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Abstract In this tutorial, we quantify resilience for an infrastructure system to a set of disruptive
events in terms of degradation of system function. We show how to build and solve a
sequence of models to assess and improve the resilience of an infrastructure system to
those disruptions. Through simple examples and real-world case studies, we provide
motivation, details of the models, and solution algorithms.
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1. Introduction

In the last 15 years, a number of disasters, some deliberately caused, some not, have inflicted
serious losses of human life, significant damage to property, and massive interruptions in
service for a number of large infrastructure systems. In the wake of these events, the concept
of resilience is now frequently used to characterize how well these infrastructure systems, their
operators, and their users react to and recover from disruptive events. However, there are
many different facets of resilience (e.g., Zolli and Healy [96]), and much of the literature on
infrastructure resilience is qualitative in nature and does not suggest how the resilience of real
systems can be improved (e.g., Haimes et al. [47], Madni and Jackson [61], Park et al. [68]).
This tutorial provides a guide to recent work that applies constrained optimization (combined
with models of system function and management) to assess and improve the resilience of
critical infrastructure systems to disruptive events.

1.1. Infrastructure, Risk, and Resilience: An Abbreviated History

An early example of the importance of infrastructure to society is Ancient Rome, where the
development of roads and aqueducts enabled unprecedented economic prosperity that lasted
for hundreds of years. Over time, these infrastructure systems went from being conveniences
to necessities upon which citizens and government depended, and their vulnerability to
deliberate attack contributed to Rome’s ultimate decline (Assante [11]).

The mid-1990s and the explosive growth of the Internet started a modern phase in the study
of infrastructure systems because many formerly stand-alone physical systems—including
transportation, energy, and water—quickly became interconnected via a common “central
nervous system” that was not only a source of great efficiency but a new avenue of potential
vulnerability. In particular, there was concern at the highest levels of the United States (U.S.)
government (President’s Commission on Critical Infrastructure Protection [69]) about the
potential for large-scale disruptions that could cause serious harm to society (for a concise
history, see Brown [26]).

The terrorist attacks of September 11, 2001 inflicted considerable impact on the infrastructure
systems of the New York City metropolitan area, with ripple effects around the world. The
primary response of the U.S. government to these attacks was to establish laws with a focus
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on security, specifically apprehending those responsible and preventing future incidents. The
term critical infrastructure was defined in Section 1016(e) of the USA PATRIOT Act of 2001
as “systems and assets, whether physical or virtual, so vital to the United States that the
incapacity or destruction of such systems and assets would have a debilitating impact on
security, national economic security, national public health or safety, or any combination of
those matters” (Title 42 U.S. Code, Section 5195c et seq. 2006 Supp. IV [87]). The Homeland
Security Act of 2002 established the Department of Homeland Security (DHS) with its
primary mission to “(A) prevent terrorist attacks within the United States; (B) reduce the
vulnerability of the United States to terrorism; (C) minimize the damage, and assist in the
recovery, from terrorist attacks that do occur within the United States” (Public Law 107-296,
117 Stat. 745 [70]).

However, the accidental electric power outage in the Northeastern United States in August
2003 demonstrated that the United States also needs to be concerned with nondeliberate
events, such as technological failures and human accidents. In December 2003, the White
House issued Homeland Security Presidential Directive (HSPD)-7: “Directive on Critical
Infrastructure Identification, Prioritization, and Protection,” which directed the use of
risk-based strategies for assessing hazards and prioritizing investment (The White House [83]).
DHS codified this guidance in the National Infrastructure Protection Plan (NIPP), first issued
in 2006.

In the years following HSPD-7, there were a number of unprecedented natural disasters,
including the Indonesian tsunami in December 2004, Hurricanes Irene and Katrina in Summer
2005, and the magnitude-7.6 earthquake in Pakistan in October 2005. The overwhelming need
for emergency response to these events led to the following recognition in the 2007 National
Strategy for Homeland Security (Homeland Security Council (HSC) [51]):

We will not be able to deter all terrorist threats, and it is impossible to deter or prevent natural
catastrophes. We can, however, mitigate the nation’s vulnerability to acts of terrorism, other
man-made threats, and natural disasters by ensuring the structural and operational resilience of
our critical infrastructure and key resources. HSC [51, p. 27]

A number of unprecedented accidents recently, including the Deepwater Horizon oil spill
in 2010 and the Fukushima Daiichi nuclear disaster in 2011, along with the devastation
caused by Hurricane “Superstorm” Sandy in 2012, have reinforced the need for resilience of
infrastructure systems and communities. And the April 2013 attack on the Pacific Gas and
Electric Metcalf electricity substation in San Jose, California (Smith [79]) serves as a reminder
that deliberate threats to infrastructure still persist.

Presidential Policy Directive (PPD)-21: “Critical Infrastructure Security and Resilience,”
signed in February 2013 (The White House [84]), defines resilience explicitly to mean “the
ability to prepare for and adapt to changing conditions and withstand and recover rapidly
from disruptions. Resilience includes the ability to withstand and recover from deliberate
attacks, accidents, or naturally occurring threats or incidents.” The most recent edition of the
NIPP, released in December 2013 (Department of Homeland Security (DHS) [38]), now
features the subtitle “Partnering for Critical Infrastructure Security and Resilience.”

1.2. Goals of This Tutorial

Our goal is to show by example how to develop quantitative models to assess infrastructure
resilience and, even more importantly, determine how to improve the operation of critical
infrastructures and other systems in the presence of disruptive events.

An earlier tutorial (Brown et al. [22]) describes two classes of applications of bi-level
programming models in the study of critical infrastructure systems. One class, called
attacker-defender models, is used to analyze the vulnerability of infrastructure to worst-case
attack. Another class of models, called defender-attacker models, is used to plan infrastructure
defenses against a known adversary. These models can be combined to create tri-level problems,
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called defender-attacker-defender models (Brown et al. [21]). Recent treatments of these and
other system interdiction models can be found in Lim and Smith [59], Alderson et al. [7, 8],
Wood [91], and Dimitrov and Morton [40].

