
with residue �k . However, where the measure has continuous
support the function χ (z) has a branch cut. The transformation
from measure to resolvent can thus be inverted by finding the
discontinuity in χ (z) across the cut, or the residue of χ (z)
at its poles. In Ref. [30], the authors carry out this calculus
for the birth, death, and immigration process. For a more
thorough review of the analytic methods used here, see also
Refs. [49,50,52,67].

a. Computing the resolvent

The starting point for computing the resolvent χ (z) is
to compute the firewalk polynomials “of the second kind,”
W ∗

n (x). They satisfy the same recurrence relations (61) but
with the altered initial conditions

W ∗
0 (x) = 0; W ∗

1 (x) = 1

p0
= β + γ + 1

β
. (C26)

Any set of orthogonal polynomials has an partner set ‘of the
second kind’ defined in this manner. A key theorem due to
Markov [49] is that the resolvent χ (z) may be written in terms
of the limit

χ (z) = lim
n→∞

W ∗
n (z)

Wn(z)
, (C27)

which allows computation of χ (z) without knowledge of the
measure. Computing these asymptotics for each set of polyno-
mials Wn,W ∗

n involves analyzing their respective generating
functions and applying the method of Darboux. This lemma
for estimating the asymptotic series coefficients of a complex
function is reviewed in Appendix D. As the W ∗

n (x) satisfy the
same recurrence as the Wn(x), their generating function �∗
satisfies a very similar differential equation. The difference is
in the initial conditions for the recurrence which is reflected
by the introduction of an inhomogeneous term. In particular,
the W ∗

n (x) are generated by �∗(z) which solves

∂�∗

∂z
= x(β + γ + 1) − z(γ + 2)

z2 − xz(β + 1) + β
�∗

+ β + γ + 1

z2 − xz(β + 1) + β
. (C28)

Using the same partial fraction decomposition as before one
can write

∂�∗

∂z
=

[
A

z − u
+ B

z − v

]
�∗ + β + γ + 1

(z − u)(z − v)
. (C29)

The solution is �∗ = f (z)� where � solves the homogeneous
equation. With the boundary condition �∗(0) = 0 one finds

�∗(x, z) = (β + γ + 1)(u − z)A(v − z)B

×
∫ z

0
dt (u − t )−A−1(v − t )−B−1. (C30)

With the generating functions �,�∗ the asymptotics of both
the Wn(x), W ∗

n (x) can now be determined by an application of
Darboux’s method. This is done in Appendix D. For Re x > 0

and off the cut [−Iβ, Iβ], the results are

lim
n→∞Wn(x) ∼ (1 − v/u)A n−B−1

�(−B)
v−n, (C31)

lim
n→∞W ∗

n (x) ∼ (β + γ + 1)
DA

�(−B)
vB−nn−B−1 (C32)

×
∫ v

0
dt (u − t )−A−1(v − t )−B−1. (C33)

The resolvent χ (z) is constructed by taking the ratio of these,
recalling that u, v, A, B, D should all be considered as func-
tions of a complex variable z:

χ (z) = lim
n→∞

W ∗
n (z)

Wn(z)
= (β + γ + 1)uAvB

∫ v

0
dt

× (u − t )−A−1(v − t )−B−1, Re z � 0. (C34)

This expression, valid for Re z > 0, Im z = 0, is analytic for z
away from the cut [−1, 1] on the real line. It is precisely at this
singular locus that the resolvent gives the data of the measure.

b. Stieltjes inversion

With the resolvent computed, one can now proceed to
compute the elements of the measure. It so happens that there
are both continuous and discrete parts, sourced by the branch
cuts and poles of the resolvent χ (z), respectively. Formally,
the Stieltjes transformation dσ (x) �→ χ (z) may be inverted by

σ (x2) − σ (x1) = lim
ε→0+

∫ x2

x1

dx
1

π
Im [χ (x + iε)]. (C35)

This inversion formula is physically analogous to the optical
theorem, where χ (z) represents the scattering amplitude, and
the measure dσ (x) is analogous to the cross-section. First con-
sider the continuous part of the measure which is supported
on the real interval [−Iβ, Iβ]. Taking the limit x1 → x2 in the
above yields

w(x) ≡ dσ (x)

dx
= lim

ε→0+

1

π
Im[χ (x + iε)]; |x| � Iβ, (C36)

where x lies on the branch cut. As one approaches the cut
ε → 0, we have u → v̄ and A → B̄. This means that the
resolvent prefactor uAvB as well as the integrand are real as
the cut is approached—they are symmetric in u ↔ v, A ↔ B.
The integral bounds, however, induce a nonzero imaginary
part;

