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ABSTRACT

This technical report summarizes the work conducted under Award DTRA-18681-M during
the performance period 2016-2020. Specifically, this research project seeks to develop new
theory, models and algorithms for optimal design of interdependent networks, including
command and control (C2) systems, with the objective of making them resilient to both
targeted (intentional) and random (natural) attacks. We study both large-scale WMD at-
tacks and small-scale attacks on the most important nodes in the system. “System” refers
here to a collection of interdependent networks such as the physical network comprised
of sensors, satellite intelligence installations, and transmission and communications sta-
tions; information network, comprised of information processing and routing devices (e.g.,
servers) and software components (databases, encryption and transmission software); and
social and cognitive domain comprised of the personnel involved in operation and control
of the underlying information and physical domains. We study hierarchical and distributed
organization of these domains and apply the resilience quantification methodology in order

to find the best configuration of the system as a whole.
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Executive Summary

This research project seeks to develop new theory, models and algorithms for optimal design
of interdependent networks, including command and control (C2) systems, with the objec-
tive of making them resilient to both targeted (intentional) and random (natural) attacks. We
study both large-scale WMD attacks and small-scale attacks on the most important nodes
in the system. “System” refers here to a collection of interdependent networks such as the
physical network comprised of sensors, satellite intelligence installations, and transmission
and communications stations; information network, comprised of information processing
and routing devices (e.g. servers) and software components (databases, encryption and
transmission software); and social and cognitive domain comprised of the personnel in-
volved in operation and control of the underlying information and physical domains. We
study hierarchical and distributed organization of these domains and apply the resilience

quantification methodology in order to find the best configuration of the system as a whole.
We have focused on four primary research thrusts:

(a) A first goalis to develop and test a universal resilience quantification method, applica-
ble to any complex system based on the underlying network (possible heterogeneous
and comprised of many layers and domains).

(b) A second goal is to develop appropriate abstract small-scale models for the command
and control networks. In particular, during this stage, we will investigate the rele-
vant properties of the nodes and links in C2 networks, and most importantly their
underlying dynamics.

(c) A third goal is to develop large-scale abstract models of the command and control
network and study various types of the network organization (e.g. hierarchically
directed links between the nodes or distributed undirected organization of the nodes
interconnectedness) and characteristics of the layers (e.g. node degree distribution,
centrality, capacity and other relevant properties). We also shall study the network
robustness depending on the type of damage it encounters (e.g. random or targeted).

(d) A fourth goal is focused on the resilience of the real military and civilian C2 systems.
We apply either small-scale or large-scale models as appropriate for the data we obtain

for real systems.
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1 What is Command and Control?
This introduction is adapted from Eisenberg et al. (2018a).

Command and control (C2) systems are important, pervasive systems in modern society.
C2 is understood as the process taken by teams and organizations in order to complete a
shared goal (Stanton et al. 2008; Walker et al. 2008), and C2 systems are sociotechnical
collections of human interactions, social norms, and built technologies that enable this
process (Walker et al. 2008, 2012). Historical understandings of C2 refer to the strict,
bureaucratic, and hierarchical structures of military organizations where individual roles
are clear and mission expectations are non-negotiable (Alberts and Hayes 2003, 2006).
Contemporary notions of C2, in contrast, refer to any organizational structure that connects
people to perform shared goals, and emphasizes processes that enable decision-making and
information-sharing rather than the social context in which they occur (Alberts and Hayes
2003; Linkov et al. 2013a). This broad view on C2 includes military hierarchies alongside
public utilities and civil infrastructure managers (Petrenj et al. 2013), loosely connected
non-governmental organizations during emergency response (Alberts et al. 2010), and even
virtual organizations formed on the internet that lack rules for establishing leadership,
allocating workloads, or monitoring business activities (Grabowski and Roberts 2015).
Definitions of a leader, the act of sharing intent, and completing a task or mission depend
upon the organizational structure in which C2 is being performed. C2 organizations are
often geographically separated in such a way that requires information and communication
technology (ICT) to share skills and knowledge, yet still have long-term interests and shared
goals that maintain interaction among participants (Grabowski and Roberts 2015). Linking
the historical and contemporary, essentially any collaborative group of people using ICT to

achieve a shared goal can be characterized by a form of C2.

The purpose of C2 research is to be descriptive for which social and technological relation-
ships will succeed in performing shared goals and prescriptive for how to design better C2
systems. Descriptive research reveals underlying factors that enable successful completion
of missions, often measured as the speed an organization can complete a task, the diversity
of different tasks an organization can complete, the amount of shared information among
organizational members, or a combination of all three (Alberts 2011). Some descriptive
research is also explanatory of sociotechnical phenomena and uncovers drivers and causal

forces that dictate why some human or technological arrangements are more effective than

1



others (Alderson et al. 2006; Willinger et al. 2002). Prescriptive research then builds on
these results to rearrange existing social relationships and/or introduce disruptive tech-
nologies to improve existing C2 processes. Together, C2 research endeavors have broad
impact on social systems of decision hierarchy, interpersonal interactions, knowledge shar-
ing, training, and skills and technological systems that enable data collection and resource

use to act upon changing situation context.

Despite the potential for C2 research to improve the design of real-world sociotechnical
systems, the broad literature remains disorganized and isolated in publication. Only few
seminal works offer an integrated understanding of C2 theory (e.g., Alberts and Hayes 2003;
Alberts et al. 2010), and none organize applied studies to show how C2 is understood and
evaluated across contexts. This allows almost any new study involving a shared goal, ICT
systems, software development, or a social network to claim it advances C2 theory. This
lack of organization produces a disconnected body of knowledge and creates confusion
for newcomers as some C2 related topics like ‘social networks’ encompass thousands (if
not millions) of research records. This also results in a lack of standard practices across
experts that limits advances in C2. One consequence is that the majority of research
remains descriptive rather than prescriptive in experimental design, modeling, and analysis.
New studies slow the development of prescriptive studies by relying on novel methods for
analysis rather than common frameworks. The few studies that do prescribe ways to improve
system-level C2 processes are completed in a piecemeal fashion that is not re-integrated into
a comprehensive theory. C2 literature is marred by a disconnected landscape of research

that inhibits the possibility of advancing research to practice.

The purpose of this introductory section is to review and organize the C2 literature in a
manner that makes it more understandable and more usable. C2 literature needs integration
of existing knowledge to guide the design of systems that successfully adapt to changing
circumstances. This work has two specific goals: (1) organize and integrate the disconnected
C2 body of knowledge, and (2) offer guidance to support more informed descriptive and
prescriptive research. We achieve these goals via a comprehensive literature review that
organizes research with well-established C2 theory and network evaluation methods. The
paper concludes with a network science perspective on C2 literature that presents design
and modeling constraints considered in past C2 research and five considerations for future

C2 research.



1.1 Network Centric Warfare as Guiding Theory

The military doctrine of Network Centric Warfare (NCW; c.f. Network Enabled Capability
(NEC) (Alberts et al. 2010)) offers a basis for organizing advances in C2 research. C2
research is guided by few overarching theories that break down the structure and func-
tion of sociotechnical systems for analysis and design. NCW is one of the most widely
cited C2 theories that emphasizes the relationship between successful C2 processes and
networked system structure. NCW doctrine was developed by the US Department of De-
fense (DoD) Command and Control Research Program (CCRP)—see Alberts and Hayes
(2003); Cebrowski and Garstka (1998); Dekker (2008)—for harnessing rapid, ubiquitous,
“Information Age” technologies to improve C2 activities. NCW is centered on 21st century
technological advancements like the internet, wireless networking, sensors, and satellites
that brought a shift in society by making “information” a strategic asset (Alberts 2011).
Information in this context refers to high volume, velocity, and variety data (Laney 2001)
that enables automated and distributed systems to work together and now underlies most
aspects of daily life. While society writ-large quickly adopted Information Age technolo-
gies, this transition was difficult in military organizations that have long-standing social
hierarchies and strict information assurance and security requirements. NCW started in the
late 1990s as a critique on the lack of adoption of Information Age technologies in military
C2 processes alongside a shift in perspective from treating military units as independent
platforms to networked systems (Fewell and Hazen 2003). The resulting doctrine developed
by the CCRP provides a comprehensive theoretical overview of C2 systems, processes, and
needs, while also identifying characteristics of successful C2 systems. Organizing C2 re-
search with respect to NCW doctrine provides a useful way to understand the current state

of knowledge and offers a basis for making recommendations for future work.

In particular, NCW doctrine establishes that successful C2 systems are agile to adapt to
changing mission needs, such that reviewing how current research advances NCW theory
may reveal how to design agile systems. Agility is defined in NCW literature as, “the
ability to successfully effect, cope with, and/or exploit changes in circumstances" (Alberts
2011), which corresponds to similar definitions found in manufacturing (Sherehiy et al.
2007), management (Santos Bernardes and Hanna 2009), and infrastructure (Chester and
Allenby 2019) contexts. Agility is comprised of both passive and active components such

as responsiveness, flexibility, and resilience among others (Alberts 201 1) that influence how



exploiting a situation may occur. Agility is studied in NCW via three dimensions that define
the C2 approach space: (1) allocation of decision rights to the collective, (2) patterns of
interaction, and (3) distribution of information (Alberts et al. 2010). NCW doctrine asserts
that these three organizational dimensions can predict a system’s agility, where C2 systems
range from “Conflicted C2” with the least agility due to constrained decision rights, patterns
of interaction, and distribution of information to “Edge C2” with the highest agility due
to unconstrained decision rights, patterns of interaction, and distribution of information.
NCW prescriptive recommendations focus on shifting existing systems from Conflicted C2
to Edge C2 by adopting novel policies and technologies that decentralize decision rights,
increase the frequency of interactions, and increase the richness of information sharing. An
important output of this review is identifying studies that describe and prescribe ways to

achieve agile systems and Edge C2.

1.2 Multilayer Network Science as a Guiding Framework

Advancing NCW doctrine requires finding the right balance between generic systems analy-
sis methods that apply to a breadth of C2 sub-systems and operational specificity to capture
C2 context and dynamic processes that dictate agility. Considering this need, we also review
the C2 literature to identify network models and analysis methods that are generic enough
to capture a breadth of contexts across descriptive research, but specific enough to prescribe

context-specific network designs.

Network science is a popular way to model C2 sub-systems and offers a basis for comparing
evaluation methods across C2 research. A network is a system model comprised of nodes
representing constituent parts and links representing nodal interactions. Network science
methods are useful for studying the structure and function of C2 sub-systems by ranking
nodes and links, where social and technological networks use the same methods to represent
different constructs and dependencies (Eisenberg et al. 2017). For example, a social network
of people linked by who-knows-whom can quickly reveal critical actors and relationships
that support information flow and decision-making. This is evaluated at the component scale
by ranking individuals via simple measures like the number of links a person has (Altman
etal. 2017) and at the system scale by classifying network topology (Newman 2010). Studies
also show relationships between system structure with network stability (Kitsak et al. 2018)

and C2 processes like agility and resilience (Ganin et al. 2016). Thus, network science



models and analysis methods provide a consistent basis for comparing technical advances

in the C2 literature, even when considering disparate models and application contests.

Recent advances in multilayer network science provide additional justification for using
networks to compare evaluation methods found in the C2 literature. While research on a
single C2 sub-system like ICT is important, advancing C2 theory requires new knowledge
at the intersection of human and technological sub-systems. Growth in network science
literature has brought with it the extension of methods for individual networks to the
integrated analysis of multiple networks together. As network models provide a basis
for comparing evaluation methods among disconnected sub-systems, multilayer network
analysis (Kiveld et al. 2014; Boccaletti et al. 2014a; De Domenico et al. 2014) provides a
consistent way to compare interactions among interdependent sub-systems. Examples of
multilayer network studies that inform C2 theory include coupled cyber-physical networks
(Buldyrev et al. 2010), sociotechnical networks (?), and cyber-physical-social networks
(Barker et al. 2017). The breadth of these studies emphasizes that multilayer network
science provides flexible way to organize literature across disparate application contexts.
Moreover, comparing C2 literature through the lens of network models and analysis can set

a baseline for the current state of C2 knowledge within and across sub-systems.

The review in Eisenberg et al. (2018a) links NCW doctrine and multilayer network sci-
ence to identify which studies advance C2 agility. While the primary goal is to organize
the field, a secondary goal of this work is to identify how well network science serves
C2 research. The generic nature of network science methods is both advantageous and
problematic for C2 theory, because network analysis of diverse human and technological
systems is possible even when detailed understanding of either is lacking. Research that is
overly specific to a single application context is not necessarily helpful for advancing C2 re-
search. However, multilayer networks that reveal interactions across sub-systems often lack
consideration of the physical principles or operational specifications of C2 systems making
them inappropriate for real-world use. In more extreme cases, network science studies
can even be counterproductive to C2 research when narrow applications ignore the breadth
of sociotechnical interactions or results produced with unrealistic models lack operational
detail (Doyle et al. 2005; Alderson and Doyle 2010; Alderson et al. 2013). Identifying how
network science is applied in C2 literature can help overcome these issues to further both

NCW doctrine and network evaluation methods.



1.3 C2 as Four Interacting Sub-systems

We draw upon NCW doctrine to define the social and technological sub-systems that
comprise C2 networks. NCW doctrine defines four domains of warfare that dictate C2
agility, where each domain can be represented by network models. Alberts and Hayes
(2003) and Atkinson and Moffat (2005) provide the first descriptions of C2 domains by
linking complex systems science to the structure and implementation of military policies.
The authors describe C2 as an interacting set of layers, including the physical world,
the information exchange that occurs over physical systems, the interpretation of data by
people, and a shared understanding generated by this process. Thus, a simple task like
sending an email involves networks of technologies that the individual has access to (e.g.,
computer), software and digital services required to deliver an email, values and beliefs
of the individuals writing and reading the email, and actions taken due to this exchange.
Based on this definition, C2 systems are comprised of at least four interacting sub-systems
representing physical, information, social, and cognitive systems (see Figure 1). These
descriptions were formalized into four broad domains by the NATO research task group
SAS-065 (Alberts et al. 2010) as:

* Physical Domain: sensors, facilities, and equipment;
* Information Domain: creation, manipulation, and storage of data;
* Social Domain: human organization and interactions; and,

* Cognitive Domain: mental models, preconceptions, biases, and values.



Physical Domain Social Domain

Information Domain Cognitive Domain

Figure 1. Multilayer network super structure of NCW domains and literature.
NCW domains are comprised of distinct sub-systems that interact to form a
four-layer network superstructure. C2 literature informs the drivers, models,
and measures that describe and prescribe inter- and intra-network structure
and function.

Each domain layer in Figure 1 embeds context-specific information that dictates the structure
and function of underlying systems. Table 1 lists the model primitives commonly associated

with each layer.



Table 1. Network primitives considered across the C2 literature

C2 Domain Nodes Links Dynamics
physical Domain: - Sensors - Cables [ Fiber - Network Traffic
Information & - Routers - Wireless Signals
Communication - Access Peints - Containment
Infrastructure
Information Demain: | - Functions - Data Streams - Sarvice Provision
Digital Services - Packages - Dependencies - Service Use
Social Domain: - Individuals - Interactions - Shared Awareness
Organizational - Teams - Knowledge - Communication
Structure - Qreganizations
Cognitive Domain: - Activities - Preconditions - Needs Assignment
Mission & Goals - Decisions - lterations

Columns present the different constructs that comprise C2 network models,
where the combination of nodes, links, and dynamics across rows defines a
network layer. Advances in C2 research may reveal new primitives, structures,
and multilayer analysis methods that combine network models together into
a single study.

Table 2 lists the types of technical information experts consider within reviewed articles
when modelling physical, information, social, or cognitive systems. For example, physical
domain includes connections among ICT hardware networks, the information domain by
software architectures, service federation, calls, and pointers, the social domain by teams
and organizational structure and the policies and beliefs that are embedded within them,
and the cognitive domain by task networks that show the dependencies between actions in

a logical sequence.

We also use complex systems theory that defines the architecture of each NCW domain to
specify how to analyze C2 networks. Current C2 theory falls short of defining network
primitives used to construct a C2 network model (i.e., nodes and links). Instead, we draw
upon complex systems theory of system architecture to establish the constraints that dictate
model structure and function. In particular, Alderson and Doyle (2010) define four design
constraints that capture the breadth of system architectures found in physical, cyber, social,

and cognitive domains, including:



» Component constraints: physical laws and requirements that dictate the capability of
network nodes;

* Protocols: rules for the configuration and interaction of system components;

o System-level constraints: higher-level functional purpose of a single network layer
including objectives and design criteria the system is meant to serve, e.g., maximizing
radar signal; and,

» Emergent constraints: the laws that dictate physical limitations of real systems often

expressed as needs and interactions across systems.

Table 2 lists common component constraints, protocols, and system-level constraints for

each of the layers.

Table 2. Breadth of C2 domain architectures and sub-system considerations

. Component-level System-level
A=< S 0TI BN Constraints USRS Constraints
Physical Domain: - Manufacturer - Industry Standards - Latency
Information & - Energy Use - Routing (e.g., TCP [ IP) - Access
Communication - Size - Security (e.g., key - Geographic Location
Infrastructure - Security generation)
- Reliability - Data Federation
- Cost
Infermation Demain: | - Programming - Software Architecture - Availability
Digital Services Language - Access (e.g.. User - Security
= Latency Interfaca) - Storage
- Accuracy - Discovery - Resource Budget
- Security - Service Federation - Decumentation
- Reliability
- Cost
Social Domain: - Roles & Duties - Standards - Laws & Regulations
Crganizational - Psychological Traits - Administration - Politics
Structure - Beliefs & Practices - Policies - Geographic Location
- Demographics = Partnerships = Cultural Morms
Cognitive Domain: - Manpower - Execution Order - Shared Objectives
Mission & Goals - Funds - Control Logic - Commander Intent
- Time - Stakeholder Needs
- Energy - Budget
- Skills Required
- Safety

Advances in C2 research depend on the analysis of component, protocol, and
system-level constraints within NCW domains with respect to past studies
on similar and interdependent systems.
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Table 3 additionally describes some of the emergent constraints that arise from the layered

architecture in C2 systems.

Table 3. Emergent constraints across multilayer C2 systems

Meeds far... Social &
Software & Digital P .
. el Organizational Mission & Goals
L Services
Constraints for i~ Structure
Information & Resource Use - N
N . Communication Communication
Communication (processing, storage, ) —
o Traffic Activities
Infrastructure connectivity, etc.)
Software & Digital N Human Factors &
. Service Access i
Services Capabilities
Social &
Organizational Skills & Knowledge
Structure

System architectures within a single domain influence the dynamics of other
domains, such that emergent, cross-layer may constraints dictate C2 agility.
Advances in C2 research could benefit from an improved understanding of
how emergent constraints influence the allocation of decision rights, patterns
of interaction, and distribution of information.

The dimensions that influence C2 agility identified by NCW doctrine (i.e., allocation of
decision rights, patterns of interaction, and distribution of information) are a result of the
structure and function of integrated C2 systems. Ultimately, decisions on which constraints,
primitives, and measures to use in representing and analyzing C2 network systems dictate
the types of results one obtains. Together, the review in Eisenberg et al. (2018a) organizes
the research literature to identify the state-of-the-art with respect to NCW doctrine and

complex systems science.
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2 Resilience Quantification

This project considered several techniques for quantifying resilience in the context of diverse
applications. The material in this section is adapted from Ganin et al. (2016), Massaro et al.
(2018), Ganin et al. (2017), Kurth et al. (2020), and Ganin et al. (2019).

2.1 Operational resilience: concepts, design and analysis

Building resilience into today’s complex infrastructures is critical to the daily functioning
of society and its ability to withstand and recover from natural disasters, epidemics, and
cyber-threats. This study proposes quantitative measures that implement the definition
of engineering resilience advanced by the National Academy of Sciences. The approach
is applicable across physical, information, and social domains. It evaluates the critical
functionality, defined as a performance function of time set by the stakeholders. Critical
functionality is a source of valuable information, such as the integrated system resilience
over a time interval, and its robustness. This section demonstrates the formulation on two
classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled
networks. For both models synthetic case studies are used to explore trends. For the
first class, the approach is also applied to the Linux operating system. Results indicate
that desired resilience and robustness levels are achievable by trading off different design
parameters, such as redundancy, node recovery time, and backup supply available. The
nonlinear relationship between network parameters and resilience levels confirms the utility
of the proposed approach, which is of benefit to analysts and designers of complex systems

and networks.

2.1.1 Introduction

The daily functioning of modern society is necessarily challenging, and traditional risk-
based approaches to managing critical infrastructure are often criticized for their inability
to address widely unknown and uncertain threats (Linkov et al. 2014c; Vespignani 2010;
Forum 2015). Risk-based approaches require developing threat scenarios, evaluating sys-
tem vulnerabilities and quantifying consequences associated with specific failures of system
components. In the case of an unknown threat space, developing realistic scenarios proves
to be an additional challenge. Moreover, it may be difficult to justify investing in hardening

system components based on hypothetical and uncertain threats (Park et al. 2013a). Weak-
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nesses and the potentially misleading nature of risk quantification approaches, for example
in cyber systems, have been pointed out by a number of researchers (Jansen 2009; Bartol
et al. 2009).

Building resilience into infrastructure networks (Holling 1973) has been proposed as the
key to protecting against the deleterious effect of system disruption due to natural disasters
(Cimellaro et al. 2010; Adger 2005) as well as infrastructure and engineering systems’
failures (Ouyang et al. 2012; Kahan et al. 2009; Como et al. 2013; Vugrin et al. 2010). Not
surprisingly, numerous interpretations of resilience have sprouted, testifying to the richness
of the concept but also presenting challenges for its measurement and applicationl. Yet
recent publications and guidance documents (U.S. Department of Homeland Security 2009;
The White House 2009) coalesce around the definition of resilience provided by the National
Academy of Sciences (NAS) (Press 2012): Resilience of a system is its ability “to plan and
prepare for, absorb, respond to, and recover from disasters and adapt to new conditions”.
An important feature of resilience captured in this definition is the temporal dimension:
the ability to recover and retain critical system functionality in response to a wide range of
threats, both known and unknown. The assessment of resilience should therefore identify
the critical functionality of a system and evaluate the temporal profile of system recovery in
response to adverse events. Resilience management should comparatively evaluate cross-
domain alternatives designed to enhance the system’s ability to (i) plan for adverse events,
(ii) absorb stress, (iii) recover and (iv) predict and prepare for future stressors in order to

adapt to their potential threats.

Even though definitions of resilience as a system property are commonly reported in the
literature (see details in Supplement S1, table S1.1), resilience assessment has been imple-
mented in structured but largely qualitative or semi-quantitative ways (Barrett and Constas
2014). Insightful studies quantify resilience with metrics associated with different domains
and subsequently integrate them into a risk-based evaluation or resilience index. For ex-
ample, Bruneau et al. (2003) identified four dimensions of seismic community resilience:
technical, organizational, social, and economic. Measures of resilience — robustness, ra-
pidity, resourcefulness, and redundancy — were then aggregated in order to minimize a
function of the probability of system failures, the consequences arising from such failures,
and recovery time (Linkov et al. 2013a). Another qualitative but quantifiable approach

sets forth a taxonomy for metrics that accommodates both change and interaction among
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physical, informational, and human domains (Linkov et al. 2013c). The approach applies
the taxonomy to cyber threats, energy systems and coastal infrastructure (Adger 2005;
Linkov et al. 2013c; Carvalho et al. 2014). Such work provides insight and guidance for
developing quantitative resilience measures that correspond to the qualitative identifica-
tion of systemic issues and gaps. Unfortunately, it provides only limited insight into the
management and control of the interconnected networks that constitute the entire system.
Simultaneously, the field of network science has focused on the challenge of understanding
the structure, dynamics and vulnerability of multi-layer systems across multilayer networks
(Havlin et al. 2014; De Domenico et al. 2015; Brummitt et al. 2012; Massaro and Bagnoli
2014; Boccaletti et al. 2014c¢).

This section proposes a methodology for quantifying a system’s resilience that captures the
very concept of engineering resilience advanced by the NAS (Holling 1996; Pimm 1984)
stated above. We make use of the critical functionality (CF) (which has been referred to
before as functionality function (Cimellaro et al. 2010), performance (Ouyang and Wang
2015; Ouyang and Due nas-Osorio 2012), quality (Bruneau et al. 2003; Reed et al. 2009;
Bocchini et al. 2014)), defined as a metric of system performance set by the stakeholders,
to derive an integrated measure of resilience. One example for CF, among many possible
ones, is the percentage of nodes that are functioning. Another is the ratio of a network’s

actual flow to its maximum capacity.

We note that, in addition to resilience, CF is rich in valuable information, and can be the
source of many quantitative performance metrics, such as the robustness, which we also
briefly discuss. For application domains, our focus in this paper are the following two
classes of models: i) multi-level directed acyclic graphs (DAG) (Thulasiraman 1992),
and ii) interdependent coupled networks (Buldyrev et al. 2010). While the second class
of network is the subject of intense interest (D’Agostino and Scala 2014), the first class
of networks, often overlooked by analysts, is of interest in many fields, from biology to
computer science (Shapiro 2007; Yu and Gerstein 2006; Corominas-Murtra et al. 2013).
As an application of this class, we also approximate the Linux, specifically Ubuntu 12.04,
code system, as a DAG and estimate its resilience. Because obtaining analytical results is
an intractable task, even for homogeneous networks, our approach is simulation based. We
do, however, obtain analytical results in the Methods section for a simple yet illuminating

special case of the first model, where only nodes without redundant active supply links may
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be unable to supply service. This case sheds light on the relationship between redundancy

and system resilience.

2.1.2 Resilience: an analytical definition

A network is modeled as a graph G (N, L) with a set of nodes N connected by links L. Before
considering network models, the proposed concept of resilience for complex networks is
described generally. The specification of N and L includes characteristics relevant to
resilience, such as capacity, location, and weight of each node and link. Let C be the set
of temporal decision rules and strategies to be developed in order to improve the resilience
of the system during its operation. From a computational viewpoint, the parameters and

algorithms defined by C depend on the particular model being implemented.

Ultimately, the system must maintain its critical functionality K at each time step ¢, where
K maps its states or parameters to a real value between 0 and 1. This mapping may, for

instance, be linear
Yiev,r) Wi(t; O)mi(t;C)

e,y wi(t;C)

where (N, L) is the set of all nodes and links, w;(#; C) € [0, 1] is a measure of the relative

K(t;N,L,C) = (1)

importance of node or link 7 at time ¢, and 7;(¢; C) € [0, 1] is the degree to which a node is
still active in the presence of an attack. An alternate interpretation defines 7;(#; C) as the
probability that node or link i is fully functional. More complex, nonlinear and detailed
definitions of critical functionality mappings are also possible. Finally, we introduce the
class of adverse events (or potential attacks on targeted nodes) E. For instance, in the case

of a random attack on two nodes, E is the set of all attacks on all possible node pairs.

Resilience, denoted by R, is a composite function of the network topological properties and
their temporal evolution parameters defined for a certain critical functionality and a class
of adverse events E:

R=f(N,L,C,E) 2)

Note that not all targeted nodes are necessarily afflicted. For a non-afflicted attacked node,
we thus have m; = 1 over the entire time interval of interest. We evaluate R over a certain
time interval [0, T¢] where T¢ is the control time (Majdandzic et al. 2013) which can be

set a priori, for instance, by stakeholders or estimated as the mean time between adverse

14



events. In continuous time, we define R as

L Ly [1CK(t;N,L,C)

R= RK,E. [0.7c]) = 15
/z-=0 Knomznal(t; N, L, C)

3)

where |E| is the cardinality of set E, and K"°™"4/(t) is the critical functionality of the
system in the case where no external events occur (Figure 2). Eq. 3 allows evaluation of the
normalized dynamical performance of the system before (plan/prepare), during (absorption),
and after an attack (recovery and adaptation); it intends to capture the definition advanced
by the NAS given in the introduction. For computational convenience, the above equation

is given in discrete time by

% 21 K(1N, L,C)
2?200 Knommal(t; N, L’ C)

R=R(K,E,[0,T¢]) = “4)

In most cases, we normalize to K"o™inal (r) = 1. Consequently, a normalized measure of

resilience may be given by

Tc Fl ZZK(t N,L,C) (5)

We note that Eq. 1 embraces a large class of performance measures found in the literature.

For instance, in addition to Eq. 5, we can also consider the measure
M = min;cjo7.1K(t; N, L, C) (6)

The above measure is referred to as the Robustness (Cimellaro et al. 2010; Callaway et al.
2000). Alternatively one may define (1°M) as the Risk (Linkov et al. 2014c).

Due to the very complex nature of networked systems and the large number of variables
defining their states, it is not possible to consider all events in the set £ and obtain a
closed-form expression for R, even if all design parameters are made homogeneous across
nodes, links, and time. We therefore rely on a simulation based approach. Each simulation
represents a possible scenario of the networked system’s evolution. For each simulation,

we calculate the average value of the critical functionality K (¢, N, L, C) at every time step
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Figure 2. Resilience and critical functionality concepts as advanced by the
NAS. The system's resilience is evaluated as the integral of the critical func-
tionality's (K) dependency on time.

(Eq. 1), and from there, the resilience (Eq. 4 or Eq. 5) over the interval of interest. The
approach proposed builds upon and extends the works of others (Cimellaro et al. 2010;
Bruneau et al. 2003; Ouyang and Wang 2015; Ouyang and Due nas-Osorio 2012; Bocchini
et al. 2014). The main issue encountered when dealing with the estimation of resilience
based on the simulation of the system performance curves is that those curves in the general
case vary depending on the adverse events modeled. The current approach to resolve this
issue is to extend the techniques of probabilistic risk analysis to resilience analysis. This
extension provides the weighted average performance curve with weights representing the

probabilities of the adverse events.

By contrast, in our approach, we would like to argue that the resilience of the system should
not be tied to the probabilities of the adverse events to occur. Again, according to the NAS
resilience is the ability to plan, absorb, recover, and adapt. Inspired by this definition, we
instead simulate the damage to the system from a certain adverse event (regardless of the

probability for that event to occur) and define resilience for that particular damage. For
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simplicity of decision making, however, we suggest considering a certain class of adverse
events. For instance, in a networked system we might define one class of adverse events
as a case when functionality of 4 to 5 nodes is reduced by 40-50% (instead of defining a

particular adverse event reducing the functionality of specific 4 nodes by 50%).

We illustrate the approach with two simple models: multi-level DAGs and interdependent
coupled networks. We assume that homogeneous nodes and links comprising the network
have only two possible states: active and inactive, meaning w;(t), 7;(t) € [0, 1] in Eq. 1.
To simplify the explanation, we focus on node failures, though the concept may be extended
to include links. If we denote the number of active nodes in the system at time ¢ by A(r)
and the total number of nodes in the system by N, then the critical functionality simplifies
to

K(r) = A(1)/N (7

We first consider a hierarchical multi-level DAG model (Figure 3) with A levels of nodes
(Suzuki et al. 2003; Cho et al. 2012). We investigate how redundancy probability p,,,
switching probability py, and the recovery time Tg, tradeoff parameters at the disposal of the
system designer, influence the resilience of a supply-demand multi-level DAG across levels,
nodes, links, and time, how they affect the absorption and recovery phases of a network’s
resilience profile, and how they address the optimization of network design, for a variety of
attack scenarios. We also distinguish between cases where switching is instantaneous and
delayed by one time step. Further description of the model is provided in the Methods. Two
applications of the DAG model will serve to illustrate the quantitative resilience measure
introduced, as well as the method for evaluating it: 1) synthetic random hierarchical multi-
level supply-demand directed acyclic graphs, and 2) the Linux, specifically Ubuntu 12.04,
software network. The first is a useful, if approximate, representation of networks found in
many applications (Shapiro 2007; Yu and Gerstein 2006; Corominas-Murtra et al. 2013;

Yan et al. 2010). The second realistically represents an existing and widely used network.

The second model is derived from the model introduced by Buldyrev et al. (2010) and
developed by Parshani et al. (2010). They consider a system comprised of two coupled
undirected networks (A and B). A certain fraction of nodes in network A depends on nodes
in the network B (g4) and vice versa (gp). If node n in the network A depends on a node

m in the network B then node m can only depend on node n (or not depend on nodes in the
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Initial configuration Some nodes are Nodes fail if they don't
destroyed have active suppliers

Nodes having redundant Initially destroyed nodes Initial configuration
incoming links switch recover attimet+ 1+ Ty is re-established
with probability pg

@ active node @ inactive node  / real link " virtual link

Figure 3. Network generation and modeling of an adverse event. The hi-
erarchical area is first defined, then links are established according to the
Bernoulli trial probability law, with parameter p,,. During the operation, if
a node with a redundant link or links is made inactive, it can switch with
probability p, at each time step following attack time 7. After the repair
time period of Tg steps elapses following the attack, the initially destroyed
nodes are restored.

network A at all) (see Methods). Without loss of generality we consider scenarios where
networks A and B have the same node degree distribution. We present results for Erdos-
Renyi and scale-free random networks with 800000 nodes (N) and average degree ({k)) of
2.5, and slope factor (in the scale-free case) of 2.25. Networks are generated following the

algorithm presented by Catanzaro et al. (2005).

We consider a case with a single adverse event that destroys a number of nodes in the
network. For simplicity, the adverse event happens at the time step t = 0. We shall refer to
the result of the adverse event as the initial damage. In case of the DAG model we denote
the number of nodes that become inactive (i.e., are deactivated) in level i between time

steps t and t + 1 as /. Thus, values I? represent the number of nodes made inactive upon
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the occurrence of the adverse event. In case of the coupled networks model we denote the
fraction of nodes rendered inactive in the network A as p g, With the assumption that the

adverse event doesn’t affect the network B.

2.1.3 Results

Model 1 - Directed acyclic graphs. Synthetic graphs. We consider a network composed
of N = 1000 nodes in four levels: Ny = 32, N; = 87, N, = 237, N3 = 644. We first look at
the special case where the switching is instantaneous with probability p; = 1. Assuming
the overall damage to each level is small compared to the total number of nodes in the
level, the approximation derived in the Methods section may be used. Figure 4 provides
comparisons between the analytical calculations based on that approximation for this case
and simulation results averaged over 2000 samples. We note that this case provides insight
into the impact of link redundancy on both critical functionality and resilience over the
time interval of interest, as we show in the first two scenarios of Figure 5. Examples of
resilience profiles for different cases that vary in their initial damage, switching probability
and recovery time are given in Figure 5. Case 1 is a scenario where only one node in the
upper level is initially disabled. This scenario represents, for instance, an accident at a
power plant. It follows, that the event set E consists of all possible one-node attacks in the
upper level. Critical functionality suffers minimally; it reduces from 1 to 0.97 at its lowest.
Its integral, resilience, consequently suffers minimally as well: R = 0.983. By contrast, for
a more serious attack, such as in case 2, in which five nodes at every level are disabled (such
an attack might represent a large earthquake in a certain area); both critical functionality
and resilience suffer. Critical functionality can be as low as 0.8 (a considerably less robust
system) for a protracted number of time steps, and resilience is reduced to 0.893. For case
3, 10 nodes are disabled, all from the top level, and the switching probability is reduced
to py = 0.25. The robustness, or the critical functionality at its lowest, is more drastically
reduced to 0.4, yielding an overall resilience value of 0.728. Case 4 is similar to case 3,
except that the switching is delayed, i.e., if node i has become disabled at time ¢, then the

first attempt to switch is made at time t* for case 3, and at time ¢, + 1 for case 4.