This tutorial (1) synthesizes the most essential material in these many papers, (2) provides
a step-by-step explanation of how and why we build these models as we do, (3) introduces a
general solution technique for solving them, and (4) establishes connections to other related
work. Throughout this tutorial, our focus is operational resilience—a term introduced in the
2007 National Strategy for Homeland Security (Homeland Security Council (HSC) [51]),
but never formally defined—in which we restrict attention to the function, or operation, of
infrastructure systems. We define operational resilience of an infrastructure system to a set of
disruptive events in terms of the worst-case degradation of system function, and we show how
to build and solve a sequence of models that allows us to assess and improve the operational
resilience of an infrastructure system to those disruptions. We have used the concepts and
techniques presented here for more than a decade and have applied them to a wide variety of
critical infrastructures and other systems.

2. Terminology and Notation

We assume the reader is familiar with optimization models at the level of Rardin [71] and also
network flow notation at the level of Ahuja et al. [1]. We often think of infrastructure systems
as moving some commodity through time and space, and this makes them ideal subjects for
network flow models. However, in our study of these systems, we find that there are always
additional constraints on system operation, or a need to model multiple commodities, or
nonlinearities in the system that require the use of something more sophisticated than a pure
network flow model. Nonetheless, because underlying network structure is ubiquitous in these
more complicated models, we retain the language of network models for its easily visualized
function and indicate where we might need to extend the definitions or standard models as
appropriate.

We define the following terms for use throughout. We treat an infrastructure as a
system of interconnected components that work together to provide a particular function.
Examples of function include traffic conveyance, electric power transmission, fuel delivery,
manufacturing, supply chains, and communication. We often represent system function by
using multicommodity network flow models of conveyance over space and/or time, where
nodes and arcs represent parts of the system, and the flow of commodities represents the
“function” provided by the infrastructure. For instance, if we are modeling the traffic flow
function of a road network, then the commodities might be the traffic (i.e., vehicles) on the
roads, partitioned based on their eventual destinations. The performance of the system might
be a function of the number of vehicles, or the people in the vehicles, their economic value, or
the carbon footprint of their travel, etc.

Our mathematical models frequently use a directed graph G= (N,A) comprised of nodes
and directed arcs to represent the connectivity (at the nodes) of the components (the arcs) in
the system. Each component engages in one or more activities. Collectively, the activities of
all components specify the operation of the system as a whole. We use arcs exclusively to
model components with activities on them. If a component is more naturally associated
with a node, such as a junction, but we need to model an activity, we use the standard
node-splitting technique (see, for example, pp. 41–43 of Ahuja et al. [1]) to replace the original
node with two surrogate nodes and a single arc representing the activity at the original node.
We typically model activity at an arc by a decision variable. In a network flow model, this
might be yij ≥ 0 for each arc (i, j)∈A. One component could have multiple activities; for
instance, there might be multiple commodities, indexed by k ∈K, flowing through the same
pipeline. Each would have its own decision variable, say, ykij ≥ 0. We use the term operator to
refer to the decision-making entity who chooses activities in the system.
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The activities in the system are limited by operational constraints that reflect, for example,
the laws of physics, limited budgets, or dependencies between components. We typically
express these as the constraints of a mathematical programming formulation. For example, a
pipeline (i, j)∈A might have a capacity, uij . One operational constraint could say that the
total directional flow on the pipeline cannot exceed its capacity:

∑
k y

k
ij ≤ uij .

A design refers to an existing or proposed nominal system configuration; this could include
the selection of particular versions of arcs (changing their costs and capacities) or the addition
of new arcs (i.e., adding new activities to the system). We model the choice of a design
through a vector w of design decisions, one element for each component. A particular design is
then specified as ŵ.

An operational setting, denoted x̂, specifies the status of each component in the system, any
environmental factors that can affect operations, and any exogenous supplies of or demands
for the function provided by the system. An event is any change in the operational setting.
If multiple elements of the operating conditions change at once, we still refer to this collective
occurrence as “an event.” However, when discussing the corresponding changes to individual
components (e.g., simultaneous damage to two distinct pipes, each represented as its own
component), we sometimes refer to “simultaneous events,” depending on the context. We
explicitly do not use the phrase “set of events,” which has a different meaning, described
below. Events can be deliberate or nondeliberate. Accidents and failures are examples of
nondeliberate events, whereas attacks and repairs are examples of deliberate ones.

A performance measure evaluates how well a particular design of the system functions in
a particular operational setting. We evaluate the performance of a system by solving an
operational model that takes as input a specification of the operational setting and provides as
output a specific set of activities and the corresponding performance for the resulting system
operation. Operational models can be parameterized by the design of the system, to allow for
the evaluation of alternative designs.

Optimizing system performance means using an operational model to determine a maximal-
performance operation of the system. As a mathematical program, we often write the
formulation as

z∗ = max
y∈Y (ŵ)

f(ŵ, x̂, y),

where f( · ) measures system performance and where y ∈ Y (ŵ) indicates that the feasible
activities y depend on the design ŵ. Here, y∗ = arg maxy∈Y (ŵ) f(ŵ, x̂, y) is an optimal way to
operate the system for design ŵ under operational setting x̂, and results in performance z∗.

The consequence of an event is the change in performance that results when the system
operates in the modified setting. If the performance of the system becomes worse, we say the
performance of the system has been degraded by the event. We use the consequence of an
event to quantify the system’s operational resilience to an event, because it quantifies the
ability of the system to adapt its operations following the event. If the event results in a
relatively large (respectively, small) consequence, we say that the system has relatively low
(respectively, high) operational resilience to that event.

When studying infrastructure systems, our interests are generally twofold. First, we need to
assess the operational resilience for the current (or proposed) design of a system. For executive
decision makers, this typically amounts to answering the question “How bad can things get
for this system?” The second thing we need to do is to identify budget-limited investments
that can improve the operational resilience for this system. This essentially requires that
we consider how best to (re-)design the system, answering the executive decision-maker’s
question “How should we spend our limited funds?”

3. Example: The Operational Resilience of a Rail Network

We illustrate the basic steps in assessing and improving operational resilience using a simple
example, adapted from a historical case study on the Soviet rail network (Harris and Ross [49],
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Figure 1. Network representation of the Soviet Rail system circa 1955 (from Alderson et al. [7]).
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Notes. Each arc is annotated with its capacity (in 1,000s of tons). The maximum flow through the undisturbed
network from node “s” to node “t” is 163,000 tons.