2i Im
∫ v

0
dt f (t ) =

∫ v

0
dt f (t ) −

∫ v

0
dt f (t )

=
∫ v

0
dt f (t ) +

∫ 0

v̄

dt f (t )

=
∫ v

u
dt f (t ), (C37)

where the overbar represents complex conjugation. As a re-
sult, the continuous part of the measure of orthogonality is

w(x) = β + γ + 1

2π i
uAvB

∫ u

v

dt (u − t )−A−1(v − t )−B−1,

(C38)
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FIG. 14. The continuous measure of orthogonality w(x) = dσ/dx of the firewalk polynomials Wn(x) for various birth rates β and
suppression rates γ . The dashed lines at x = ±Iβ show that the measure is not supported on the entire interval x ∈ [−1, 1]. Larger suppression
values can be seen to sharpen the peak of the distribution near zero.

for x in the interval [−Iβ, Iβ ]. The definite integral, after some
rescaling, is an Euler β function. In particular, one finds the
expression

w(x) = β + γ + 1

2π i
uAvB

× (u − v)−A

(v − u)B+1

�(−A)�(−B)

�(γ + 2)
, (C39)

noting that the formula is singular for A, B ∈ Z+. While
obtuse, this measure, supported only on [−Iβ, Iβ] defines a
smooth weight function plotted in Fig. 14 for various values
of the parameters. In the limit β → 1 it should reduce to the
Gegenbauer polynomial measure (C4). One may check that in
the critical limit β → 1,

uAvB → 1, (C40)

(u − v)−A

(v − u)B+1
→ 2γ+1i(1 − x2)(γ+1)/2, (C41)

�(−A)�(−B)

�(γ + 2)
→

√
π2−(γ+1)�(γ /2 + 1)

�(γ /2 + 3/2)
, (C42)

after applying some γ function identities. Therefore, one finds

lim
β→1

w(x) = γ + 2

2π i
· i(1 − x2)(γ+1)/2 ·

√
π�(γ /2 + 1)

�
(

γ+3
2

)
= �

(
γ

2 + 2
)

√
π�

(
γ+3

2

) (1 − x2)(γ+1)/2, (C43)

which agrees perfectly with the known Gegenbauer measure.
However, the work is not yet done. The continuous measure
just constructed is not supported for Iβ < |x| < 1. The full
measure of orthogonality for the firewalk polynomials does
have support in this region, but only at a discrete set of points.
These points occur are precisely the poles of the resolvent.

c. Discrete measure

The continuous measure found in Eq. (C39) is even, as
one can explicitly check by considering the transformation of
u, v, A, B under x �→ −x. It is undefined at the points where
A, B are nonnegative integers, which suggests that at these loci

the full measure has discrete weight and thus discontinuous
derivative. From the resolvent formula

χ (z) = (β + γ + 1)uAvB

×
∫ v

0
dt (u − t )−A−1(v − t )−B−1, Re z � 0,

(C44)

one can see that a singularity arises in the integrand as t → v.
This occurs in particular when B = k is a nonnegative integer,
and only where this form is valid in the right half-plane.
Transforming z �→ −z, one finds

χ (z) = −(β + γ + 1)uAvB

×
∫ u

0
dt (u − t )−A−1(v − t )−B−1, Re z � 0,

(C45)

so that in the left half-plane, a singularity arises as t → u and
when A = k ∈ Z+. These singularities therefore occur at ±xk

satisfying

k = −γ + 2

2
+ |xk|γ (β − 1)

2D(xk )
, k ∈ Z+. (C46)

Since γ � 0 always, this equation only has solutions when
β > 1. Therefore the discrete measure develops only for β >

1, γ > 0, noting that A = B = −1 uniformly in the case of
zero suppression. Since the measure is even, we restrict to
considering x > 0, β > 1, and the singularities associated
with B = k ∈ Z+. These occur at the values ±xk satisfying

x2
k = β[γ + 2(k + 1)]2

[γ + (k + 1)(β + 1)][βγ + (k + 1)(β + 1)]
.