The dependency of resilience on parameters p,, and p; is given in Figure 6 (a) with the
recovery time held constant at T = 0.57¢. The figure shows that both parameters are

compatible and combinable; they can be smoothly traded off to maintain a desired level of
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Figure 4. Special case: analytical vs computational solution. Comparison
between the analytical solution and the computational experiments in the
limiting but insightful special case in which switching is instantaneous when
an additional link is available, meaning that p; = 1, under three different
scenarios. Initial damage numbers for each layer are ordered as follows:

18, I?, Ig,lg. For instance, the initial damage in scenario 1 is: 18 = 1,1? =

I) = I9 = 0. This special case reveals the impact on resilience of redundancy
levels, as represented by the probability p,,. The cylinder represents the
25-75 percentile range.

resilience. The designer here has the opportunity to select the combination of p,, and p;
that is least costly. Additionally, increasing p,, and p, simultaneously has an observable
additive effect on resilience. Beyond certain level, however, investment in redundancy
yields minimal return. For instance, as shown in Figure 6 (a), doubling the probability p,,
from 0.1 to 0.2 leaves the resilience unchanged for p; > 0.3. In addition, there is strong
synergy between p,, and p,; increasing both factors together produces a rapid increase in
resilience, but increasing only one or the other variable will cause the resilience metric to
plateau. This can be observed in Figure 6 (a) by regarding the resilience values shown
across the phase diagram curves. Figure 6 (b) illustrates that similar tradeoffs can be
made between the maximum node recovery time 7g, and the switching probability p;. The

redundancy parameter p,, is held constant at 0.01. When the recovery time is relatively
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Figure 5. Resilience profiles for different scenarios in synthetic graphs. Re-
sults are shown for the redundancy probability parameter p,, = 0.01. Initial

damage numbers for each layer are ordered as follows: 18,1?,13,12. For

instance, the initial damage in scenario 1 is: 18 = 1,1? = Ig = Ig =0. The
robustness (M) values for scenarios 1 — 4 is the minimum value for each
curve: 0.966, 0.787, 0.453, and 0.395 respectively.

short, T < 0.17¢, resilience values close to 1 may be obtained even for values of p;
as small as 0.05. Resilience is strongly affected by the recovery time, Tk (Figure 6 (b)).
This temporal factor determines the characteristics of the recovery phase and has a greater
impact on the calculated resilience than does the potential increase in redundancy. This is

particularly true when the switching probability p; is low, as Figure 6 (b) demonstrates.

Cost and speed of design and implementation can now guide the ultimate choice from

among the infinite possibilities of parameter combinations.

Model 1 - Directed acyclic graphs. Linux software network. The Linux software
network exemplifies the structure of complex multilevel software systems and is important

in its own right. This software operates in an estimated 95% of all supercomputing sys-
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Figure 6. Resilience as a function of design parameters. (a) Resilience (value
shown on curves, o € [3.1E - 3;2.0E — 2]) dependencies on switching
probability at each time step, or py, and redundancy parameter p,,, for a
four level hierarchical network where the initial number of destroyed nodes
at each level is I = 16,19 = I = I{ = 0 respectively, and recovery time is
held constant at Tx = 0.57¢, and (b) resilience (oo € 5.9E — 4;4.3E - 2])
dependencies on py and Ty for 18 = I? = Ig = Ig = 5 with constant
pm = 0.01 (color bar indicates the value of the resilience).

tems (Top500.org 2014), and the majority of the smartphones in use (in the form of the
Android operating system). Packages in Linux are linked in a formally defined hierarchy
of dependencies between individual software units. In this hierarchy, a package can only
be installed if all required higher level packages have previously been installed. Some
redundancy is possible when multiple packages provide the same functionality. Figure 7
shows a subnetwork of the packages network consisting of 117 nodes out of 36,902 possible
nodes in the entire network. The graph data were obtained using Advanced Packaging Tool
(Nussbaum 2014) on a standard installation of the Ubuntu 12.04 system.

Many modern cyber threats exploit vulnerabilities in software packages. Disabling a
targeted software package leads to the failure of any services that are dependent on it. Even
worse, the recovery might be protracted as a result of corrupted user data, thus requiring
manual repair and cleanup. For example, an attack on the Apache web server might cause it
to fail and subsequently send corrupted or maliciously designed data to backend databases
(Kargl et al. 2001). Consequently, services dependent on Apache would experience data
corruption, and if Apache crashes, it would be disabled as well. While the damaged server

might be restarted relatively quickly, recovery from such an attack would involve checking
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Figure 7. Subnetwork of the Linux hierarchical packages network.

i

the data, which gives rise to serious additional delays.

We evaluate the resilience of the Linux packages network in the presence of both random
and guided attacks. Critical functionality and resilience profiles for guided attacks on
several particularly important packages are given in Figure 8 (a). These packages are:
xauth, libstdc++6, libc6, and gcc-4.6-base. Notably in these four cases there are four sets
of adverse events E. Each of these sets contains only one event that successfully causes
a particular node to be destructed. It is seen that the level of damage depends on which
packages are targeted. For random attacks (Figure 8 (b)), we consider another set of adverse
events, consisting of 36,902 events. In this case, resilience is significantly higher than in
the case of guided attacks due to the low importance of many of the nodes that failed from
the attacks, thus yielding R = 0.99975 and M = 0.999.

Model 2 - Interdependent networks. Synthetic graphs. We summarize the results for
the second model in the Figure 9. Panels (a) and (b) show the dependency of the critical
functionality of a system of two interdependent Erdos-Renyi (ER) networks on time for 2
distinct cases of the recovery resources available expressed as the number of the backup
agents (Np). As it is evidenced by the Figure 9 depending on the value N; there is a
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Figure 8. Resilience profiles for the Linux network. (a) Guided attacks,
and (b) random attacks. It is clear that guided attacks are considerably
more damaging. Moreover, not all guided attacks are equally damaging;
as shown in (a), attacks on xauth are less damaging than on libstdc++6.
Most damaging are attacks on libc6 and gcc-4.6-base. The robustness (M)
values for scenarios 1 — 4 in the panel (a) are 0.982, 0.655, 0.130, and 0.129
respectively, while for the case in the panel (b) M = 0.999.

sharp distinction between two cases: in Figure 9 (a) the system is unable to return to the
recovered state and the critical functionality oscillates between O and about 0.5; due to
random duration of cascading recovery and failure processes eventually the amplitude of
the oscillations of the mean value of CF decreases; in Figure 9 (b) the backup supply to
0.4N nodes in the network A allows reaching a stable state after the backup supply removed

and further recovery of the system.

In scale-free networks (SF) the results for <k> = 2.5 and N = 800000 (Figure 9 (d), (e))
show a much larger dispersion than in Erdos-Renyi networks. In particular some of those
networks suffer a much smaller drop in critical functionality in response to the adverse
events modeled. This obviously is a consequence of the infinite dispersion in degrees
distribution in the SF networks (though in our case the dispersion is finite due to the finite
number of nodes). Another distinct specific trait of the SF networks with small value of the
average degree is the fact that whether the network fully recovers or not is strongly dependent
on the stochastic nature of the cascading failure process. Particularly it is obvious from
Figure 9 (d) that the success of recovery is determined by whether the most important hubs
were affected during the deactivation process. If those hubs are not affected the damage is
relatively small, otherwise the damage results in large drop in critical functionality and no

full recovery within the control time.

24



Finally panels (c) and (f) in the Figure 9 show the phase diagrams of the dependency of
the resilience (calculated as the integral of the CF over the control time) on the model
parameters pg.s and Njp. Notably the critical functionality practically drops to zero for
only 0.2 of the nodes destroyed in the network A initially (pges:-). Parshani et al. (2010)
has demonstrated that if p 4., is more than 0.2545 the network experiences the first order
transition leading to a state with almost no active nodes. We have reproduced their results
for the Erdos-Renyi networks and confirmed that if p 4., is less than the threshold of 0.2545
the transition doesn’t occur. However due to minor modifications we made to the network
generation algorithms aimed at connecting all the nodes in a single giant component (GC)
in the beginning of the process, we observe decrease of the threshold value p 4., causing
the first order transition, to about 0.15 — 0.2. After the drop of the critical functionality
(due to the cascading failure) on the step Tk the recovery process starts. The recovery is
successful only if NV, is about 0.4N or higher. Finally if the whole network A is destroyed as
a result of the adverse event (p 4.5 = 1) then the recovery cannot start due to the absence of
the GC (A). Results for the scale-free network show similar tendencies although notably are
much more disperse in the region Nj, € [0.1;0.6], pgest» € [0.05;0.85]. We interpret this
as the consequence of the divergence of the standard deviation of the degree distribution in

the scale-free networks with y € [2;3].

2.1.4 Conclusion

We have presented a detailed approach for implementing the NAS definition of resilience as
a function of design tradeoff parameters, as illustrated in the study with multi-level directed
acyclic graphs and interdependent networks. The approach allows evaluation of resilience
across time, and not just as a single quantity. Designers can thus analyze the effect of
parameter choice and design emendations on overall network resilience and robustness.
Focusing on multi-level directed acyclic graphs and interdependent networks, we have
demonstrated how network parameters can be traded off to obtain a desired resilience and
other performance measures’ level. Future work will extend to multiplex systems, other real
life networks. An important long term challenge is to model adaptation, which is part of
the response cycle that follows restoration and includes all activities that enable the system

to better resist similar adverse events in the future.
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Figure 9. Representative profiles of the dynamics of K and resilience in
networks with N = 800000. Panels (a) and (b) show results for ER networks
wWith pgessr = 0.5, Nb = 0.35N and Nb = 0.4N respectively. Panels (d) and
(e) show results for SF networks with pgesr = 0.5,Nb = 0.1N and Nb =
0.62N respectively. In the panels (a), (b), (d), (e) the solid line corresponds
to the mean value of K over 100 simulations. Gray area corresponds to the
region K + 0-(K) (where o is the standard deviation). The plot in the panel
(d) also shows simulations where critical functionality restores to 1. It follows
that the success of the restoration algorithm depends for the most part only
on the results of the cascading failure (rather than the random selection of
the nodes with the backup supply): in cases when the important hubs are
active after the cascading failure recovery is more likely. Finally panels (c)
and (f) display phase diagrams of the resilience dependencies on both N
and pgesr parameters. In both ER and SF networks the recovery process is
stochastic and very sensitive to the backup supply available.
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2.1.5 Methods

Absorption and recovery algorithms in the DAG model. A hierarchical multi-level
DAG (Figure 3) has A levels of nodes (Suzuki et al. 2003; Cho et al. 2012). Each layer is
comprised of N;nodes (i =0,...,A”1). The links represent a supply—demand relationship.
A link starts at a supplier node and ends at a demander node. Thus, every link in the network
is directed. For every level, we identify a set of services that all nodes in a particular level
supply. Then, for every service supplied in the network, we define whether or not it depends
on other services and a (possibly empty) list of the dependencies. The levels are ordered in
such a way that links only go from a higher level i to a lower level j. With this convention,
i < j, or, the higher the level, the smaller the index. Additionally, no links can be formed
between nodes in the same level. We also disallow cycles in the network by imposing
the following constraint: a node cannot depend on any of the services provided by any of
the other nodes in its level or on any of the services provided in any of the lower levels.
Initially, all dependencies are resolved, and every node has one incoming link from one or
more upper levels on which it depends for the supply of its services. Furthermore, for every
dependent node and each of its required services, we introduce a list of potential suppliers.
The probability that a node has a link from each of the potential suppliers is p,,. Said
another way, a node has many links supplying a given service but only one of those links
is enabled initially (known as real), while the others are contingent backup links (known as

virtual), should they exist.

To model an adverse event, we introduce an ability to destruct a node for a time period
Tg, as was recently done by Majdandzic et al. (2013). A destructed node is inactive and is
therefore unable to supply services until it recovers. Another possible cause of deactivation
is an unresolved dependency, that is, the absence of a real link to a node supplying a
required service. This can happen when the only supply node available for a service is
either destructed or its upstream supplier is destructed. We shall refer to the nodes with an
unresolved dependency as disabled nodes. Note that a node can be disabled, destructed,
or both at a given time. Once a node becomes inactive, all of its dependencies, connected
through their real links, are subject to deactivation unless they have other real links providing

all of their required services (Figure 3).

We assume that a node is eligible to switch links, that is, to turn a virtual or contingent

link into a real one, if virtual links for all of the node’s unresolved dependencies exist and
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the node is not destructed. At every time step during which the node is both disabled and
eligible to switch, switching happens with probability ps. Switching can be either instant
(the first attempt to switch is made at the same time step the node has become disabled)

or delayed (the node with an unresolved dependency remains disabled for at least one time

step).

Analytical approximation for the special case of the DAG model. In this section
we derive equations describing the number of active nodes in the special case where
the switching is instantaneous with probability p; = 1 while the initial damage is small

compared to the total number of nodes in the network.

Let us denote by A the number of levels in the network and by N; the number of nodes
inlevel i(i =0,...,A”l). We can find the probability that a node in level i has only one

service provider in level j as follows:

fi=(1=py)Nih (8)

For the case where the number of deactivated nodes at each time step is small enough or in
which p,, = 0, we may assume that only the nodes with one link for a relevant service are
disabled as a result of the inactivation of their supplier (thus neglecting the cases in which

the node has more than one supplier of a service and all of them are deactivated).

The average number of active nodes in level i at time step #(A!) is given by the formula:
Al=N- I 9)

These Al nodes have A; suppliers in each level j < i. We disabled I ;._1 suppliers of the nodes
in level j between steps t — 1 and t. The probability for a node in level i to become disabled

between time steps t and t + 1 is therefore:

i—1 It_—lfl.
1‘1_[(1‘}_1) (10)

=0 ;

1

Al- 1
J

We approximate the distribution of to be linear in I?, although the dependency itself is
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not linear:

1 1 1 1 (11
A;—l N Zl‘ 1 Is N] 1—-—x
Where (under the assumption that the overall damage is small enough):
l_(l) [}s‘
X = << 1 (12)
N;j

Considering the Taylor expansion of 1/ (1-x), we have for small values of x: 1/(1—x) = 1
+ x. Then, on average between steps t and t + 1, we disable the following number of nodes

in level i:

i-1 71 fj -1
r=-11- / Ni- I (13)
o | (V)= Do) =

After the recovery period of Tk time steps has transpired, the initially destroyed nodes are
rebuilt and become active unless they still lack sufficient supplies from the upper levels.
Thus, assuming that T > A, Il? =0fori = [0,...,Al and ¢t = [A,...,Tg — 1]. The total
number of nodes restored at step Tx in level i is given by the expression:

Uil (Vi - F*) (14)
N;

1

|11%| =

Here, F! represents the total number of nodes disabled in level i at time step t due to the

fact that they do not have sufficient supplies from the upper levels:

]—1[ =) N, (15)

=0 J

And for the next steps, the formula is as follows:

i—1 t—1
|I! |fj
t_ i
il = 1‘“(“?
J

J=0

(N; - F}) (16)

Using the formulae above, we may evaluate the average approximated resilience profiles

and find the values of resilience.
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Absorption and recovery algorithms in the coupled networks model.  The failure
propagation algorithms are described in the original model of Buldyrev et al. (2010). Initial
damage results in a certain fraction of nodes deactivated in the network A. Once those
nodes are deactivated the network A is fractured in clusters. Nodes that do not belong to
the largest cluster of the network A are also assumed deactivated. Then all the nodes in the
network B that depend on the deactivated nodes in the network A are also deactivated. It
results in fracturing of the network B, and the nodes that are not in the largest cluster of
the network B are also assumed deactivated. In the second step of the process nodes in the
network A depending on the deactivated nodes in the network B are deactivated and the
process propagates in the same fashion until there are no more nodes to deactivate in any

of the networks.

Recovery is accomplished by the backup supply agents replacing unresolved dependencies
of the nodes in the first network (A). The number of those agents is denoted N,. Each
backup agent can serve only one node at a time. Nodes to provide the backup supply to
are chosen randomly from those nodes in the network A that depend on a currently inactive
node in the network B. Thus backup is provided either to all nodes in the network A with
an unresolved dependency (in this case full recovery is guaranteed) or to N, nodes only.
If a node has backup supply and it is connected to its network’s GC it is activated. Once
a node is activated it is included in the network’s GC. This causes eventual growth of the
giant component of the network A. After that the nodes in the network B that depend on
the activated nodes in the network A and are connected to the GC of the network B are also
activated and the process propagates in a similar fashion. Once the process is complete the
recovery phase finishes. After that the backup supply is removed meaning that all the nodes
whose supplier in the network B is not active (after the recovery phase) are deactivated.
This leads to a cascading failure propagating as described in the introduction section. Once
the failure phase finishes the recovery phase is repeated until the full network recovery is

established or the control time is reached.

Let us consider a simple two-network system (Figure 10). At the beginning of simulation
(time 0) two nodes (A1l and A3) are assigned to be initially destroyed. Cascading process
finishes before the recovery time (that is time to repair a node is more than the cascading
failure time) Tg. Thus at time Ty the network is in the state it had after the cascading failure.

After Tg steps have passed the recovery process starts. The case of N = 0 is shown in the
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panel (a) of the Figure 10. In this case the only recoverable node is A3. After its recovery
node B3 is also recovered, but further recovery is not possible. Nodes Al, A2, B1, and
B2 can’t be recovered as they have an unresolved dependency. In addition even if nodes
A1, B1 were independent they still wouldn’t have been recoverable due to the fact that they
are not connected to the respective networks’ GCs. Now consider the case Nb = 1. In this
case two scenarios are possible: a) The node chosen for backup supply is Al (Figure 10
(b)). Then no recovery can happen as this node is not connected to the network A GC (or
GC(A)) and the recovery phase ends in O steps; b) The node chosen for backup supply is
A2 (Figure 10 (c)). Then this node recovers, node B2 recovers in turn. During the second

step of the recovery phase node A1 recovers and node B1 recovers in turn.
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Figure 10. Recovery process in coupled networks. At time 0 nodes Al and
A3 are deactivated for Tk steps. The failure process finishes before T so at
time Tx the network is in its state after the cascade. Panel (a) illustrates the
case N = 0. Only independent node A3 can be recovered as it is connected
to the network A GC. Once node A3 is activated its dependent node B3
is also activated. Panels (b) and (c) illustrate the stochastic nature of the
recovery process. In these cases N, = 1. At time Tg + 1 either node Al
(b) or node A2 (c) can have backup supply. In case (b) the recovery phase
doesn't start. After that backup is removed but cascading failure occurs.
On the next time step when backup is applied again to a randomly selected
node the recovery cascade is possible if the node chosen is A2. This case is
the same as the case (c) with time Tg + 1 (in the case (c)) corresponding
to the time Tg + 3 (in the case (b)).
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2.2 Resilience management during epidemic outbreaks

Assessing and managing the impact of large-scale epidemics considering only the individual
risk and severity of the disease is exceedingly difficult and could be extremely expensive.
Economic consequences, infrastructure and service disruption, as well as the recovery
speed, are just a few of the many dimensions along which to quantify the effect of an
epidemic on society’s fabric. Here, we extend the concept of resilience to characterize
epidemics in connected populations, by defining the system-wide critical functionality
that combines an individual’s risk of getting the disease (disease attack rate) and the
disruption to the system’s functionality (human mobility deterioration). By studying both
conceptual and data-driven models, we show that the integrated consideration of individual
risks and societal disruptions under resilience assessment framework provides an insightful
picture of how an epidemic might impact society. In particular, containment interventions
intended for a straightforward reduction of the risk may have net negative impact on the
system by slowing down the recovery of basic societal functions. The presented study
operationalizes the resilience framework, providing a more nuanced and comprehensive
approach for optimizing containment schemes and mitigation policies in the case of epidemic

outbreaks.

2.2.1 Introduction

Data-driven models of infectious diseases (Riley 2007; Marathe and Vullikanti 2013;
Balcan et al. 2009b,a; Grais et al. 2003; Colizza et al. 2007; Hufnagel et al. 2004; Eubank
et al. 2004; Merler and Ajelli 2010; Cooper et al. 2006; Ferguson et al. 2003, 2006; Germann
et al. 2006; Epstein et al. 2007; Degli Atti et al. 2008) are increasingly used to provide real-
or near-real-time situational awareness during disease outbreaks. Indeed, notwithstanding
the limitations inherent to predictions in complex systems, mathematical and computational
models have been used to forecast the size of epidemics (Team 2014; Meltzer et al. 2014;
Rivers et al. 2014; Shaman et al. 2014), assess the risk of case importation across the
world (Cooper et al. 2006; Epstein et al. 2007; Gomes et al. 2014), and communicate
the risk associated to uncurbed epidemics outbreaks (Van Kerkhove and Ferguson 2012;
Lipsitch et al. 2011; Van Kerkhove et al. 2010). Despite contrasting opinions on the use
of modelling in epidemiology (Merler et al. 2015), in the last few years a large number
of studies have employed them to evaluate disease containment and mitigation strategies

as well as to inform contingency plans for pandemic preparedness (Ferguson et al. 2003;
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Germann et al. 2006; Degli Atti et al. 2008; Merler et al. 2015; Wu et al. 2006). Model-
based epidemic scenarios in most cases focus on the “how many and for how long?”
questions. Furthermore, mitigation and containment policies are currently evaluated in the
modelling community by the reduction they produce on the attack rate (number of cases)
in the population. These studies aim at identifying best epidemic management strategies
but typically neglect the epidemic and mitigation impact on the societal functions overall.
The evaluation of vulnerabilities and consequences of epidemics is a multi dimensional
complex problem that should consider societal issues such as infrastructures and services
disruption, forgone output, inflated prices, crisis-induced fiscal deficits and poverty (World
Health Organization 2009; S.N. et al. 2016). Therefore, it is important to broaden the
model-based approach to epidemic analysis, expanding the purview by including measures
able to assess the system resilience, i.e. response of the entire system to disturbances,
their aftermath, the outcome of mitigation as well as the system’s recovery and retention of
functionality (Holling 1973; Linkov et al. 2013b, 2014c). Most important, operationalizing
resilience (Linkov et al. 2013b, 2014c; Linkov and Palma-Oliveira 2017b) must include
the temporal dimension; i.e. a system’s recovery and retention of functionality in the face
of adverse events (Linkov et al. 2014c; Ganin et al. 2016; Barrett and Constas 2014;
Majdandzic et al. 2014; Gao et al. 2016). The assessment and management of system
resilience to epidemics must, therefore, identify the critical functionalities of the system
and evaluate the temporal profile of how they are maintained or recover in response to
adverse events. Even though the assessment and management of adverse events resilience
of complex systems is the subject of active research (Ganin et al. 2016; Barrett and Constas
2014; Majdandzic et al. 2014; Gao et al. 2016), its integration in the computational analysis
of epidemic threats is still largely unexplored (S.N. et al. 2016; Linkov et al. 2014b;
Lu et al. 2017). Here, we introduce a resilience framework to the analysis of the global
spreading of an infectious disease in structured populations. We simulate the spread of
infectious diseases across connected populations, and monitor the system—level response to
the epidemic by introducing a definition of resilience that compounds both the disruption
caused by the restricted travel and social distancing, and the incidence of the disease.
We find that while intervention strategies, such as restricting travel and encouraging self-
initiated social distancing, may reduce the risk to individuals of contracting the disease,
they also progressively degrade population mobility and reduce the critical functionality

thus making the system less resilient. Our numerical results show a transition point that
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signals an abrupt change of the overall resilience in response to these mitigation policies.
Consequently, containment measures that reduce risk may drive the system into a region
associated with long-lasting overall disruption and low resilience. Interestingly, this region
is in proximity of the global invasion threshold of the system, and it is related to the slowing
down of the epidemic progression. Our study highlights that multiple dimensions of a
socio-technical system must be considered in epidemic management and sets forward a
new framework of potential interest in analyzing contingency plans at the national and

international levels.

2.2.2 Results

We provide a general framework for the analysis of the system-level resilience to epidemics
by initially considering a metapopulation network (Figure 11A). In this case we consider a
system made of V distinct subpopulations. These form a network in which each subpopu-
lation i is made of N; individuals and is connected to a set k; of other subpopulations. A
complete description of the networked systems is given in the Methods section. The notation

and the description of the parameters used in our simulations are reported in Table 4.
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Figure 11. Schematic representation of the metapopulation model. (A) The
system is composed of a network of subpopulations or patches, connected
by diffusion processes. Each patch contains a population of individuals who
are characterized with respect to their stage of the disease (e.g. suscepti-
ble, exposed, susceptible with fear, infected, removed), and identified with
a different color in the picture. Individuals can move from a subpopulation
to another on the network of connections among subpopulations. At each
time step individuals move with a commuting rate ¢;; from subpopulation
i to subpopulation j. (B) Schematic illustration of the system'’s critical
functionality. The system if fully functional (CF(¢) = 1) during ordinary
conditions when all the subpopulations are healthy and the number of real
commuters is equal to the number of virtual commuters, i.e. D(¢) =0 and
C(t) = Z(t). After the outbreak takes place (7p) the system's function-
ality decreases because of the disease propagation and the eventual travel
reduction. Next the system starts to recover until the complete extinction
of the epidemic (Tg) which corresponds to the time when no more infected
individuals are in the system. The curves (a) and (b) represent the critical
functionality of scenarios corresponding to high and low values of resilience.
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Table 4. Notation and description of the parameters used in our simulations.

Notation Description

Number of subpopulations in the metapopulation network

Total number of individuals in the system

Average degree of the metapopulation network

Fraction of diseased populations

Fraction of healthy populations

The parameter that regulates the system wide travel restrictions

System’s resilience

Critical Functionality

Resilience control time

V
N
(k)
D
H
A Fraction of active travelers in the system

p

r
CF
Te
S

Susceptible individuals

Sr Susceptible with fear individuals
E Exposed individuals
1 Infected individuals
R Recovered individuals
R, Basic reproduction number
A The rate at which an ‘exposed’ person becomes ‘infected’
u The rate at which an ‘infected’ recovers and moves into the ‘recovered’ compartment
B The parameter controlling how often a ‘susceptible’-‘infected’ contact results in a new ‘exposed’
ﬁF The parameter controlling how often a ‘susceptible’-‘infected’ contact results in ‘susceptible with
fear individual’
a The parameter controlling how often a ‘susceptible’-‘susceptible with fear individuals’ contact
results in a new ‘susceptible with fear individual’
T The parameter that modulates the level of self-induced behavioral change that leads to the reduction
of the transmission rate
U The rate at which individual with fear moves back into the ‘susceptible’ compartment

Diffusion Processes. The edge connecting two subpopulations i and j indicates the presence
of a flux of travelers i.e. diffusion, mobility of people. We assume that individuals in the
subpopulation i will visit the subpopulations j with a per capita diffusion rate d;; on any
given edge (Colizza and Vespignani 2008) (see the Methods section for further details).
We define the total number of travelers Z between the subpopulations i and j at time 7 as
Z;i(t) = d;jN;(t), so that when the system is fully functional, the total number of travelers
at time t from the node i is Z;(¢) = X jex, Zij(1). Under these conditions, the total number of
travelers in the metapopulation system at time 7 is simply Z(z) = }}; Z;(t). In the following
we assume that infected individuals do not travel between subpopulations, thus reducing

the actual number of travelers.
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Reaction Processes. In analyzing contagion processes we extend the compartmental
scheme of the basic SEIR model (Anderson et al. 1992; Keeling and Rohani 2008)
(see Methods and Supplementary Information (SI) for a detailed description). Indeed
an important element in the mitigation of epidemics is self-initiated behavioral changes
triggered in the population by awareness/fear of the disease (Funk et al. 2010; Massaro
and Bagnoli 2014). These generally reduce the transmissibility and spreading. Exam-
ples of behavioral changes include social distancing behaviors such as avoidance of public
places, working from home, decrease of leisure and business travel etc. In order to in-
clude behavioral changes in our model, we consider a separate behavioral class within the
population (Perra et al. 2011), defining a special compartment of susceptible individuals,
SF . where F stands for “fearful”. In particular, individuals transition to this compartment
depending on the prevalence of infected and other fearful individuals according to a rate
Br. This rate mimics the likelihood that individuals will adopt a different social behav-
ior as a result of the increased awareness of the disease as perceived from the number of
infected and fearful individuals present in the system. Clearly, spontaneous or more com-
plex types of transitions (for example indirectly linked to the disease transmission due to
mass media effects (Perra et al. 2011)) could be considered. However, they would require
more parameters and introduce other non-trivial dynamics. We leave the study of other
behavioral changes models for future works. It follows that in each subpopulation the to-
tal number of individuals is partitioned into the compartments S(z), S¥(¢), E(¢), 1(¢), R(?)
denoting the number of susceptible, fearful, exposed, infected, and removed individuals
at time ¢, respectively. The transition processes are defined by the following scheme:
S+I > E+I1,S+1 — S¥+1,5+5" - 287, SF+1 > E+I1,E — I and I — R with their
respective reaction rates, 8, 8r, @, rp3, A and . Analogously, individuals in the S com-
partment may transition back in the susceptible compartment with a rate up, S¥ +85 — S.
The model reverts to the classic SEIR if Sr = 0 (the detailed presentation of the dynamic
is reported in the SI). The basic reproductive number of an SEIR model is Ry = 8/u. This
quantity determines the average number of infections generated by one infected individual
in a fully susceptible population. In each subpopulation the disease transmission is able
to generate a number of infected individuals larger than those who recover only if Ry > 1,
yielding the classic result for the epidemic threshold (Colizza and Vespignani 2007); if
the spreading rate is not large enough to allow a reproductive number larger than one (i.e.,

B > ), the epidemic outbreak will affect only a negligible portion of the population and
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will quickly die out (the model details are reported in the Methods section).

System’s resilience. Here, we introduce a quantitative measure that captures and imple-
ments the definition of resilience in epidemic modelling, similarly to what proposed in
Ganin et al. (2016). Among the many possible elements defining the resilience of a sys-
tem, we consider the system-wide critical functionality as a function of the individual’s
risk of getting the disease and the disruption to the system’s functionality generated by the
human mobility deterioration. For the sake of simplicity, in our model we assume that
infected individuals do not travel. The extension to models in which a fraction of infected
individuals are traveling is straightforward (Balcan et al. 2009a) with the only effect of
decreasing the timescale for the disease spreading, but not altering the overall dynamic of
the system. Furthermore, as discussed below, the system might be subject to other travel
limitations. As a result, during the epidemic we have an overall decrease in the mobility
flows with respect to a disease-free scenario. It follows that the number of travelers between
subpopulations i and j at time 7 is C;;(¢) = ¢;;N;(t), where c;; is the adjusted diffusion rate,
Ni(t) = S;i(t) + Ei(t) + Ri(1), and the total number of commuters in the metapopulation
system at time ¢ is given by C(#) = 3} C;(¢). Note that in general, ¢;; < d;;. This can be
naturally related to a deterioration of the system-level critical functionality as it corresponds
to economic and financial losses as well as logistic and infrastructural service disruption. In
order to evaluate the system’s loss of critical functionality related to the travel restrictions,
we define the fraction of active travelers at time ¢ as A(t) = C(t)/Z(t). Analogously, we
characterize the system’s risk related to the disease propagation as the fraction of healthy
subpopulations H(t) = 1 — D(t)/V, where D(¢) is the number of diseased subpopulations
at time r and V is the total number of subpopulations in the system. The number of diseased
subpopulations accounts for the amount of risk posed to individuals in the system, which
we assume to be proportional to the overall attack rate and expresses the vulnerability of the
networked system (Majdandzic et al. 2014; Buldyrev et al. 2010; Gao et al. 2011). Here,
as the model assumes statistically equivalent subpopulations, the attack rate is proportional
to the number of subpopulations affected by the epidemic. At time ¢, we define the critical
functionality, CF (¢), (Figure 11B), as the product of the fraction of active travelers A(¢) and
the fraction of healthy populations H(t), i.e. CF(t) = H(t).A(t). Per our earlier definition
of resilience (Ganin et al. 2016) r, we evaluate it as the integral over time of the critical
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functionality, normalized over the control time 7¢ so that r € [0, 1]:

Tc
r= I/TC/ CF(t)dt 17
0

The control time 7¢ corresponds to the maximum extinction time 7 for different values
of epidemic reproductive number Ry (see the Supporting Information for further detail).
Resilience, therefore, also includes the time dimension, in particular, the time to return
to full functionality, as defined by the system’s critical elements. In reference (Ganin
et al. 2016) we provided an operational definition of resilience starting from the concepts
advanced by the National Academy of Sciences in USA. In this paper, we apply such
general framework to the case of disease spreading. Furthermore, we extend it to reaction-
diffusion processes on metapopulations. In the following, we will quantitatively characterize
different containment/mitigation interventions via a critical functionality analysis. Desirable
(optimal) strategies correspond to high (maximum) value of r. Itis worth remarking that, for
the sake of simplicity, we use here a definition of critical functionality that weights equally
the two components A(¢) and H(t). Thus, our findings are constrained by such choice. The
two contributions could be weighted differently, i.e. CF(t) = H(t)®.A(t)#. However, our
aim is to highlight the importance of going beyond “model-based” approach to epidemic
analysis and move towards system resilience assessments. In this spirit, we opted for the
simplest definition of critical functionality able to capture the two most used metrics in
model-based approaches: epidemic risk and mobility. We used the multiplication of the
two quantities because it makes the critical functionality more sensitive to small changes
of the values. Furthermore, by multiplying two ratios we don’t need to add a normalization
factor (the critical functionality is defined in the interval [0,1]). In more realistic context,
and depending on the precise cost-benefit analysis, the various terms may be weighted
differently and more complex functional form for the critical functionality can be defined.
Among other things, these type of analysis could consider: i) the details of the disease
spreading in the population such as mortality, infectiousness, recovery time, and possible
residual immunity ii) the preparedness, measured in terms of availability of vaccines, anti-
virals, hospital beds, or intensive care units, iii) the socio-economical costs induced by a
major outbreak and by interventions such as travel bans, school closures etc. iv) politics

and public perception of risk.
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Effects of system-wide travel restrictions. Epidemic containment measures, based on
limiting or constraining human mobility, are often considered in the contingency planning
and always re-emerge when there are new infectious disease threats (Riley 2007). The target
of these control measures are travels to/from the areas affected by an epidemic outbreak
and the corresponding decrease of infected individuals reaching areas not yet affected by
the epidemic. At the same time, travel restrictions have a large impact on the economy and
affect the delivery of services, including medical supplies and the deployment of specialized
personnel to manage the epidemic. For this reason, travel restrictions must be carefully
scrutinized to trade off the costs and benefits. We introduce the parameter p € [107, 1]
that allows us to simulate policy-induced system-wide travel restrictions. In our settings,
such measures are active until the disease is circulating in the system, i.e. there is at least
one infected individual across all subpopulations. In the case of no travel restrictions and/or
after the disease dies out, we have p = 1. In the case of travel restrictions (p < 1), we rescale
travel flow so that mobility is a fraction of that in the unaffected system; i.e. ¢;; = p.d;;.
To better understand the effect of such mitigation strategy, let us consider the classic SEIR
model by setting S = 0. In the presence of travel restrictions and depending on the level
of mixing, each subpopulation may or may not transmit the infection or contagion process
to another subpopulation it is in contact with. In other words, the mobility parameter p
influences the probability that exposed individuals will export the contagion process to
other regions of the metapopulation network. Further, it introduces a transition between a
regime in which the contagion process may invade a macroscopic fraction of the network
and a regime in which it is limited to a few subpopulations. The transition is mathematically
characterized by the global invasion threshold R, (Colizza and Vespignani 2007). This is
the analogue of the basic reproductive number at the subpopulations level and defines the
average number of infected subpopulations generated by one infected subpopulation in a
fully susceptible metapopulation system. In general, R.. is a function of the basic epidemic
parameters, including Ry, and the mobility parameter p. The invasion threshold occurs at
the critical value p. for which R, = 1. In some cases, p. can be evaluated analytically (see
the Methods section). In general, it can be estimated numerically by measuring the number
of infected subpopulations as a function of the parameter p. Risk, as measured in terms
of attack rate, is, therefore, monotonically decreasing due to increasingly restricted travel,
and falls to virtually zero for values of p below the invasion threshold. Thus, from a risk

perspective, the best strategy during a disease outbreak is to reduce the mobility. However,
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an inspection of the profile of resilience provides a different picture. In Figure 12 we report
the value of r obtained by sampling the phase space of the model p — Ry for different values
of the travel diffusion parameter and the epidemic reproductive number in heterogeneous
metapopulation systems (a comparison between homogenous and heterogeneous networks
is reported in SI). Each point of the phase space is studied by performing 100 stochastic
realizations. The 3D dimensional plot in the p, Ry, r space reported in Figure 12A indicates
that the overall resilience profile is characterized by a sharp drop as we approach the invasion

threshold, i.e. p — pe.