Schrijver [78], Alderson et al. [7]), in which the operator’s goal is to move as much cargo
as possible from one particular station to another (see Figure 1). In this figure, each line
represents a section of track having a finite tonnage limit, and each circle represents a station
where adjacent sections of track meet. The performance of the system is the maximum tons of
cargo that can be moved (i.e., its capacity), and the concern is maintaining as much capacity
as possible even in the face of an event that eliminates one or more sections of track from the
system.

Following the seminal work of Harris and Ross [49], we model aggregate flows through the
network in a single time period instead of using a detailed model of train scheduling, track
siding usage, etc. In the original study, the key operational goal was to assess the potential for
a rapid movement of materiel, and their model (and ours) has sufficient fidelity to represent
this capacity.

Our modeling and analysis follows a script that covers each of several steps:
1. Formulate an operational model, the operator model, to determine the system activities

and the corresponding performance of system operation.
2. Define the set of events that can disrupt the system, and identify how each event

modifies the operational setting.
3. Modify the operator model to incorporate events and their impact on system operation.
4. Formulate a bi-level attacker model to identify worst-case events, minimizing best-case

performance following a worst-case event.
5. Define design decisions that can change the system.
6. Modify the operator and attacker models to include the effect of any design on the

operations.
7. Formulate a tri-level defender model to choose the best design in anticipation of a

worst-case event.
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The following subsections describe how to assess and improve the resilience of this rail
network, and are numbered to correspond directly to the steps in our script above.

3.1. Formulate the Operator Model

The function of the system is source-to-destination cargo delivery, and the components
of the system are the sections of track, modeled as the edges in a network. The activities
on the components are the flows of cargo on the tracks, and the two sets of operational
constraints are the single-edge capacities given by a tonnage limit on each section of track and
materiel balance constraints, one for each station (represented by a node) in the network. The
performance of the system is measured by the total amount of cargo that flows from the start
node to the destination node (all capacities are measured per day). We formulate the problem
as follows.

Indices and Sets
n, i, j ∈N stations (ordered set of nodes);
s, t∈N distinguished start and end stations;

[i, j]∈E undirected edge between nodes i and j; where i < j,∀ [i, j]∈E;
(i, j)∈A directed arc from i to node j; [i, j]∈E⇔ i < j ∧ ((i, j)∈A∧ (j, i)∈A) (for every

undirected edge there is a pair of antiparallel directed arcs between the same pair
of nodes).

Data [units]
uij upper bound on total (undirected) flow on edge [i, j]∈E [tons].

Decision variables [units]
yij directional flow of cargo on arc (i, j)∈A [tons];
yts total flow through network from s to t [tons].

RAIL-NET-CAPACITY

max
y

yts (1)

s.t.
∑

j: (n, j)∈A

ynj −
∑

i: (i, n)∈A

yin =


yts n= s,

0 n 6= s, t,

−yts n= t,

∀n∈N ; (2)

yij + yji ≤ uij ∀ [i, j]∈E; (3)

yij ≥ 0 ∀ (i, j)∈A; (4)

yts ≥ 0. (5)

Discussion. We model this system as a maximum flow problem on a directed graph
G= (N,A), where each (undirected) edge [i, j]∈E represents a section of track with an
overall flow capacity, uij , the maximum tonnage of cargo that can move over that track. We
model directional flow along each track section using a pair of antiparallel arcs. Each node
n∈N represents a station where track sections meet, and where cargo can be redirected but
cannot accumulate. We have a distinguished node, s, representing the source station, and a
distinguished node, t, representing the destination station.

The activity, yij on each track section is simply the tons of cargo shipped on that track
from i to j. The operation of this system is the selection of these activities. The flow variable
yts is not associated with any actual track section; it represents an artificial arc from t back to
s, and the constraints in the model ensure that its flow value represents the total tonnage of
cargo that flows from s to t through the network. We determine the capacity of this rail
network by operating the system to maximize yts without exceeding the capacity of any track
in the network and while maintaining balance of flow at every station.
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There are two sets of operational constraints. Constraints (2) say that any cargo that flows
into a station has to flow out, possibly using the artificial flow variable yts, which is therefore
always set equal to the net flow of cargo out of s (and the net flow into t). Constraints (3)–(5)
restrict the directional cargo flows on each section of track to be nonnegative, and also restrict
the total flow to be no larger than that section’s tonnage limit.

We refer to the operational model RAIL-NET-CAPACITY as an operator model, because
it represents the system from the point of view of the operator of that system, who has a
vested interest in its performance. This formulation is valid for any static configuration of the
rail network, but if there are events that can modify the operational setting, we need to
update the model to take these into account.

3.2. Define the Events

For this rail system, the events of concern to us involve the simultaneous damage of one or
more edges. Damage to a node can be captured in the same way that we would model activity
at a node, through the use of “node splitting.” To represent an event, we use a binary vector
x̂ with an element x̂ij for each edge indicating whether or not that section of track has been
damaged. Subsequently, there are many ways to represent the possible events of concern. We
can enumerate a set of, say, p, possible events, S = {x̂1, x̂2, . . . , x̂p}, or we could define the set
of possible events S using constraints on the elements of x̂:

S =

{
x̂: x̂∈ {0,1}|E|,

∑
(i, j)∈A

x̂ij ≤ atk budget

}
,

where in this example we have defined S to be the set of all events consisting of combinations
of no more than atk budget damaged edges. We could use any number of constraints to define
S in this way, including constraints that render pairs of edges to be mutually exclusive in an
attack, or constraints that bind edges together because of their proximity.

3.3. Incorporate Events Into the Operator Model

If a section of track is damaged, i.e., x̂ij = 1, we assume that it is unavailable to carry cargo,
and that the operator will not get any benefit from using that track segment. In other
applications, it might make sense to consider partial damage to an edge in the system, but we
restrict attention to the simpler case here.

One way to incorporate a change in the availability of a track segment is to modify its
capacity, specifically, replace (3) with the following:

yij + yji ≤ (1− x̂ij)uij ∀ [i, j]∈E.

Thus, when x̂ij = 1, the capacity on edge [i, j] is zero. Although this type of modification is
natural, it can lead to computational complications if the incumbent solution to system
operation suddenly becomes infeasible.