(C47)

For all k one has Iβ < xk < 1, with xk → Iβ as k → ∞. In
fact, the xk approach Iβ quite quickly as k increases. One now
should compute the residue of the resolvent at the points xk .
By examining the resolvent expression in Eq. (C44), it is clear
that with B = k the relevant singularity arises when t → v in
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the integral. Let s = v − t ; then one has

χ (z) = β + γ + 1

β

(
u

u − v

)A+1

vB+1

×
∫ v

0
ds

(
1 + s

u − v

)−A−1

s−B−1, (C48)

with the goal being to isolate the singularity and extract its
residue. From here, one can expand the first part of the inte-
grand as an infinite sum, writing∫ v

0
ds

(
1 + s

u − v

)−A−1

s−B−1

=
∞∑

n=0

(A + 1)n

n!

(
1

v − u

)n[∫ v

0
ds sn−B−1

]
. (C49)

Here, one should regard the definite integral as its analytic
continuation to all B /∈ Z+ in the sense of Hadamard [30,52].
The quantities u, v, A, B all take finite, real values at the
|xk| � Iβ . The measure weight is the residue of the resolvent
as z → xk ; by definition this is the coefficient of (z − xk )−1 in
the expansion of the function around z = xk . Near this point,
one has

lim
z→xk

B = k + α(z − xk ) + · · · , (C50)

α = dB

dz

∣∣∣∣
z=xk

= −2βγ (β − 1)D(xk )−3. (C51)

Formally evaluating the integral near B = k yields the expan-
sion∫

ds sn−B−1 = 1

n − B
sn−B = 1

n − k − α(z − xk )

× [sn−k − αsn−k log(s)(z − xk ) + · · · ].
(C52)

For any n = k, this function is formally analytic as z → xk .
A nonzero residue at xk is therefore generated only by the
term with n = k. Setting n = k in Eqs. (C48) and (C49) and
evaluating the definite integral one finds that the residue �k at
xk is

�k = β + γ + 1

β

(
u

u − v

)A+1

× vk+1

(v − u)k

(A + 1)k

k!

(
− dx

dB

)∣∣∣∣
x=xk

, (C53)

which by even-ness is also the weight of the measure at −xk .
Writing uk ≡ u(xk ) and evaluating everything at xk one finds
that the weight �k of the discrete measure at ±xk is

�k = β + γ + 1

βγ+3
(uk )−k (vk )k+γ+2

× (γ + 2)k

k!
· Dγ+4

k

2γ (β − 1)
, β > 1, (C54)

with the understanding that �k ≡ 0 for β � 1. Along with the
continuous measure in Eq. (C39), these discrete weights fully

FIG. 15. Contours for Darboux’s method. By choosing a com-
parison function g(z) to subtract off the singularity at z = 1, the
function f (z) − g(z) can be extended to the contour γ2, where large
n asymptotics may be taken.

characterize the orthogonality relation for the Wn(x):∫ Iβ

−Iβ

Wn(x)Wm(x)w(x)dx +
∞∑

k=0

�kWn(xk )Wm(xk )

+
∞∑

k=0

�kWn(−xk )Wm(−xk ) = hnδn,m. (C55)

In principle, one can now calculate arbitrary matrix elements
of the n-step transition matrix S(n). However, these expres-
sions rarely, if ever, have a reasonable analytical form. They
are better suited to numerical analysis.

APPENDIX D: METHOD OF DARBOUX

In this Appendix we review the method of Darboux for
estimating the asymptotic coefficients of a meromorphic func-
tion f (z). For a thorough reference, see Refs. [67–69]. Here,
we develop only the tools necessary to compute the measure
in Sec. IV, for completeness and pedagogical purposes. Be-
gin with a meromorphic function f (z) analytic at the origin:
the goal is to estimate its asymptotic series coefficients. For
simplicity, let the dominant singularity (that of smallest mag-
nitude) of f (z) be at z = 1, so that the series

f (z) =
∞∑

n=0

cnzn (D1)

converges inside the unit disk. Of course, any meromorphic
function may be holomorphically mapped to this form. It turns
out that the asymptotic behavior of the cn depends strongly on
the nature of the singularities of the function f (z). To see why
this is the case, recall that the constants cn ≡ [zn] f (z) may be
computed by the following contour integral:

cn = [zn] f (z) = 1

2π i

∮
γ1

f (z)
dz

zn+1
, (D2)

where the contour γ1 encircles the origin, as shown in Fig. 15.
Define another function g(z) which is analytic for |z| < 1 and
such that f (z) − g(z) is continuous on |z| = 1. This defines a
sort of ‘minimal subtraction’ of the singularity at z = 1. Now,
by construction, the function h(z) = f (z) − g(z) is analytic in
the disk |z| � R for some R > 1. The series coefficients of
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f (z) − g(z) are therefore

fn − gn = [zn]h(z) =
∮

γ1

h(z)
dz

zn+1
=

∮
γ2

h(z)
dz

zn+1
,

where the contour of integration can be radially extended to
γ2, located at a radius R > 1. By parametrizing the contour in
polar coordinates, one bounds the difference fn − gn as

| fn − gn| =
∣∣∣∣
∮

γ2

h(z)
dz

zn+1

∣∣∣∣ (D3)