Figure 12B shows that, while the risk decreases, the reduction of the diffusion rate p causes
a reduction of r until the global invasion threshold, after which the resilience value rapidly
increases. This effect is mainly due to the critical slowing of the epidemic spreading near the
invasion threshold. Indeed, close to the threshold, the epidemic is still in a supercritical state,
but it takes increasingly longer time to invade the system as the threshold is approached.
This can be simply related to the divergence of the invasion doubling time 7;, which is
defined as the time until the number of infected subpopulations doubles, relative to that at
some other time. The doubling time is related to the subpopulation reproductive number
as Ty (R, — 1)7!, leading to a divergence of the doubling time as the invasion threshold
is approached for R, — 1. Although the absolute risk is very low, the system remains
in a state of deteriorated functionality (restrictions in travels) for longer and longer times
(Fraser et al. 2004). The decrease of functionality is not offset by a corresponding decrease
of risk, and the minimum in resilience is attained exactly at the global invasion threshold.
The comparison between the theoretical values of the invasion threshold and the computed

minimum values of resilience is reported in Figure 12C.

Effects of self-initiated behavioural changes. In order to isolate the effects of behavioural
changes, in this section the travel parameter is kept constant with p = 1. Individuals in
the S compartment adopt travel avoidance so that S plays a similar role to the travel
restriction as reported in Figure 13. Furthermore, inside each subpopulation, individuals
in the ST compartment reduce their contacts, thus decreasing the likelihood to become
infected. Overall, the presence of self-initiated behavioral changes in a population results
in a reduction of the final epidemic size. In this setting, we have explored a phase space
of parameters constituted of Ry € [1.01,3] and Br € [0,20] (see the Methods section

for the other model parameters). In Figure 13A we quantify resilience for different values

42



A p C 11 09 08 07 06 05 04 03 02 01 O

Figure 12. Resilience and final fraction of diseased populations in the hetero-
geneous metapopulation system with traffic dependent diffusion rates. (A)
3D surface representing resilience in a homogeneous metapopulation system
as a function of local threshold Ry and the diffusion rate p: the minimum
value of resilience separates two regions associated to values very close to
the optimal case. (B) Cross-sections (blue) of the 3D plot for Ry = 3.5 and
its comparison with the final fraction of diseased populations (red): while
the reduction of the diffusion rate p brings to a constant the fraction of
diseased populations it also causes an initial decrease of resilience to a min-
imum value after which it starts increasing and the system returns to its
optimal conditions. (C) The map of the final fraction of diseased popula-
tions D /V is shown as a function of the local epidemic threshold Ry and
the travel diffusion p. We show that the minimum values of resilience (blue
points) correspond to the theoretical value of the final fraction of diseased
subpopulations D /V at the end of the global epidemic (black line).

of the fear parameter Sr in heterogeneous metapopulation systems. The 3D dimensional
plot in the BFr, Ro,r space shows a clear similarity with the travel restrictions scenario.
Figure 13B shows that, while increasing Sr leads to a decrease in risk, it also induces
a reduction of resilience. It is possible to observe that, even in this case, the minimum
values of r are related to the invasion threshold. In Figure 3C the phase diagram of the
fraction of diseased populations at the end of the simulations D, /V is reported in the

Br, Ry space. This picture shows that there is a critical value of the fear transmissibility
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Figure 13. Resilience and diseased populations in a heterogeneous metapop-
ulation system with individual self-dependent travel reduction. (A) 3D sur-
face representing resilience in a heterogeneous metapopulation system as a
function of local threshold R( and the fear parameter Br: two areas of high
values of resilience are separated with a narrow region of very low ones.
(B) Comparison between resilience (blue) reported as cross-sections of the
3D plot for Ry = 1.3 and the final fraction of diseased populations D, /V
(red): while the increase of the fear transmissibility parameter S5 brings to
a constant the fraction of the diseased populations it also causes an initial
decrease of resilience to a minimum value after which the system bounces
back to optimal conditions. (C) Even in this case the minimum values of
resilience (blue points) correspond to the transition region from high to low
final diseased populations. The colormap of the logarithmic of the healthy
populations (log(1 — D« /V)) is shown as a function of the local epidemic
threshold Ry and the fear parameter Br.

parameter B, after which the fraction of diseased populations D, /V starts to decrease (i.e.
Dy /V < 1). The minimum value of resilience, in this case, corresponds to the value of
the fear transmissibility, after which a reduction of the fraction of diseased populations is
observed. Although the approach to this critical boundary corresponds to a reduction of
the infection risk, similarly to the case of travel restrictions, the measured resilience of the

system decreases and attains its minimum value right at the transition point.
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Effects of system-wide travel restrictions in data-driven simulations. As a further con-
firmation of the validity of the theoretical construct above described, we tested our results
in a data-driven modelling setting. We considered the Global Epidemic and Mobility
model (GLEAM) (Balcan et al. 2009b; Tizzoni et al. 2012) which integrates high resolu-
tion demographic and mobility data by using a high-definition, geographically structured
metapopulation approach. The model’s technical details and the algorithms underpinning
the computational implementation have been extensively reported in the literature. GLEAM
is a spatial, stochastic and individual-based epidemic model that divides the world popu-
lation into geographic census areas, defined around transportation hubs and connected by
mobility fluxes. The population of each census area is obtained by integrating data from
the high-resolution population database of the ‘Gridded Population of the World’ project
of the Socioeconomic Data and Application Center at Columbia University (SEDAC). The
mobility among subpopulations is comprised of global air travel and the small-scale move-
ment between adjacent subpopulations; i.e., the daily commuting patterns of individuals.
Commuting and short-range mobility considers data from 80,000 administrative regions in
5 different continents. Here, we considered the Continental United States and simulated an
SEIR contagion process, in which infected individuals do not travel. The number of infected
subpopulations at the end of an outbreak and resilience as a function of the global mobility
restrictions that result are shown in Figure 14. The initial conditions of the epidemic were
set with 5 infected individuals in the city of New York, assuming 8 = 0.48,1 = 0.66 and
u = 0.45. Mobility restrictions are implemented by reducing all the mobility flows con-
necting diseased subpopulations by a factor p, thus considering the heterogeneities of the
subpopulations due to their different local mobility patterns (see SI). The control time 7¢
used in the calculation of r corresponds to the epidemic extinction time for the different val-
ues of the diffusion rate. As with the theory-driven model here we observe that a reduction
of the travel diffusion p brings a constant reduction of diseased populations, but also reduces
resilience until a critical value p. = 1.2x107*. In Figure 4B we illustrate the geographical
spreading of the contagion process and the reduction of traveling of each subpopulation
tracked by the model in the Continental USA for values of p corresponding to three different
regions of the diagram of Figure 14A. The figure clearly illustrates three regimes: i) for low
travel reduction, a very severe epidemic hits all the subpopulations, but the short duration
allows the system to go back to normal in a short time (high values of resilience); ii) for

travel reduction close to the global invasion threshold, a small number of subpopulations are
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hit but the system critical functionality is compromised for a very long time, thus, resulting
in a low values of resilience; iii) travel reduction above the critical threshold allows the
system to contain the epidemic at the origin with low risk and high values of resilience.
It is worth remarking that in the data-driven model, the minimum value of resilience is
reached for travel restrictions that correspond to a reduction of mobility of three to four
orders of magnitude. This is because in modern transportation networks the global invasion
threshold, as already pointed out in other studies (Cooper et al. 2006; Epstein et al. 2007;
Gomes et al. 2014; Colizza and Vespignani 2008), is reached only for very severe travel
restrictions that are virtually impossible to achieve. In other words, in realistic settings the
feasible increase of travel restrictions appears always to decrease resilience. This calls for
a careful scrutiny of the trade-off between individual’s risk and resilience, as the region
where both are achieved is virtually not accessible.
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The realistic threat quantification is difficult and evaluation of vulnerabilities and conse-
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Figure 14. Resilience and epidemic size in the data-driven scenario. (A)
The plot shows the difference between resilience (blue) and the final frac-
tion of diseased populations (red) for different values of the diffusion rate
p. Here, we can identify three critical regions of the system. i) diffu-
sion rate p = 0.1 above the critical invasion threshold. Even if the system
is characterized by sub-optimal resilience, the disease spreads all over the
system. ii) the reduction of the diffusion parameter p results in a signif-
icant decrease of the number of diseased populations but also in a dra-
matic decrease of resilience; iii) below the critical invasion threshold re-
silience goes back to high values as fraction of diseased populations ap-
proaches zero. Python 2.7 (https://www.python.org/) and the Basemap
library (https://pypi.python.org/pypi/basemap/1.0.7) were used to create
these maps. (B) Epidemic size (red) and resilience (blue) for the different
values of the diffusion parameter p corresponding to the three aforemen-
tioned regions.

Discussion
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quences of new disease epidemics is certainly a challenge. We analyzed the impact of an
infectious disease epidemic in structured populations by considering a definition of system

resilience that takes into consideration not only the number of infected individuals but also



society’s need for maintaining certain critical functions in space and time (Linkov et al.
2014b). In particular, we assume that the limitations and disruptions of human mobility
deteriorate the system’s functionality. We observe that containment measures that limit
individuals’ mobility are advantageous in reducing risk but may deteriorate the system’s
functionality for a very long time and thus correspond to low resilience. Although we
have considered only two of the many dimensions encompassing the functionality of socio-
technical systems (Holling 1973; Linkov et al. 2014c), we show that study of resilience
allows stakeholders to measure the impact of epidemic threats and differentiate between
different management alternatives. It is straightforward to envision more realistic definition
of the critical functionality. The components of critical functionality could be weighted
according to objective/subjective evaluation of their relevance to stakeholders. Finally,
cost-benefit analyses and ethical considerations should be included in the analysis of the
societal impacts of disease that could lead to long lasting effects or even death of the affected
individuals. This study highlights the importance of resilience-focused analysis for select-
ing intervention strategies. The natural tendency to be conservative in managing potentially
inflated risks associated with new and emerging epidemics can result in unnecessary bur-
densome and possibly ineffective actions like quarantines as well as travel bans49. The
emerging field of resilience assessment and management29 and its implementation (Ganin
et al. 2016; Gao et al. 2016) could thus evaluate cross-domain alternatives to identify a
policy design that enhances the system’s ability to (i) plan for such adverse events, (ii) ab-
sorb stress, (iii) recover, and (iv) predict and prepare for future stressors through necessary
adaptation. To this end, the framework we presented can be of potential use for optimizing
the policy response to a disease outbreak by balancing risk reduction with the disruption to

critical functions that is associated with public health interventions.

2.2.4 Methods

Disease propagation and self-initiated behavioral changes. The metapopulation system
is described by a scale-free network (SF) with a power-law degree distribution P(k) ~
k=7), which is generated by the configuration model (Catanzaro et al. 2005) with the
minimum degree m = 2,y = 2.1. (For the travel restriction scenario, in the SI, we report
a comparison of the results between the heterogeneous networked system described above
and a metapopulation system formed by a random network with Poisson degree distribution,
which is generated by the Erdos-Rényi (ER) model (Erdds and Rényi 1960).) The networks
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have V = 5000 nodes and average degree (k) ~ 6, while the total number of individuals
is N = V2 = 25.10° which are distributed among the subpopulations nodes proportional
to their degree distribution. At the beginning, 10 populations are selected at random and
50 individuals are set as exposed. All other individuals across the system are initially
susceptible. We study a compartmental scheme that extends the basic SEIR (Anderson
et al. 1992) model by considering separate behavioral classes within populations (see SI
for the detailed description of the model). For this reason, we assume that individuals can
spontaneously change their behavior because of the fear of the disease entering in a specific
compartment S¥ of susceptible individuals. In the case of travel restrictions, we set the
transition rate from exposed to infected A = 0.67days™" and recovery rate = 0.33days™"
. In the case of the behavioral model, we set the disease parameters 1 = 0.3days™' and
i = 0.1days™" while we consider an infection probability reduction r, = 0.15, the self-
reinforcement parameter o = 0.1 and the relaxation parameter yr = 0.5. All the presented

results are averaged over 100 simulations.

Mobility process. We adopt a simplified mechanistic approach that uses a Markovian
assumption for modeling migration among subpopulations; at each time step, the movement
of individuals is given according to a matrix d;; that expresses the probability that an
individual in the subpopulation i is traveling to the subpopulation j. We assume that the
diffusion rate on any given edge from a subpopulation node of degree k; to a subpopulation
node of degree k; is proportional to k; (Colizza and Vespignani 2008) and it is given
by dij = wo(kik;)?/T;, where T; = 3 ; wij = X ; wo(kik;)? represents the total flow in i,
while 6 and the exponent wy are system specific (e.g., and 8 = 0.5 and in the world-wide
air transportation network (Barrat et al. 2004)). In this scenario, we consider 6 = 0.5 and
wo =1073.

Global invasion threshold. For the SEIR model it is possible to explicitly calculate
the average number of infected subpopulations for each infected subpopulation in a fully
susceptible metapopulation system as R, = Np z(iﬁ’ﬂ_);); <k2{;2<k> (Balcan et al. 2009b)
where N represents the average number of individuals ir(; a subpopulation. The condition

R. =1 defines the invasion threshold for the system. Only for R, > 1 can the epidemic
spread to a large number of subpopulations. The invasion threshold readily provides an

explicit condition for the critical mobility p., below which an epidemic cannot invade
1 (K> (u+)RG
N (k*)=(k) 2(Ro-1)?

the metapopulation system, yielding the equation p, = (Colizza and
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Vespignani 2008).

2.3 Resilience and efficiency in transportation networks

Urban transportation systems are vulnerable to congestion, accidents, weather, special
event, and other costly delays. Whereas typical policy responses prioritize reduction of
delays under normal conditions to improve the efficiency of urban road systems, analytic
support for investments that improve resilience (defined as system recovery from additional
disruptions) are still scarce. In this effort, we represent paved roads as a transportation
network by mapping intersections to nodes and road segments between the intersections to
links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau.
We developed and calibrated a model to evaluate traffic delays using link loads. The loads
may be regarded as traffic-based centrality measures, estimating the number of individuals
using corresponding road segments. Efficiency was estimated as the average annual delay
per peak period auto commuter and modeled results were found to be close to observed
data, with the notable exception of New York City. Resilience was estimated as the change
in efficiency resulting from roadway disruptions, and was found to vary between cities,
with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los
Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems
that operate inefficiently under normal conditions are nevertheless resilient to disruption,
whereas some more efficient cities are more fragile. The implication is that resilience,
not just efficiency, should be considered explicitly in roadway project selection and justify

investment opportunities related to disaster and other disruptions.

2.3.1 Introduction

Existing roadway design standards emphasize the efficient movement of vehicles through
a transportation network (Samuelsson and Tilanus 1997; Beverly 2010; Hoogendoorn
et al. 2014; Sami et al. 2013). Efficiency in this context may include identification of the
shortest or fastest route (Samuelsson and Tilanus 1997; Rodrigues et al. 2008; Chang and
Nojima 2001; D’Este et al. 1999), or the route that minimizes congestion (Yan et al. 2006).
It is the primary criterion on which road networks are modeled and design alternatives
considered (Chang and Nojima 2001; D’Este et al. 1999; Allen et al. 1993; Yamashita
et al. 2004). The Texas A&M Transportation Institute defines and reports traffic delay
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in urban areas as the annual delay per auto commuter (Schrank et al. 2015). Other
studies define efficiency as delay for the individual driver in terms of time spent moving
or stopped (D’Este et al. 1999), or mean travel time between all origin-destination pairs
in the network (Allen et al. 1993). However, as the experience of any motorist in large
American cities can attest, conditions beyond the scope of the roadway design, including
congestion, accidents, bad weather, construction, and special events (e.g., a marathon race),
can cause costly delays and frustrating inefficiencies that result in fuel waste, infrastructure
deterioration, and increased pollution (Colak et al. 2016; Turnbull 2016). Evaluating road
networks based only on efficiency under normal operating conditions results in little to
no information about how the system performs under suboptimal or disrupted conditions.
Infrastructure systems that exhibit adaptive response to stress are typically characterized as
resilient (Holling 1996, 1973; Linkov et al. 2014a; Ganin et al. 2016; Park et al. 2011;
Flynn and Burke 2012; Hollnagel et al. 2006b; Alderson et al. 2015). Given the essential
role of transportation in emergency response, provision of essential services, and economic
well-being, the resilience of roadway networks has received increasing policy attention.
Nonetheless, scholars have yet to converge on a shared understanding of resilience suitable
to guide design, operation, and reconstruction of roadway networks. Although resilience in
infrastructure systems is characterized as a multidimensional concept (Woods 2015; Seager
et al. 2017b), in many engineering and civil infrastructure implementations, resilience
is defined as the ability of a system to prepare for, absorb, recover from, and adapt to
disturbances (Linkov et al. 2014a). Specific to transportation, resilience has been defined
as “the ability of the system to maintain its demonstrated level of service or to restore itself
to that level of service in a specified timeframe” (Freckleton et al. 2012). Others describe
transportation resilience as simply the ability of a system to minimize operational loss
(Pant 2012), or will use the term synonymously with robustness, redundancy, reliability,
or vulnerability (King and Shalaby 2016; Li et al. 2016; Kermanshah and Derrible 2016).
Current efforts in transportation resilience research have focused on framework development
and quantification methods. These efforts include the specification of resilience indicators,
such as total traffic delay (Freckleton et al. 2012; Cox et al. 2011), economic loss (Cox
et al. 2011), post-disaster maximum flow (Carey and Hendrickson 1984), and autonomous
system components (Murray-Tuite 2006). Practical concerns with this type of resilience
evaluation are that it relies on uncertain performance data, and often omits indicators

that are unquantifiable (Flynn and Burke 2012). Other resilience approaches apply traffic
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network modeling to identify locations for critical buildings (e.g. hospitals and fire stations)
(Melkote and Daskin 2001), minimize trip distance for individual passengers (Thiagarajan
et al. 2009), and minimize travel time across the system (Colak et al. 2016). One drawback
of existing network resilience methods is that they are data intensive, often requiring
limited information about resources for unusual road system repair (King and Shalaby
2016; Kermanshah and Derrible 2016) or network behavior following a disruptive event
(Simonovic 2016). Moreover, existing resilience quantification approaches lack calibration
and testing across a range of transportation systems. Because many disruptive events,
and their associated consequences, are difficult to predict, resilient road systems must be
characterized and evaluated by the capacity to adapt to a variety of different stress scenarios.
Partly because of these obstacles, joint consideration of efficiency and resilience has yet to
be implemented for transportation networks. In this paper, we study the interconnections
between resilience and efficiency among road transportation networks in 40 major U.S.
cities. We develop an urban roadway efficiency model, calibrate it based on the observed
data (Schrank et al. 2015) of annual delay per a peak period auto commuter and apply
the model to calculate efficiency in 40 cities. Then, we model traffic response to random
roadway disruptions and recalculate expected delays to determine the sensitivity of each city
to loss of roadway linkages. The results may reveal important considerations for assessing
proposals for improvement of roadway infrastructure that maintain efficiency under stress

conditions.

2.3.2 Methods

To develop the urban roadway efficiency model, we first define the urban areas boundaries
and construct the urban road networks before we evaluate the population density within
cities utilizing the Census Bureau datasets (U.S. Census Bureau 2012a, 2010) and Open
Street Map datasets (OpenStreetMap contributors 2017). We rely on this data to assess
commuter patterns, which we use to measure efficiency and resilience of road networks.
Alternative approaches to transportation have been offered and include those based on
percolation theory and cascading failures (Berezin et al. 2015; Majdandzic et al. 2016;
Zhao et al. 2016), human mobility patterns studies (Gonzélez et al. 2008; Cho et al. 2011;
Calabrese et al. 2013), queueing (Gross et al. 2008; Jiang and Adeli 2003), and the use of
historical data to predict traffic. We review these approaches in Supplementary Materials

and note that the main benefit of our model is that it relies solely on readily available public
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data, rather than on particular data sets which may or may not be practical to obtain for
any particular region. The model’s algorithmic simplicity allows us to consider spatial
topologies of cities in high resolution including tens of thousands of nodes and links. We
do not create a more accurate transportation model than the existing ones, but we are able
to obtain measurable characteristics of transportation systems (average delays) using our

model.

Geospatial Boundaries and Population Density. To define geospatial boundaries for the
transportation infrastructure networks we use the U.S. Census Bureau geospatial dataset
(U.S. Census Bureau 2012a) for urban areas — densely developed residential, commercial
and other nonresidential areas (U.S. Census Bureau 2012b). We approximate the exact
urban area polygon with a simplified manually drawn one (Figure 15A) and include all
roadways within 40 km (25 miles) of it in the network. For each of the links we calculate
its length based on the polyline defining the link, and assign a number of lanes m and
the free-flow speed (FFS) (see Supplementary Materials). We next estimate population in
vicinity of each intersection i using the Census Tract data (U.S. Census Bureau 2010). To
this end, we split the map into Voronoi cells centered at intersections and then estimate the

population of each cell N; as

N, = Z Area(P,ﬂP)

Area(P,) (18)

Above N; is the population of Census Tract ¢, and P;, P; are the polygons of the cell and the
tract respectively (Figure 15B).
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Figure 15. Definition of urban areas and assignment of nodes’ population.
A. Boston, MA-NH-RI urban area as defined by the U.S. Census Bureau
shapefiles (gray background). To simplify the model and the algorithms
calculating the distance from network nodes to the city boundary, we ap-
proximate each of the urban areas shapefiles with a coarse manually drawn
polygon (pink outline). B. Assignment of the number of people to departing
from each of the network nodes. Population distribution (color polygons, red
corresponds to higher population density), Voronoi polygons (black outline)
and network nodes (dots) in downtown Boston.

Transportation Model. We build on the gravity model for trip distribution assignment.
The gravity model (Casey 1955) is a classical model for trip distribution assignment and
is extensively adopted in most Metropolitan Planning and statewide travel demand models
in the U.S. (Sabyasachee et al. 2013; Cascetta et al. 2007; J. de D. Ortizar and Willumsen
2011; Transportation Research Board 2007). Other trip distribution models include, for

example, destination choice models (Fotheringham 1983; Woodside et al. 1989). However,
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these models are not as widely used in large-scale, as the detailed data required by these
models is frequently unavailable (Sabyasachee et al. 2013). We assume that (i) the flow of
commuters from origin region o to destination region d is proportional to population at the
destination Nd, and that (ii) the flow of commuters depends on the distance x,; between the
origin and destination and is given by a distance factor P(x,;). Using these assumptions,
we can estimate the fraction of individuals commuting from region o to destination region
d, foa, as

NP (xoq)
fod = e (19)
Z k NP (xak)
Then, the commuter flow from origin region o to destination region d is
Foa = Nofod (20)

While individual driving habits may vary (Lima et al. 2016), we assume that all drivers tend
to optimize their commute paths such that their travel time is minimized. This assumption
allows us to calculate commute paths for every origin destination-pair using inferred free-
flow speeds. To calculate commuter flows between all pairs of intersections we estimate
distances x,4 as the distance of the shortest time path from o to d. Further, in place of
the distance factor P(x,;) we use the distribution of trip lengths from the U.S. Federal
Highway Administration National Household Travel Survey (NHTS) (U.S. Department of
Transportation 2009; Haaren 2012), which we approximate with the exponential function
(Figure 16A).
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Figure 16. Model details. A. Distance factor P(x,4) (Eq. 19) of trips given
the distance between nodes (solid line) and the statistical data (bars). B.
Dependency of speed on density for V. = 100 km/h.

Next, we define the commuter load on each road segment as
Lij= )" Fodfoa(i)) P2}
o,d

where 6,,4(ij) is a binary variable equal 0 when link i is not on the shortest path connecting
nodes o and d, and 1 otherwise. Note that in Eq. 21 we only consider origins that are
not farther than 30 km from the urban area boundary polygon. The nodes farther than 30
km from the boundary are only used as destinations to evaluate the fraction of commuters
not going towards the urban area (Eq. 19). Because most commuters travel during peak
periods, commuter loads L;; can be regarded as traffic-based centrality measures estimating
the number of individuals using corresponding road segments. Then, the cumulative time

lost by all commuters

AT = B Z Ly ((lij,):. lo) (lijvjlo) 22)

where V;; and v;; are respectively the free-flow and the actual traffic speeds along the ij
road segment, /;; is its length, [y is the length correction due to traffic signals, and 3 is the
proportionality coefficient same for all urban areas. The summation in Eq. 22 includes

only links, whose origins and destinations are within the boundary polygon. A similar
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equation was obtained for the moving delay in (Jiang and Adeli 2003) where the authors
looked at the delay induced from road repairs. The actual traffic speed v;; depends on many
factors including the speed limit, the number of drivers on the road, and road conditions.
While there exist a number of approaches to estimate actual traffic speed (Greenshields
et al. 1934; Smulders 1990), we have chosen to use the Daganzo model (Daganzo 1994) to

derive the traffic speed:

l,-jm,-j
Lij

vij =« — Uyeh, Subjectto Vij € [Vmins Vij] (23)
where v,,;, is the minimum speed in the traffic, v, is the correction for the finite size of

the car and « is the proportionality coefficient (Figure 16B).

Efficiency and Resilience Metrics. In order to summarize results of the model, we provide
working definitions for metrics of resilience and efficiency as follows. We measure efficiency
as the average annual delay per peak period auto commuter. In practice, lower delay mean
higher efficiency. There are multiple ways to map from delays to efficiency, such as taking
the inverse values of delays, taking negative values of delays, etc. To avoid ambiguity and
facilitate the interpretation of results we keep using the delays themselves to quantify the
transportation efficiency of urban areas. We operationalize resilience through the change
in traffic delays relative to stress, modeled as loss or impairment of roadway linkages.
Looking at resilience from the network science perspective, we focus on topological features
of cities, rather than on recovery resources available. Sterbenz et al. (2010) evaluate a
network’s resilience as a range of operational conditions for which it stays in the acceptable
service region and highlight that remediation mechanisms drive the operational state towards
improvement. We are studying how availability of alternate routes helps remediate the
consequences of the initial disruption to the network. In the traffic context, the immediate
impact of a given physical disruption (and the time for it to unfold) in terms of closing lanes
or reducing speed limits on affected roads will not vary much from network to network,
although the number and type of such disruptions will. Likewise, the speed of restoring
full functionality (through action in the physical domain) is not so much dependent on the
road network as it is on the nature of the disruption (snow vs. earthquake vs. flood) and
the resources the city allocates to such repair, and the level of functionality such repairs

achieve ought to be the full pre-disruption functionality, i.e., eventually all roads can be fully
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cleared or restored. However, the immediate loss of function for a given traffic flow can
very quickly be partially recovered after a disruption by action in the information domain,
namely rerouting of traffic. From the new steady state at that level of functionality, full
functionality is gradually restored. Thus, our model proxies for resilience and is calibrated
against the data that proxies for efficiency. At the same time, we note that to fully capture
resilience characteristics of a transportation system, it is required to analyze recovery
resources available and the effectiveness of coordination between the relevant authorities.
Lower additional delay corresponds to higher resilience, but using the same reasoning we

had for efficiency, we quantify resilience through additional delays.

2.3.3 Results

Efficiency. Taken together, our traffic model has three parameters, proportionality coeffi-
cient @, minimum speed v,,;,, and finite vehicle size correction v,.; and is summarized in
Egs. 22 and 23. Given parameter values of the model, one can estimate the total delay
incurred by all commuters in any given suburban area or, equivalently, the average delay per
commuter. We take v,.; = 9 km/h and v,,;;, = 5 km/h and calibrate the model to determine
the value of @ to match the real data on the annual average delay per a peak period auto
commuter provided by the Urban Mobility Scorecard (Schrank et al. 2015).

We divide the 40 urban areas into two equally-sized groups for model calibration and
validation respectively. We have found that for the 20 urban areas used for calibration, the
R-squared coeflicient took values in the range [-0.01; 0.83] (Figure 17). This allows us to
set model parameters @ and 8 (see Methods) as follows: @ = 4.30x10*hour !, 8 = 10.59.
These values correspond to the Pearson coefficient of 0.91 (p = 2.17x107%). To validate
the model, we estimate travel delays in 20 different urban areas. As seen from Figure 17,
the estimated travel delays are significantly correlated (R = 0.63,p = 3.00x1073) with
actual delay times (Schrank et al. 2015), validating the transportation model. Figure 18 is
a Google Maps representation of real and modeled results for Los Angeles (LA) and San
Francisco (SF). Road conditions under real, average traffic patterns at 8 am provided by
Google Maps are in Figure 18A, 18D. Modeled conditions are given for comparison in
Figure 18B and 18E. Finally, Figure 18C and 18F show the new, modeled traffic patterns

that result from redistribution of travel in response to a disruption of 5% of the links.
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Figure 17. Modeled and observed delays in 40 urban areas. Pearson

correlation coefficient and p-value between observed and modeled delays
are (0.91,2.17x107%) for the 20 cities used to calibrate the model and
(0.63,3.00x1073) for the 20 cities used to validate the model. Observed
delays were taken from the Texas A&M Transportation Institute Urban Mo-
bility Scorecard (Schrank et al. 2015).
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Figure 18. Traffic distributions. Typical congestion at 8 am for Los An-
geles (top) and San Francisco (bottom) as given by Google Maps (A and
D), modeled with no disruptions (B and E), and modeled with a 5% link
disruption (C and F). Notably, in Los Angeles the disruption results in traffic
redistribution to smaller roads, while in San Francisco it results in increased
congestion along the major highways.

Resilience. Our approach to model stress is inspired by the percolation theory. For every
independent simulation of stress, we select a finite fraction of affected road segments r at
random, with the probability of failure proportional to segment length. We collect statistics
for 20 realizations of the percolation. On failed segments, free-flow speeds are reduced to
1 km/h (representing near total loss), and loads L and traffic delays are then recalculated
using the updated free-flow speeds. Low stress scenarios (r < 0.1) might be caused by
accidents or construction. Larger disruptions might occur during power failures that disrupt

traffic signals, or severe flooding that makes many roadways nearly impassable. Finally,
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widespread stress might be caused by snow, ice, or dust storms that impact nearly the entire
roadway system. Figure 19 displays the analysis of delay times in six representative urban
areas for the full spectrum of adverse event severities, r € [0; 1]. Some routes within a single
urban area experience longer delays than others. The inset to Figure 19 shows the delay
distribution for both LA, which is narrowly clustered, and Boston, where greater variability
between roadways is evident. Traffic delay times grow rapidly as r increases and reach
saturation (all routes moving at 1 km/h) as r approaches 1. We determine the most resilient
urban transportation network to be Salt Lake City UT, while the least resilient among the 40
metropolitans is shown to be Washington DC. Figure 20 shows both the efficiency (in blue)
and resilience response (additional delays due to 5% link disruption, in orange) for of the 40
urban areas modeled. Some cities with high efficiency under normal operating conditions
(i.e., low delays) nevertheless exhibit low resilience (i.e., a sharp increase in traffic delays)
under stress. Virginia Beach VA, Providence RI and Jacksonville FL all fall into this
category of urban areas in which traffic operates well under ordinary circumstances, but
rapidly become snarled under mild stress. On the other hand, Los Angeles (LA) is notorious
for traffic delays under all conditions — yet minor stress levels result in little degradation of
efficiency. By contrast, normal traffic delays in San Francisco (SF) are comparable to LA,
but mild stress in SF results in large increases in additional delays. These examples indicate
that resilience (i.e., additional delay response to stress) is independent of normal operating

efficiency.
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Figure 19. Dependency of the additional delay on the severity of the links
disruption for six representative urban areas. Error bars show mean values +
standard deviation. The inset shows distribution densities for two selected
urban areas for 1,000 realizations of 5% disruption. Note, San Francisco’s
unique topology makes it susceptible to failures of a small number discrete
roadways, and this produces an anomalous impact at 5% - 15% disruption.
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Figure 20. Comparison of resilience and efficiency metrics. Annual impact
of 5% disruption (Additional Delay) has low correlation with normal annual
delay per a peak period auto commuter (Delay): Pearson R = 0.49,p =
1.18x1073.

2.3.4 Discussion

The disturbances affecting the road infrastructure are often complex, and their impact on
the structure and function of roadway systems may be unknown (Kermanshah and Derrible
2016; Murray-Tuite 2006). These disturbances might be natural and irregular, such as
distributed road closures caused by an earthquake or homogenous vehicle slowing down
due to a snowstorm. The disturbances might also be anthropogenic and intentional, such as
a street fair or marathon race. Whatever the disturbance, the results of this analysis allow
several meaningful inferences to be made that may have important implications for highway

transportation policy. The first is that resilience and efficiency represent different aspects
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related to the nature of the transportation systems, they are not correlated and should be
considered jointly as complementary characteristics of roadway networks. Second, there
are characteristic differences in the resilience of different urban areas, and these differences
are persistent at mild, medium, or widespread levels of stress (Figure 19). Except for San
Francisco CA, which is the most fragile of all cites represented in Figure 19 at stress levels
r < 20% but then surpassed by Boston MA and Washington DC, the rank ordering of
urban area resilience is insensitive to stress level. That is, cities that exhibit relatively low
resilience under mild stress are the same cites that exhibit low levels of resilience (relative
to peers) under widespread roadway impairment. This suggests that the characteristics
that impart resilience (such as availability or alternate routes through redundancy of links)
are protective against both the intermittent outages caused by occasional car crashes as
they are to snow and ice storms. For cities without resilience, a widespread hazard such
as snow may lead to a cascade of conditions (e.g., crashes) that rapidly deteriorate into
gridlock. This was exactly the case for Washington DC 20 Jan 2016 under only 1" of snow
(Richardson 2016), and for Atlanta GA two years earlier, which experienced 2” of snow in
the middle of the day that resulted in traffic jams that took days to disentangle (Sen 2014).
While popular explanations of these traffic catastrophes focus on the failure of roadway
managers to prepare plows and emergency response equipment, Figure 19 suggests that
cities with similar climates (Memphis TN, Richmond VA) are less likely to be impacted,
regardless of the availability of plow or sand trucks. The third inference follows from
Figure 20, which suggests that urban areas that make capital investments to reduce traffic
delays under normal operating conditions may nevertheless be vulnerable to traffic delays
under mild stress conditions. Because such stressors are inevitable, whether from crashes,
construction, special events, extreme weather, equipment malfunctions, or even deliberate
attack, investment strategies that prioritize reduction of normal operating delays may have
the unintended consequence of exacerbating tail risks — i.e., the risk of worse catastrophe
under unlikely, but possible conditions. Finally, the exceptional positon of New York City in
Figure 17 calls attention to the fact that substitutes for roadway transportation are available
in many cities, and have an important role to play in relieving traffic congestion. According
to the Texas A&M Institute (Renn 2011; Lomax et al. 2011), public transit reduces delays
per peak hours auto commuter in the New York urban area by 63 hours, in Chicago by
23 hours, and by less than 20 hours in other urban areas. Because our model considers

only roadway transit, and New York City contains a myriad of nonroad-based options to
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avoid roadway congestion, it is unlikely that our model can provide informative results
for the New York urban area. Although interest has increased in policies that enhance
roadway resilience, few analytic tools are available to guide new investments in achieving
resilience goals. It is widely understood that roadway infrastructure is expensive, both in
acquiring land for rights-of-way and in construction of improvements, and thus decisions
regarding alignment, crossing, and access made over a period of decades may have long-
lasting consequences that are observable in traffic data today. Consequently, urban areas
exhibit different unintentional traffic characteristics, including delays under normal and
random stress conditions. Investments motivated exclusively by expected efficiencies under
normal operating conditions are unreliable safeguards against loss of efficiency under stress
conditions. Therefore, new analytic tools are required that allow designers to assess the
adaptive capacity of roadway infrastructure, and assess the potential of new investments to
provide enhanced resilience. The adaptive network-based model described herein is one

such approach.

2.4 Lack of Resilience in Transportation Networks: Economic Impli-
cations
Disruptions to transportation networks are inevitable. When road networks are not resilient,
or in other words, do not recover rapidly from disruptions, unpredictable events can cause
significant delays that may be disproportionately greater than the extent of the disruption.
Enhancing transportation system resilience can help mitigate the consequences of disrup-
tions; however, required investments are difficult to justify given the low probability of such
events. This paper calculates economic implications of unmitigated random disruptions in
urban road systems. We modeled delays in transportation networks and demonstrated how
resilience can be integrated into macroeconomic modeling via the transportation planning
model, REMI TranSight. The model was applied to 10 cities in the United States to forecast
the impact of disruptions on gross domestic product (GDP). Different disruption scenarios
were modeled and the magnitude of disruption was used to calculate additional delays in
transportation networks, which were then integrated into the TranSight model. The results
were compared to a baseline case, where economic impact was assumed to be proportional
to the magnitude of disruptions. Results show that losses in GDP were far more pronounced
in the case scenario as compared to the baseline. The losses tended to be higher in wealthier

and more economically productive cities. The economic output tends to rebound one to
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two years after a disruptive event. We conclude that different topology in transportation
networks in different cities requires explicit consideration and quantification of resilience

to support investment decisions designed to improve transportation networks in cities.