In our experience, there is a better way to account for this change in the operational
setting. Instead of having the x̂ directly affect the capacities of the track sections, we leave (3)
unchanged and modify the objective function to penalize any flow across an attacked track
section so that it will have a negative impact on the performance measure. Specifically, we
rewrite the objective function (1) as follows:

max
y

yts−
∑

[i, j]∈E

2(yij + yji)x̂ij .

Any flow (yij or yji) across a damaged edge (i.e., having x̂ij = 1) can potentially contribute to
the total flow value, yts, but twice that flow value will be subtracted from the performance
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measure, resulting in a net loss of cargo getting through the network. (Any scalar coefficient
greater than or equal to 1 will work here; using a penalty of 1 admits alternative optimal
solutions with flows across attacked arcs. We use a coefficient of 2 because it is an integer and
keeps the objective coefficients simple.) With this modified objective function it is clearly
always better to operate the system by not moving cargo over a track segment [i, j] with
x̂ij = 1,. Thus, the operational setting (which reflects the availability of the track sections
through x̂) is directly accounted for in the operator model by parameterizing the performance
measure of the system by the event that occurs. This use of cost-based interdiction is perhaps
less natural but computationally important.

3.4. Formulate the Attacker Model

To assess the extent to which system operation is resilient to the events in the set S, we must
be able to identify the event(s) in S that reduce(s) the capacity of the system to the lowest
possible point.

If the number of elements in S is small, then finding the worst one can be achieved by a
simple enumeration, where for each event x̂∈ S we must solve the operator model explicitly.
The amount of time required to find the worst event is then directly proportional to the size
of S. In practice, finding the worst event by exhaustive enumeration is impractical when the
number of elements in S is large, and it is impossible if the set S is infinite in size.

An alternate, and intuitively appealing, means of identifying the worst-case event in S is to
consider the decision of a hypothetical, intelligent adversary who deliberately selects the event
in S that disrupts system function the most. We refer to this adversary as the attacker, and
this leads us to the attacker model, an optimization model that takes the modified operator
model and uses decision variables to identify the “worst-case” event x∗ ∈ S. In the case of the
Soviet rail system, this means identifying the track sections to damage in order to minimize
the residual capacity of the system, operated as best as possible after attack. For simplicity,
we hereafter use the term attack synonymously with event even if it was not deliberate, and
we refer to an individual damaged arc as a target of the attack.

We formulate the attacker model as follows.

New data [units]
atk budget maximum number of track sections targeted in an attack [cardinality].

New decision variables [units]
xij = 1 if track section [i, j]∈E is attacked, =0 otherwise [binary].

ATTACK-RAIL-NET

min
x

max
y

yts−
∑

[i, j]∈E

2(yij + yji)xij (6)

s.t. (2), (3), (4), (5),∑
[i, j]∈E

xij ≤ atk budget , (7)

xij ∈ {0,1} ∀ [i, j]∈E. (8)

Discussion. Each variable xij represents an attacker’s decision to target edge [i, j] in an
attack. The simple cardinality constraint (7) is a surrogate for any set of restrictions we might
impose on the attacker’s choice of targets. For example, we could include budget constraints
faced by an attacker, logical constraints that prohibit infeasible combinations of targets, or
constraints that require collocated targets to always be in the same attack. Here, different
choices for atk budget can be interpreted as different attacker capabilities (with larger values
of atk budget being associated with greater capability), and we can evaluate the consequences
of a worst-case attack for a range of attacker capabilities by solving this model several times.
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3.5. Define the Design Decisions

A natural and mathematically straightforward way to improve the resilience of our train
network is to add new sections of track that provide alternative routes (with new capacities)
to the operator.

If we use a vector ŵ to represent the track sections that are built (i.e., ŵij = 1), then, in
much the same way that we defined the set S, the set of all possible designs we consider can
be defined either through explicit enumeration, ∆ = {ŵ1, ŵ2, . . . , ŵq}, or implicitly, perhaps
through a set of constraints:

∆ =

{
ŵ: ŵ ∈ {0,1}|E|,

∑
[i, j]∈E

def costijŵij ≤ def budget

}
,

where def costij represents the cost to build track section [i, j]∈E, where the sets E and A
have been extended to include all existing and potential track sections, and where def budget
represents an overall defense budget available to the defender of the rail system. Existing
track sections can have def costij = 0, and then all original sections will be available, and only
new sections will count against the construction budget.

We could also model design decisions that defend existing sections to make attacks targeting
them less effective, or completely ineffective. Because our overall design motivation is to
improve the performance of the system in the presence of disruptions, we refer to a particular
ŵ as a defense.

3.6. Incorporating Design Decisions Into the Models

We can modify the capacity constraints (3) in the operator model (and in the attacker model)
to only allow cargo to be transported across track that has been built:

yij + yji ≤ uijŵij ∀ [i, j]∈E.

Here we can use a capacity control because the design and operational variables are both
controlled by the same “side,” namely, the defender and operator, who both wish to maximize
flow. This is in contrast to the attacker, who wishes to minimize flow. Now we can evaluate
any particular design ŵ ∈∆ by solving the modified attacker model for that particular design,
and then determining the resulting capacity after the attacker chooses the worst-case attack
from S for that design.

3.7. Formulating the Defender Model

We want to model a defender (for example, the owner of the rail network) who wishes to
spend a limited construction budget to build new track so that the rail network that results
from these design decisions (in ∆) will have the maximum residual capacity after a worst-case
attack (from S) occurs. We formulate this defender model as follows.

New data [units]
def budget defense construction budget [$];
def costij defense construction cost of track section [i, j]∈E [$].

New decision variables [units]
wij = 1 if we decide to build track section [i, j]∈E, =0 otherwise [binary].

DEFEND-RAIL-NET

max
w

min
x

max
y

yts−
∑

[i, j]∈E

2(yij + yji)xij (9)

s.t. (2), (4), (5), (7), (8),

yij + yji ≤ uijŵij ∀ [i, j]∈E, (10)
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[i, j]∈E

def costijŵij ≤ def budget, (11)

wij ∈ {0,1} ∀ [i, j]∈E. (12)

Discussion. Although the design decisions do not directly affect the objective function
(9) in the defender model, they enable flows through new components via constraints (10).
Constraints (11) ensure that the defender only builds track sections that he can afford. If the
track sections in the original network have construction costs def costij = 0, then the defender
can build them all at no cost, and only spends his budget def budget on new construction.