= R−n

∣∣∣∣
∫ 2π

0
h(z(φ))e−inφdφ

∣∣∣∣ (D4)

� R−n
∫ 2π

0
|h(z)|dφ, (D5)

where, in the final step, the integral does not depend on n.
An asymptotic statement can now be made: as n → ∞, since
R > 1, we have

| fn − gn| � O(R−n) ⇒ fn ∼ gn. (D6)

This lemma is often referred to as Darboux’s method [30].
Informally, it states that a comparison function g(z) which
shares the same dominant singularity as f (z) has asymptoti-
cally identical series coefficients. To make use of this, one can
compute the asymptotic series coefficients for a singularity of
a standard form, then use this theorem to transfer the results
to a more complex function. Consider the basic singularity

(1 − z/z0)α =
∞∑

n=0

(−1)n

(
α

n

)(
z

z0

)n

. (D7)

Here, the explicit form of the series coefficients is known, so
one can easily extract the asymptotics by applying the Stirling
approximation:

(−1)n

(
α

n

)
= (−α)n

n!
(D8)

∼ n−α−1

�(−α)

[
1 + α(α + 1)

2n
+ · · ·

]
. (D9)

This gives the general result

[zn](1 − z/z0)α ∼ z−n
0

n−α−1

�(−α)
, α /∈ Z+. (D10)

For a derivation of this formula using only explicit contour
integration, see Ref. [69]. Note that this vanishes when the
exponent α is a nonnegative integer. The reason is straightfor-
ward: the left hand side of Eq. (D7) is a polynomial in z of
degree α, so its asymptotic series coefficients are identically
zero [67]. In this special case, the leading term in the limit
n → ∞ is simply the term of highest degree.

Firewalk polynomial asymptotics

Having established the asymptotic approximation for the
standard singularity, we can turn to the generating function

(C14) for the firewalk polynomials Wn(x):

�(z, x) = (1 − z/u)A(1 − z/v)B =
∞∑

n=0

Wn(x)zn. (D11)

This function has two singularities which may be coincident
in norm depending on the value of x; one has

u = x(β + 1)

2
+ D(x)

2
, v = x(β + 1)

2
− D(x)

2
, (D12)

D(x) =
√

x2(β + 1)2 − 4β. (D13)

Recall that for x real and |x| � Iβ , the roots u, v are coincident
in norm with u = v̄. For positive x > Iβ , one has |v| < |u|,
whereas for negative x < −Iβ the inequality is reversed. Take
x /∈ R and Re x > 0; this means that v is the dominant singu-
larity of the generating function (D11). One should construct
a comparison function g(z) which shares the singularity at z =
v. To do so, expand the generating function �(z, x) around the
point z = v, taking only the leading term as z → v:

g(z) = (1 − v/u)A(1 − z/v)B. (D14)

One can now simply apply the result (D10) to determine the
asymptotic coefficients of g(z); Darboux’s lemma ensures that
these are also the asymptotics of the Wn(x). Therefore, one
finds

lim
n→∞Wn(x) ∼ (1 − v/u)A n−B−1

�(−B)
v−n, (D15)

with the caveat that this formula vanishes for B ∈ Z+. For the
firewalk polynomials of the second kind W ∗

n (x), one has the
generating function

�∗(x, z) = (β + γ + 1)(u − z)A(v − z)B

×
∫ z

0
dt (u − t )−A−1(v − t )−B−1. (D16)

By the same arguments as above, for positive x, the root v

is the dominant singularity of this function. The procedure is
therefore essentially the same. To define a comparison func-
tion, expand �∗ around the point z = v:

g(z) = (β + γ + 1)DAvB(1 − z/v)B

×
∫ v

0
dt (u − t )−A−1(v − t )−B−1, (D17)

to which one can apply the result for the standard singularity.
This gives the asymptotic result

lim
n→∞W ∗

n (x) ∼ (β + γ + 1)
DA

�(−B)
vB−nn−B−1

×
∫ v

0
dt (u − t )−A−1(v − t )−B−1. (D18)

This completes the asymptotics needed to compute the resol-
vent for the firewalk polynomial measure.
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