24.1 Introduction

Currently, most mandated development-related transportation planning is intended to pre-
pare for frequently occurring and observable disruptions, while unpredictable events that
have not yet occurred attract less attention. The current norm for improving transportation
networks and remedying the economic impact of delays is undertaken through management
of the network for specific threats to reduce the travel time and improve efficiency moti-
vated by the goal of reducing delay (Belenky 2011). Current practice is to evaluate road
performance with Level of Service (LoS), or a similar measure of efficiency, during the
worst traffic of an average day and when the whole road network is running as expected
(Transportation Research Board 2010). This emphasis on travel time and the monetary
value of its duration allows prospective projects to enter the realm of cost-benefit analysis
but carries the shortcoming of representing only observable and predictable events. Recent
experiences clearly show that a focus on resilience is necessary. The economic impacts
of resilience (or lack thereof) in transportation networks have not been studied, but will
ultimately be essential to justify future investment. The National Academy of Sciences
(2012) defines system resilience as the capacity to be prepared for an event, absorb its
shock, and then recover and subsequently adapt following the event. Lounis and McAllister
(2016) quantify resilience as the change in a system’s performative function and quality
over the course of either or both an extreme event or a gradual accumulation of internal or
external stress. Here, and in previous publications (Ganin et al. 2017, 2019), we consider
transportation resilience to be a property of the network that allows for fast recovery of travel
to expected speeds, despite disrupted roads and intersections in the network. Cumulative

delays associated with disruptions can be considered a metric of network resilience.

The transportation field recognizes that variances in expected travel times have a cost, even
when not incurred, as they need to be planned for by travelers. This is known as the
Value of Reliability (VOR) (U.S. Department of Transportation 2016). While VOR is a
well-researched field and methodologies to estimate it do exist (Fosgerau and Karlstr"om
2010; Lam and Small 2001), no standardized method has yet been adopted in the U.S.
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(U.S. Department of Transportation 2016). The cost of unreliable transportation may not
be consistent across sectors as some workers have more flexibility in where and when they
work than others. These costs may also fluctuate with the amplitude of the delay, with small
delays potentially being negligible, though more research is needed (Fosgerau et al. 2007;
Mackie et al. 2003; U.S. Department of Transportation 2016). A more standard metric used
in planning is Value of Time (VOT), which is generally calculated on the assumption that
variance in travel time from one scenario to another is certain. VOT is normally linearly
calculated based on wage rates (U.S. Department of Transportation 2016). Both of these
methods fail to capture the costs of unpredictable delays, which cannot be accounted for in
schedules and may have different costs than VOR or VOT.

The realm of possibilities between average traffic conditions and unpredictable disruptions,
such as natural disasters, is comprised of events that can have significant disruptions to
mobility, and yet are outside the normal realm of planning and analysis. These events
may be unpredictable in both space and time and unknown in nature, to the point of being
random. Therefore, these unpredictable events should be the focus of resilience inquiries
here and elsewhere (Ganin et al. 2019, 2017). While mitigating the risk of disruption (i.e.,
strengthening key nodes and links in transportation networks) is appropriate for specific
hazards, events that are highly uncertain in space and time challenge our ability to character-
ize vulnerability to them and implement effective risk mitigation measures. Cost concerns
ensure that completely minimizing physical risk at one location may inherently limit our
ability to reduce risk elsewhere. Similarly, hardening a transportation system against the
risk of new types of disruptions, such as cyber-attacks on Intelligent Transportation Systems
(ITS), is difficult because the potential range of risk is too vast, or poorly understood, to
be effectively predicted (Ganin et al. 2019). Network-wide management is therefore more
appropriate than location-specific solutions, where the objective is to keep people and goods
flowing through the network in spite of disrupted parts of the network. An apt measure of
a network’s performance with respect to that objective is resilience. The capabilities and
characteristics that should be fostered to deliver system resilience in the face of disruptive
events are currently studied in many disciplines, including transportation (e.g. Cox et al.
2011).

Across various contexts, there is a growing recognition that lack of resilience can have

grave socioeconomic consequences, especially in the context of damaged interconnected
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infrastructure (Florin and Linkov 2016). Such is the finding of a recent World Bank report
on infrastructure, as a key enabler of economies and the macroeconomic impacts, not being
resilient (Hallegatte et al. 2019). Presidential Policy Directive 21 - Critical Infrastructure
Security and Resilience (The White House 2013) formalized the call to enhance the nation’s
critical infrastructure functioning and resilience by recognizing the importance of operable
critical infrastructure, including transportation systems. This resilience-related Policy Di-
rective focused on 16 sectors that were considered vital to national economic security, public
health, and safety (“Critical Infrastructure Sectors,” 2019). The current state of practice in
transportation planning lends itself to the conclusion that advances in resilience research
need to be integrated into planning norms to help account for uncertain events and emerging
risks. Quantitative resilience modeling results can be used in tandem with efficiency-driven
modeling efforts to conduct tradeoffs among multiple objectives in transportation network

investment.

The extent of socioeconomic impacts due to disrupted infrastructure is a currently researched
field, yet mostly limited to forecasting or assessing impacts of specific disruptive events. For
example, Ham et al. (2005) assessed the anticipated economic implications if an earthquake
were to occur in the New Madrid Seismic Zone in the U.S. Midwest. They concluded
that the ensuing disruption to U.S. commodity flow could pose a significant threat to
economic stability and recovery at the regional, national, and international scales. Ham
et al. (2005) define transportation network resilience as referring to the adaptability of
commodity flow such that goods can be transported via multiple modes. Similarly, Tatano
and Tsuchiya (2008) developed a spatial computable general equilibrium (CGE) model to
estimate economic losses (e.g., changes in the cost of travel time) attributed to earthquake
disruption of freight and passenger transportation flow. They used the 2004 Niigata-
Chuetsu Japan earthquake as a case study, and regional economic losses were measured as a
function of inter- and intra-regional trade (Tatano and Tsuchiya 2008). Pelling et al. (2002)
discussed how the 1995 Kobe, Japan earthquake increased transportation costs in the region
by over 50% and increased the cost of goods in the region by 10%. Internationally, the
disablement of the Kobe Port halted the import and export of goods. Pelling et al. (2002)
suggest that disasters possess an “inflationary potential” due to their capacity to affect the
“production, distribution, marketing, and consumption” functions of markets. Cho et al.

(2015) show how disruptions to critical highway infrastructure, such as highway bridge and
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tunnel damage, can lead to economic losses in the U.S. on a state-by-state and industry
basis. They conclude that the states and industries that can adapt to disruption suffer the
least economic loss. Therefore, redundancy in transportation networks can mitigate the
consequences of a disruptive event. This conclusion is mirrored by Worton (2012), who
suggested that resilience engineering should focus less on efficiency than on the capacity for
preparedness, recovery, and adaptation (Mattsson and Jenelius 2015). The shortcomings of
existing studies on the economic implications of transportation disruptions are twofold: 1)
resilience is often conflated with potential economic damages and 2) economic modeling is

not underpinned by any analysis of transportation network topology.

This paper aims to demonstrate that joining resilience analysis with regional economic
modeling can advance the methodological approach necessary for planning. This integra-
tion will allow for transportation costs to be associated with travel time delays, as delays
are a primary contributor to economic impact. The current paper uses REMI TranSight
(Regional Economic Models Inc. 2018), an established economic modeling process that
uses input-output, computable general equilibrium, econometric, and economic geography
methods. Disruption-induced delay results generated by Ganin et al. (2017) were translated
to economic outcomes by formulating them as inputs to REMI TranSight. This expanded
the ways to use travel delay information, which is more traditionally used in scenario and
policy analysis. We introduce a process for quantifying the economic implications of re-
silience, or lack thereof, and demonstrate this process for 10 U.S. cities. This can be used to
develop a planning approach that explicitly considers resilience. The methodology used in
this study can be instrumental in the transition from current risk-based planning to true re-
silience planning, supported by economic analysis and subsequent selection of management

alternatives.

2.4.2 Methods: Integration of Transportation Network Resilience and Economic
Models

This paper joins two independently developed and documented models to assess the eco-
nomic impacts of resilience in transportation networks: 1) Ganin et al. (2017) urban traffic
network simulation, which estimates travel times given either a predictable disruption (e.g.,
peak commute hours) or random disruptions and accidents (e.g., natural disasters and major

accidents), and 2) Regional Economic Models Inc. (2018), a regional economic forecast-
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ing model oriented specifically for simulating the outcomes of changes in transportation

systems.

Network Model for Simulating Delays Associated with Disruptions. Effects of disrup-
tions on an urban transportation infrastructure are taken from Ganin et al. (2017). Specif-
ically, Ganin et al. (2017) modeled travel delays that result from road network disruptions
during peak-hours for private vehicle commuters in 40 urban areas in the continental United
States.

In order to study travel delays under both normally functioning and disruption scenarios,
Ganin et al. (2017) first built transportation graphs (as in Figure 21) for each of the urban
areas, comprised of intersections connected by roadways, and then simulated commuter
trips on the graphs. Specifically, urban areas were spatially divided based on the Voronoi
tessellation method ! and were centered at each road intersection. The expected population
of each cell was calculated using data from the U.S. Census Bureau. Trip distribution
was accomplished with a modified gravity model and the privately-owned vehicle was the
only mode of travel studied. Route assignment was done assuming free-flow speeds on all
roadways. Further, commuters were assumed to travel along the routes which minimized
their trip durations. The output of the model is the annualized travel time per commuter.
Free parameters of the model are calibrated to match measured data on the annualized delay
per a peak-hours auto commuter, as given by the Urban Mobility Scorecard (Schrank et al.
2015).

Voronoi tessellation is a technique for partitioning a plane into cells around points such that the distance
from a given point to the boundaries of the cell is less than that of the other points (Skiena 2008).
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Figure 21. Roadway networks of Houston, TX: (A) Congestion patterns
at 8 am per Google Maps, (B) Modeled delays per kilometer of travel in
normal conditions, and (C) Modeled delays per kilometer of travel under
5% disruption. The purple line shows an approximation of the urban area
boundary in panels (B) and (C).

To characterize the resilience of modeled cities, Ganin et al. (2017) generated disruptive
events on the transportation networks by disabling links. Resilience was quantified as the
additional delay resulting from these disruptions. More specifically, Ganin et al. (2017)
randomly selected a fixed fraction p of network links that was made non-functional by
reducing the free-flow speeds of the network links to 1 km/h. Links were selected at
random, with probabilities proportional to their lengths. Then, traffic was redistributed per
the updated link free-flow travel times, assuming the same origin-destination demand matrix
and assuming travelers were still using routes that minimized trip duration. Additional delays
that resulted from these events were evaluated as the difference between annualized travel
time with and without a disruption. The details of each step of the model development can
be found in Ganin et al. (2017).

Economic Modeling to Forecast the Impacts of Transportation Network Changes.
TranSight (Regional Economic Models Inc. 2018) is designed to be used with transporta-
tion forecasting models to translate the outcomes of improvement measures into regional
economic implications. Regional Economic Models Inc. (REMI), the developer of Tran-
Sight and related products, maintains models for a wide variety of U.S. regions and states

in order to support research. For a particular city or region, the effects of transportation
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projects are forecasted in economic terms that include gross domestic product (GDP), em-
ployment, delivered price, commodity access, labor access, and relative cost of production.
REMI mixes techniques from Input-Output (I-O) and Computable General Equilibrium
(CGE) modeling, as well as economic geography and econometric techniques (Regional
Economic Models Inc 2017). In this research, TranSight is paired with forecasted delays
that result from transportation system disruptions instead of changes in travel times that are

associated with road network improvements.

The inputs to TranSight from a transportation model include: (a) changes to Vehicle
Miles Traveled (VMT), (b) changes to Vehicle Hours Traveled (VHT), and (c) vehicle trips
attributable to improvement measures. Changes in velocity (measured by VMT divided
by VHT) from the baseline scenario to the improvement (test) scenario are formulated
as having a proportional effect on transportation cost and changes in trips that can be
made in a given amount of time (measured by the number of trips divided by VHT) are
formulated as having a proportional effect on accessibility cost. Changes from the baseline
transportation network are presumed to affect various economic variables via changes in
“effective distance,” which functions to change travel time or commuting time and expenses.
Cost-savings due to reduced travel times accrue to industry firms in the model due to reduced

commuting and transportation costs and increased access to markets.

Cost-savings, capital investment, and other financial and economic concerns associated
with prospective infrastructure projects are related to the regional economy. Changes to
economic variables are modeled via policy variables that represent the effect of travel time
on individual spending on fuel and subsequently disposable income and consumer spending.
Additionally, costs to industries are related to transportation via the extent to which labor
demand can be met and the composite price of goods sent to market. All of the linkages
between travel times and associated costs to the policy variables that are used in TranSight
are detailed in Regional Economic Models Inc (2017) and the TranSight 4.2 User Guide
(Regional Economic Models Inc. 2018).

Connecting Transportation Network Resilience and Regional Economic Modeling.
For the specified road network disruption severity p, quantifying the fraction of affected
roadways, the network model (Ganin et al. 2017) calculates the resulting average annualized

travel time 7'(p) per a peak-hours commuter, which can be compared to travel time in the
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absence of disruption 7(0). The topological attributes that yield higher or lower 7' (p)
values are not called into question in this research. We assumed a linear relation between
the transportation costs and the relative increase in travel time due to network disruption,

estimating the corresponding percent increase in transportation costs c(p) as

c(p) = AT (p)/T(0) (24)

where AT (p) =T(p) — T(0).

For the purposes of this demonstration, we relied on changes in gross domestic product
(GDP) as an indication of economic impact for individual cities assessed. We did not
probe the specific mechanisms of the economies of each city. To quantify the effects of the
transportation cost increase on GDP, we utilized the TranSight model, and then generated
the relative change in GDP as a function of disruption severity for the 10 cities of interest.

Two scenarios are modeled:

1) Baseline scenario. Assumes that transportation cost increases are directly proportional

to road disruption severity:
(p) = p (25)

2) Test scenario. Assumes that transportation cost increases are proportional to the ad-
ditional travel time induced by disruption, not to the fraction of roads affected (see Eq.
24).

2.4.3 Results
Table 5 displays the percent increase in transportation cost computed for different cities at
specific values of road network disruption severity p and serves as the basis for subsequent

analysis of economic implications.

We observed that the same disruption results in different cost increases for different cities
(note that cost is proportional to additional delay). The cost escalated quickly — even at
3% disruption, San Francisco exhibits a cost increase of 34%. The economic impacts of
transportation disruption were most pronounced in San Francisco, where 5% disruption

resulted in a 51% increase in transportation costs. Similar disruption in Los Angeles
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Table 5. Transportation cost c¢(p) increases by city that result from road
network disruptions of severities varying from 1 to 5 percent. Shown in red
are the transportation cost increase values exceeding 25%.

Fraction of Affected Roadways (Network Links), p

1% 2% 3% 4% 5%

Atlanta 4% 10% 16% 23% 33%

Detroit 3% 6% 9% 14% 19%

@' Houston 5% 11% 16% 24% 32%
g Jacksonville 7% 13% 22% 33% 44%

=

% Los Angeles 1% 3% 5% 7% 9%
é Miami 4% 9% 13% 18% 23%
g Orlando 4% 9% 14% 20% 26%
% San Francisco 9% 20% 34% 43% 51%
= Seattle 3% 6% 9% 13% 17%
Tampa 6% 12% 20% 26% 37%

resulted in only a 9% increase in transportation costs. Jacksonville is overall the second

most severely impacted city considered, with a 44% increase in transportation costs.

TranSight forecasts future economic performance in order to understand the short- and
long-term implications of disruptions and management policies. Figure 22 shows the
impact of a 5% increase in transportation costs on the GDPs for 2019 and the forecasted
subsequent five years for the baseline ( 22a) and test case ( 22b) scenarios. All simulated
cities showed significant impact on GDP in 2019, the year in which the disruption occurred;
the residual effect of that shock over the five subsequent years, however, was relatively
small. No remediation or recovery activity was simulated and transportation costs returned
to prior levels in 2020-2024. All of the cities recover to within 0.2% of their expected
GDP (simulated GDP in the absence of a shock) by 2020 and have exceeded it by 2023.
The profile of the initial impact and recovery was very similar for the test case, yet the

magnitude was substantially greater, with disruption roughly an order of magnitude worse
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than the baseline case. Notice the difference in the y-axis of the Figure 22 graphs.
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Figure 22. Temporal performance of regional economies (as measured by
GDP) in response to a 5% increase in travel costs that lasted one year (A)
and to a 5% transportation network disruption that lasted one year (B).
Dotted lines show the lowest, mean, and highest values for each year. The
dashed line corresponds to zero change in GDP from expected GDP in the

absence of disruption.
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In Figure 23, GDP changes from the baseline scenario are displayed by the colored bars
and those for the test scenario are shown with the transparent bars. For both scenarios,
GDP progressively declined as a function of disruption severity. At the same time, we note
that changes in GDP due to travel time delays were significantly more consequential than
for their baseline counterparts. For example, in this model, a random disruption of 3%
of road segments in the San Francisco urban area results in a ¢(p) = 34% transportation
cost increase. This leads to a 6.64% GDP decrease, significantly more than the baseline
result of 0.64%. Not all cities show such disparate results between the two scenarios. For
example, for Los Angeles (the 5th bar), a 1% roadway disruption increases the travel time
by approximately 1% and therefore the GDP effects are the same (the transparent and the
colored bars completely overlap).
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Figure 23. Impact of disruption on GDP (vertical axis scale is logarithmic).
The colored bars correspond to the baseline scenario, with transportation
cost increase being proportional to the disruption severity p, while the trans-
parent bars present the case when transportation costs change per travel
time increase in response to a disruption.

Even though higher percent additional delay due to road network disruption predictably

results in greater economic impact (Figure 24), the lack of complete linearity signifies that
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there may be differences between the city economies in question that lead to the different
impacts of regional disruption on economic outputs. For 5% disruption, the proportion of
GDP loss in Orlando, Tampa, and Jacksonville are lower than the trend while the rate of

GDP loss in San Francisco and Detroit are higher than the trend.
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Figure 24. Percent additional travel time that results from the simulated
disruption of 5% of the road network is plotted against the percent loss of
GDP that results from that delay. Loss of GDP is related to the delays
caused by disruption.

A more detailed study of the relationship of total regional GDP and GDP per capita loss
to travel disruption may be important for revealing fundamental differences across studied
metropolitan areas. The rate of GDP loss associated with each additional 1% network
disruption is not constant within or across cities. Some cities lose a similar amount of GDP
with each additional increment of disruption while others lose a more variable amount (see
Figure 25; note that the losses are not displayed cumulatively). For example, Orlando has a
similar amount of loss each time another 1% of the roads are disrupted (visualized through
tight clusters of graphical points). Houston suffers less loss from 2 to 3% disruption than

from 1 to 2% but then much more loss from 3 to 4%, which is visualized as more disperse
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points. This demonstrates that the impact of additional disruptions is difficult to predict

and that there may be thresholds and unknown factors in play that affect whether additional

road network disruptions will translate to disproportionate economic impacts.
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Figure 25. GDP loss attributable to each additional 1% road network disrup-
tion (not cumulative). Losses attributed to an increment of disruption are
variable and do not have a pattern that follows the addition of increments.

To investigate whether the tolerance of city economies to road network disruptions is related
to their size (as reflected by GDP) or wealth (GDP per capita), we look at how much the

forecasted GDP or GDP per capita changes over a 1% disruption increment. The results here

are for the disruption window of 4% to 5%. Loss of GDP over that increment is negatively

correlated with GDP (Figure 26A). That is, larger economies, as measured in GDP, tend

to suffer more loss in productivity than smaller economies when road network disruption
is increased from 4% to 5%. All cities lose an additional 1% (+/- 0.4%; mean = 0.98%,
standard deviation = 0.8%) of GDP with the exception of Los Angeles (0.33% loss) (loss as
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a percent of GDP is displayed as inset graph). In comparing the main and inset graphs, we
can see that the largest economy (Los Angeles) is the most tolerant to network disruption
but the next two largest economies (San Francisco and Atlanta) are comparably intolerant,
as they lose a similar percent of their GDP as some of the smallest economies in the sample
(Tampa and Jacksonville). Modeled economic impact is also negatively correlated with
wealth, as measured in GDP per capita (see Figure 26B), although to a lesser extent than
GDP. Cities with higher productivity per capita have a higher rate of loss when percent road
network disruption is increased from 4% to 5% than cities that have lower per capita GDPs.
The cities that are more tolerant, in that they lose less GDP per capita than their counterparts,
have a wide range of wealth; Seattle, Miami, and Orlando lose a similar percent of their

GDP per capita, as evident from the inset.
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Figure 26. Comparison of city economy size (as measured by GDP) (A)
and wealth (as measured by GDP per capita) (B) as explanatory variables
of the tolerance of city economies to additional disruption. Results are for
additional GDP losses attributable to increasing percent network disruption
from 4% to 5%. Insets show losses as a percent of GDP and GDP per capita,
respectively.
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2.4.4 Discussion and Conclusions

This study is the first to integrate network resilience models for transportation networks with
economic models. We found that travel delay resulting from disruptions in transportation
networks result in non-trivial economic impacts. The economic outcome of disruptions
cannot be predicted by a simple incremental change of velocity-related parameters (VMT,
VHT). This research demonstrates that economic models must also be paired with structural
network models and analysis in order to best reflect the impact of disruptions on econom-
ically important processes, such as the access of commuters to their workplaces and firms
moving their commodities to market. This work also shows that the degree of disruption
(i.e., percent of roadways disrupted) cannot be assumed to be proportional to transportation
cost increase. Rather, network disruptions can result in a wide variety of transportation cost
increases depending on a number of different factors. As such, one important conclusion of
this work is that losses associated with network disruptions may be an order of magnitude

higher than the size of the disruption itself, as evidenced in Figure 23.

Improving the ability of infrastructure systems to continue to function after unexpected
disruptions (i.e., resilience) is emerging as a high priority in infrastructure planning. Re-
silience is an objective that has to be balanced against other system performance objectives,
including the efficiency of transportation networks. Ganin et al. (2017) used a previ-
ously developed methodology for network resilience quantification (Ganin et al. 2016) and
demonstrated that efficiency and resilience are not correlated in the cases of 40 U.S. cities.
Yet, Ganin et al. (2017) did not assess the economic implications of a lack of resilience in
transportation networks. Rose (2017) gives a comprehensive overview of the challenges
faced in accounting for the economic impacts of disruptions, including that of translating

damaged public infrastructure into broader economic losses.

It is intuitive that the effects of disruptive events are not only direct physical impact.
The extent to which these impacts can propagate through regional economies needs to
be quantified in order to motivate remedial action and inform priorities. A combination
of factors is likely contributing to the forecasted impacts of road network disruptions on
economies. Potential factors are characteristics of both the road networks as well as the
economies. In this proof-of-concept study, only exploratory analysis of selected economic
characteristics was used. A more detailed analysis of transportation networks was not

attempted.
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The question of what makes some cities more sensitive to transportation disruptions than
others is important to study further. Our findings show that the economic effects of road
disruptions do not perfectly scale with the productivity of city economies (in terms of
GDP) or wealth (in terms of GDP per capita) and that not all of the regional economies
in the study are equally affected by disruptive events. A naive expectation is that the
more productive an economy, the more sensitive it will be to transportation infrastructure
disruption due to its reliance on a mobile workforce. Yet, the results of this study imply that
more complex processes are at work. Further evidence of the differing sensitivity of city
economies to disruptions include that each additional increment of disruption does not show
a pattern across cities and that recovery from simulated disruption is not the same across
cities. We can speculate that the sensitivity of an economy is dependent on the reaction
of the transportation network to a disruption as well as the dependence of the economy on
its transportation network, but more research is needed to understand the factors at play.
The implication of this result is that both region-specific economic and region-specific

transportation models are necessary for resilience planning.

The model is limited, however, in that the calculated transportation cost increase was applied
for a period of an entire year; a finer temporal resolution would be preferable and would
yield more interesting results in terms of recovery of economies from disruptive events. Ad-
ditionally, the modeled cost increases may be conservative as, in reality, unexpected delays
can result in disproportionately higher cost increases as compared to expected delays. For
example, traffic congestion does not disrupt businesses on a day-to-day basis because it can
be planned; unforeseen delay cannot be planned around and may cause disruptions that hurt
businesses. Because Value of Reliability is not taken into account in the economic model
used here, the economic impacts of transportation disruption were conservative. Other
limitations include excluding public transportation, which is an important consideration in
coupled network models. Similarly, the traffic model is intentionally abstract and simple
and only uses readily available data. Integration of explicit travel pattern (e.g. using cell
phone data) could improve specificity of the model, but it will limit its universal appeal
because these data may not be available for all cities and may be of varying quality. Finally,
the current model does not differentiate between the expected travel times, the variance of
everyday traffic, and unpredictable delays. Future work should investigate how to integrate

potential methods of measuring the Value of Reliability, separate from expected travel times,
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as well as how unexpected delays may best have their costs modeled and integrated. Sim-
ilarly, whereas this research considers how different city economies recover from a simple
and passive standpoint, future work should consider the economies themselves with a more
in-depth consideration of the specific economic indicators and recovery patterns (Rose and
Dormady 2018).

A key motivation of this research is to highlight that efficiency, risk reduction, and resilience
are different and often competing objectives as it relates to making investment decisions
on improving transportation networks. Although disruptive events result in delay, and
sometimes much more pronounced delay than routine congestion, they cannot be prevented
solely by improving efficiency of a transportation network or its hardening to reduce risks.
Risk reduction can have limited success for uncertain events. For example, in flow networks,
such as transportation systems, efficiency may be achieved by having sufficient roadway
capacity while resilience can result from the availability of (potentially not very efficient)
alternative routes, which would ensure graceful performance degradation under disruption
as opposed to a complete collapse. Planning for resilience is functionally different than

planning for efficiency and hardening (Ganin et al. 2017).

Future work should explore the driving factors of uneven outcomes across cities, namely
the reasons for transportation network sensitivities to disruption as well as local economy
sensitivities to transportation failures and ability to recover. Additionally, future work can
advance areas in which this study were limited and move the method toward practical
application in transportation planning. For example, this paper did not investigate the
topological attributes of road networks that yield more or less delay. This paper also did
not investigate the mechanisms by which network disruptions cause economic impact in
the results. Efforts to enhance the resilience of road networks to disruption and/or of the
regional economy to a lack of road network resilience will need to study the outcomes of
the models in detail. This paper is the first to provide fusion of a well-established Regional
Economic Model (Regional Economic Models Inc. 2018) with the transportation network
resilience model developed by Ganin et al. (2017), and to apply it to multiple cities in the
United States. This explicit integration of a temporal resilience model linked with a regional
economic model allows for the comparative evaluation of multiple cities with respect to the
impact of resilience. This paper demonstrate that neglecting to plan for disruptive events

from a resilience perspective can result in a disproportionate impact on city economies.
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2.5 Vulnerabilities of Intelligent Transportation Systems (ITS) and the
Need for Resilience
Many cities are adopting Intelligent Transportation Systems (ITS). These are “smart” sys-
tems that combine connectivity, coordination, adaptivity, and/or automated response for
transportation policy optimization. Integration of “smartness” in many systems, including
critical transportation infrastructure, is expected to increase efficiency, even in response to
disruptions. However, the control and sensing systems of ITS open new vulnerabilities to
nonphysical attacks. Current approaches to manage vulnerability focus on risk character-
ization and analysis. Emerging technologies by their nature have risks that are not fully
known. Resilience, defined as the system’s flexibility and recoverability, may be used to
address unknown threats and adverse events. We conducted a study of network resilience in
response to cyber physical random and targeted disruptions in 10 urban areas. Disruptions
were affecting either intersections or roadways under different impact scenarios. Modeled
attacks disrupting 20% of intersections caused on average 14.6% higher additional delays
than the same severity attacks on roadways. Targeting by length caused the most severe
disruptions. Contrary to expectations, targeting nodes and links with the highest number of
shortest paths (betweenness) was not noticeably worse than random attacks. Thus as cities
adopt ITS and other smart systems resulting in potentially unknown vulnerabilities, it is
important to consider resilience of transportation infrastructure affected by potential cyber

attacks.

2.5.1 Introduction

Smart cities have been a rising new concept for urban planners, with new initiatives push-
ing for more efficient urban transportation, such as the US Department of Transportation’s
Smart City Challenge (U.S. Department of Transportation 2017). In smart cities, systems
use connected technologies to collect and analyze data in real time, and to make predictive
and adaptive decisions (Albino et al. 2015). Smart transportation systems are generally
called Intelligent Transportation Systems (ITS). Many ITS applications are focused on im-
provements at intersections and freeway ramps/merges (Coogan and Arcak 2015; Ghena
et al. 2014; Makarem and Gillet 2012; Onieva et al. 2012). This is often an efficient imple-
mentation as improving intersections allows for improvements at limited points to extend
to the roads linking to the intersections themselves. While the high degree of connectivity

in transportation systems allows smart cities to improve early detection and response, in-
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crease efficiency and reduce risks, the connectivity also presents a new vulnerability itself
(Lombardi et al. 2012). Systems that can either be controlled remotely, respond to traffic
conditions, or communicate with other systems are vulnerable to having the pathways that
they use to communicate with each other and sense the world being remotely hijacked
(Amoozadeh et al. 2015; Petit and Shladover 2015; Reilly et al. 2015). The potential for
remote disruption may make these intersections more attractive targets to malicious actors,
as they may no longer need to physically expose themselves, to cause a disruption. Ad-
ditionally, just as improvements in intersection performance spread to their linking roads,

disruptions will also propagate.

While improvements in security can reduce risk, they cannot eliminate it. One framework
to mitigate some of the possible impacts of failures is to increase system resilience through
redundancy, modularity and/or autonomy. Resilience is defined by the National Academy
of Sciences as the ability to prepare for, absorb, recover from, and adapt to disturbances
(Linkov et al. 2014c; Council 2012). Resiliency is the subject of new policy initiatives,
such as Presidential Policy Directive 21, which seeks to promote resilient infrastructure that
is not just efficient but that is able to withstand changing conditions (Committee 2015).
This effort has not yet yielded a clear and agreed upon method to measure resilience in

transportation.

Transportation resilience has been defined as the ability to maintain a “demonstrated level
of service or restore itself to that level of service in a specified timeframe” (Freckleton et al.
2012). Even so, efforts to quantify resilience have been hindered by the difficulty in complex
transportation systems modeling. Existing resilience methods are either qualitative or data
intensive, often requiring specific system knowledge (Hughes and Healy 2014). Further,
many conventional traffic models now utilize private datasets including mobile phone GPS
data (Calabrese et al. 2011; Woodard et al. 2017). The limited availability of this data
makes verification and replication difficult. This leads to a question — As ITS systems
become more prevalent in a city, what are the implications for transportation resilience?
This paper argues that network science (Ganin et al. 2016) provides a foundation for the
evaluation of tradeoffs in designing smart and resilient transportation systems. This paper
contributes to the literature by providing a method and metric to assess ITS road network

resiliency and a case study of this method for 10 cities.
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This section is organized into 7 subsections: states goals, defined resilience and describes
the paper’s organization; goes over relevant background context and literature; describes
the methodology used in this paper’s analysis; summarizes the results extracted from the
analysis; discusses the results and their implications for practice; concludes the section by
summarizing the previous subsections and discussing methodology limitations and potential

areas of future investigation.

2.5.2 Background

Resilience and Risk in the Context of I'TS Networks. ITS networks and components have
taken many forms and undergone multiple evolutions of organizational structure. Early
examples of networks billed as ITS include synchronized traffic lights (Auer et al. 2016).
These systems could be based only on timings, and therefore be entirely autonomous, or
some level of connectivity between the intersections, to minimize commuter time in red
light phases (Auer et al. 2016). Later systems included centralized controllers which could
connect to and coordinate actions among many areas and respond to changing conditions
(Auer et al. 2016). These hierarchal systems, however, are vulnerable to widespread disrup-
tion as failure at controlling nodes can affect performance of large percentages of the system,
giving them low resilience. A newer strategy is to design autonomous components that
communicate together and are aware of each other’s’ protocols (Auer et al. 2016; Makarem
and Gillet 2012; Shladover et al. 2012). If each component can make decisions indepen-
dently then failures can be contained. Among these developing autonomous components are
autonomous and connected vehicles; capable of performing some or all driving tasks, while
communicating and cooperating with other vehicles and infrastructure (Administration.
2016). The communications component can, however, also be used as an avenue of attack,
or to propagate disruption by feeding in false information (Amoozadeh et al. 2015; Petit
and Shladover 2015; Reilly et al. 2015). Even systems without communicative protocols

can be vulnerable if they are designed to sense traffic conditions (Petit and Shladover 2015).

ITS vulnerabilities were showcased when channels used by Sensys Networks VDS240
wireless controllers were spoofed by security researchers into changing traffic patterns
through tricking the control system into believing that different traffic patterns, than those
actually present, were occurring (Cerrudo 2014; Zetter 2014). This major security issue

stemmed from unencrypted communications between sensors and the signal control system,
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leaving cities like Washington, DC, Seattle and New York City vulnerable to attack and
prompted a major security patch of the system (U.S. Department of Homeland Security,
Industrial Control Systems Cyber Emergency Response Team 2014). Furthermore a study
by researchers at the University of Michigan not only found similar vulnerabilities to the
aforementioned tests, but also noted that many devices were found online by the search
engine SHODAN, with little to no authentication protection (Ghena et al. 2014). Other
researchers have found access to traffic camera data and even traffic signals which could
be put into test modes without credentials (Goldman 2013). SHODAN and other mass
scanning research efforts have been used at larger and larger scales, such as Project Shine
(Shodan Intelligence Extraction) where researchers worked with the Industrial Control
Systems Cyber Emergency Response Team (ICS-CERT) of the Department of Homeland
Security (DHS) to categorize 460,000 IP addresses with predicted system impact and linking

them with location, sector type and organization name (Team 2012).

While cyber-attacks remain a key threat, physical access and insider knowledge remain
key issues. In 2009, two Los Angeles traffic engineers pled guilty to illegally accessing a
city computer to cause major disruptions by disabling controls at four intersections (Grad
2009; O’Leary 2009). Although this incident was performed as part of a lab dispute,
and not a targeted event, it emphasizes the vulnerabilities of transportation systems to
insider attacks of malicious intent. When insider knowledge and wireless access are both
unavailable, physical access can compromise hardware (Byres and Lowe 2004). Although
traffic light systems are designed to absorb physical failures, a coordinated attack with cyber
physical components can amplify damage (Li 2016). For example, even simple attacks on
traffic signals, such as copper theft near freeways, can temporarily cripple transportation
systems (Reilly et al. 2015). Furthermore, while smart grids have traditionally been able to
protect their hardware with physical access controls and protections, two way meters being
deployed now are accessible by consumers and adversaries (Khurana et al. 2010). As ITS,
vehicle-to-vehicle and vehicle-to-infrastructure technologies are developed and adopted,
city vulnerability increases. A more recent example is spoofing mobile phone data GPS,
thereby influencing applications such as Google Maps or Waze into rerouting drivers around

non-existent traffic jams (Sinai et al. 2014).

Because it is nearly impossible for a system to mitigate all possible threats to smart infras-

tructure, transportation security must incorporate resilience thinking; to absorb and recover
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from possible attacks when they do occur. As such, the Department of Transportation has
developed the Cyber Security Evaluation Program and Cyber Resilience Review process
to better access cyber security (U.S. Department of Homeland Security 2015). Recent
work in modeling has been aimed at modeling possible physical impacts of cyber-security
breaches, such as in regional transport (Omer et al. 2013), freeway traffic control (Reilly
et al. 2015) and traffic intersections (Laszka et al. 2016). However, these models are often
not detailed enough at the city level scale to characterize urban resilience (Omer et al. 2013;
Reilly et al. 2015) or focus on directed attacks (Laszka et al. 2016). To bridge this gap in
understanding of the impact of attacks on city scale transportation systems, we illustrate an
application of a transportation resilience and efficiency model (Ganin et al. 2017) and use
it to analyze directed and random attacks on both node and link disruptions within selected

United States urban transportation networks.