With the formulation of this defender model, we have completed all of the basic steps to
assess and improve the resilience (at least in an instant of time) of an infrastructure system to
a set of attacks. For any defender capability represented through the set ∆, whether through
a construction budget def budget or any more complicated set of restrictions on feasible
designs, and for any attacker capability represented through the set S, we can find the system
design that maximizes performance of the system after any attack in the set S.

Extension of DEFEND-RAIL-NET. If we are able to reinforce an existing track section so
that an attack would be (essentially) ineffective, the model only requires a slight modification
in which we represent the new (defended) version of the track section as a parallel edge
with similar (but possibly modified) capacity, and with zero penalty on cargo flow on that
edge’s arc in the objective. To represent these parallel edges we introduce a new index, d,
representing a set of defense options for each edge in the network. We define new data
representing whether an edge is susceptible to attack, and reformulate as follows.

New indices and sets
d∈D defense option.

New data [units]
vdij vulnerability of defense option d for track section [i, j] ∈E [tons lost/tons shipped];

vdij = 2 if an attack disables the track using defense d, and is zero otherwise;

udij capacity of track section [i, j]∈E for defense option d [tons];

def costdij construction cost of defense option d for track section [i, j]∈E [$].

New decision variables [units]
ydij cargo flowing across directed arc (i, j)∈A with defense option d [tons];

wd
ij =1 if we select defense option d for track section [i, j]∈E, =0 otherwise [binary].

DEFEND-RAIL-NET

max
w

min
x

max
y

yts−
∑

[i, j]∈E

∑
d∈D

(vdijy
d
ij + vdijy

d
ji)xij (13)

s.t.
∑
d∈D

[ ∑
j: (n, j)∈A

ydnj −
∑

i: (i, n)∈A

ydin

]
=


yts n= s,

0 n 6= s, t,

−yts n= t,

∀n∈N ; (14)

(5), (7), (8);

ydij + ydji ≤ udijwd
ij ∀ [i, j]∈E,d∈D; (15)

ydij ≥ 0 ∀ (i, j)∈A,d∈D; (16)∑
d∈D

∑
[i, j]∈E

def costdijw
d
ij ≤ def budget; (17)

∑
d∈D

wd
ij = 1 ∀ [i, j]∈E; (18)

wd
ij ∈ {0,1} ∀ [i, j]∈E,d∈D. (19)



Alderson, Brown, and Carlyle: Operational Resilience of Critical Infrastructures
190 Tutorials in Operations Research, c© 2014 INFORMS

Figure 2. Resilience curves showing (instantaneous) throughput as a function of the number of
attacks (damaged track sections) for varying numbers of defended rail sections.
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Notes. For example, four attacks with no defense reduces maximum throughput from 163,000 tons to about
50,000. Addition of six defenses raises throughput from 50,000 tons to just over 80,000. With no defense, seven
attacks reduce the capacity of the system to zero. As the number of defended track sections increases, the rate
of degradation inflicted by additional attacks is diminished.

Discussion. The objective function (13) is a generalization of (9) with attack vulnerability
parameters vdij . A track section design with vdij = 2 penalizes system operation and will not
be used if attacked (as before), but a track section with vdij = 0 is effectively invulnerable
because attacking it does not affect system operation. Constraint (18) forces exactly one
design to be selected for each arc, and, as a consequence, constraints (14) simply maintain
balance of flow at each node. In this model, defense decisions are made independently of each
other (i.e., the defense decision for one track section does not affect the defense decision for
another track segment). Constraints (15) enforce the upper limit on aggregate flow on each
arc. Constraint (17) requires defensive investments to adhere to a general budget constraint.

3.8. Example Analysis

Alderson et al. [7] analyze the resilience of the Soviet rail example from Harris and Ross [49]
by adding bidirectional flows on track sections and modifying the defensive options and
attacks to influence both antiparallel arcs representing flow on a track section, as described
above. The assumption is that following an attack, each targeted track section has zero
capacity. Defensively, this analysis restricts attention to “hardening” of existing track sections
so that they are invulnerable to attack.

Selected results from this analysis are repeated in Figure 2, which shows the capacity of the
rail system for a varying number of attacks, and the improvements that result from a varying
number of defenses. We refer to each individual line in Figure 2 as a resilience curve because
it characterizes the performance of the system in response to disruptive events of different
magnitude. In particular, it shows how well the system can respond to disruptive events of
increasing magnitude.

The resilience curves in Figure 2 are similar in concept to earlier notions of resilience in
physical science that characterize the amount of elastic deformation in a solid material (Park
et al. [68]) or refer to resilience as the feature “that allows a system to return to its original
form, position, or configuration after being bent, compressed or stretched” (Madni and
Jackson [61], p. 185). In essence, a single curve in Figure 2 shows how well a particular design
of the system performs in response to “being hit with different amounts of force.”

From the perspective of our hypothetical attacker, the shape of each curve can also be
interpreted as the return on investment (measured in terms of degraded system performance)
for increasing the budget atk budget . Specifically, we observe that when attacking an
undefended system, the attacker reduces the capacity of the network approximately linearly
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with each additional attack, and with seven attacks can reduce this capacity to zero (i.e.,
complete interdiction).

Conversely, the difference between individual curves in Figure 2 shows the improvement in
resilience that comes with each additional defense, and thus it can be interpreted as a crude
return on defensive investment. For example, with two defenses, 10 attacks are required to
achieve complete interdiction. With six defenses, the system retains approximately 20% of its
capacity in the presence of 10 attacks, no matter where they occur. This is an effective way to
communicate with decision makers about the operational resilience of the existing system and
how it can be improved.

We discuss additional insights available from these tri-level models, along with how to
present them to decision makers, in §6.

4. Generalizations

The modeling technique presented here is very general and can be applied to almost any
system with a well-defined performance measure and an appropriate operator model. Most
broadly, we consider general activities that are constrained by limited resources, and we
measure system performance in terms of an operating cost that is to be minimized. In such
cases, we need to specify a cost for each possible activity in the system, and we include an
incremental penalty cost for an activity that uses a damaged component. The form of the
objective function will depend on the system itself.

4.1. General Cost-Based Formulation

The following formulation is a general representation of our tri-level model for a minimum
cost problem.

Index use
i∈ I resource;
j ∈ J activity;
g ∈G target group;

j ∈ Jg ⊆ J set of activities in target group g;
s∈ S defense strategy;
d∈D defense option;

(j, d)∈Θs set of activity j and defense option d pairs enabled by defense strategy s.

Data [units]
str costs fixed cost to adopt defense strategy s [$];
def costdj fixed cost to adopt defense option d for activity j [$];

def budget budget available for defense strategies and options [$];
pen attack j increased cost of activity j if it is attacked [$/j-unit];

grp costg fixed cost to enable attacking target group g [$];
atk costj cost of attack on activity j [$];

atk budget maximum cost of attack groups and attacks [$];
act costdj cost of activity j under defense option d [$/j-unit];

aij amount of resource i consumed by (operator) activity j [i-unit/j-unit];
bi available units of resource i [i-unit];
x̄dj binary indicator that activity j is vulnerable under defense option d;

yd
j , ȳ

d
j lower and upper bounds on activity j under defense option d [activity j].

Decision variables [units]
qs = 1 if defender selects defense strategy s∈ S, = 0 otherwise [binary];
wd

j = 1 if defender selects defense option d for activity j, = 0 otherwise [binary];
mg = 1 if attacker targets group g, = 0 otherwise [binary];
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xj = 1 if attacker attacks activity j, = 0 otherwise [binary];
ydj ∈ Y d

j level of activity j under defense option d [j-unit].

Formulation DEFEND-CRIT-INF

min
q,w

max
m,x

min
y

z =
∑

j∈J, d∈D

(act costdj + [pen attack jxj ]x̄d
j =1)ydj (D0)

s.t.
∑
s∈S

str costsqs +
∑

j∈J, d∈D

def costdjw
d
j ≤ def budget; (D1)

wd
j ≤

∑
s|(j, d)∈Θs

qs ∀ j ∈ J, d∈D; (D2)

∑
d∈D

wd
j = 1 ∀ j ∈ J ; (D3)

xj ≤
∑

g | j∈Jg

mg ∀ j ∈ J ; (D4)

∑
g∈G

grp costgmg +
∑
j∈J

atk costjxj ≤ atk budget ; (D5)

∑
j∈J, d∈D

aijy
d
j = bi ∀ i∈ I; (D6)

yd
j
wd

j ≤ ydj ≤ ȳdjwd
j ∀ j ∈ J, d∈D; (D7)

qs ∈ {0,1} ∀s∈ S; (D8)

wd
j ∈ {0,1} ∀ j ∈ J, d∈D;

mg ∈ {0,1} ∀g ∈G;

xj ∈ {0,1} ∀ j ∈ J ;

ydj ∈ Y d
j ∀ j ∈ J, d∈D.

Discussion. The objective (D0) assesses the total cost of choosing defense strategies, and
for each activity choosing a defense option and level of activity under that option. Some
activities cost more because they have been attacked. Constraint (D1) limits the total cost of
defense strategies and defense options chosen. Each constraint (D2) permits a defense option
to be chosen for an activity only if a defense strategy has been chosen that enables such
a selection. Each constraint (D3) requires that some single defense option be chosen for
an activity. Each constraint (D4) permits an activity to be attacked only if a target group
containing that activity has been attacked. Constraint (D5) limits the total cost of enabling
target groups and attacking targets. Each constraint (D6) limits the sources and uses of
a resource by activities. Each pair of constraints (D7) determines the domain limits for
an activity under a defense option. Stipulations (D8) give domain limits for the decision
variables, with the domain of operator activity variables y possibly being integral.

This formulation could also have been used for the Soviet rail example, albeit obscuring
some of the special structure of that maximum-flow interdiction. The objective could also
be nonlinear in some applications. For example, we have used a quadratic model of traffic
congestion to determine optimal attacks and defenses in a municipal transportation network
Alderson et al. [8], and we have used a piecewise linear approximation to higher-degree
polynomial functions for a larger example Alderson et al. [5].

A defense strategy enables each of a set of activities to adopt its own defense option. An
example of a defense strategy might be “approve new construction of security checkpoints and
offset fencing,” and the enabled set of activities and defense options might include “build a
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checkpoint and offset fence for this activity.” A defense strategy also provides a means to
represent dependence between defense options.

A defense option might be “do nothing,” but it might also be any of a range of measures to
harden, defend, or otherwise render the activity less (or more) vulnerable to attack. Activity
under each defense option may exact a distinct activity cost. For instance, the activity may be
more expensive because of a security checkpoint and offset fencing.

A defense option may also be used to build, establish, enable, or otherwise initiate a
completely new activity. For example, using (D7) for a new candidate activity, the do nothing
defense option would be associated with activity variables that are restricted to zero, and any
other defense option would enable some range of activity at a fixed defense cost, and with an
option-dependent variable cost of operation.

Constraints (D1) can include limitations on many defender resources, and interactions
among defense options, expressing realistic constraints on defense courses of action.

A target group is a set of activities that, for instance, might be susceptible to a particular
kind of attack, or might be a collocated set of activities all vulnerable to a single kinetic
attack. An example of a target group might be a “refinery” consisting of pipes, pumps,
tanks, and manifolds, and the targets in that group would be associated with particular
activities within that refinery. We have also used the notion of a target complex to model the
common dependence of several mechanical components on a shared electricity source (e.g.,
Montgomery [62]); in this case, an “attack” on the target complex represents the loss of power
that, in turn, disables all components in the target complex. Target complexes can thus
be used to represent a variety of kinetic and nonkinetic vulnerabilities, including energy,
computing, communication, and controls (i.e., a cyber layer). Constraints (D5) can include
limitations on many attacker resources, and interactions among attack options, expressing
realistic constraints on attacker courses of action. If target attacks need not be governed by
target groups, simply drop constraints (D4) and the first term of constraint (D5).

Defense options can influence efficiency and the amounts of resources available. We have the
ability to alter the efficiency of an activity and/or the amount of resources available for an
activity as a function of its defense option (e.g., by replacing aij with adij and/or replacing bi
with bdi in (D6) and adding defense option as a summand).

This optimization model needs to be instrumented so that no matter the data, a feasible
solution is always rendered. This requires some obvious preprocessing of, e.g., costs and
budgets (to ensure nonnegativity), and in particular making constraints (D6) elastic (e.g.,
Brown and Dell [25]). In the event any elastic penalty is incurred, our solution algorithms (to
come) will still function, but this is a signal of outright “system failure,” a catastrophic
collapse that indicates operating the system for basic functionality is no longer feasible.