Literature Review. Table 6 summarizes 17 recent, published on or after 2007, relevant
and reviewed ITS papers. Column 2 notes if the paper discusses ITS effects on network
performance. Column 3 notes if the paper discusses ITS effects on risk at all, to a network
or node. Column 4 notes is the paper discusses ITS effects on network resiliency. For
the purposes of this table resiliency is considered addressed if the paper measures system
performance from the immediate disruption, until a steady state has been achieved, or full
system recovery. Column 5 notes if the article addresses security pathways and vulnerabil-
ities within ITS devices themselves. Column 6 notes if the paper used a metric to measure
the impact on network performance, risk and/or resiliency, or device security. ITS effects
on risk and resiliency are considered fulfilled if addressed from the perspective of addi-
tional vulnerabilities that these technologies might pose. Among the reviewed literature the
majority of papers addressed either device security or ITS performance effects, in isolation.
Three papers discuss the risks that security vulnerabilities might have on performance, but
only on a limited basis. Two of these papers only considered the limited number of vehicles
directly connected to each other in a Cooperative Adaptive Cruise Control (CACC) platoon.
This limits direct applicability to a single link or piece of a link, rather than network per-
formance. Petit and Shladover investigated more effects, but only qualitatively. The lack
of metrics limits the direct applicability as comparisons among different disruptions are
difficult. None of the reviewed papers investigated how ITS technology, its adaptation and

vulnerabilities would affect transportation network resiliency. Resiliency is important as it
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Table 6. Summary of ITS Literature 2012 through 2016

Paper Addresses Addresses Addresses Addresses | Outputs
Performance Risk Resiliency Device Metric(s)
Security
(Mahmassani,

2016) v v
(Verma et al.,
2016)
(Vijayakumar et
al., 2016)
(Amoozadeh et
al., 2015)
(Coogan and
Arcak, 2015)
(Khondaker and
Kattan, 2015)
(Petit and
Shladover, v
2015)

(Ghena et al.,
2014)
(Sedjelmaci et
al., 2014)
(Whaiduzzaman
etal., 2014)
(Zhang et al.,
2014)

(Daeinabi and
Rahbar, 2013)
(Gerdes et al.,
2013)
(Makarem and
Gillet, 2012b)
(Onieva et al.,
2012)
(Shladover et
al., 2012)
(Abdel-Aty et
al., 2007)
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shows how well a system is able to perform during and recover from failures, which may be
investable with ITS adoption. Resiliency can also be used to plan for unknowable events
and vulnerabilities, which traditional risk frameworks cannot. This section contributes to
the literature by developing a method to evaluate the resiliency effects of ITS systems on a
metropolitan area, when applied to intersection improvements. This section then presents

a case study of 10 different cities against random and targeted disruptions.
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2.5.3 Modeling and Methods

This section looks at transportation modeling from the classical graph percolation theory
perspective and abstracts from the inherently complex and probabilistic nature of causing a
disruption. Thus, we assume that an attack succeeds and results in a disruption of a certain

fraction of either intersections or roadways.

We apply the model developed in Ganin et al. (2017) to evaluate delays in large transporta-
tion networks. The framework’s main advantage is that it provides a unified approach to all
large urban areas and does not require extensive datasets. Resilience is assessed based on
the additional delays resulting from adverse events. The framework’s algorithmic simplic-
ity results in acceptable computing requirements. Ganin et al. (2017) focused on natural
disasters and modeled disruptions as being random with likelihood proportional to road
length. Malicious attacks may be both random and targeted and not necessarily correlated
simply with length. Here, we expand upon the previous model to account for malicious
attacks. In the rest of this section, we briefly outline the most important assumptions and

equations of the model and refer the interested reader to (Ganin et al. 2017).

Roadways Geospatial Topologies. @~ We employ U.S. Census Bureau shapefiles (U.S.
Census Bureau 2012a) to define urban area boundaries. To simplify calculation of distances
in the network, we manually draw simplified polygons around the exact urban area shape.
The drawn polygons are available in the supplementary data. Every point comprising a
roads polyline was checked to be within the boundary of the boundary polygon, or within
40 km of the boundary.

We use datasets (OpenStreetMap contributors 2017) provided by the OpenStreetMap
(OSM) foundation to build transportation networks. Open Street Maps is a knowledge
database that seeks to provide free access to current geographical information (Haklay and
Weber 2008). We processed it to exclude minor and residential streets and service roads
and clipped it (ESRI 2012) to only include features within 50 km of the boundary.

Trips Generation and Distribution and Traffic Assignment. Our model utilizes 2010
census datasets (U.S. Census Bureau 2010) to assign populations values to nodes in the
network. This dataset contains population values broken down at the census tract level,
wherein each small subdivision of a county is updated by local participants prior to each

decennial census but remain relatively consistent over time. First, we build Voronoi polygons
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(Voronoi 1908) around the intersections in the graph. As the census tracts and the Voronoi
cells do not directly overlap, we estimate the population of each Voronoi cell using density
values from the census tracts and the spatial overlap of census tracts and the cell. We
estimate the population of each cell N; in Eq. 26 1, where N, is the population of Census

Tract ¢, and P;, P, are the polygons of the cell and the tract respectively.

Area(P; N P;)
N; = _ 2
: ZNt Area(P;) (26)

To determine the total number of trips to and from activities in an analysis area, most
models use specific factors that influence the number of trips in a region including vehi-
cle ownership, income, household size, type and density of development, availability of
transportation alternatives and quality of the transportation system (Martin and McGuckin
1998). However, because our model is already based on simplified models of city networks,
with much larger tracts than most perform, we use density of population as a proxy for
these values. Specifically, we estimate the flow of commuters from an origin region o to
destination region d to be proportional to the population at the destination N, and inversely
proportional to the cost function of distance between the two nodes. In our model, we
assume that all drivers tend to optimize their commute paths such that travel time is min-
imized. Given this assumption, we assigned paths for every origin destination pair using
free-flow speeds. Next, we estimated the number of commuters using a particular link and
used that and the road capacity assessed based on its OSM type and maximum speed (if
known) to evaluate the density of vehicles on the link. Then, we evaluate the actual speed
of vehicles along that link based on their density, the maximum speed and road type of the
link.

Delays Evaluation. Delay is evaluated as the difference between the time it would take
an average commuter to reach the destination in the network under load and in the empty
network (moving with the maximum speed along each link). In Ganin et al. (2017), the
model was calibrated for 20 urban areas and validated for 20 other urban areas in the U.S.
The calibration fitted the modeled delays to the annual average delay per peak-hour auto
commuter given in the Urban Mobility Scorecard (Schrank et al. 2015). The resulting
Pearson correlation coefficient is 0.9 for the calibration group and 0.6 for the validation

group. In this study, we choose the 10 cities with the best fit from those used for both
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calibration and validation.

Adverse Events. Ganin et al. (2017) studied link disruptions with risk proportional
to their lengths. Such a formulation was an abstraction of natural disasters, which were
assumed to occur with equal likelihood within the network’s spatial area. In contrast,
ITS attacks typically target elements of the network, as discussed in Section Background.
For simplicity and impartiality, we define the adverse events space to include random
attacks hitting nodes or links with equal probability. A node’s disruption is modeled as
the corresponding disruption of its incoming links. We further compare targeted and
random attacks. Targeted attacks affect nodes or links with the highest loads, lengths, or
betweenness values. We assume that traffic speed along a disrupted link is 1 km/h. This
allows the model to estimate an upper bound of disruption effects. Actual disruptions are
likely to have variable and asymmetric effects (Petit and Shladover 2015). This complexity
was ignored as it would risk ignoring unknown attack vectors, while an upper bound would

remain useful, even if it is known to overestimate disruptions.

2.5.4 Results

Figure 27 presents an example of the changes in a transportation network loads distribution
caused by a disruption of 20% of nodes in Washington DC. Real traffic distribution at 8§ am
as given by Google Maps is shown in Figure 27A and serves as a benchmark. Figure 27B
and Figure 27C describe the modeled traffic distributions and highlight roads with the most
congestion: links having congestion of less than 0.01 hour/km per commuter annually
are not shown. We assume regular conditions in Figure 27B and a disruption of 20% of
intersections in Figure 27C. We base our methodology to evaluate stress caused by links and
nodes disruptions on the percolation theory. In percolation studies (Stauffer and Aharony
1994) it is typically assumed that a certain fraction r of nodes or links in the network is
affected by an adverse event and is disrupted. We refer further to this fraction as severity
of the adverse event. Ganin et al. (2017) considered random disruptions of links with
risk proportional to their length. Here, we assume a uniform likelihood of damage and
add node disruptions. Nodes and links disruptions are considered separately. We collect
statistics for 20 independent realizations of an adverse event. Random nodes disruptions
may be caused by accidents provoked by a hacker’s attack on traffic lights while links

disruptions may stem from natural disasters and accidents such disasters cause. We report
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our results for the case where the disruption severity is 20% in Figure 28B and Figure 28C.
For reference, in Figure 28 A we start by providing the correlation plot for the 10 selected
cities. As these 10 cities have the best fit, the correlation (Pearson R = 0.99(p = 4.76-107%)
is significantly higher than that for all 40 cities. Next, in Figure 28B we compare nodes
and links disruptions. We observe a strong correlation between additional delays caused
by these disruptions (Pearson R = 0.98(p = 1.08 - 107%). In addition, it is evident that
node disruptions cause higher additional delays than links disruptions of the same severity.
Finally, Figure 28C correlates modeled regular delays to those caused by a nodes disruption.
Contrastingly to the previous cases, here we observe a much lower correlation: Pearson
R=0.75(p =1.26 - 1072

A ‘ B : C
A Google Map typical traffic at 8am
B, C Modeled delay per km (min): <12 1.2-12 12-24 o> 04
m— Highways Other roads
Approximating urban area boundary polygon
Figure 27. Traffic distribution in Washington DC. A. Typical congestion at
8 am as given by Google Maps. B. Predicted by our model for the case of
no disruptions. C. Predicted by our model under the assumption of a 20%
node disruption.

To characterize the difference between links and nodes disruptions we look at the case of
Washington DC (20% disruption) in detail (Figure 29). Figure 29A shows a scatter plot
comparing the two disruptions. In both disruption scenarios, we choose the same fraction
of nodes or links (20%) to disrupt. However, as the incoming degree of nodes varies a
disruption of 20% of nodes may result in a larger or smaller fraction of disrupted links.
Notably, even for the cases when the fraction of damaged links is lower than 20% the

corresponding delays are still higher than those in the links case.
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Figure 28. Correlation plots. A. Correlation between observed delays and
modeled delays for 10 selected urban areas: Pearson coefficient R = 0.99(p =
4.76 - 1078). B. Correlation between modeled additional delays for 10 urban
areas for a 20% random links disruption and a 20% random nodes disruption:
Pearson coefficient R = 0.98(p = 1.08 - 107%). C. Correlation between
the modeled delays and the additional delays due to a 20% random nodes
disruption: Pearson coefficient R = 0.75(p = 1.26 - 1072).

To calculate the distribution of the number of disrupted roads as a result of failure of n
intersections, we apply the generating function formalism (Wilf 2006). First, we note that
the number of links disrupted due to a successful attack on a single node is described by
the network’s incoming node degree distribution. This follows from our choice to model
node blockages as disruptions of the corresponding incoming links. As each incoming link
leads to a single node, numbers of links affected by the disruption of multiple nodes can be
characterized as independent and identically distributed (i.i.d.) random variables. Denoting
the incoming degree as kin and the fraction of nodes with that incoming degree as p(kin),

we can define the said generating function, G;,(x), as

Gin(x) = Z p(Kin)x* 27)
The generating function of the sum of n i.i.d. random variables equals the generating
function of a single variable raised to the power n. Then, the multiplier for x¥ in the
expression [G;n(x)]" defines the probability that exactly k links are disrupted. In Figure 29B
we assess the distribution of the disrupted links from the value [G;n(x)]°%33, where 5033 is
the number of disrupted intersections in the 20% disruption case, and compare the analytical

and numerical results.
Finally, we also provide a distribution of additional delays resulting from links and nodes
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Figure 29. Detailed comparison of random disruptions intersections (nodes)
and roads (links) in the Washington, DC urban area. A. Scatter plot showing
the annual additional delay resulting from a disruption of 20% of intersections
(orange dots) and 20% of roads (navy dots) for 1,000 random adverse sce-
narios. B. Distribution of the fraction of damaged links due to a 20% nodes
disruption in 1,000 scenarios: circles show the results of the modeling while
the solid line is estimated analytically. C. Distribution of annual additional
delays in the cases of 20% nodes (navy) and links (orange) disruptions.

disruptions in Figure 29C and observe that these distributions allow us to use mean values
to characterize resulting delays. We also note that the node delays expectantly have higher

variability.

We further study how the severity of disruption affects the additional delay (Figure 30A).
We focus on six representative urban areas and r € [0; 1]. We observe that links disruptions
result in lower additional delays and are less stressful for urban areas for all severities.
Obviously, nodes and links curves cross at the point with disruption severity of 1. At
that point, all roads are considered disrupted and the speed is reduced to 1 km/h. Finally,
the dispersion values are low compared to the delays magnitude in all urban areas for all

severities.
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Figure 30. Delays and disruption severity, error bars show mean values +
standard deviation. A. Comparison between random disruptions of varied
severity targeting intersections (nodes) (solid lines) and roads (links) (dashed
lines) for 6 urban areas. B. Comparison between random (black and gray
lines) and targeted attacks for Washington, DC. Nodes' disruptions are mod-
eled as disruptions of their incoming links. Links to disrupt are chosen based
on their betweenness centrality (green lines), load (blue lines), and length
(red lines) values, nodes are chosen based on the sum of the incoming links’
respective values. In addition, the yellow line shows a random disruption case
where links are chosen proportionally to their length (Ganin et al. 2017).
The inset shows how the fraction of disrupted links is different from the
fraction of disrupted nodes in targeted nodes disruptions (by betweenness —
green area, by load — blue area, and by length — red area).

Adversaries may be able to target nodes and links preferentially. To investigate how urban
areas, respond to higher stress caused by intentional attacks, we focus on three strategies
to target nodes and links deterministically. Attack Strategy 1 targets network elements
of higher betweenness centrality value. The betweenness centrality value for a link was
evaluated as the number of free-flow time optimal paths, between all possible pairs of nodes,
passing through the link. The path length was assessed from the time to traverse links at
free-flow speeds. Attack Strategy 2 targets network elements of the highest load (estimated
from regular traffic patterns). Finally, Attack Strategy 3 targets network elements of highest
length. All the above properties were evaluated for links. For nodes, they were taken as
the sum of the respective values of the incoming links. We present results of the modeling

for the Washington DC urban area in 30B. We observe several interesting patterns: i)
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targeting nodes and links based on betweenness centrality is not different significantly from
the baseline case of random disruption; ii) Links disruptions per Strategy 2 result in lower
additional delays as compared to nodes disruptions following the same strategy; both cases
result in significantly higher additional delays than the baseline case; iii) Strategy 3 causes
the fastest increase of delays with disruption severity for small values of r. Additionally,
links disruption, in this case, results in higher delays than nodes disruption. For comparison,
the yellow line in 30B shows the scenario where the probability of a link’s disruption is
proportional to its length per earlier work (Ganin et al. 2017). We also characterize the
fraction of links disrupted when disruption targets nodes per all three strategies in the inset to
30B. We observe that targeting nodes by betweenness damages a lower, than the disruption
severity r, fraction of links. Strategy 3 (length) is opposite, that is, the fraction of damaged

links is higher than r, even though it still results in lower delays.

2.5.5 Discussion

ITS systems rely on automated sensors and adjust their functions accordingly to changes in
the environment. While the use of sensors and electronics brings benefits it also increases
systems’ complexity and vulnerability. Thus, infrastructure systems are becoming more
vulnerable to unknown hazards or risks, whose likelihoods and mechanisms may be poorly
understood. Resilience focuses on responding to unknown challenges by making the struc-
ture flexible and adaptable to changing conditions. Resilience focused planning prioritizes
the general adaptability characteristics and unknown adverse events. In this paper, we
conduct a resilience centered analysis by considering transportation infrastructure from a
network science perspective abstracting from real events leading to disruptions. We make

multiple important inferences from this analysis.

Our first result is that resilience and efficiency are not necessarily correlated. From Fig-
ure 29C, we observe that several cities that have similar values of modeled annual average
delays per an auto commuter respond differently to random intersections disruptions. For
example, Jacksonville FL. and Richmond VA have disproportionally high increase in their
delays in response to a moderate disruption compared to the rest of urban areas. Other such
cities include Austin TX, Providence RI, and St. Louis MO.

Second, we observed that the predicted delays to intersections disruptions are slightly higher

than those for roads disruptions. We determined that this pattern is applicable to all 10
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urban areas and does not change with disruption severity. While this may be a consequence
of the modeling assumptions, the finding may also be understood intuitively as follows.
Typical traffic distribution according to the model is comprised of a set of highly occupied
routes carrying the most load. Disruption of such a route results in traffic redistribution to
an alternate route, assuming one is available. In the case of a random links disruption, there
is a possibility that multiple links along the same route will be damaged and only single
route will have to be altered. The likelihood of such a scenario for a nodes disruption is
lower as nodes’ incoming links point in different directions. On a more conceptual level,
this may evidence on the roads disruption focus of system’s designers. While the delays
difference is not significant, it still highlights the importance of protecting intersections
against adverse events. This recommendation is particularly important for smart systems
dependent on other infrastructure networks (e.g. SCADA (Collier et al. 2016)).

Third, an important conclusion is that systems relative resilience is not sensitive to dis-
ruptions severity r. In Figure 30A, we observe that the ranking of urban areas does not
significantly change with r. The most noticeable ordering change is Boston MA becoming
second least resilient for r > 30% surpassing San Francisco. A similar observation was
also made for link length proportional random disruptions in Ganin et al. (2017), in the
case of uniform random disruptions. In contrast to Ganin et al. (2017), San Francisco CA
performs significantly better and becomes only second least resilient (as opposed to being

significantly worse than all other urban areas).

Finally, we also observe surprising response of transportation infrastructure to targeted
disruptions (e.g. Washington DC in Figure 30B). Contrary to intuitive assumption, target-
ing nodes or links by their betweenness metrics is not significantly worse than a random
selection case. This may intuitively be explained by the localized nature of betweenness
focused attacks — such disruptions are clustered in a relatively small area corresponding
to the “center” of the network. Attacks targeting nodes and links by their load do cause
significantly higher values of additional delays than a random adverse event of the same
severity. Consistently with the random attacks, intersections damage in this case is worse
than roads damage. Last, we observe a change of this pattern for length based attacks: inter-
sections damage is lighter than links damage. Moreover, length-based attacks are the worst
of all three cases. This is understandable as rerouting from a long road requires much more

additional roads. The observation calls attention to necessity of having more connections
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between roadways which facilitate localized rerouting in response to a disruption.

2.5.6 Conclusion

Integration of smartness in many systems, including critical transportation infrastructure, is
advancing faster than the ability of developers to evaluate the response of these integrated
systems to natural (e.g., droughts, earthquakes, and floods) or deliberate (e.g., cyberattack
and terrorism) threats. Due to the inherent design conflicts, no system can be fully smart and
resilient. However, by balancing resilience and smartness within systems, transportation
systems can increase the likelihood that system maintain functionality without compro-
mising significant efficiency and sustainability especially during disruptions. There is no
textbook solution to this optimization, and tradeoffs between smartness and resilience vary
on a system-by-system basis. Some systems may benefit more from smart development and
less from resilience (e.g., minor urban streets). Other systems may place a greater value
on resilience if the disruptions are expected to yield high intensity loss (e.g., cities with
critical bridges and tunnels), or if the operational decisions involve conflicting outcomes
(e.g., prevent a disruption at a school or a hospital). Through a better understanding of
the tradeoftfs between smartness and resilience, and application of network science, system
engineers can work to maximize efficiency and quality of life, and also minimize loss due

to disruptions.

Limitations and Future Work. Itis important to note, that because we consider only urban
areas classified by the U.S. Census Bureau as either large or very large, the model should
be validated using traffic from smaller urban areas before its application to those cities, as
the travel patterns in small urban areas may differ from those in larger ones. Moreover, it
may be necessary to include residential and more minor roads into consideration as these
roads’ role increases with the decrease of the size of the area analyzed. We believe this
verification to be an important step in the further development of the model, but leave it out

in this section.

The model presented in this study abstracts many components. A more complex environ-
ment could improve accuracy, but such advanced models also require much more detailed
data. Examples of these data include the exact numbers of lanes and speed limits for all
links, traffic lights locations and schedules, the exact temporal distributions of commuters’

travel, fine grained spatial distributions of commuters’ origins and destinations, considering
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job sites, and, most importantly, the variability in the accessibility and the public perception
of other modes of travel (such as public transportation, cycling, or walking). Some of this

data may be less costly to obtain and integrate into the model.

One potential improvement is in the trip generation model. As of now trip origin and
destination pairs are generated based with a gravity model using population and distance.
This simplification is useful in scenarios where more specific data may not be available or
other methods too costly to justify. Some of the cities included in this study, however, may
have more specific data that can be easily incorporated, in their Household Travel Surveys
(HHTS). A method, such as used in Chen et al. (2013), that incorporates this data, when

available, would improve the results for many areas.

The simplified disruption model could also be relaxed. Currently all disrupted nodes reduce
connecting link performance uniformly. This simplification acts to model an upper bound
of possible disruption. In reality, different attack options will affect different node types
and connecting links differently. Setting all lights to red turns an intersection after initial
confusion, to a stop sign. Another attack would disrupt light timing so that vehicles face an
increase in total red light timing when not turning or only allowing one direction of traffic
have a green light (Petit and Shladover 2015). Each of these attacks will have different
disruption effects. Including this complexity may improve model accuracy, at the cost of

potentially ignoring unknown attack vectors.
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3 Small-Scale Models

This project considered several small-scale models of Command and Control (C2) systems
and architecture, primarily in the context of masters theses conducted by students at the
Naval Postgraduate School. We summarize the work of each, in the order they were

conducted.

3.1 A First-Principles Perspective

In the thesis of Cohick (2018), we consider the design of C2 architecture from the per-
spective of operations research. We investigate how one measures the performance of an
organization in conducting a mission, and we contrast various C2 architectures in their

ability to accomplish complicated tasks.

This research is inspired by retired Army General Stanley S. McChrystal’s book titled,
Team of Teams: New Rules of Engagement for a Complex World (McChrystal et al. 2015).
McChrystal explains the challenges he faced after taking command of the Joint Special
Operations Task Force (JSOTF) in Iraq beginning in September 2003. Despite being
superiorly trained and equipped, his forces were unsuccessful in combating Al-Qaeda in
Iraq (AQI), a very aggressive and unpredictable foe. The book details the transition of
the JSOTF from a traditional military organization, reliant on planning and rehearsal,
into a flatter, more integrated, and team oriented architecture that was able to aggregate

information and adapt to external events faster than the enemy.

The story told in Team of Teams is relevant to both military and civilian organizations.
Military units and civilian corporations alike are comprised of people, internal processes,

and reporting relationships that were designed, or have evolved, to accomplish a mission.

A key lesson in Team of Teams is that the C2 organization and methods that work well
in one environment for a given mission might not work well in a different environment
and/or for a different mission. The implication is that an organization that is not adapted
to its environment is bound to perform poorly. The story of the JSOTF’s organizational
transformation to overcome the challenges posed by AQI is presented as an exemplar for

how modern organizations ought to adapt in the face of growing operational complexity.

Table 7 highlights characteristic differences between JSOTF and AQI.
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Table 7. Contrast of JSOTF and AQI. (Adapted from Daft 2012)
JSOTF (Mechanistic) AQI (Organic)

Centralized Structure Decentralized Structure

Strict Hierarchy of Authority =~ Collaborative Teamwork

Specialized Tasks Empowered Roles

Vertical Communication Horizontal Communication

Many Rules, Formalized Few Rules, Informal

In response to the JSOTF’s lack of effectiveness combating AQI, McChrystal implemented
major changes to its architecture and culture to increase adaptability in its new complex
and rapidly changing environment. Large civilian organizations alike are changing their
organizational architectures in order to remain relevant and profitable. But how does one
know if an organization is appropriately adapted for a given mission and/or environment?
Moreover, is it possible to design an optimal C2 architecture? And how can the field of

operations research help to understand these issues?

3.1.1 Model
We develop a mathematical framework to support analysis of simple word matching game,
designed as a highly stylized version of an intelligence gathering operation. Using the

lexicon defined by Fullerton (2014), we present the game’s characteristics:

Components. The components of the game are simply the players and resources available

to each player. Each player represents one member in an organization.

Space. The resources come from the game’s space (an organization’s environment) which
we implement using a distribution of letters A through Z. During every turn, each player
receives one letter from the distribution which we can vary, thus changing the organizational

environment in which we examine the performance of a specific architecture.

Goals. The overall goal of the game is for an organization to collect and assemble the
required letters to match a specific objective. The objective can be partitioned into small
tasks and assigned to specific members in the organization. Each player is assigned a

primary (and possibly a secondary) task which they strive to accomplish using the letters
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they receive. Like the environment, we can vary the organization’s objective in order to

measure an architecture’s performance under different stresses.

Mechanics. The game’s mechanics are defined by the specific organizational architecture
being examined. Each architecture will have different connections between members,
reporting relationships, and collaborative processes. We can change the game’s mechanics

in order to analyze different architectures.

Rules. Game rules direct player actions. They dictate what each player will do each turn
according to the architecture being examined. The number of discrete simulation time steps

it takes the organization to match its objective is the output (score) of the game.

Using a Discrete-Time Markov Chain to represent play in any specific game, we model a
series of random transitions from one state to another. For our word matching game, we
define the state space in terms of the number of letters that have been obtained. Thus, the
game starts with an initial state (no matches) and concludes when the system reaches a
terminal state (matching complete). At every point in the game, we assume the probability
of the next transition depends only on the current state (i.e., the process is memoryless).
Time advances in discrete steps and the state space for the game is the set of all possible
states. The transitions between states depend in general on the number of players and

connections between them as determined by the C2 architecture being examined.

Players in a game can be working independently or in coordination. We define the organi-
zational architectures we seek to explore via mathematical analysis and simulation in terms

of the relationship between two types of players.

Worker. A worker is a player in the game that receives an input of letters from the environ-
ment (distribution of letters). We illustrate workers using a red rectangle. Each is assigned
a task (sub-component of the organization’s overall objective), annotated in the rectangle.
Workers can only communicate or collaborate with other players if connected by a linkage

in the architecture. Workers have no subordinates.

Manager. A manager is a player in the game connected to one or more subordinate workers.

Managers are illustrated with blue rectangles and do not receive an input of letters from the
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environment. The manager’s task is to collect completed tasks from workers and match the

organization’s overall objective, depicted in the rectangle.

We consider different hierarchical structures for coordination, and evaluate the performance
in terms of the expected number of discrete time steps to complete a complete match. We
assume the frequency with which letters are found by workers follows the letter distribution
found in 40,000 words from the English dictionary (Cornell Department of Mathematics
2004).

We present Table 8 to summarize the architectures we have examined. The bracketed
letter following each result annotates the method used to calculate the expected value (A =

Analytic equations; S = Simulation).
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Table 8. Architecture Performance Summary

1 Agent 2 Agents | 3 Agents 4 Agents
Independent
Agents
69.0536 [A] 36.4587 [A] 26.3074 [A] 20.9992 [A]
68.7626 + 1.2761 [S] 36.6198 + 0.6240 [S] 25.8209 + 0.4025 [S] 20.9587 + 0.3104 [S]
We begin with the simplest Doubling the number of agents More agents yield better per- Additional agents continue to
architecture consisting of one reduces the expected value formance, but benefit begins to improve performance, but it
agent. nearly in half. taper off. does so less and less.
Fully Connected
Agents
34.7854 [A]
34.8019 + 0.6404 [S] 23.2637 +0.4259 [S] 17.7431 £ 0.3175 [S]
Connecting three agents con-
X tinues to decrease the ex-
Connecting two agents al- L ) . X
pected value. Realistically, Using simple sharing rules,
lows them to share letters, i o .
. . now sharing rules are needed additional agents result in im-
thus improving performance R ) .
) to avoid creating copies of let- proved performance but the
compared to two independent . . )
i ters. Time deciding how to rate of improvement slows.
agents.
8 share, is time an agent is not
matching new letters.
Hierarchy

One-way Comms

69.3888 + 1.2861 [S]

With one-way communica-
tion, performance is nearly
identical as a single agent ar-
chitecture.

A=67.1308 + 1.3182[S]
B =36.6723 +0.6139 [S]
Assigning “A” or “B” to the
added worker makes a huge
difference. When the envi-
ronment is known, tasks can
be assigned to optimize perfor-

mance.

Hierarchy
Two-way Comms
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34.9463 + 0.6484(S]

The expected value is nearly
same as two connected agents
since the manager can share
letters with other agents.

A =23.5521 +0.4289 [S]
B =23.6020 + 0.4365 [S]
With two-way communica-
tion, the architecture’s sensi-
tivity to task assignments is
much less, thus making the ar-
chitecture more robust.



3.2 A Project Planning Perspective
The thesis of Beavers (2019) considers the C2 organization and function of the staff of

dedicated men and women serving within any of the Navy’s maritime headquarters.

As the theater combatant commander’s maritime warfighter, the Navy fleet commander man-
ages theater maritime assets to prepare and provide forces, and employs those naval forces
to support and perform operational missions. To execute these duties, each of their mar-
itime headquarters (MHQ)s is designed to be appropriately manned, trained, and equipped
to support both functions; even as the commander is assigned various responsibilities to
conduct enduring and contingency missions as a Naval Force (NAVFOR) Commander, Joint
Force Maritime Commander (JFMCC), Coalition Force Maritime Component Commander

(CEMCC), or even support for joint task force (JTF) operations.

Within the MHQ staff, a separate maritime operations center (MOC) bridges the com-
mand and control (C2) gap between strategic level guidance and tactical employment of
forces. These MOC staffs perform tasks that provide the commander with the organizational
structure, procedures, and expertise support needed to make and communicate informed de-
cisions, while setting the conditions for subordinate success; separate from the MHQ’s fleet
management mission. However, even with well-defined requirements in place, Manpower,
Personnel, Training, and Education (MPT&E) impacts still pose potential risks to a MOC’s
ability to effectively support the commander’s C2 role. On a practical level, it may not be
possible for all staffs to be sufficiently equipped or manned to designed levels at all times,
and en route training timelines could either cause gaps in billet fills, or delays in training for
newly reporting personnel. The potential cumulative effects of these impacts could result in
a reduced, but highly dedicated staff, capable of accomplishing its day-to-day missions, or
even contingency operations for a limited time. However, this level of performance would
require the consolidation of multiple MOC position responsibilities, and the leveraging of
in-house experience as a replacement for proper training and education. Ultimately, this
model could prove unsustainable, as the increased operations tempo of contingency oper-
ations stress the MOC’s current manpower beyond the limits of what their efforts are able
to mitigate, and leads to either delays in task completion and/or impacts to the quality of

support they are able to provide.

This thesis develops a logic for objectively measuring the required effort a staff member
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must exert to accomplish tasks within a time period, and provides a way to gain insights into
the relative quality of work and risk assumed by them to do so, given the current manning
and experience levels of their staff members. We focus on a method for considering staff
activities, conducted under the constraints of limited resources by a versatile workforce,
as project scheduling problems for task-on-node networks. To create those networks that
represent the functions of a MOC, we describe a procedure for converting the supporting
tasks that make up the mission essential tasks (METs) a MOC is assigned, into a collection of
network nodes with precedence relationships, expected durations, and resource requirements

in the form of the functional team-leads needed to work tasks.

3.2.1 A Project Scheduling Perspective

We explore current techniques for representing and solving resource-constrained project
scheduling problems, in search of a model that best describes the “real world” aspects of a
staff, their work, and the MPT&E factors that impact them. In reviewing the merits of the
Critical Path Method (CPM) and the Project Evaluation and Review Technique (PERT) for
identifying the tasks who most affect the completion time of a network, we ultimately dismiss
them as necessary, but not sufficient because they do not account for resource requirements
or constraints. To better suit the level of complexity a model must account for to represent
staff activities, the family of Resource Constrained Project Scheduling Problems (RCPSPs)
is explored. Many variations to the RCPSP exist, each adding a level of variability with the
aim of modeling a more general scenario; including multiple combinations of resource types
to complete the same task, and the simultaneous consideration of multiple projects. Each
variation has its own set of solution methods as well, with each technique leaning farther

from finding optimal answers and more towards “good enough” as complexity increases.

The Project Management Institute’s Project Management Body of Knowledge defines a
project as “a temporary endeavor of tasks undertaken to create a unique product, service, or
result which may be subject to precedence and require resources” (Snyder 2013). Examples
of projects exist in all aspects of the economy, including manufacturing, construction,
repair and maintenance, design and development, and government programs. In general,
all projects consist of rasks that must be accomplished according to a schedule constrained
by precedence relations among those tasks, associated resource requirements for their

execution, and an overall goal of minimizing total project cost; cost being in relation
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to either monetary, temporal or any other consideration deemed important to the project

manager.

According to Vanhoucke (2012), project managers have utilized formalized methods for
organizing, scheduling, and controlling projects to best achieve their stated goals, since at
least the late 1950s. He further explains that the earliest of these approaches are powerful but
simple techniques for analyzing, planning, and scheduling large, complex projects. Known
as the Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT),
Vanhoucke (2012) describes how these tools provide a means for determining which tasks,
of the many that comprise a project, are "critical" because of their impact on total project

time and/or cost.

Gen et al. (2008) illustrates that, while CPM and PERT are exceedingly popular in industry
due to their simplicity in construction and relative ease in determining exact solutions,
they do not directly take resource requirements into account. They explain that this is both
unrealistic and potentially costly to the project manager who may have to consider variability
in resource availability and/or even executing multiple competing projects. Gen et al. (2008)
goes on to define the problem of scheduling tasks under resource and precedence constraints,
with the objective of minimizing the project duration, as a Resource-Constrained Project
Scheduling Problem (RCPSP). These resource constraints, as referred to by Gen et al. (2008),
are limited renewable supplies, such as manpower, materials and machines, which are
necessary to completing project tasks. They go on to state that many variations of the RCPSP
model have been developed and examined, all with the aim of more accurately modeling
“real world” situations. As explained by Gen et al. (2008), these variants incorporate
concepts such as multiple task duration-resource requirement options for a single task
(known as modes), resources that are multi-skilled and interchangeable, or multiple projects
that compete for the same resources but are conducted simultaneously. Kolisch (1995) goes
on to elaborate that each variant of the RCPSP serves to create a more accurate model than
that of the CPM, PERT or basic RCPSP; however, their utilities are diminished given that
with each added level of complexity, the computational effort to find an optimal or even

feasible solution for the project schedule grows exponentially.

The following sections provide necessary details of CPM, PERT, and RCPSP models.
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3.2.2 CPM and PERT

Both the CPM and its extension PERT were first developed in the 1950s and made popular in
industry by their use in the U.S. Navy’s Polaris Submarine-Launched Fleet Ballistic Missile
program (Kolisch 1995). These techniques assume a project possesses unconstrained
resources and represents it as a directed graph network without loop cycles. Figures 31 and
32 show a network of six tasks for analysis by the CPM and PERT methods, respectively.
They use a task-on-node diagram, with nodes describing project tasks and arrows displaying
the precedence relationships among them. Additionally, each network has a start (ST) and

an end (EN) node, with the values above each numbered node representing task duration.

Task duration is where PERT analysis diverges from the CPM. While task duration for the
CPM is deterministic, PERT attempts to address time uncertainty in projects by assuming
that each task duration is a random variable between two extreme values which follows a
beta distribution (Vanhoucke 2012). The overall estimate is then calculated as a weighted
average of the optimistic, most likely, and pessimistic estimates, with more weight given to

the most likely value.

Task Duration

Task Identifier

Figure 31. Critical Path Method. As appears in Beavers (2019), adapted
from Pinha (2015).