4.2. Building the Tri-Level Model

Despite the relatively compact nature of formulation DEFEND-CRIT-INF, we do not
recommend trying to write the formulation all at once.

Instead, our experience is that it is better to follow the script in §3, and build these models
from the inside out, starting with the operator model. In the case of a minimum cost problem,
this is going to assume the form

min
y∈Y (ŵ)

f(ŵ, x̂, y). (20)

Our experience is that most of the effort in building these models lies in the development of an
operator model that is instrumented to allow for all the attack and defense options we want to
consider, and to always yield a feasible solution, albeit perhaps one with telltale penalties that
indicate the system has broken down (for example, all paths from source to sink have been
blocked by at least one edge targeted in an attack). See, for example, Brown and Dell [25].
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Once we have the parameterized operational model, it is a short trip to build a model that
reveals how an attacker could maximize system operating costs by choice of a worst-case
feasible attack:

max
x∈X

min
y∈Y (ŵ)

f(ŵ, x, y). (21)

Finding the best defense against the worst-case disruption from an attacker yields our
tri-level model:

min
w∈W

max
x∈X

min
y∈Y (w)

f(w,x, y). (22)

The key issues to address in this development are the identification of components, system
configuration, the decisions available to the operator, the performance metric for the system,
the potential attacks, and the design options. Table 1 illustrates the key features of an
infrastructure “system” and the corresponding defender-attacker-defender model for each of

Table 1. Examples of various modeling elements, respectively, required for an electric power
transmission grid, a highway network, and undersea fiber-optic communication systems.

Electric power Undersea
transmission grid Highway network communications cables

System
components

Generators; buses;
transmission lines;
transformers; substations

Road segments; tunnels;
bridges; interchanges

Landing stations;
branching units;
repeaters; fiber-optic
cables (“links”)

System
configuration

Inter-component connections;
line thermal capacities;
generating capacities

Inter-component connections;
component lengths,
capacities, and speed limits

Inter-component
connections; router
capacities; link capacities

Relevant
operating
environment

During one or more weekday
time periods: generation
costs; customer classes;
load-shedding costs;
demands at each bus

During one or more peak
travel periods: demands for
vehicular travel between
origin-destination pairs

During one or more
periods of high demand:
user requirements for
end-to-end
communications

Operator Independent system operator
makes centralized,
near-real-time generating
decisions to balance supply
with demand

Drivers select routes in a
decentralized but “smart”
fashion (implicitly following
the tenets of game-theoretic,
equilibrium model)

Undersea cable operator
establishes end-to-end
“lightpath” connections,
and “grooms” network
traffic (e.g., Zhu and
Mukherjee [94])

Operator model A “DC optimal power-flow
model” (a linear program)
that system operators use to
optimize generation to meet
demands (e.g., Wood and
Wollenberg [90], pp.
108–111)

A traffic-equilibrium model
(solved as a nonlinear
program) for
origin-destination routing
decisions and travel times
(e.g., Beckmann et al. [12])

A multicommodity
transportation model to
route customer traffic
(e.g., Mukherjee
et al. [63])

System
performance
metric

Minimize: generation costs
plus the economic cost of
unserved demand over the
course of a typical work day
(e.g., Salmerón et al. [74])

Minimize: average travel
time during for network
users during a peak
commute period (e.g.,
Alderson et al. [8])

Minimize: traffic delays
and shortage penalties
for unmet end-to-end
traffic demands (e.g.,
Crain [36])

Attacks on
components

Generators, buses, etc.,
damaged or destroyed by
explosives, gunfire, etc.

Road segments, tunnels, etc.,
damaged or destroyed by
explosives, burning liquids,
etc.

Cables severed by
accident, natural
disaster, or deliberate
attack; landing stations
attacked

Design
(defenses)

Offset fencing at substations;
physical or electromagnetic
shielding; surplus component
capacity (e.g., new
generators, upgraded
transmission lines)

Vehicle inspections at bridge
entrances; structural
reinforcement; increased
police patrols; surplus
component capacity (e.g.,
new bridges, widened roads)

Construction of
additional redundant
pathways; Enhanced
physical security at
landing stations
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three applications: an electric power transmission grid, a highway network, and an undersea
telecommunication system.

4.3. Stochastic Models and Nondeliberate Hazards

The models presented thus far are deterministic mathematical programs; however, this is not
a requirement. If the infrastructure system’s operation has significant randomness in it,
the innermost operator model could be a stochastic program or even a complex simulation
model, provided that the simulation used is susceptible to optimization (see Fu [42] for a
comprehensive review of simulation optimization, and Subramanian et al. [81] for an example
of simulation optimization applied to a pipeline infrastructure planning problem).

If the events of concern are all nondeliberate (e.g., natural disasters, accidents, or random
failures), we might try to define a probability distribution over the set of disruptive events X,
and the appropriate expression of the expected disruption could then take the form of a
stochastic optimization problem:

Ex̃

[
min

y∈Y (ŵ)
f(ŵ, x̃, y)

]
. (23)

Here, x̃ is a random variable taking on values in the set X, and Ex̃ denotes the expectation
with regard to x̃. This expectation can be evaluated using Monte Carlo methods: for a fixed
design ŵ, iteratively generate realizations of x̃ and solve the (deterministic) operator model
for each, then use these trials to calculate the expectation, construct confidence intervals, etc.
See Chen and Miller-Hooks [33] for an example of this type of formulation and how to solve it,
as applied to intermodal freight transport.

The corresponding model for defending against random disruptions is

min
w∈W

Ex̃

[
min

y∈Y (w)
f(w, x̃, y)

]
. (24)

In this problem, the defender makes an up-front investment w before the random event x̃ is
realized, and then the operator chooses y to operate the system at minimum cost. This is just
two-stage stochastic programming with recourse (e.g., see Kall and Wallace [54] or Birge and
Louveaux [15]).

We have two concerns for modeling disruptive events using random variables. The first is
validation of the probability distribution for x̃. For many nondeliberate events (e.g., weather),
there is sufficient historical data to build validated models of random events. However,
the National Research Council has criticized the use of random variables to represent the
deliberate action of an intelligent adversary (e.g., terrorists), because such models cannot be
validated National Research Council (NRC) [65, 66]; see also the discussion in Brown and
Cox [23, 24].