The goal of CPM/PERT, and for that matter all project scheduling efforts, is to determine the
tasks within a network of precedence relationships that cannot be delayed without delaying
the duration of the entire project. Each of those tasks are referred to as a critical task and
their relations within the project’s network as the critical path. Vanhoucke (2012) gives a
detailed explanation and practical example for how CPM/PERT problems can be solved to

identify these critical tasks and paths, which he summarizes into three generalized steps:
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Task Duration
Best lWorst (3,57) (1,3,6)

(2,4,6)

(4,79) (6,8,9)

Task Identifier

Figure 32. Project Evaluation and Review Technique. As appears in Beavers
(2019), adapted from Pinha (2015).

1. Calculate the earliest start schedule
2. Calculate the latest start schedule
3. Calculate the slack for each task

Based on the work of Vanhoucke (2012), we introduce some basic notation to facilitate the
calculation of each of these below. Let j € A denote the tasks in a given project (alias k).
Let d; denote the duration of task j. Let P; and S; denote the sets of predecessor tasks and

successor tasks, respectively, for task j.

According to Vanhoucke (2012), a tasks’s earliest start time is either equal to or larger
than the earliest finish time from among all of its predecessors. The latest finish time is
determined to be either equal to or less than the latest start time from among all of its
successors. Finally, the amount of slack associated with each task represents the amount
of time each task j can be delayed without affecting the duration of the entire project. A
task with a slack of zero cannot be delayed without affecting the entire project’s duration.
Vanhoucke (2012) refers to such a task as a critical task, where the critical path is the path
along a network that consists of these critical tasks. For Figure 31, nodes ST, A, C, E, F,

and EN have a slack value of 0 and therefore, constitute the critical path for that network.

While simple forms of analysis, the CPM and PERT tools help to draw the focus of a project
manager to the most consequential activities, providing an effective basis for the scheduling

and monitoring of progress without the consideration of resources.
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3.2.3 Resource Constrained Project Scheduling Problems (RCPSP)

The basic Resource Constrained Project Scheduling Problem (RCPSP) was first introduced
by Pritsker, Watters, and Wolfe in the late 1960s (Pritsker et al. 1969). This simple version
consist of interrelated tasks, each with a single associated time of duration and resource
requirements pair. Figure 33 depicts the task-on-node network representation of a single
six-task RCPSP project. Each task, nodes A through F, shows their single duration-resource

requirements pair, which is predetermined and fixed in a RCPSP.

Single Mode!

Resources Required| R1, R2 | [ R2, R4
Task Duration| 7 8

Figure 33. Resource Constrained Project Scheduling Problem (RCPSP). As
appears in Beavers (2019), adapted from Pinha (2015).

Several variants of the RCPSP have been proposed since the initial work of Pritsker and his
colleagues. As explained by Gen et al. (2008), these variants can be divided into categories
based on their problem characteristics, i.e., the number of projects, the number of task-
duration/resource requirement options available, resource consumption, and the ability to
stop a task’s execution before its completion (interruption) (see Figure 34). Gen et al.
(2008) also states that RCPSP models can be labeled as either single-project, where there
is only one project to be scheduled, or multi-project, where there is more than one project

to be scheduled and executed.

According to Gen et al. (2008), RCPSP models can also be divided into two more groups
based on the number of task duration-resource requirement pairs available to perform

a task. These various alternative combinations are referred to by Gen et al. (2008) as
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modes. Per Kolisch (1995), in the single-mode version, there exists only one task to
resource paring capable of executing a task, whereas in the multiple-mode version, each
task can be performed by selecting one out of many different combinations of resources
that can complete a given task. Kolisch (1995) goes on to state that the resources in
RCPSP models may also be considered as “limited-but-renewable” from period to period,

99 ¢

“non-renewable,” “of-limited-amount” for the duration of the project, or doubly constrained
by both restrictions. Finally, Gen et al. (2008) explains that RCPSP models can again
be divided into those that are preemptive, where a task can be interrupted after it has
started, and those that are not (i.e., non-preemptive). However, the main body of work in
the development of RCPSPs center on the non-preemptive case of its two main variants
and their combination; the Multi-mode Resource Constrained Project Scheduling Problem
(MRCPSP), the Resource Constrained Multi-Project Scheduling Problem (RCMPSP) and
their combination, the Multi-mode Resource Constrained Multi-Project Scheduling Problem

(MRCMPSP) (Wauters et al. 2016).

Classification of RCPSP models based on problem
characteristics

Accordingto Number of According to Execution According to Resource According to
Projects Mode Consumption Interruption
Single Project Single Mode | Renewable | Non-Preemptive
Multiple Projects Multiple Modes | Non-renewable |
Combinatorial Doub.ly
Multiple Modes Constrained

Figure 34. Classification of Resource Constrained Project Scheduling Prob-
lems (RCPSPs). As appears in Beavers (2019), adapted from Gen et al.
(2008).

The RCPSP, and its more complex extensions, are considered to be the standard approaches
to project scheduling, but belong to the class of strongly NP-hard problems (Kolisch 1995).
The majority of the solution methods to these types of problems tend to be either exact, or
some form heuristic. Exact procedures strive to find the optimal solution, often through
the enumeration and evaluation of all possible solutions. These procedures, however, are

only useful for solving small projects that have undergone several simplifying assumptions.
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Heuristic methods, on the other hand, search for a good enough but not necessarily optimal
scheduling solution, using more realistic restrictions and assumptions (Vanhoucke 2012).
Still, both exact and heuristic methods are limited in their efficiency for solving the complex
models that more accurately represent “real world” problems. Therefore, many researches
attempt to capture more realistic model restrictions through discrete event simulations that
make use of priority rules (Pinha 2015). These priority-rule-based simulations are very
popular among researchers for solving the more complex RCPSP extensions due to several
reasons: they achieve a satisfying quality of solutions, they are computationally fast, and

they proceed similar to the way decisions are made by project managers (Kolisch 1995).

3.2.4 Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling
Problem (CMRCMPSP)

As best stated by Pinha (2015), the chosen representation for a problem determines its
complexity and the size of the search space in which a usable solution exist. For instance,
a highly specific model may significantly reduce the breadth of the solution search, and
could even be relatively simple to solve, but may only apply to a single or limited range of

problem instances.

To better represent the complex nature of “real world” situations and provide meaning-
ful insight to problem solutions, models must possess the flexibility to consider multiple
projects, with several tasks competing for limited resources that are themselves dynamic.
Until recently, the MRCMPSP was the most general of resource-constrained scheduling
model extensions cited in literature (Pinha et al. 2016). It allows for the simultaneous
consideration of tasks from several projects, all of which are under precedence and re-
source constraints, with multiple modes available for each. For illustrative purposes, Figure
35 shows the six-task project discussed in previous examples, now with multiple modes
available for each task and the inclusion of four resources (denoted R1 through R4). For
example, task C has three modes; mode 1 calls for resources R1 and R2 for a duration of
7 units of time, mode 2 requires R2 and R3 for a duration of 8 units of time, and mode 3

needs R1 and R4 for a duration of 10 units of time.

As illustrated by Pinha (2015), multiple modes provide added flexibility to develop project
schedules. In the example given in Figure 35, the duration of task C increases with the

order of the mode option. However, this is not a strict limitation. Depending upon the
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requirement, the mode order may be analogous to preferences for some value other than
duration—such as quality, materials, and cost—that the project manager uses to determine
the number and order of modes for each task. As Pinha (2015) goes on to explain, these
preferences are also independent of resource requirements by other modes. For instance,
if mode 1 requires more resources than any of the other modes, that does not necessarily
equate to a shorter duration for mode 1. On the contrary, its duration will vary depending
on its process, not it resource requirements. Conversely, less equipment with fewer laborers
may be more efficient than the resources mode 1 calls for, but they may also be more costly,
produce products of a lesser quality, or otherwise result in an outcome that is less desirable

than the application of the resource requirements for mode 1.

Multiple Modes!  ~~_ "~~~ _

Mode| Mode 1 Mode 2 Mode 3
Resources Required| R1, R2 | | R2, R3 | | R1, R4
Task Duration 7 8 10

Figure 35. Multi-mode Resource Constrained Project Scheduling Problem
(MRCPSP). As appears in Beavers (2019), adapted from Pinha (2015).

At its heart, the consideration of a MOC’s operations and the risk associated with any
under-resourcing of staff levels, training, etc., is a human resources problem. In the context
of a project, human resources have multiple skills, with a certain level of proficiency in that
skill, or skill level, which may or may not affect the overall performance of a task. While the
MRCMPSP model can accommodate flexibility in the application of multiple resources, very
few approaches are capable of handling multi-skilled workers. The Combinatorial Multi-
mode Resource Constrained Multi-Project Scheduling Problem (CMRCMPSP) developed
by Pinha (2015) is an extension of the RCPSP that expands its execution mode category
(see Figure 34). It allows for several project tasks to be handled simultaneously, under
precedence and resource constraints, with multiple modes available for each task. It also

enables the consideration for the skill level of the resources at hand, which may be made
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analogous to the level of risk assumed with assigning a resource to perform a given skill for

a task.

Combinatorial Multi-Modes *,

Mode| Mode1 Mode 2 Mode 1 Mode 2
Skills{ 2 welders 3 welders 5 welders| |3 welders
Resources 3 cutters 1 cutters 3 cutters 3 cutters
Required Materia{ R12 R13 R12 R13
Resources R15 R14 R15 R14
Task Duration 10 12 15 20

Figure 36. Combinatorial Multi-mode Resource Constrained Multi-Project
Scheduling Problem (CMRCMPSP). As appears in Beavers (2019), adapted
from Pinha (2015).

The CMRCMPSP differs from the MRCMPSP in the way it considers resources. In a
CMRCMPSP, the quantity of modes does not solely define the multitude of options available
to perform a task, and task performance may or may not depend on the resources selected.
Per Pinha (2015), a mode in a CMRCMPSP is no longer a set of resources, but a set of
combinational subsets of unknown resources who possess the skills needed to execute a
given task but who also possess a certain level of proficiency in those skills. Figure 36 shows
the previously discussed six-task project, now with both skill and resource requirements
for each task and multiple modes to illustrate the CMRCMPSP’s differences from the
MRCMPSP.

3.2.5 Our Contribution

We seek a representation of MOC staff operations that is specific enough to generate
realistic solutions and reduce that solution search space to a manageable size. At the same
time, that representation must also be sufficiently general enough in nature to allow for the

flexibility needed to model the “real world” characteristics of human resources performing
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administrative tasks. We settle on an adaptation of the Combinatorial Multi-mode Resource
Constrained Multiple Project Scheduling Problem (CMRCMPSP) model, which allows us
to capture the flexibility of a MOC staff in many ways. It accounts for a supervisor’s ability
to consider staff members as sets of combinations according to the skills they can perform,
rather than by job titles. This mirrors the situations where a staff must tap personnel for the
skills they possess without regard for the positions to which they are assigned; in the name
of “getting the job done.” The CMRCMPSP model also incorporates the various options in
the way resources can be applied to complete a task, the need to conduct multiple parallel
projects that must share a common pool of resources, the abilities of talented staff members
whom are able to wear many positional “hats” while contributing to multiple concurrent
efforts with varying degrees of proficiency (based on level of training, education, and/or
experience), and a supervisor’s preferences or organizational policies for the employment
of resources which serve to resolve conflicts between competing task for those limited

resources.

Using the Python programming language, we create a custom discrete event simulation
algorithm to solve our adaptation of the CMRCMPSP model, which develops a schedule for
the given projects by using the available resource pool. The Dynamic Resourcing Allocation
Analysis Simulation Tool Kit, or DRAASTK (see Figure 37), works to start tasks as early

as they are able to be executed, subject to the restrictions of user-defined preferences.
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Figure 37. Dynamic Resourcing Allocation Analysis Simulation Tool Kit
(DRAASTK) Overview Diagram

The Dynamic Resourcing Allocation Analysis Simulation Tool Kit (DRAASTK)
accepts inputs for the project networks and modes that compose a program, as
well as the pool of resources available to service the program. It then uses those
inputs in a discrete event simulation to provide outputs that that give insights into
project schedules and resource allocation and utilization.

Simulation outputs include information for both the task-resource parings and resource
usage necessary to achieve the provided schedule. Along with a recommended schedule for
task completion, a record for each delayed task, and the lacking required skills that caused
its delay at the time of its evaluation, is provided to give insight into the organization’s skill
deficiencies and potential points for where additional resources should be focused. As for the
current resource utilization and risk, a record for the percentage of time each staff member
is involved with a task is taken; broken down by how much of that time is spent engaged
with either a single or multiple simultaneous tasks as a measure of that staff member’s
exerted effort. The level of proficiency for which a resource holds for the skill applied to
a task is also noted and provided. A subjective value based on the training, education, and
experience level a staff member holds for a particular skill, the collective average for the
level of proficiency of all staff members whose skills were utilized to complete a task is
analogous to the relative level of risk in quality and performance a staff assumes to achieve

the provided timeline.

As aresourcing decision aide, this model provides many opportunities for additional work, in
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both data and simulation refinement. In particular, in order to consider MOC staff operations
as networks to analyze, significant subject matter expert (SME) input is required to apply
precedence relationships and expected durations to all supporting task and procedures. A
MOC organizational review and development of these networks is an important first step
in evaluating MOC staff operations. Developing granularity in the resource pool is also a
viable area for expansion. Currently DRAASTK considers skills as the positions of team
leaders common to all MOCs, but this can be evolved to include the duties and skills of
each team member and their individual availability schedules, allowing for a more robust
examination of a specific MOC staff. Finally, future work can focus on the flexibility of the
simulation itself. Incorporating stochastic elements for initial and/or resource-based task
durations, as well as consideration for individual resource availability, all works towards
developing a more “real world” model and method for gaining viable insights to inform and

aide decision makers with complex resource allocation resolutions.

Our method for paring a limited pool of skilled resources with the tasks that require them
and recording the points of resource-induced delays and relative quality of skill in task
completion are the main contributions of this thesis. Compared to a staffing profile inline
with a MHQ’s intended manning, the schedules and outputs generated by DRAASTK give
insights into the amount of effort and risk to quality and timeliness an actual staffing profile
exhibits. This information provides a quantifiable basis to articulate the existing MPT&E
impacts and risks to mission that a staff experiences, and may inform the conversation
needed to justify the resourcing requirements of a staff that continues to succeed, despite

“doing more with less.”

3.3 An Assignment-Based Perspective

The thesis of Diaz (2019) frames C2 design as a type of assignment problem between tasks
(i.e., units of work to be done) and resources (i.e., personnel who perform work). As the
number of tasks and resources get large, the assumption is that tasks are organized into
missions and that resources are organized into teams. We formulate and solve a sequence
of four different optimization problems that assign resources to tasks, missions to teams,
tasks to missions, and resources to teams. Our models are based on the assumption that any
resource can execute any task; however, the cost for a resource to execute a task depends on

the suitability of the resource for that task. We characterize the type of work required by a
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task in terms of a functional requirement, and we characterize the capability of a resource in
terms of its resource specialization (e.g., Military Occupational Specialty). We also include
nonlinear effects based on the interactions within a team and across a mission. Our goal is
to understand the performance effects of optimal teams on the organizational architecture

of a C2 network.

We compare all four assignment models using large and realistic data sets that demonstrate
their distinct effectiveness and recommendations. We show that assigning tasks to resources
without considering military missions or teams can efficiently produce a globally optimal
task-resource assignment. However, implementing this assignment in practice is difficult
because it requires a flat organizational architecture with high management overhead. In-
stead, models with predefined missions and teams simplify the computational effort of
finding a good assignment, but often at the expense of a solution that is globally sub opti-
mal. Models that form adaptive teams and/or mission sets can achieve better assignment
and lower execution costs than current C2 architectures, but at the expense of significant
increases in computational time. Thus, each model provides a new perspective on what
teaming means while setting baselines for computational requirements, optimality, robust-
ness, adaptability, and flexibility. Our results demonstrate that optimal teaming is data-,

context-, and mission-dependent.

We conclude that organizations with different C2 architectures should consider different
models to guide task-resource assignment decisions. Extremely flat organizations can ben-
efit from the globally optimal solution found with the simple Task-to-Resource assignment
model. However, current military force organization is not flat enough to harness these ben-
efits, and missions and teams must be considered in assignment. Models with predefined
missions and teams should only be used when task-resource decisions are time constrained.
Instead, when faced with changing and unforeseen mission environments, military organi-
zations may want a team-of-teams approach and would benefit from the adaptability of an
assignment model that includes team formation. Moreover, when organizations are rigid but
tasks can be redistributed to synchronize missions, the optimal assignment is best provided

by the mission assignment model.
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4 Large-Scale Models

The material in this section is taken from Kitsak et al. (2018) and also includes some work

that is still under development.

4.1 Stability of a Giant Connected Component in a Complex Network
Robustness and resilience of networked systems under the impact of adverse events have
been extensively studied in network science for two decades, but the research has been
primarily focused on computing the mean-field properties, such as the expected size of
the system’s giant connected component (GCC) (Stauffer and Aharony 1994; Dorogovtsev
2010; Cohen and Havlin 2010). The inherent assumption is that only connected subnet-
works retain their functionality, with the largest of these being most relevant to the overall

performance of the system.

While the mean-field analysis of a system’s behavior is undoubtedly an important first step
toward understanding its robustness, in most practical situations it is insufficient to know the
expected size of the so-called ‘functional component.” Rather, the location of the functional
component within the network itself is important. Itis especially true in the case of resilience
where critical system function and its recovery is of prime importance (Ganin et al. 2016;
Linkov and Palma-Oliveira 2017a). For example, in the case of a major natural disaster, such
as flood or an earthquake, one needs to know infrastructure units and transportation routes
that are likely to remain functional. The efficiency of immunization strategies depends on
our knowledge of low and high-risk groups in social networks. Likewise, the success of a

marketing campaign depends on the knowledge of the target audience.
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Figure 38. (a) GCCs shown for two toy networks at various links percolation realizations.
Note that the GCC of the top network varies significantly depending on the set of removed
links, while the GCC of the second network is more stable, and in all realizations includes
the two central nodes. (b) The expected GCC size for an ER and a SF models, as well
as the airline network as a function of the fraction of deactivated links g. Both model
networks are of the same size, N =2 x 10° and the same average degree (k) =5.1. The
SF network is characterized by ¥ = 2.5 and minimum degree ki, = 2. Dashed lines show
considered values of ¢ that are chosen such that (GCC) = 0.2 and (GCC) = 0.7. (c)
Stability S(€|q) as a function of ¢ for the (red squares) ER model, (blue triangles) SF
model, and (green circles) the Airline network described in Appendix 4.1.1. Solid lines
correspond to analytical predictions by Eq. (31). (d) Probability for a node to appear
within the GCC of a network as a function of its degree. The color scheme is that of
panel (c). Data is binned logarithmically, and error bars display the standard deviation
values. The inset shows the probability of the node not to appear within the GCC in the
log-linear format with solid lines corresponding to analytical solutions given by Egs. (29)
and (30).
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Yet, apart from a handful of recent works aiming to understand individual node properties in
percolation and epidemic processes (Bianconi 2017; Hamilton and Pryadko 2014; Morone
and Makse 2015; Rogers 2015; Kuehn and Rogers 2017), organization patterns of individual
network’s functional components are poorly studied. One reason is that the random nature
of adverse events coupled with the complexity of relevant networked systems often makes
the prediction of functional subgraphs impossible. Indeed, consider two toy networks of
the same size and average degree, which we repeatedly subject to adverse events of equal
magnitude, modeled by link percolation, i.e., by deactivating a fraction of links selected
uniformly at random, Fig. 38(a). Even though the expected GCC sizes of both networks
are similar, the GCC of the first network is unstable and strongly depends on the set of
deactivated links. In contrast, the GCC of the second network seems to be centered at the
two largest degree nodes and only weakly depends on the set of deactivated links. Clearly,
nodes of the first network are topologically identical and, thus, are equally likely to enter the
GCC. The two central nodes of the second network, on the other hand, have much higher
probability to enter the GCC compared to the remaining nodes, serving as anchors for its
GCC.

Our work is motivated by two recent results in percolation theory (Kuehn and Rogers 2017;
Bianconi 2017) analyzing heterogeneous network responses to different percolation real-
izations. In particular, Kuehn and Rogers (2017) demonstrates a considerable variation of
network’s connected component sizes and individual node probabilities to appear within
the GCC. Concurrently, Bianconi (2017) introduces a framework to quantify GCC fluctu-
ations by analyzing network responses to two random but possibly correlated percolation
realizations. In our work we ask a related question: How stable is network’s GCC? In other
words, we aim to quantify the extent to which the giant connected component of a network
consists of the same nodes, regardless of the specific set of deactivated links during an
adverse event. We analyze both single and multi-layer networks, finding that large GCC

size does not necessarily imply GCC stability.

To simplify the exposition we model adverse events by link percolation (Stauffer and
Aharony 1994; Bollobas and Riordan 2006) and limit our consideration to random network
models with prescribed degree sequences. We also assume that there exists at most one
GCC per network. At the same time we note that our approach is extendable to other types

of percolation and more complex network topologies, including the situations with multiple
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GCCs per network (Ben-Naim and Krapivsky 2008; Chen and D’Souza 2011). To quantify
GCC stability we subject the network of interest to £ independent link percolation scenarios;
each deactivating a random fraction g of network links. We then compute the sets of nodes
Q;(q) for each percolation realization t € {1, ..., £} and use them to define the GCC stability

function as the fraction of nodes inside all sets ;(g), namely

1 t
S(tlg) = Sl (@l (28)
t=1

where N is the network size and ||Q|| is the cardinality of set Q. In the case of GCCs
consisting of random sets of nodes S(¢|q) decreases exponentially as a function of ¢, while
in the case of stable GCCs S(¢|q) is expected to decrease slowly or remain constant. We
first focus on GCC stability of the Erdds Rényi (ER) (ErdSs and Rényi 1960) and scale-free
(SF) random network models. The former is fully prescribed by the number of nodes N
and the constant connection probability p for every node pair. The latter is characterized by
the scale-free (SF) degree distributions, p(k) ~ k=7 and is generated by the Molloy-Reed
algorithm (Molloy and Reed 1995). Our results depicted in Fig. 38(b,c) indicate that GCC
stability in ER is significantly smaller than that in SF networks. Indeed, S(¢|g) in the case
of SF network models decays at significantly slower rates implying the existence of a stable
sub-component, shared by all Q,(q) sets. At the same time S(¢|g) in ER network models
seems to decrease exponentially, albeit at rates slower than expected for GCCs consisting

of randomly selected nodes.

Our results for S(¢|q) are consistent with the observation that individual node probabilities
to belong to the GCC are strongly correlated with node’s degree. As seen from Fig. 38(d),
the probability for a node to belong to the GCC increases as a function of its degree and
approaches 1 for nodes of sufficiently large degree. These nodes belong to the GCC with
high probability and serve as its anchors in a network, effectively stabilizing its GCCs. In
contrast, the absence of such large degree anchor nodes in ER networks leads to unstable
GCCs, Fig. 38(d).

To quantify the observed GCC stability phenomena we employ the generating function

formalism (Wilf 2006). The starting point of our analysis is the mean-field solution for the
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individual node probability to enter the GCC (Newman 2010):

p=1-[u(g)]", (29)

where u(g) can be regarded as the mean-field probability that a given end of randomly

chosen link leads to a connected component of finite size (Callaway et al. 2000):
u=qg+(1-q9)Gi(u), (30)

and G(x) is the generating function for the outgoing edge degree distribution, G(x) =
Dipeo Pe (k)xk, where p, (k) = (k+1)p(k+1)/(k), and p(k) is the degree distribution (New-
man et al. 2001).

Then, the probability that a node of degree k is present in the GCC independently in
¢
¢ percolation realizations is (1 — [u(q)]k ) and the expected stability of the GCC in ¢

independent percolation realizations is given by
¢
S(tlg) = Y. p(k) (1= [u(@)]*) . 31)
k

To validate our theoretical results we solved Eq. (30) numerically for each combination of
p(k) and percolation parameter g used in Fig. 38(b). We then used the obtained u values
to superimpose the mean-field behaviors of individual node probabilities to enter the GCC
and stability S(£|g) with the numerical results, arriving at the excellent agreement between
the two, Fig. 38(c,d).

The differences between S(£|g) in SF and ER networks become more pronounced as
expected GCC size decreases. Indeed, close to the criticality S(£|g) in ER decays exponen-
tially:

l

stclay = ) ()1 esp -0 (1= )]

m=0

¢
N [1 —u<k>] , (32)
where € = 1 — u < 1 and (k) is the average degree in the ER network. In contrast, S(¢|q)
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in SF networks

(o) v-1
¢ dx ~ (e_ko) (33)

S(¢ ko)?™! / 1-e¢™
(Ula) < (ekoy™ | [1=e71' 5~ (7
for € > 1. Here vy > 2 is the degree distribution exponent, p(k) ~ k=7, see Fig. 39 and

Appendix 4.1.2 for derivation.
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Figure 39. Stability S(€|q) as a function of (a) £ and (b) Log,(£) shown at
(GCC) = 0.2 for the (red squares) ER model, (blue triangles) SF model, and
(green circles) the Airline network. All parameters are those of Fig. 1(b,c) in
the main text. The dashed line in panel (b) corresponds to the asymptotic
regime of S(£|q) ~ [Ln £]7' prescribed by Eq. (6).

In the case of interdependent networks the deactivation of nodes or links in one layer leads
to the deactivation of nodes in other layers that depend on it (Boccaletti et al. 2014b). In
this case, the probability of a node to belong to the GCC depends not only on its own
connections but also on the connections of supporter nodes in other layers. In the following,
we consider a simple case of an interdependent network, consisting of equally sized layers
A and B with one-to-one node interdependence; every layer representing a random network
with prescribed degree distribution (Buldyrev et al. 2010). Assuming no correlations in

interdependencies between the two layers, the probability of a node to belong to the GCC is

p= (1= lua(@1™) (1 - [un@]*), (34)
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Figure 40. (a) Individual node probability to appear within the mutual GCC of the inter-
connected network as a function of its degrees in the network layers. The interdependent
network consists of two SF layers with random interdependence links. Both SF layers are
generated using parameters reported in Fig. 38. Link percolation thresholds are chosen as
ga =0.49 and g = 0, corresponding to (GCC) = 0.7. (b) Individual node probabilities
not to appear within the GCC compared to the analytical estimate of Eq. (34). (c) Sta-
bility of the mutual GCC as a function of number of independent realizations ¢ calculated
for (green circles) SF-SF, (blue triangles) ER-SF and (red squares) ER-ER interdependent
network models as well as (pink rhombi) the protein protein interaction network described
in Appendix 4.1.1. Link percolation thresholds are, respectively, g4 = 0.56, g4 = 0.63,
ga =0.64, and g4 = 0.68, gg = 0, all corresponding to (GCC) = 0.7. The dashed line
corresponds to S(£|q) of mutual GCCs consisting of random sets of nodes. Solid lines
correspond to analytic solutions of Eqs (35-37)

where k4 and kp are the degrees of the two interdependent nodes in layers A and B,
respectively, q = {ga,gB}, g4 and gp are the initial fractions of deactivated links in layers
A and B respectively; while parameter u4 (up) is the effective probability that a given end
of a randomly chosen link in layer A (B) leads to a mutual connected component of finite
size. The mean-field parameters u4 and up can be found from the recursive approach of

Buldyrev et al. (2010) and are given by the system of equations

L—us = (1-ga) (1-Gf(un) (1 - GEup)), (35)

(1-gp) (1-GFwn) (1- Gj wn). (36)

l—LtB

where G}é’ﬁ} (x) are the generation functions for the regular and the outgoing degree
distributions of layers A and B, see Fig. 40(a,b) and Appendix 4.1.4 for derivation. We note
that this result is in good agreement with numerical results, which we obtain for ER-ER,
ER-SF and SF-SF models as well as the network of protein-protein interactions (PPI), and

depict for SF-SF network in Fig. 40(a).
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Since interdependence links between the layers are established randomly, the joint degree
distribution of the network is p(ka,kp) = pa(ka)pp(kp), where pa p(k) are degree
distributions of layers A and B respectively. Then, the stability of the mutual connected

component is simply the product of the contributions from the two layers:

Sap(llq) = Sa(tlq)Sp(£lq), 37

where S4 and Sp are the stability contributions of domains A and B respectively: Ss =

¢
i palk) (1 — [ua(q)]* ) , and Sp is defined similarly. This result together with our results
in Fig. 38 for single layered networks explains stable mutual GCCs in SF-SF networks and
unstable GCCs in ER-ER and ER-SF networks that we observe in Fig. 40(c).

Taken together, our results indicate that networks with broader degree distributions are
characterized by stable GCCs. Large degree nodes in these networks are part of the GCC
with probabilities close to 1, and can be regarded as anchors keeping the GCC in place.
At the same time, it is important to note that network robustness and GCC stability do
not in general imply each other. We find that interdependent networks with broad degree
distribution of their layers (e.g., SF-SF networks) have stable mutual GCCs. At the same
time, however, SF-SF networks are known to be vulnerable to cascading failures (Buldyrev
et al. 2010). Indeed, large degree nodes in interdependent networks are likely to depend
on small degree nodes in other layers. As a result, failures of these small degree nodes
immediately lead to failures of the large degree nodes that depend on them. In contrast,
interdependent networks with narrow degree distributions, e.g., ER-ER networks, are less
vulnerable due to a more uniform mixing of node degrees in their layers. The stability of
connected components in interdependent networks, on the other hand, exclusively relies on
the existence of anchor nodes, which according to Eq. (34) are large degree nodes dependent
on other large degree nodes. While these anchor nodes are not frequent in SF-SF networks,
they are non-existent in ER-ER networks, explaining why mutual GCCs are not stable in
the latter.

Our findings open new avenues toward the design of efficient network reinforcement strate-
gies. Indeed, building upon our results one can formulate the subgraph reinforcement

problem as an optimization. Similar to the GCC stability, one can define the stability of any

127



subgraph Q of interest:

4
Sa(tlg) = I @@l = 3 (1 - lut@n*) . (38)
=1 ieQ
where u is the mean-field probability that a given end of a randomly chosen link leads to
a cluster of finite size and is given by Eq. (30). Then the reinforcement strategy is defined
in using extra resources, e.g. additional nodes or links to maximize the Sq(€|g) objective
function. It is also immediately clear that the optimal reinforcement strategies depend on
the number of expected adverse events ¢: if the system is designed to withstand a single
adverse event, the reinforcement strategy should be aimed at maximizing the expected GCC
size. On the other hand, if the system is designed to withstand multiple adverse events, the

investments should be made to further reinforce or create the anchor nodes.

The mean-field analysis offered here has important limitations. The generating function
approach works well for locally tree-like networks, while real systems contain significant
amount of short loops. Likewise, it is now understood that heterogeneous distributions in
particular can have considerable diversity in their topologies (Alderson and Li 2007) and
that the hubs in these networks are not always centrally located. As a result, we do notice
significant deviations for individual node probabilities in real networks, Fig. 38(d), that

can’t be explained by the mean-field approach.

Finally, within the engineering sciences there is a general understanding that the organization
of many real-world networks is governed by processes that are not sufficiently characterized
by stylized models of random networks and that these differences can have important
implications for understanding robustness and vulnerability (Doyle et al. 2005; Florin and
Linkov 2016). There is a growing body of work in large-scale optimization and game theory
that leverages the specialized structure of these networks to discover specific vulnerabilities
and to identify limited defensive investments that can maximally increase robustness and
resilience (e.g., Alderson et al. (2015); Ganin et al. (2016)). Bridging the gap between
the specific recommendations of these highly detailed models and the insights from more

general models described here is an important goal for ongoing research.
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4.1.1 Real networks

We test our GCC stability results on two real networks. The first real network is the
complete US airport network in 2010, where nodes are US airports and an undirected link
is established between two airports if there is a commercial flight between them. The
network consists of N = 1,574 nodes and E = 28, 236 links, and is publicly available from
https://openflights.org/ and https://toreopsahl.com/datasets/.

The second is the network of human protein-protein interactions (PPI) that we derived from
the BioGRID database (Stark et al. 2006). We represent the PPI dataset as a two-layer
interdependent network, where layer A is formed by direct protein interactions, and links
in layer B correspond to physical associations between proteins. In our analysis we focus
on the mutual connected component of the PPI network that contains N = 11, 365 nodes in

each layer with the average degrees of (k4) = 11.00 and (kp) = 25.38 respectively.

4.1.2 GCC stability of single layer networks close to the criticality
Here we consider the asymptotic behavior of S(£|q) for three types of network models:

regular, ER, and SF network models.

4.1.3 Regular network models

All nodes of a regular network model have the same degree kg, resulting in p(k) = §(k, ko),
where 6(m, n) is the Kronecker delta. Then, GCC stability of a regular network is trivially
S(tlg) = (1 - u(q)ko)f for all u(q) values.

ER network models ER network models are characterized by the Poisson degree distribu-
tion, p(k) = e~ (k)¥ /k!, where (k) = p(N — 1) is the average degree. In order to obtain
the asymptotic expression for S(¢|g) we first expand (1 — u(q)k )f into the binomial sum.

Then by reversing the summation order in Eq. (31) we obtain
4

JUOEDY (i)(—l)’" exp (~(k) (1= u(g)™). (39)

m=0
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Close to the criticality €(q) = 1 — u(g) < 1 and therefore, 1 — u(q)™ =~ e(q)m. Plugging
this into Eq. (39) results in

$(tlg) ~ [1 - @®] < [1 - uig®|". (40)

SF network models SF network models are characterized by power-law degree distributions

p(k) ~ (y - l)kg_lk‘V, where k is the smallest degree and y > 2.

To deduce the asymptotic behavior of S(£|g) we first approximate u(q)* in Eq. (31) as
e €@ where €(q) = 1 — u(g) < 1. Then, by approximating the summation in Eq. (31)

with an integral we obtain:

(y = D) [e(@)kol” " Ie(y), (41)
/ x7[1-e*]" dx. (42)

(@) ko

S(tlq)
Ie(y)

X

Further, to deduce the asymptotic behavior of (42) we note that the function [1 — e™]" is
monotonically increasing from O to 1 on the interval 0 < x < oo. It is useful to think about
[1 - e*]¢ as a smoothed version of the step function 6(x — In ¢). To appreciate the shift we
¢ 1

center the function [1 — ¢~*]¢ at the position xo where it equals e . From [1 — e 0] = ¢~

we obtain e = 1 — ¢~!/! Jeading, when £ > 1, to
xo=1In¢ (43)

and thereby explaining the In ¢ shift. To appreciate the width of the quasi-step function
[1—e*]" we define the left boundary through [1 — e™*-]¢ = ¢™™ and the right boundary
through [1 — e ¢ = 1 — e M. These definitions are reasonable if we choose M > 1.

From these definitions
x_=In¢{-1InM, xy=Inl+M (44)

Thus the quasi-step function [1 — e~*]¢ has the following properties:

1. Itis essentially vanishes when 0 < x < x_.

2. It monotonically increases from O to 1 in the interval x_ < x < x;.
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3. It is essentially equal to 1 in the interval x > x,.

We next establish the upper and lower bounds for the integral in (42). The upper bound is
obtained by replacing [1 — e’ by unity when x > x_ and e™™ when koe(q) < x < x_;
the lower bound is obtained by replacing [1 — e ¢ by 1 —e~™ when x > x, and zero when

0<x<xy4. Since/ij—;“:ﬁ%,theboundsare
* Xy
e 1>1<><(1 e — (45)
- =\y-"D\Wy)s |7+t ————7
e e [e(q)kol”™!

Since both x. — In ¢ in the {£, M} — oo limit, such that 1 < M < ¢, I;(y) ~ In£'~7 and

(46)

koe(q)]'™
In¢ '

P(llq) ~ [

4.1.4 GCC stability of interdependent networks

Link percolation results for interdependent networks can be recovered from Buldyrev et al.
(2010) by setting the fraction of active nodes to 1 and replacing degree generating functions
with those for link percolated networks. Indeed, let us introduce the generating functions

for degree distributions of layers A and B as

G({)A’B} (X) = Z p{A’B}(k)xk, (47)
k
{A.B} _ (k+1) .
G, (x) = Zk: <k{A,B}>p{A’B}(k + 1)x", (48)

where p4 (k) and pp (k) are the degree distributions of domains A and B respectively, while

(ka) and (kp) are the corresponding average degree values.
Then the expected size of the mutual connected component u., is given by
Moo = XY, (49)

where the mean-field parameters x and y can be regarded as the effective fractions of nodes

belonging to the GCC of layers A and B respectively, and are given by the system of four
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equations:

x = 1-G{(1-y(1- fa)), (50)
y = 1-G§(1-x(1-fp), (51)
fa = G (1—y(1-fa), (52)
f3 = GY(1-x(1-fp). (53)

Here parameters f4 and fp in analogy with the single layer case can be regarded as the
effective probabilities that a given end of a randomly chosen link in layer A or B, leads to a

connected component of a finite size.

By making use of Egs. (50) and (51) one can rewrite the expression for the mutual connected

component as

Ho = (1-G§ (1 =y(1 = fa))) (1-GF (1 =x(1 = fw) (54)

from which one can immediately extract the individual node probability to appear within
the mutual GCC:

p=(1-u) (1-uf), (55)
where k4 and kp are the degrees of the two interdependent nodes in layers A and B, and

the mean-field parameters 4 and up are given by

ua=1-y( - fa), (56)
ug=1-x(1-fg). (57)

The same equations hold in the link percolation case, except the original generating functions

(0.1} (x) need to be replaced with those for percolated layers:

Glony@ = Gy (1=(1-ga) (1-x), (58)
Gy = G (1-(1-gp) (1-x)), (59)

where g 4 and gp are the fractions of initially deactivated links in layers A and B respectively.
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After a series of straightforward substitutions and simplifications the final result reads

p= (1= lua(@1™) (1 - [un@]*), (60)

where

L-uy = (1-q) (1-Glww) (1- GFwn).

(1-qp) (1-GFwn) (1= Giun).

l—uB

reproducing Egs. (35) and (36) in the main text.

4.2 Reconstruction of Communication Paths in Incomplete Networks
Imagine a tourist standing at the intersection of West 14/ h street and 8" avenue in Manhattan,
NY and trying to find her way to the Empire State Building. — one of the the main attractions
that Manhattan has to offer, which is located at the intersection of West 34'” st and 5" avenue.
The tourist easily finds her way to the Empire State Building without using a map or a GPS.
Now, imagine the same tourist navigating the Peace maze in the Northern Ireland. Without
a map one can easily take hours to find the way out. From the graph theory standpoint,
both the road system of Manhattan and the Peace maze are graphs or networks, where
intersections are represented as nodes and road segments are links connecting them, and
both navigation tasks can be be solved by finding a path between a pair of nodes. What
makes Manhattan road network different from a maze is its grid-like structure and consistent
street naming, allowing for efficient navigation. Being aware of these properties, one can
find a pedestrian path to the intersection of interest by taking streets and avenues in the
increasing or decreasing order. Further, if marked on the map, all reasonable pedestrian

paths are aligned closed to the geodesic line connecting the two intersections.

The main idea behind our approach is that shortest paths in geometric networks are closely
aligned along the geodesic lines connecting origin-destination node pairs. While many
real networks, e.g., road networks and wireless communication networks, are embedded
into real physical space, of our interest in this work are networks with effective or latent
geometries. Nodes in these networks can be mapped to points in latent spaces such that

connections between them preferentially take place between nodes separated by shortest
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distances (Boguna et al. 2020). Of special interest here are networks whose latent geometries
are not Euclidean but hyperbolic. A collection of recent works indicate that latent hyperbolic
geometry is consistent with topological properties of real networks, such as hierarchical
organization, scale-free property, strong clustering coefficient and self-similarity (Boguna
et al. 2020). Notable examples of real networks with effective hyperbolic geometries are the
network of protein interactions (Alanis-Lobato et al. 2018), the Internet at the Autonomous
System (AS) level (Bogunad et al. 2010), and the World Trade Web (Serrano and Bogufid
2003).

In our work we focus on hyperbolic maps of the AS Internet, Fig. 41a, and the network of
human protein interactions. In the former network nodes are Autonomous Systems (ASes)
and connections are contractual agreements governing data flows between ASes, while in
the latter the nodes are proteins and connections correspond to physical interactions between
them. To demonstrate the idea of geometric path reconstruction we marked ASes lying on
the shortest path between two AS pairs and corresponding geodesics in the 2-dimensional
hyperbolic disk. As seen from Fig. 41a, nodes comprising the shortest paths lie in the
vicinity of corresponding geodesics, shown with solid lines connecting origin-destination

node pairs.
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Figure 41. Latent geometry uncovers communication paths in the Internet at the Au-
tonomous System level. a, Hyperbolic map of the Internet at the Autonomous System
(AS) level. The latent space is the 2-dimensional hyperbolic disk and each point cor-
responds to an Autonomous System. Yellow squares and pink circles highlight ASes
corresponding to communication paths between AS5392-AS8875 and AS1224-AS11650
pairs. b, Distance from point C to geodesic y(A, B) drawn between points A and B, as
defined by Eq. (64). ¢, The distribution of distances to the y(AS5392, AS8875) geodesic
from (green) shortest path nodes and (red) all Internet nodes. Our main observation,
motivating this work, is that ASes comprising the shortest paths are localized in the
geometric vicinity of hyperbolic geodesics.

To quantify the extent of the observed alignment we evaluated distances from all network
nodes to the AS5392-AS8875 geodesic, finding that all 6 ASes comprising shortest paths
between the AS5392-AS8875 pair are among 12 ASes characterized by the shortest distance
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to the geodesic, see Fig. 41¢ and Methods. Our observation implies that the inverse is also
true: nodes with shortest distances to the y(A, B) geodesic are likely to be the shortest path

nodes connecting the A — B node pair.

To test if this is indeed the case and whether the distance to the geodesic is robust with
respect to the missing network data we removed 50% of the Internet links uniformly at
random and then re-mapped the resulting incomplete network to the hyperbolic space. We
then relied on the resulting inferred coordinates to identify ASes in the vicinity of the
updated AS5392-AS8875 geodesic. To systematically test the accuracy of the distance to
geodesic as a predictor of node likelihood to comprise the shortest path we used the area
under the precision-recall characteristic (AUPR). We compared the accuracy of the distance
to geodesic to that of degree-based ranking, brute-force network-based path ranking and
reconstructed network-based path ranking, see Methods. Our results, computed for both the
original and the incomplete AS Internet network indicate that the accuracy of the distance
to the geodesic metric is comparable to that of the degree-based ranking and is substantially
higher than network-based distances, Fig. 42a. This is the case since missing link hinder
the identifiability of true shortest paths: even a single missing link may lead to a completely
different set of shortest path nodes. Latent-geometric mapping of a network, on the other
hand, provides an effective mean field image of the network, which is not sensitive to

uniformly missing links.

We also observe that the removal of a small number of ASes closest to the AS5392-
AS8875 geodesic fully disconnects the AS5392-AS8875 pair using both coordinates of the
original and truncated network, Fig. 42b with minimal collateral damage to the rest of the
network, Fig. 42¢. This observation is in contrast with other network-based metrics that fail
to disconnect the AS pair of interest upon the removal of 100 nodes. This result implies
that not only shortest path nodes but also other nodes that lie on nearly shortest paths are

localized in the vicinity of latent-geometric geodesics.

Our findings are not specific to the chosen AS5392-AS8875 pair and the AS Internet
network. To establish whether latent-geometric geodesics can help identify shortest path
nodes we conducted a series of systematic experiments on the AS Internet and the human
interactome networks, finding that distance to geodesic measure given by Eq. (64) allows one

to reliably identify shortest path nodes, Fig. 42d. Further, we found that targeted removal
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of nodes with smallest distances to geodesic s allows one to disconnect corresponding node

pairs by keeping the rest of the network minimally disturbed, see Fig. 42e, f.

Further, to test the limits of the distance to geodesic metric in the identification of shortest
path nodes we repeated our experiments on incomplete random hyperbolic graph (RHG)
models (Aldecoa et al. 2015). These experiments support our results on real networks
and establish that the accuracy of the distance to the geodesic measure is highest at small
RHG temperature values, when RHG links are preferentially established at shortest latent-
geometric distances, and is nearly independent of the scale-free degree distribution exponent
v. As T increases and the role of geometry in link formation decreases the accuracy of the
distance to geodesic measure decreases and becomes comparable to brute-force network-
based methods.

Having established the accuracy of the distance to geodesic measure in the identification of
shortest path nodes, we next discuss potential applications of shortest path identification to

Internet routing and the analysis of biological pathways.
Anomaly detection for Internet routing

The Internet is a distributed system: there exists no central authority governing connections
between ASes and routing of information between them. The Border Gateway Protocol
(BGP) facilitates the interdomain routing process by discovering and distributing this reach-
ability information to all ASes (Rekhter et al. 1994). Since the topology of the Internet is
highly dynamic, ASes must constantly exchange and update this reachability information in
small chunks, known as routing control packets or BGP updates. The BGP routing is based
on trust, where an AS often accepts routes advertised by its neighbors without strict integrity
tests (Rekhter et al. 1994). This exposes the entire system to a possibility of cyberattacks
and malicious interventions. One class of cyberattacks is the BGP prefix hijacking. As a
result of a BGP prefix hijack, an AS either claims ownership of prefixes that are owned by
other ASes or announces that it can provide transit to a prefix or a set of prefixes. This
attack can compromise the affected data flows by either exposing them to malicious actors

or simply misroute them (Sermpezis et al. 2018).

To suppress prefix hijack attacks ASes need to be able to assess advertised BGP paths for

their optimality and reject problematic ones. Since shortest and nearly shortest paths tend
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to align along hyperbolic geodesics, we propose the hyperbolic stretch as the measure of
the conformity of a BGP path to the corresponding geodesic, Fig. 43a, b. We define the
hyperbolic stretch for a path connecting A — B node pairs as the average normalized distance

to the y(A, B): d(C,v(A,B))
ar-ra )

d(A, B)
where d(A, B) is latent geometric distance between ASes A and B and d(C;,y(A, B)) is
given by Eq. (64).

Dqa,p) = MaxXceq(a,B) , (61)

We analyzed three notable prefix hijacks events involving China Telecom, Malaysia Telekom
(MT), and Rostelecom (PJSC). For each event we analyzed BGP paths involving the hijacked
ASes advertised both before and during the hijack event, finding that hyperbolic stretches
of BGP paths advertised during the hijack events are significantly larger than those before
the event, Fig. 43c.

Our preliminary results suggest that hyperbolic stretch can be used by ASes to rule out
problematic paths. The hyperbolic map of the AS Internet can be regarded as certain
mean-field map that is not sensitive to short-time perturbations of Internet topology. AS
coordinates need to be recomputed once every several years, while coordinates of new ASes
may be computed locally (Boguiid et al. 2010). Thus, each ASes may be endowed with the
list of coordinates of all ASes, and these coordinates can be used to compute hyperbolic
stretches of advertised paths. Alternatively, node coordinates could be carried alongside
path information by BGP updates. Developing a latent-geometric classifier of BGP path

and evaluating its efficiency is the subject for our future work.

Taken together, we established that latent-geometric geodesics serve as fairways for shortest
and nearly shortest paths nodes in geometric networks Nodes in the vicinity of these
geodesics are most likely to lie on shortest paths or may become shortest path nodes if
network topology is perturbed. Our finding can be both be either a curse or a blessing
depending on the circumstances. One could exploit the geometric localization of shortest
paths to disrupt or eavesdrop communication paths of interest. On the other hand, the
knowledge of geodesic fairways may help identify alternative optimal paths and rule out
inefficient or fraudulent paths in the case of the incomplete networks. Two promising
applications of our approach are the anomaly detection for Internet routing and the analysis

of biological pathways.
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At the same time, we emphasize that there is no one-size-fits all solution to the shortest
path identification problem. In order to identify shortest path nodes in a partially known
network one needs to know both the mechanisms of network formation and the character
of missing data. Distance to geodesic, in this respect, assumes that link formation in the
network is captured by its latent or effective geometry, and unknown links are missing
uniformly at random. The first condition is a must: one cannot expect to identify shortest
paths in non-geometric networks using geometric methods. The second assumption could
probably be relaxed. The cornerstone of any latent-geometric inference task is the accurate
latent-geometric map of the network of interest. In our work we used the HyperLink
(HL) embedder (Kitsak et al. 2019), which has been shown to be accurate on uniformly
incomplete networks (Kitsak et al. 2019). While the HL. embedder is not expected to be
accurate on non-uniformly incomplete networks, it should be straightforward to generalize
the embedder to the special non-uniform case when the probability of a missing link is also

a function of a latent distance between the nodes.

4.2.1 Methods

Distance to geodesic. Distance between two points {r;, 6;} and {r;, 6} in the 2-dimensional
hyperbolic disk H? is given by the hyperbolic law of cosines and for sufficiently large r;
and r; values is closely approximated by x;; = r; +r; + %ln (sin(A6;;/2)). We define
distance from point C to geodesic y(A, B) as the shortest distance from C to any point on
X e y(A, B):

d(C,y(A, B)) = min d(C,X), (62)
st. X € y(A, B) (63)

The distance to the hyperbolic geodesic d(C,y(A, B)) is closely approximated as
1
d(C,y(A,B)) = 3 [d(A,C) +d(B,C) —d(A,B)], (64)

provided d(A, C), d(B,C) and d(A, B) are sufficiently large.

Network mapping or embedding into a latent space M is a procedure of determining the
coordinates of nodes constituting the network in this space. In this work we map AS In-

ternet and the similarity-based protein interaction network to the 2-dimensional hyperbolic
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disk using the HL. Embedder algorithm (Kitsak et al. 2019). Similar to other hyperbolic
embedders, HL embedder maps network nodes to points {r;,6;},7 = 1, ..., N, in a hyper-
bolic disk H? by maximizing the posterior probability £ ({r;, 6;}|a;;) that the network with
the adjacency matrix a;; has given node coordinates and is generated as the RHG. By the
Bayes’ rule, £ ({r:, 6;}|a;;) o w ({ri, 6;}), where L (a;;|{r;,0;}|) is the likeli-
hood that the network a;; is generated as the RHG, given node coordinates {r;, 6;}, and the
Prob ({r;, 6;}) is the prior probability of node coordinates generated by the RHG. Since links
{ij} in the RHG are established independently with probabilities depending on hyperbolic
distances {x;;} between the nodes, £ (a;;|{x;}) = [T;<; [P (i) ] [1=p (xif)] 174 The
HL embedder is freely available at the DK-lab (Kitsak and Voitalov 2020).

Alternative path relevance metrics. In addition to distance to geodesic we use three network-
based metric to quantify node relevance to the path of interest. The first metric is node
degree, the larger is the node degree the higher is the node relevance to the geodesic. This
is is the case since shortest paths often pass large degree nodes. The second metric is
the brute-force networked-based path ranking which is similar to the distance to geodesic
approximation in Eq. (64) except distances are network-based. dps(C|A,B) = €ac +
{4 p. The third metric is reconstructed network-based distance, which is obtained by first
complementing the network with missing links added randomly, and then is given by

dpt(C|A, B) = €4 c + {4 p on the resulting reconstructed network.

In Figure 42(a-c), We aim to identify nodes that lie on shortest paths between the AS5392-
AS8875 pair in both the original and the incomplete Internet where 50% of links are
removed uniformly at random. In Figure 42(e-f) Systematic shortest path identification
tests for the AS Internet. We create three cohorts of , consisting of 100 pairs each, with

angular separations closest to A®;; = £, A®;; = 7, and A®;; = 7.
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Figure 42. The accuracy of shortest path reconstructions in the AS Internet. a, AUPR
scores for the identification of shortest path nodes using (green) distance to geodesic
in the map of the original network, (blue) node degrees in the original network, (teal)
node degrees in the incomplete network, (maroon) distance to geodesic in the map of the
incomplete network, (yellow) network-based distance in the incomplete network, (dark
yellow) reconstructed network-based distance in the incomplete network. b, The length
of the shortest path connecting the AS5392-AS8875 pair as a function of the number of
removed nodes. Nodes are removed based on their rank, using one of the methods. The
methods are the same as in panel a save for the original network degree ranking, which
is almost identical as the degree ranking in the incomplete network. It takes 12 and 19
node removals using geometric, respectively, distance to geodesic scores obtained for the
full and incomplete networks. Other methods fail to disconnect the AS5392-AS8875 pair
upon the removal of 100 nodes. ¢ To quantify the collateral damage associated with the
removal of nodes we estimate the average inverse network-based distance in the network
as a function of number of removed nodes. The higher the average inverse distance, the
less perturbed is the network. The color coding of the methods is the same as in panel
b. We note that distance to geodesic methods are less invasive than the degree-based
method. While network-based and reconstructed network-based methods are the least
invasive, they are of little use as they cannot disconnect the AS5392-AS8875 upon the
removal of 100 nodes. d, For each of these cohorts we evaluate the average AUPR score
for path reconstruction, panel ; the average number of node removals to disconnect the
AS pairs, panel e; the average inverse network diameter after nodes are disconnected.
panel f.
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Figure 43. Anomaly detection in interdomain Internet routing. a, Example of a BGP
path traversing the China Telecom (AS4809) announced before its prefix hijack. Green cir-
cles are ASes constituting the path, solid red line is the hyperbolic geodesic connecting the
origin-destination pair. Latent-geometric stretch of the BGP path, Eq. (64), Dqa(a,p)=0.23-
b Example of a BGP path traversing the China Telecom (AS4809) announced during its
prefix hijack event. Red squares are ASes constituting the path, solid red line is the hy-
perbolic geodesic connecting the origin-destination pair. Latent-geometric stretch of the
BGP path is Dg(a,B)=0.74- ¢ Distributions of latent-geometric stretches for BGP paths
announced (green) before and (during) the China Telecom prefix hijack. Note that BGP
paths announced before the hijack are characterize by significantly smaller stretch values
than those announced during the hijack event.
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4.3 Geometric Representation of Complementarity-Driven Networks

Network embeddings or mappings of networks to latent geometric spaces are standard tools
in the arsenal of data analysis, and are routinely used in machine learning, visualization,
network science, and graph theory. In general, a procedure of network embedding is a
mapping network nodes to points in a suitable latent metric space, such that latent distances

between connected node pairs are smaller than those between disconnected node pairs.

Latent-geometric distances are often interpreted as generalized measures of node similar-
ities (McFarland and Brown 1973): the closer the two nodes in the latent space the more
similar they are and the more likely they are to be connected in the network of interest. It is
the similarity interpretation of latent distances that lies at the origin of many applications of
network embeddings, including link prediction (Cannistraci et al. 2013b; Yang et al. 2015a;
Xiao et al. 2015; Tang et al. 2015; Grover and Leskovec 2016; Zhu et al. 2016; Nickel and
Kiela 2018; Kazemi and Poole 2018; Brew 1998; Kitsak et al. 2019; Garcia-Pérez et al.
2019), soft community detection and clustering (Newman and Peixoto 2015; Zuev et al.
2015; Yang et al. 2015b; Sewell and Chen 2017), network navigation (Bogufi et al. 2010;
Gulyas et al. 2015; Voitalov et al. 2017; Garcia-Pérez et al. 2018), and search (Kleinberg
2006; Ratnasamy et al. 2001; Risson and Moors 2006).

Of our interest in this letter are networks that are based not on similarity but complemen-
tarity principles: nodes are connected in these networks if their properties are complemen-
tary. Examples of complementarity-driven networks include interdisciplinary collaboration
networks, molecular interaction networks, and food webs. Indeed, individuals with com-
plementary expertise are more likely to solve an interdisciplinary problem of interest,
interactions often take place between molecular with complementary chemical properties
and/or binding interfaces. While cannibalism is certainly present in food webs, in general

species preferentially eat other complimentary species.
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Figure 44. (a) Embedding of a network into a metric spaces imposes con-
straints on distances due to the triangle inequality. (b) These constraints
are consistent with the similarity interpretation of latent distances since the
former is transitive: if A is similar to B and B is similar to C, then A is
similar C. (c¢) Triangle inequality is not consistent with complementarity: if
A is complementary to B and B is complementary to C, A is not guaranteed
to be complementary to C.

The major challenge behind the geometric representation of complementarity-driven net-
works is that unlike similarity, complementarity is not transitive. Indeed, imagine a toy
complementarity-driven network consisting of three nodes A, B, and C, such that nodes A
and C are both connected to B, Fig. 44a. Being both complementary to B, nodes A and
C are not necessarily complementary to each other and, as a result, are not likely to be
connected. If embedded to a metric space, however, nodes are likely to be mapped to points
such that latent distances d(A, B) and d(B, C) are small. The metric property of the latent
space then dictates that d(A, C) < d(A, B) + d(B, C), suggesting that nodes A and C are
likely to be connected, while not being complementary to each other. It is the contradiction
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between the metric property of the latent space and non-transitivity of complementarity
that may explain the relatively poor performance of network embedders when applied to

complementarity-driven networks, Fig. 46.

This contradiction is closely related to the failure of the triadic closure principle observed in
protein interaction networks (Kovécs et al. 2019): proteins with a large number of common
interaction partners are not likely to interact with each other. Instead, the authors of this
work established that proteins are likely to interact with other proteins, that are similar
to their existing interaction partners and used this principle to develop a link prediction
method, based on the statistics of paths of length £ = 3 and called L3, to predict missing
protein interaction (Kovécs et al. 2019). The ideas behind the L3 method were further
developed and generalized for unipartite (Muscoloni et al. 2018) and bipartite (Daminelli
et al. 2015) networks.

To enable geometric representations of complementarity-driven networks we propose a
cross-geometric framework for statistical inference on complementarity-driven networks.
We postulate that each node i = 1, ..., N in the network is characterized by two points x!
and x? in a latent metric space M and the connection probability between any two nodes

takes the form of

T | A [ R

where p(x) is any decreasing integrable function with the range of [0, 1], and d(x,y) is the

distance between points x and y in M.

It is straightforward to verify that the proposed framework does not violate the transitivity
constraint. Indeed, within the cross-geometric framework any node A is represented by

two points X}A and Xi, and connection between any two nodes A and B is higher if either

2 1
B B

formation of the A-B-C toy wedge network, Fig. 45a, is possible in two cases: (i) points

XL, X%, and ch are close to each other, Fig. 45b, or (ii) point X}L‘ is close to point XZB, and

1

X, is close to XZC, Fig. 45¢. Neither case creates constraints on distances d (XL, XZC) and

cross-distance d (xi\, X3) or d (xi X}) is small. Within the cross-geometric framework the

d (X% ch) relevant for the formation of the A-C link, 45b, c.
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Figure 45. Cross-geometric framework does not impose triangle closure
constraints. Each node in the (a) toy network is represented by two points
in manifold M. Connections between node pairs A-B and B-C are possible
due to (b) latent-geometric proximity of points X}A, Xé, and XIC or (¢) latent
geometric proximity of point pairs Xl‘ and X%, and X}; and X%. Neither
configuration imposes constraints on distance between point pairs x}‘ and x?
or Xi and xlc, which are relevant to the formation of the A-C tie. The other
two configurations are identical to those in (b) and (¢) upon relabeling node

points x}/ - x%, where Y = {A, B, C}.
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The emerging cross-geometricity of the proposed complementarity framework is easy to
justify: two points corresponding to a given node characterize node’s orientation with
respect to relevant node properties. Examples of such properties could be scientist’s
expertise in two complementary disciplines, e.g., biology and statistics, in the case of
a scientific collaboration network, or biochemical properties of a molecule. For some

complementarity systems it might be necessary to include more than two points per node.

Cross-distances d (Xl.l , X?) and d (Xl.z, X]l) in the connection probability of Eq. (65) quantify
the complementarity between the two relevant node properties: the closer the two properties
are, the higher is the extent of their complementarity. At first glance, it might seem
unreasonable to place both node properties in the same space M. A more intuitive setting
could be a multi-space model, where node properties belong to distinct latent spaces M
and M, and connections are possible due to a certain mapping function f : M, M, —
p € [0, 1]. Both single and multi-space formulations are compatible, and the former is the

special case of the latter if node properties are correlated.

In this work we do not aim to learn latent spaces underlying real complementarity-driven
systems, nor do we aim to learn the functional form of the probability function p(d)
in Eq. (65) — this will be the subject of the future research. Instead, we consider one
example of the cross-geometric model that is using the hyperbolic disk as a latent space,
M = H2. We refer to this model as the Complementary-based Random Hyperbolic graph
(CRHG). We demonstrate below that CHRG results in complementarity model networks
with structural properties of real networks: heterogeneous distributions of node degrees
and common neighbors, as well as vanishing density of short 3-loops, as captured by
clustering coefficient. Further, we use the CHRG as a null-model to learn cross-geometric

representations of real networks.

CRHG is based on the random hyperbolic graph (Krioukov et al. 2010) and uses the 2-
dimensional hyperbolic disk H? as a latent space. Points in H? are described by polar
coordinates 7 € [0, R] and 6 € [0,2n], and distances between any two points {r!,6'} and

{r?, 6%} are calculated using the hyperbolic law of cosines:
cosh d = coshr! cosh r? — sinh ! sinh 7> cos A9'2, (66)

where AG'2 = 7 — |7 — 0! — 6?||. Similar to the RHG, we assume that angular coordinates
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Figure 46. Link prediction with cross-geometric hyperbolic framework. Link
prediction results obtained with the Complementarity HyperLink (CHL) com-
pared to HyperLink (HL) and other representative methods in (a) human
protein-protein interaction network, (b) C. cerevisiae protein-protein inter-
action network, (¢) Messel food web, and (d) Hamsterster social network.
All experiments correspond to the 1 — ¢ = 0.5 fraction of removed links.
Considered link prediction methods are the (CHL) Complementarity Hyper-
Link (our method), the L3 method (Kovacs et al. 2019), the Structural
Perturbation Method (SPM) (Li et al. 2015), Katz index (Katz 1953) with
parameter 8 = 0.1 (Katz01) and B = 0.9 (Katz09), Preferential Attach-
ment (PA) (Barabasi and Albert 1999), Hyperlink (HL) (Kitsak et al. 2019),
Cannistraci Resource Allocation (CRA) (Cannistraci et al. 2013a), Resource
Allocation (RA) (Zhou et al. 2009), Adamic Adar (AA) (Adamic and Adar
2003), Jaccard Index (JACC) (Jaccard 1901), and the number of common
neighbors (CN) (Liben-Nowell and Kleinberg 2003).

are assigned uniformly at random, p (Hf ) = U]0, 2x], while radial coordinates are drawn

from p (r’) _ sinh(ar')

= oher-1 " € [0, R] fort = {1,2}. Here a > % is the parameter controlling
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the radial node density and affecting resulting degree distribution of the CRHG.

Different from the RHG, CRHG dictates that each node is characterized by two points in
H?, and connections between nodes are established with the probability in Eq. (65), where

p(d) is parameterized as
1
p(d) = Iz (67)

1l+em

Here T € (0, 1) is the temperature parameter controlling the relevance of long-distance
connections, and R > 0 is the radius of the hyperbolic disk, controlling the expected

average degree of synthetic networks.

Following the hidden variable formalism (Bogufid and Pastor-Satorras 2003), it is straight-
forward to express the structural properties of the CRHG in terms of those in the RHG model.
Indeed, the expected degree of a node characterized by the coordinates {rl.l, 6 1.1, rl.z, 01.2}, to

the leading order, is

k(rf6lrr 8] =E eh+E . (68)
where EH(r) is the expected degree of a node with radial coordinate r in the RHG:

zH(r) 4Na T ot/

" 2a—1sinaT ’ (69)

see Krioukov et al. (2010). Then, degree distribution of the CRHG is nothing else but the
convolution of degree distributions in the RHG:

k
P(k) = Z Pk — kYPE(K) ~ k77, (70)
k’=0

where y = 2a + 1.

Similarly, the expected number of common neighbors between nodes i and j can be ex-
pressed, to the leading order, as
iy =t (], 0}, 00) + 7 (12,070, 62) (71)

i>YioT oYy i>YiojoYj

where 7" (ri, N J-) is the expected number of common neighbors in RHG between
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nodes {r;,6;} and {r;,6;}. Then, the probability P(m) of two randomly chosen nodes in

CRHG to have exactly m common neighbors is the convolution of those in the RHG model

P(m) = Z PE(m — m)PE(m') ~ m™™, (72)

m’=0

since P2(m) ~ m™™, where exponent 7 = 7(y,T) > 2, as documented both in empiri-

cal (Iamnitchi et al. 2004; Burgos et al. 2008) and theoretical (Kitsak et al. 2017) studies.

The expression for clustering coeflicient in the CHRG is more involved and is omitted here

for brevity, what is important is that clustering coefficient vanishes in the large N limit, as
Z(N) ~ N7, (73)

consistent with the non-transitivity of complementarity.

To highlight the practical utility of the developed complementarity framework we next
obtain cross-geometric hyperbolic representations of four real-world networks: the network
of protein interactions in yeast (Yu et al. 2008) and human (Das and Yu 2012) and (Luck
et al. 2019) cells, the Messel shell food web (Dunne et al. 2014), and the social network
of the website hamsterster.com (Kunegis 2013), and use the obtained representations to

predict missing links in these networks.

To this end, we remove a fraction of 1—g¢ links uniformly at random in the network of interest.
In doing so, we go over every existing link in the network and remove it with probability
1 — g. We then obtain cross-geometric representation of the resulting truncated network
and rank unconnected node pairs in the truncated network by the sum of the cross-distances
between the corresponding points:

rank;; = d (X},X?) +d (xiz, X}) , (74)

the smaller the rank the higher is the chance of a missing link.

Our link prediction results are summarized in Fig. 46. We observe that all similarity-based
methods (lower half of each panel in Fig. 46) predict missing links in the four considered

networks with accuracy lower than that of the methods that are not similarity-based (upper
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half of each panel in Fig. 46). This result is expected, since real networks of interest are
driven by the complementarity rule, and similar nodes are not expected to be connected.
Our second observation is that the cross-geometric representation, which we label as CHL
in Fig. 46, is substantially more accurate in missing link prediction that any similarity based
method, including the original HyperLink. Further, CHL performs comparable with the
most accurate non-similarity based methods, validating the cross-geometric framework.
(Note: It has been established that the link prediction accuracy of methods that are based on
hyperbolic spaces is extremely sensitive to the that of the node coordinate inference (Kitsak
etal. 2019), and also depends on the measure used to quantify the accuracy of link prediction.
We, therefore, expect the accuracy of link prediction to improve even further if more accurate

embedding methods are developed for complementarity-based networks.)

In summary, we would like to emphasize that the proposed cross-geometric framework is
not specific to hyperbolic spaces: any metric space of arbitrary dimensionality may serve
as a latent space in this framework. Here we presented the minimal version of the cross-
geometric framework, where each network node corresponds to two points in the latent

space. Higher order generalizations of the framework are straightforward.

It also important to note that the proposed cross-geometric framework can not be mapped to
a higher-dimensional version of the conventional latent-geometric framework, where each
node is mapped to a single point. In the latter, the higher is the pairwise match between node
coordinates, the smaller is the distance and the higher is the connection probability. In the
former, on the other hand, the match of all node coordinates is not required: connections are
established with high probability if at least one cross-distance is small. At the same time,
the proposed cross-geometric framework is closely related to bipartite networks, which can

be regarded as the special class of complementarity-driven networks.

The cross-geometric framework not only opens new avenues for the analysis of
complementarity-driven systems such as biological networks, interdisciplinary collabo-
ration, and food webs, it also challenges traditional approaches of network science that were

initially developed for social networks and are routinely applied to other networks classes.

One example is the notion of the shortest path, which is often envisioned as a certain discrete
trajectory in the network space, Fig. 47a. Such trajectory is possible in the cross-geometric

framework: a chain of connections may form due to a spatial alignment of complementary
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points into a geometric trajectory, Fig. 47b. While such an alignment is definitely sufficient
for the formation of a network chain, it is by no means necessary: another possibility is a
collection of pairwise, yet disjoint, proximities between corresponding points in the latent

space, as seen in Fig. 47c.

Network community, in its classical formulation, is a group of nodes densely connected
within and sparsely connected outside the group. Based on this definition, network com-
munities in social sciences are often envisioned as collections of node-points localized in
certain network space, Fig. 47d-f. While the cross-geometric framework admits this inter-
pretation as well, Fig. 47e, communities that are partially localized in the latent space are

also possible, Fig. 47f.

Shortest paths and communities have been adopted from similarity-based networks and are
routinely used in the analysis of complementarity-driven networks. Network communities
are routinely used to quantify disease and functional modules in biological networks (Ghi-
assian et al. 2015; Ahn et al. 2010; Mahmoud et al. 2014), and scientific communities
in collaboration networks (Girvan and Newman 2002; Fortunato 2010). Shortest paths,
on the other hand, are often used to quantify network-based separations between network
modules of interest (Menche et al. 2015; Sonawane et al. 2019). While we do not question
the use of paths and communities in complementarity-driven networks, we call for careful
interpretation of the obtained results that should be consistent with the cross-geometric

framework.
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Figure 47. Paths and communities in complementarity-driven networks. Shown in (a)
is the toy network consisting of a chain of 5 nodes as well as (b)-(c¢) two configuration
of points in the space that might lead to it. (b) In this configuration the chain of
connections observable in the network is achieved by aligning complementary points into
a geometric trajectory in the latent space. (¢) This configuration demonstrates how a
chain of connections in (a) may arise from a collection of pairwise proximities between
points in the latent space. In contrast, trajectory-based alignment is the only possibility
for similarity-driven networks. Shown in (d) is the toy network consisting of a 5 node
clique as well as (e)-(f) two configuration of points in the space that might lead to it.
(e) In this configuration the clique network arises due to the complete clustering of all
points. (f) This configuration demonstrates how the clique network in (d) may arise from
partially clustered points in the latent space. In contrast, the complete clustering of all
points in the latent space is the only possibility for the clique similarity-driven network.
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S Application to real military and civilian systems
All of the work conducted under this project has been motivated by applications in real
military and civilian systems. Specific application to a maritime operations center (MOC)

appears in Section 3.2. The material here is reproduced from Eisenberg et al. (2020).

Major blackouts in electric power systems are often attributed to cascading failures, where
the failure of few power grid components cause large-scale loss of electricity. Despite
recent innovations to model and predict cascading losses, few studies link cascades to
the complex management context of blackout response. In this work, we broaden the
purpose of cascading failure models to provide a heuristic way to study coordination plans
to manage blackouts. We analyze the South Korean power grid with a cascading failure
model and use results to generate social networks of Korean organizations that respond
to national blackouts. We identify organizations critical to cascading failure response by
analyzing resulting network models for power grids and social networks. Results have
key implications for Korean blackout management policy as few organizations are critical
hubs for coordinating almost all cascading failures (e.g., betweenness > 0.2). We also
identify highly connected organizations involved in few cascading failures that may be
able to provide backup support in case critical hubs are unavailable. Together, this work
contributes methods to assess how emergency coordination can extend during cascades and

demonstrates methods with an initial assessment for South Korea.

5.1 Introduction

One of most important research innovations for measuring the vulnerability of electric
power systems is the cascading failure model (Guo et al. 2017; Hines and Rezaei 2016).
Major blackouts are often attributed to cascading failures, where the loss of few power
grid components cause additional overloads, system imbalances, failures, and eventually
large-scale loss of electricity. The 2003 blackout across the US and Canada was one of the
first well-documented cascading failure events, where small losses caused by trees touching
power lines, demand imbalances, and out of date operational models eventually led to the
largest blackout in North American history (Andersson et al. 2005). Since 2003, numerous
large-scale blackouts occurred across the world initiated by diverse events like natural
disasters and cyber attack (Veloza and Santamaria 2016). Even with a growing number of

documented cascading failure events, there is limited information to form a generalizable
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understanding of cascading failures in power grids. This makes cascading failure events
some of the most difficult decision-making contexts for power grid operators and managers

charged with keeping systems running.

To make sense of cascades, experts turn to cascading failure models as a means to study
different failure mechanisms and predict expected losses. There are three general types of
models, each relating power grid vulnerability to a different aspect of power grids: network-
based models that relate vulnerability to system structure and connectivity, dynamics-based
models that relate vulnerability to electric power flow redistribution, and component-based
models that relate vulnerability to joint failure probabilities and stochastic losses (Vaiman
et al. 2012; Petersen et al. 2015). Prominent models in literature include the Crucitti-
Latora-Marchiori (CLM) model (Crucitti et al. 2004; Kinney et al. 2005), Motter-Lai
(Motter and Lai 2002), Oak Ridge—Pserc—Alaska (OPA) (Dobson et al. 2001; Carreras
et al. 2013), Hidden Failure (Chen et al. 2005), the Manchester Model (Guo et al. 2017),
Branching Process (Vaiman et al. 2012), and CASCADE (Guo et al. 2017). Several reviews
summarize model development, applications, validation in power grids (Guo et al. 2017;
Hines and Rezaei 2016; Cuadra et al. 2015; Vaiman et al. 2012; Baldick et al. 2008). These
cascading failure models represent an important means to improve power grid management
by estimating losses when cascades occur and guiding protection decisions for vulnerable

components.

With a growing library of tools for predicting and controlling cascading failures, the ques-
tion remains: do these models help people manage cascading failures better? Currently,
the blackout management guidance offered by these models is limited because almost all
studies focus on predicting failure consequences without considering human actions during
cascades. While predicting consequences helps identify critical infrastructure components,
it may do little to support management of failures as they happen (Eisenberg 2018). Some
power grid cascades occur on a sub-second timescale faster than humans can respond. Here,
hardening activities guided by cascading failure models are essential. However, the majority
of large-scale failures happen on the minute and hour timescales and elicit human response
(Vaiman et al. 2012). Power grid system operators are not complacent when infrastructure
fails, they act according to reliability standards and protocols to arrest cascades and protect
critical systems (Eisenberg et al. 2017). Common actions taken include remedial efforts

to adjust power flows, protect vulnerable infrastructures, prepare backup resources, and
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coordinate with relevant owner and regulator organizations (Knight 2001). Operators and
managers are also trained in a number of worst-case scenarios and develop heuristics for
managing known instabilities within their systems. Current cascading failure models do
not consider these human actions and assume that failure operations are similar to normal

grid operations.

However, cascading failures are not normal events, and are precisely when contingency
management practices stretch to their limits. Cascades often occur because power system
failures happen or propagate in unexpected and unanticipated ways. For example, cascades
can happen due to surprising events that fundamentally change how system operators
understand system function (Eisenberg et al. 2019). The losses experienced during the
2003 North American blackout exemplify this form of surprising event. Extreme events also
cause cascades that may be anticipated, but exceed design thresholds, like Superstorm Sandy
(QER Task Force 2017), Hurricanes Irma and Maria (Zorrilla 2017; Alderson et al. 2018),
and the 2019 National Grid blackout in the United Kingdom (Karasz 2011). Cascading
failure models should be oriented to study what people do during these surprising events to

guide decision-making and update outdated emergency management practices.

Representing the human-in-the-loop is important because adaptive human actions are often
the reason systems are saved or lost during crisis (Choi et al. 2019; Thomas et al. 2019;
Hollnagel etal. 2006a). In best-case scenarios, humans follow established rules and remedial
actions to manage anticipated failures and/or adapt to manage cascades in new and inventive
ways. In worst-case scenarios, grid operators fail to follow established protocols or take
adaptive actions that exacerbate cascading losses. In both situations, it is the adaptive actions
taken by people that change the outcome of cascades, neither of which are considered in
failure models. An important area of research is refocusing cascading failure models to

study how grid operators and managers extend systems when faced with surprise.

A key focus of this work is to identify ways to extend interorganizational coordination plans
for blackout management when experiencing a cascading failure. We define extensibility as
the way people leverage new information and past experience to come up with novel solutions
to unforeseen and unknown surprises (Woods 2015, 2018). Extensibility in power grids is
not random — it is based on training, guidelines, and partnerships combined with situational

awareness held by infrastructure operators as events occur (Eisenberg 2018). Assessing and
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improving extensibility requires knowledge of the social context surrounding crisis decision-
making alongside sociotechnical processes of sensing, anticipating, adapting and learning
(Thomas et al. 2019; Seager et al. 2017a; Park et al. 2013a). Only very recently are studies
trying to understand how human factors improve or exacerbate losses (Eisenberg et al.
2019; Veloza and Santamaria 2016). Still, there is limited knowledge of the social context
that influences crisis decision-making when cascades occur, including utility customer
contracts, local operational and management practices, economic constraints, regulations,

and organizational culture.

In this section, we broaden the purpose of cascading failure models from measuring conse-
quences to providing a heuristic way to study how organizations plan to manage large-scale
blackouts. Specifically, we link the a cascading failure model for power grid networks with
social network analysis to identify critical organizations and partnerships that may improve
blackout management in South Korea. We start by studying cascades in the South Korean
Power Grid (KPG) using a modified CLM model similar to that in Kim et al. (2017), but
improved to include electrical information about power grids (Arianos et al. 2009; Bompard
etal. 2010, 2011). We measure failure consequences at the system- and component-scale to
relate cascades to the South Korean blackout management context (Eisenberg et al. 2017).
These results are used to construct social networks representing the information sharing and
coordination partnerships among South Korean companies during blackout response. We
identify organizations critical for managing blackouts and supporting extensibility using
measures of organizational betweenness (Lee et al. 2017). Results suggest new policies

may help large-scale blackout management in South Korea.

5.2 Blackout Management in the South Korean Power Grid

South Korea occupies the southern portion of the Korean Peninsula. The South Korean
Power Grid (KPG) is an islanded power system comprised of a primary grid that connects
Korean mainland provinces and independent governing cities together (see: Figure 48).
The KPG also has a separate independent power grid on Jeju-Do island that connects to the
mainland via undersea power cables. For the purposes of this work, we focus on blackout
management in the mainland grid and ignore blackouts on Jeju-Do. KPG infrastructure
spans a wide-range of voltage classes, from Extra High Voltage (765 kV) to pre-distribution
voltage (3.3 kV) powerlines, transformers, reactors, and substations (Kim et al. 2017). KPG
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electricity is generated primarily from a combination of fossil fuels and nuclear power, with
only ~ 7% of power generation coming from hydroelectric or renewable sources depending

on seasonal and demand variations (Park et al. 2013b).
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Figure 48. Map of the 2013 South Korean Power Grid. This map
shows the connectivity of major power grid infrastructure in mainland Ko-
rea, that is, power plants (red circles), high-voltage transmission substations
(dark blue circles), and power lines (dark blue lines). Transformers connect
buses that are too close together to be shown in this image. South Ko-
rean provinces and major cities discussed in this work are labelled for clarity.
Jeju-Do Island is excluded from the image because it is not considered in
the current analysis. Figure reproduced from Eisenberg et al. (2017) under
Creative Commons Attribution License (CC BY 4.0).

South Korean blackout management involves the coordination of three distinct organiza-
tional entities to respond to failures (Eisenberg et al. 2017). The first kind of entity is the
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blackout response groups within KPG infrastructure owners and operators. In the KPG,
essentially all power transmission and distribution infrastructure is owned by the Korean
Electric Power Corporation (KEPCO) and operated by the transmission service operator,
the Korea Power Exchange (KPX). Power generation facilities and associated infrastructure
(e.g., transformers) are owned and operated by private corporations, where the largest 6
operate and manage ~ 97% of all generation assets. These companies are subsidiaries of
KEPCO: Korea Midland Power (KOMIPO), Korea Western Power (KOWEPO), Korea East-
West Power (EWP), Korea Southern Power (KOSPO), Korea Southeast Power (KOSEPO),
and Korea Hydro-Nuclear Power (KHNP). Other major KPG infrastructure owners and
operators include the Korea Water Administration (Kwater), that owns and operates all
multipurpose dams in the country and some private power producers that generally serve
heavy industries or industrial sites (e.g., POSCO Power, SK Energy, Korea District Heat

Corporation, etc.).

The second kind of organizational entity is the emergency management offices that sup-
port power grid owners and operators when blackouts occur. These offices are generally
firefighter operations centers or special central headquarters that coordinate emergency re-
sponse to critical infrastructure failures. Each of the 8 mainland Korean provinces and 9
independent cities have their own emergency response headquarters in charge of blackout
management, each with a unique name. For example, the state surrounding the Korean cap-
ital city of Seoul, Gyeonggi-Do, has a combined fire disaster headquarters (GGD-FDHQ)
that supports blackout response. This HQ is distinct from the equivalent support entity
for Seoul — i.e., the Seoul City Fire Department Headquarters (SC-FDHQ) — as well as
for nearby provinces and cities — e.g., Gangwon-Do Fire Headquarters (GD-FHQ) and the
Incheon City Fire Safety Management Office (IC-FSMO).

Finally, blackout management also includes federal agencies involved in regulation and
coordination of remedial actions across sectors. The most prominent ministry involved in
blackout management is the Ministry of Trade, Industry, and Energy (MOTIE). MOTIE
both regulates the Korean power industry and provides decision-making support for large-
scale power failures. Other related agencies at the time of analysis include the National
Emergency Management Agency (NEMA) and the Ministry of Security and Public Admin-
istration (MOSPA), both of which coordinated large-scale crisis response for South Korea.

These two entities are now part of the same ministry: the Ministry of Public Security and
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Safety (MPSS). See Eisenberg et al. (2017) for the full list of these federal agencies and

organizations.
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Figure 49. Social Network of Korean Blackout Management Or-
ganizations. Infrastructure owners, operators, and emergency responders
coordinate to manage power grid failures across South Korea. Blue links
represent information sharing partnerships that link organizations when prob-
lems occur as defined in national blackout management protocols harmonized
across the power industry. We use this social network model as a basis for
studying blackout management contexts during cascades. Note: Based on
data from Eisenberg et al. (2017).

Figure 49 presents the basic social network of partnerships among Korean power and
emergency management organizations prior to national emergencies (Eisenberg et al. 2017).
Figure49 is comprised of 43 companies, including transmission infrastructure owners, major

power producers (i.e., with greater than 10% of national generation capacity), smaller
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power companies, and state-level emergency management headquarters for organizing first
responder support to power losses. Not all organizations are involved in all blackouts.
Instead, there are three key factors that dictate which organizations are involved in managing

a given blackout:

1. The infrastructure directly affected by the blackout: As cascades occur, infrastructure
will fail and overload. Both automatic relays and operator actions can be taken to
remove these overloaded assets from service to protect them from further damages.
However, these actions also require active decision-making to turn overloaded and
offline systems back on. Organizations that own and operate failed and overloaded
infrastructure coordinate these actions via command centers and headquarters.

2. The geospatial location of the blackout: The areas affected by cascades require
coordination with local emergency managers and decision-makers to determine the
best course of action to protect communities and support infrastructure recovery.
KPG owners and operators coordinate with local emergency management entities to
ensure blackout recovery is safe and efficient.

3. The size of the blackout and its impact on national reserve margin: The larger the
scale of the blackout, the greater the need to escalate blackout management decision-
making to higher levels within the industry and government. South Korean blackout
and emergency plans use national reserve margin as a characteristic measure for
determining how to escalate decision-making. Reserve margin refers to excess avail-
able power generation in the KPG to pick up slack and fluctuations in infrastructure
availability and demand. Within Korean blackout management plans, reserve margin
is measured in total gigawatts (GW) of excess generation capacity, where lower values
of reserve margin require higher levels of decisions-making (e.g., city, provincial, and

national).

The social network in Figure 49 is an idealized representation of the interorganizational
coordination context expected in South Korea prior to the onset of a large-scale failure.
During cascading failures, only small portions of this social network are relevant based
on the factors described above. The purpose of this work is to use cascading failure
models on the KPG to generate these sub-networks and determine which coordination
and information-sharing partnerships are most important for a diversity of infrastructure

failures. Specifically, we study cascades caused by N-1 failures (i.e., the single failure of any
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component within the KPG) and generate associated social networks based on Figure 49.

Note: Although federal agencies play an important role in situations where reserve margin
drops to increasingly dangerous levels, the KPG is designed to be N-1 reliable so no single
infrastructure failure triggers a national emergency. Hence, Figure 49 and associated sub-
networks considered in this work do not include the role of agencies like MOTIE, NEMA,
or MOSPA. For detailed analysis of coordination during more extreme failure situations,

please refer to Eisenberg et al. (2017).

5.3 Methods

This work uses well-studied models of the South Korean power grid (KPG) network and
social network of organizations involved in Korean blackout management. KPG data was
provided directly by KEPCO as a PSS/E (power system simulation for engineering) file,
and the model consists of 2083 power system buses and 4167 power lines and transformer
links. We use the following node and link sets to generate the KPG network: power
lines and transformers that transmit electricity (L € My;,.s), buses that produce electricity
(G € Ngen), buses that demand power (D € Npemana), and transmission buses that direct
power flow (T" € N7,4ns). A simplified structure of this complex power grid network based

on publicly available data is presented in Figure 48.

Social networks were generated using Matlab and analyzed using ORA-LITE social network
analysis software (Altman et al. 2017). We use the set of nodes (O € Ny, g5 = Npe + Nepy)
and links (P € M, ) to distinguish blackout management social networks from power grid

networks (see Figure 49).

Data for both models relates to the years of 2013-2014 during summertime peak load. All
power flow analysis was conducted in Matlab with the Matpower package Zimmerman et al.
(2010) and the GLPK optimization solver (Makhorin 2014). We refer the reader to Kim
et al. (2017) and Eisenberg et al. (2017) for detailed descriptions of power grid and social

network models and general metrics characterizing their structure.

162



N-1 Failure ) .
Cascading Failure Model

Modified CLM with EB,,
(Egs. 3,6, 7)

For Each Cascading Failure Iteration

KPG Network Model
(PSS/E Data)

Reserve Margin Infrastructure
Estimation Stress Estimation
(Egs. 8-14) (Egs. 3, 15)

Assess Betweenness
Modified with w;;
(Egs. 1, 4, 5)

Social Network Social Network
Generation Weighting

Repeat Simulation for all N-1 Scenarios
Average over

all Scenarios

Organizational
Betweenness during
Cascading Failures

Figure 50. Overview of Simulation Methods to Link Cascading Fail-
ures to Social Network Analysis. This work combines methods for power
grid and social network analysis into a integrated simulation approach. First,
we generate an infrastructure failure and measure cascading losses. For each
iteration in the cascade, we estimate failure impacts using system-level (re-
serve margin) and component-level (infrastructure stress) measures. These
measures inform the generation and weighting of social networks for Korean
blackout management. We repeat this process and average social network
results across infrastructure failure scenarios.
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Figure 50 presents an overview of the simulation methods used to link cascading failures
to social network analysis. First, we generate infrastructure failures in the KPG network
that may cause blackouts and measure their potential impacts with a cascading failure
model. For each model iteration, we assess the stress on the KPG network to reveal the
size of the blackout and the infrastructure components directly affected by the blackout.
These two assessments inform the structure of the blackout management social network
and the importance of each coordination partnership. Using the generated social network,
we identify critical organizations using established social network analysis methods. The
simulation is repeated and social network analysis results are averaged across all KPG

failure scenarios.

Methods and simulation results were validated with expert feedback from Korean blackout
management organizations. Specifically, methods to model cascading failures and measure
power system stress were coordinated with experts in KEPCO. Methods to generate and

analyze blackout management social networks were coordinated with experts in MPSS.

5.4 Identifying Critical Infrastructure and Organizations

5.4.1 Network Science Methods for Power Grids and Social Networks

A fundamental assumption in this work is that infrastructure and social networks correspond
and can be studied in a consistent way (Eisenberg et al. 2017). We analyze the KPG with
respect to the service it provides — the delivery of electricity from generation to use.
This generation-demand relationship corresponds to social network theory via “package’-
based flow processes (Borgatti 2005). Unlike other social process such as gossip that
transfer information among actors in an unregulated way, packages are assumed to have
explicit destinations. Information sharing and decision-making among infrastructure crisis
managers follow a package-based flow structure. This is because command and control
protocols dictate which information can and should be shared among organizations as well
as the specific people and organizations who have decision-making authority (Eisenberg
et al. 2018b).
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5.4.2 Network Science-Based Measure of Critical Nodes

The package-based treatment of power grids and blackout management systems allows us
to use the network-science measure of betweenness to identify critical infrastructure and
organizations. Betweenness is a measure of the flow contribution of network elements
and is an established way to rank the importance of power grid and social network nodes
(Eisenberg et al. 2017). The generic form of betweenness is based on geodesic paths (or
shortest paths) from nodes i to j. The set of all geodesic paths between nodes i and j is
called the “minimum cut set,” 0;;. The betweenness of any given node v is then defined
as the total number of geodesic paths that node v lies on normalized by the size of each

minimum cut set (Brandes 2001):

v
B, = _— (75)
#0#] Tij
]

where O'il;. is the size of the cut set between nodes i and j that node v is on.

5.4.3 Measuring Power Grid Criticality via Electrical Betweenness

The generic form of Eq. 75 is often inappropriate for power systems vulnerability analysis as
electric power does not flow based on geodesic path, it flows based on power line impedance
(Ouyang 2013; Hines et al. 2010). To address this discrepancy, several authors developed
power grid betweenness measures that incorporate the physics of power flow. Here, we
use electrical betweenness originally proposed in Arianos et al. (2009) to determine nodes
that influence power flow. This measure uses linear shift factors (also called power transfer
distribution factors (Bompard et al. 2009)), figd, for each power line, [ € L, for a unit
injection at generation bus, g € G, and an equal increase in load at demand bus, d € D.
These linear shift factors determine the relationship between KPG structure and power
flow for all generation-demand pairs. The linear shift factors are then used to estimate a
total transfer capability for a single power line before it overloads, TTC?, by assessing the

maximum allowable power transfer for all g and d pairs:

d . P;nux P;’H(IX P;T‘}ax
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The electrical betweenness of a given power system bus v, is then defined as Arianos et al.
(2009); Bompard et al. (2011); Eisenberg et al. (2017):

EBF%ZZTTCZZW‘ILHU” (77)

9€G deD leL?

where L, is the set of power lines attached to bus v and the factor of % accounts for power
flow into and out of buses. The term %TTC;’ Qe | flgdl is interpreted as the security
constrained contribution of power flow of bus v for a single g and d pair, where the sum
over all g and d pairs measures the contribution of each bus to power flow across the entire

grid.

5.4.4 Measuring Social Network Criticality via Weighted Betweenness

Like in power grids, the measure of betweenness in Eq. 75 does not necessarily measure
organizational importance in social networks. This is because links in social networks are
not “durative” like transmission lines in a power grid, and only exist when used. Social
networks are often studied using weighted links that represent the strength of person-to-
person and organization-to-organization connections (Butts 2009). For the purposes of this
work, Eq. 75 must be modified to include the strength of partnerships between organizations
as weights, w;; on network links. In social network analysis, w;; generally relates to the
strength of a social relationship estimated as the average frequency that the relationship is
used to share information. For the purposes of this work, w;; represents how often a given
blackout information sharing and coordination partnership is used to manage cascading
failures averaged across multiple scenarios. Links with large weights, w;; ~ 1, represent
information sharing and coordination partnerships that are required for many cascading
failures scenarios, where low weights, w;; ~ 0, represent partnerships that are rarely used

to coordinate blackout response. (Methods for calculating weights presented below.)
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Figure 51. Practical Differences among Weighted Betweenness Measures.
Consider groups 1 and 2 linked by nodes A, B, and C (ignoring group 3). B,
is a purely structural measure, and nodes A, B, and C receive equal values.
When measures include the link weights shown, Bg denotes node A as the
most between and B? denotes node C as the most between. With only two
connected groups B! and B2 are inverse measures of each other. However,
in more complex systems where group 3 exists, B) and B2 will reveal char-
acteristically different information about the social network independent of
the weight of link C to group 3. The interpretation of this more complex
scenario in social network theory is B} captures optimal information sharing
across well-established ties, where B2 captures least optimal, yet feasible
information sharing across weak ties.

We use two betweenness-based measures to identify critical organizations in weighted social
networks (shown graphically in Figure 51). The first identifies organizations that connect

others via strong ties, i.e., partnerships required for many cascading failure situations.
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These organizations are identified with the weighted betweenness, B!, that has the same

form as Eq. 75, but is computed with cut sets, 6;;, that use link distances based on weights,
49 = 1.

ij w;j*
1 9;}1
By= ) 0 (78)
izvej

The second identifies organizations that connect others via weak ties, i.e., partnerships that
exist but are infrequently used for managing cascading failures. Organizations with these
partnerships are well-connected, but rarely involved in blackout management. Thus, they can
extend their current operations to support blackout coordination when needed. To identify
these organizations, we use weighted betweenness, Bg, which has the same mathematical

form as Eq. 75, but is computed with cut sets, ¢;;, based on weights, dl.“/.’)g = w;;:

v

=S Y (79)

v .
i#0#] ¢U

5.4.5 Linking Power Grid Cascades to Social Networks

Network Science-Based Cascading Failure Model for Power Grids. Betweenness is a
key measure used in network-based cascading failure models. In particular, the Crucitti-
Latora-Marchi (CLM) cascading failure model (Kim et al. 2017; Kinney et al. 2005; Crucitti
et al. 2004) centers on using betweenness to understand how congestion within a system
is shifted relative to overloaded nodes. This model has been used to assess cascades on a
number of power systems (Kinney et al. 2005), and was more recently used to assess the
resilience of the KPG (Kim et al. 2017). The CLM model is useful for understanding how
people may respond to cascades because it uses a simple process to determine how power

may be shifted around after an infrastructure failure to find a stable and safe operating state.

The CLM model uses betweenness, B,, and a measure of link efficiency, ¢;;, to determine

how remedial actions might be taken (Crucitti et al. 2004). Here, e;;(¢) is the inverse of

the distance between two nodes at a given time interval, ¢, where ¢;;(t = 0) = %(0) = 1.
Ly

The CLM model dynamically adjusts link efficiencies to mimic cascades. This cascading
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failure process progresses in the following way:

First, the capacity of each node is estimated as its initial betweenness at time, B, (¢t = 0),

tuned by a capacity parameter, a:

C,=B,(t=0)«(1+a). (80)

A node is removed from the network at + = 0 and link efficiencies are recalculated for each

iteration based on the following equation:

. .G :
P mln(%,&&)); if Bi(t)<C or B;(t)<C;
elj(t)_

e;j(t=0); otherwise

(81)

We build upon the CLM model in Eq. 81 for studying congestion-based cascades in power
grids using the electrical betweenness E B, and key engineering parameters that dictate
electric power flow. Specifically, we replace B, with EB, and then calculate Eq. 80
assuming the power flow limits found in current KPG data are sufficient, i.e., @ = 0.
We then replace link efficiency, e;;, with power line impedance to force congestion re-
balancing to follow the physics of power flow. For all calculations, we use the DC power

flow approximation which simplifies impedance to be the power line reactance, x;;, such

ii =0
that, x;; (1) = “2/2

grid cascades than the original CLM model by redistributing electricity based on power

. The finalized model produces more realistic congestion-based power

flow physics (Ouyang 2013). Thus, this model provides a heuristic method to estimate the
ways automated systems and power grid operators will respond to failures as they happen.
See Henneaux et al. (2018) to compare our implementation with similar cascading failure

models.

Linking Cascading Failure Impacts to Social Networks. Relating cascading failure results
to social network generation requires we estimate the national reserve margin for South
Korea. Reserve margin is a function of both the available generation capacity and the
capability to transmit electricity to customers. To estimate reserve margin, we first estimate
the total transfer capability (NERC 2005, 1999; Sauer 1998) of the KPG, TTC,,;, summing
over all g and d pairs from Eq. 76,
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1
TTCper = Z TTCY (82)
GeniVDemand 9€G d(g#d)eD

We then calculate the active transfer capability, ATC,.(¢), for each timestep which is
qualitatively similar to 77 C,,.; but also considers congestion within the power grid estimated

as active power injections,

pmax_p pmax_p pmax_p
ATCY (1) :min{ i LU Mf,w)} (83)
. 1 fl M
1
ATCpor(t) = ——————— Z Z ATC (1) (84)

NGenNpemand 2= d(gedeD
where P;(t) is the real power flow over line [ at time . We then estimate the transmission
reserve margin , TRM (t), as reductions in available generation due to system congestion
that may inhibit the dispatch of additional generation resources in Korea. First, we relate
reserve margin to transfer capability using the standard equation for power system planning
(NERC 2005, 1999),

ATC =TTC - TRM (85)

and rearrange this equation to relate reductions in generation capacity to system congestion

with the following equations:

AGC=IC-TD (86)

_ o (1 = ATCrer(r)
UGC(t) = AGC = (1 T ) (87)
TRM(t) = AGC — UGC(t) (88)

where AGC is available generation capacity, /C is installed generation capacity, 7D is the

total demand, UG C () is the unavailable generation capacity due to system congestion at
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cascade iteration ¢ (note: all calculations are in units of GW).

This measure of TRM assumes that the dominating factor preventing power dispatch are
the thermal limits on power lines, which is reasonable for power system emergencies on
transmission grids. Eqgs. 82—88 also assume that demand, 7'D, remains constant throughout
a cascading failure event, which is a common assumption across all cascading failure models
(Hines and Rezaei 2016).

Social Network Weighting Based on Power Grid Cascades. Using the methods described
above, we simulate cascading failures in the KPG with the modified CLM model and
generate weighted social networks to study blackout management. We initiate a cascading
failure by removing a single node in the KPG network and run the cascading failure
simulation until a new stable operating state is achieved (see Figure 50). Then, we generate
a subset of “active” Korean power organizations for each time step during the cascade to
measure the frequency that a given blackout management partnership is used. We define
“active” power organizations, ijf;’f" € Nyrgs, as organizations that own infrastructure
stressed by the cascade or are geographically located in the same region as infrastructure
stressed by the cascade. We define stressed power grid infrastructure as either the node
removed from the network at r = 0 or as a power system bus v at time step ¢, S,(¢) > 1,

calculated by,

EB,(1) . _ .
S, (1) = EB,(1=0)’ if EB,(t=0) < EB(t); (89)

0, otherwise

We use active power grid buses to generate weighted social networks. Each bus at a given
cascade iteration ¢ with S,(#) > 1 is considered “active” and put in set N Z;ff”e € Ngen +
Npemana + Ntrans- These active buses are then related to the power industry by establishing
the subset of power companies that own and operate stressed infrastructure, N gg”'ve € Npe,
and the subset of emergency management agencies that will support infrastructure response
and recovery based on the geographic region stressed infrastructure is located in, N9<"v¢ ¢
Nepm. Then, all partnerships among active organizations, M, gﬁ;@”e € M,, 45, are added to the
social network and given equal weight, w;; = 1. The final, weighted social networks are
generated by taking the mean of each active link across all N-1 failure scenarios. Thus, all

link weights are 0 < w;; < 1, where a partnership with w;; = 0 means the partnership was
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never relevant to N-1 blackout management, and w;; = 1 means the partnership was active

across all failure scenarios.

5.5 Results

5.5.1 Cascading Failure Interoganizational Context in South Korea

Results from our cascading failure model show that N-1 failures do not cause significant
disruptions in national reserve margin (Figure 52). Korean blackout management policies
use a series of reserve margin thresholds to establish which organizations serve decision-
making and coordination roles, and each threshold relates to a different social network
(Eisenberg et al. 2017). The KPG is N-1 reliable, and at no point does any N-1 failure
lead to the activation of national crisis management thresholds that require the inclusion of

federal organizations for decision-making and coordination across industries.

N-1 losses lead to a re-weighting of the social network in Figure 49 based on which
organizations are involved after infrastructure is lost. Our model estimates the redistribution
of electricity that forces some power infrastructure to be overloaded or near overload post
failure. In most cascading failure models, these overloaded assets are then assumed to fail
and cause additional damages. We assume human actions manage the additional cascading
losses and allow for the system to correct these imbalances. We initially weight the “pre-
failure” social network based on the amount of infrastructure each organization is involved
in managing during blackouts and their position within the social network. Then, we
use the shifting blackout risk during corrective actions to estimate the subset of blackout
coordination partnerships that would be active during failure and cascade iterations. The
combination of social and power grid data produces weighted social networks that reveal

which organizations are more important for blackout management.
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Figure 52. Cascading Failure Results for South Korean Power Grid (KPG).
When a single substation or generation bus fails, electricity re-distributes
across the KPG and total dispatchable reserve margin changes. The light
red region in the above graph encompasses all reserve margin gains and
losses from N-1 failures in the South Korean power grid, where top and
bottom dashed lines are the largest gains and losses. These results are
used to generate weighted social networks. Social network links form based
on which organization owns and operates stressed infrastructures, where
stressed infrastructures are located, and how stressed they are during cas-
cades. The weight of each social network link using this method is the
mean weight across all N-1 failure scenarios with a normalized maximum
partnership strength of 1.
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5.5.2 Guiding Interorganizational Coordination during Blackouts

Figure 53 shows important organizations that are involved in the KPG social network before,
during, and after infrastructure cascading failures via normalized unweighted betweenness,
B,, and normalized weighted betweenness, B;, measures. Figure 53 shows KEPCO and the
Gyeonggi-Do Fire Disaster Headquarters (GGD-FDHQ) are the most central organizations

for all cascading failures with B! ~ 0.8 and B! ~ 0.4 over the course of

KEPCO GGD-FDHQ
cascades. This is because KEPCO is involved in any event that takes a major transmission
line out of service and GGD-FDHQ is involved in almost all failures that affect customers

due to the large number of people living in the area surrounding Seoul.

Figure 53 also shows the shifting importance of organizations with lower betweenness
values over the course of cascading failures. Prior to a failure, the Gyeongsangbuk-Do
Fire Protection Headquarters (GSBD-FPHQ) and Jeollanam-Do Fire Safety Headquarters
(JND-FSHQ) are two of the most central organizations for blackout coordination with
Blsap- Fprp and Bln. rsuo ~ 0-15. Thisis due to the large number of KPG infrastructure
in each region. However, during cascades the betweenness for GSBD-FPHQ drops to
B};S BD-FPHQ ~ 0, meaning it becomes less important relative to other regional crisis
management hubs. In contrast, the Incheon City Fire Safety Management Department (IC-

FSMD) and Chungcheongnam-Do Fire Safety Office (CCND-FSO) have lower betweenness

1 1 N . .

before cascades, B [C—FSMD and B 1C—FSMD ~ 0.1, and higher betweenness during cascades,
1 ~ 1 ~ .. .

B psup ® 0-2and By _,¢,,, ~ 0.18. This is because both regions are where customers

are more affected by cascading losses. JND-FSHQ remains equally important before and

during cascades.

This shift in importance among organizations demonstrates a shift in the physical geography
of failures as they cascade across South Korea. GSBD-FPHQ is located in the Southeastern
region of Korea where GGD-FDHQ, IC-FSMD, CCND-FSO, and JND-FSHQ are all on
the west coast. IC-FSMD, in particular, is one of the most Northwest regions of the country.
Thus, this analysis shows that crisis coordination during cascades needs to incorporate a
diversity of emergency management stakeholders on opposite ends of the country to quickly
and efficiently respond to failures. Moreover, it demonstrates that failures that originate in
the Southeast will likely propogate to affect people in the Northwestern Seoul, Gyeonggi-Do,

and Incheon Metropolitan Area.
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Figure 53. Critical Korean Organizations for Crisis Coordination during Cas-
cading Failures. We measure the normalized betweenness, B,, and normal-
ized weighted betweenness, B!, for organizations in blackout management
networks weighted across each N-1 cascading failure results presented in Fig-
ure 52. Cascading failures lead to shifting importance of emergency manage-
ment organizations for supporting blackout response. In particular, KEPCO,
the Gyeonggi-Do Fire Department Headquarters (GGD-FDHQ), the Incheon
Fire Safety Management Department (IC-FSMD), Gyeongsangbuk-Do Fire
Protection Headquarters (GSBD-FPHQ), Chungcheonnam-Do Fire Safety
Office (CCD-FSO), and the Jeollanam-Do Fire Safety Headquarters (JND-
FSHQ) are central organizations for corrective blackout response during N-1
operations.

175



We reveal which organizations may be able to extend operations if critical organizations
identified with B} are unavailable to coordinate blackouts using the inverse betweenness
B? (Figure 54). We interpret organizations with large B! in Figure 53 to have strong
partnerships and are best suited to coordinate blackout management activities. However, in
surprising situations when KEPCO, GGD-FDHQ, or IC-FSMD are unable to fulfill their
information sharing activities (e.g., if the KEPCO system operator room loses electricity
and backup power), other organizations with low values for B! will not be able extend
operations and coordinate activities. Instead, organizations with a large value of B? are

better suited to take up this slack and extend operations by having many partnerships.

Figure 54 reveals at least three organizations able to support surprising coordination contexts
when KEPCO, GGD-FDHQ, and IC-FSMD are unavailable. For pre-failure scenarios, the
Korea Water Administration (KWater) is the most central organization for information
sharing and crisis coordination based on weak ties, B% ~ 0.6. This is due to the location
of multipurpose dams throughout South Korea and many partnerships between Kwater and
governmental agencies. During cascades, provincial emergency management headquarters
with large Bi, i.e., GGD-FDHQ, GSBD-FPHQ, and JND-FSHQ, may be supported by
well-connected private power producers STX Energy, B> ~ 0.45 and Korea East-West
Power (EWP), B2 ~ 0.22 to coordinate emergency response activities. From a blackout
management perspective, Kwater, STX Energy, and EWP should not necessarily be involved
in decision-making for all cascades, but will be the most effective for acting as backup

coordination hubs.

5.6 Discussion

Results reveal critical organizations for cascading failure management and ways to extend
coordination activities for surprising events. Organizations like KEPCO, GGD-FDHQ, IC-
FSMD, GSBD-FPHQ, and JND-FSHQ will be important for many cascading failures. This
role should be made clear within policies or practices for Korean blackout management.
Also, Kwater, STX Energy, and EWP can support these organizations by providing parallel
coordination efforts. Taken together, our model reveals that the web of complex social
relationships that change while cascades occur. This web should be considered in future,
more detailed studies that try and predict the total losses expected when failures cascade

beyond N-1 scenarios.
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Figure 54. Critical Korean Organizations that can Serve Crisis Coordination
during Coordination Failures. We measure the normalized betweenness, B,,
and the normalized inverse weighted betweenness, B% of Korean blackout
management social networks to reveal unlikely organizations that are central
to information sharing and coordination during cascades. Organizations with
large B2 may support coordination during stressed and surprising situations
where central organizations identified in Figure 53 are unable to perform
coordination roles. Specifically, the Korea Water Administration (Kwater),
STX Energy, and Korea East-West Power (EWP) are well-suited to provide
this backup role.

This study can advance national emergency management policies in South Korea to support
new, important ways for organizations to manage blackouts. Several Korean infrastructure
emergencies demonstrate that centralized emergency management protocols may exacerbate

problems. For example, the largest Korean brownout in 2011 was exacerbated from a
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contained situation outside of Seoul to a cascading loss of electricity across Seoul because
of slowed coordination and information sharing activities among power organizations and
regulators (Kim 2011; Eisenberg et al. 2017). Based on our results, the partnerships
among specific Korean organizations make them more effective at supporting emergency
management when coordination breaks down. We recommend that additional coordination
roles be created among central organizations found across social network measures, e.g.,
creating new coordination partnerships between KEPCO and GGD-FDHQ with Kwater and
STX Energy.

Our finding emphasizes the important role of managing weak ties in social or organizational
networks (Granovetter 1977). While “strong” ties are generally easier to identify and define
in established emergency protocols, weak ties are not typically considered in pre-disaster
conditions as they are difficult to identify or many not seem relevant. Our study shows
that identifying and managing the weak ties can support extensibility when strong ties
are unavailable during emergencies. This new approach can also strengthen the disaster
preparedness, which eventually reduces the impact from disasters and allows faster recovery.
Moreover, it also increases diversity and redundancy of the functional nodes in emergency

management network, improving system resilience.

Despite the potential benefits of changing policies based on our results, we acknowledge that
current work is limited and requires further validation. Models and methods were validated
with expert feedback regarding cascading failures and blackout management organizational
networks. However, our study introduces novel simulation methods only implemented in
the Korean context. Use of additional cascading failure models may provide further insight
into the KPG context. Moreover, additional case studies in other social contexts would

support further validation of simulation methods.

Still, we feel confident that these minor changes in blackout management protocols will lead
to significant changes in the management of future blackouts based on similar changes made
recently in earthquake preparedness. In 2016, earthquake response in Gyeongju (Kim et al.
2016), South Korea was exacerbated by slowed national response and information sharing
to the public. The slowed response was caused by strict, hierarchical decision-making
processes policies that were removed post-event to speed up coordination. The recent 2017

earthquake of similar size and velocity near Pohang (Jeong 2017), South Korea had a much
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faster response due to these minor policy changes. Since our study is identifying similar
ways to avoid bottlenecks in blackout management coordination, we anticipate that the
small changes to national crisis management policies we recommend offer a proactive way

to ensure better blackout response in the future.
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