The second concern with an expected performance measure, such as (23), is that it is more
consistent with measures of risk and does not really characterize resilience. Our view is that in
order to be resilient to a set of events, the system must perform well for all events in the set,
not just the “most likely” ones.

A complicating issue for the defender of an infrastructure system is that the parts of the
system identified as “most critical” by stochastic models often differ from those identified
using worst-case analysis. In practice, a defender must consider both nondeliberate (e.g.,
Mother Nature) and deliberate (e.g., terrorist) disruptions. Determining how to combine these
different objectives in a sensible manner is an open topic for research.

4.4. Choosing an Operator Model

The general formulation DEFEND-CRIT-INF is flexible enough to represent a diversity of
critical infrastructures and other large systems. As we have advised, developing an operator
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model that reflects anticipated responses to induced failures of system components, perhaps
failures to numbers of these, takes a lot of time and effort. But, with a good operator model in
place, developing the additional layers for the attacker model and defender model is a relatively
straightforward exercise (although the task of solving these models and communicating insight
about their results can be nontrivial; we defer these issues until §§5 and 6).

Rather than trying to prescribe how to build a good representation of every possible
infrastructure behavior (something beyond the scope of this tutorial), this section provides an
informal taxonomy for some of the variations of models we have built or studied, and the
applications in which we have found them to be effective. The hope is that this discussion of a
variety of applications, along with references, provides a good starting point for any particular
modeling effort.

4.4.1. Shortest-Path Problems. Shortest-path problems are perhaps the simplest to
understand, formulate, and interdict. They are most useful when the operator is concerned
with the movement of a single entity from one location to another. For example, in a follow-up
study to the seminal analysis of the Soviet rail system, Wollmer [89, p. v] discusses strategies
to “attack the link whose disruption would force trains to take the longest route.” The
inherent relationship between distance and time for physical systems makes shortest-path
problems also relevant to emergency management applications, for instance, where the
operator might want to route an emergency response vehicle from a fire station to one (or
more) potential disaster or accident locations with the goal of finding the route(s) with
minimum travel time, or where the operator’s goal is to minimize evacuation clearing times.
In both cases, the worst-case interdiction is the one that delays operations the most.

Time and distance are not the only choices for performance measures that lead to
shortest-path formulations, though. If the “length” of an arc in the network is taken to be the
probability of a successful transit, then the product of the lengths of the arcs in any path is
the independent probability of successfully making it from one end of the path to another.
A logarithmic transformation of the data converts the product of probabilities into a sum of
(negative) values. Multiplying those transformed values by −1 and converting the original
“max” to a “min” yields a shortest-path problem whose optimal solution is a path of minimum
risk; it has the maximum probability of success in the original network. Applications of
minimum-risk paths (and extensions of that model) include routing aircraft over air defense
threats (Carlyle et al. [30], Royset et al. [73]), placing patrol boats to protect a valuable ship
in a port from a small boat attack (Brown et al. [19]), or infiltration models including border
security applications (Brown et al. [22], Dimitrov and Morton [40]).

4.4.2. Maximum-Flow Problems. In any situation where the operating costs are
significantly less important than the value the infrastructure function provided to the
consumer of that function (one recurring example we have seen is the supply of fuel through
an existing system to support military operations), the operator will not be concerned about
the costs (or time, or probability of success) of providing function. Instead, the focus will be
on delivering as much of that function to a particular location (or from a particular location,
or both) as the system will bear, and a maximum-flow formulation is the standard way
to estimate this capacity of an infrastructure system. The Soviet rail system (Harris and
Ross [49], Alderson et al. [7]) is a prime example of this; the operator wanted to know how
much military equipment and personnel could be moved into Europe (a single “demand node”)
from various starting locations that can be supplied by a single “source node,” limited only by
the tonnage restrictions on tracks connecting adjacent locations. Another maximum-flow
application is figuring out how much fuel the United States can extract in a fixed time period
from the strategic petroleum reserve (Brown et al. [22]) during a fuel crisis.
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4.4.3. Minimum-Cost Network Flow Problems. The shortest-path and maximum-flow
problems are both special cases of the more general minimum-cost network flow problem,
(or simply the network flow problem). For us, it is by far the most common starting point for
modeling an infrastructure system, whether it be a set of storage tanks and pumps that
can deliver fuel to various consumers (e.g., pp. 112–114 of Brown et al. [22], Ileto [52], or
Chankij [32]), simple supply chain interdiction (e.g., see Snyder et al. [80], for a separate
TutORial on this topic), or interdiction of military logistics networks based on time-phased
force deployment data (TPFDD) (e.g., Brown [28], Koprowski [56]). Often, the transshipment
networks of interest describe movement of goods in both space and time, and application
of the attacker-defender techniques to this type of expanded network is straightforward
(e.g., Derbes [39]).

Network flow problems can also be used to represent military problems such as ballistic
missile defense, in which the operator wants to advantageously move launchers and then
launch a simultaneous volley of missiles at a set of targets, in order to do as much damage to
that list of targets as possible (e.g., Brown et al. [16], Repass [72]).

4.4.4. Multicommodity Flow Problems. Although a network flow formulation is a
standard starting point for building an operator model, we frequently need more than one
basic commodity to represent infrastructure function. This happens either because there
are actually multiple commodities moving in the system (for example, the movement of
both refrigerated and nonrefrigerated cargo through a port terminal in Delacruz [37]), or
because the individual entities flowing through the system, although they look the same, are
actually specified by both an origin and a destination, and each entity has to make a trip
through the system from that origin to that destination, without substitution by other entities.
Multicommodity flows have been used in this way to represent the operation (and interdiction)
of public mass transit systems (e.g., pp. 114–115 of Brown et al. [22]), regional highway
commuting systems (e.g., Alderson et al. [8]), ocean shipping lanes (e.g., Garcia Olalla [43]),
and undersea fiberoptic communication cables (e.g., Crain [36]). Murray et al. [64] formulate
and solve a simplified path-based interdiction problem for telecommunication flows. See Lim
and Smith [59] for an introduction to interdiction models for multicommodity flow problems.

4.4.5. Project Scheduling Problems. If the operator is managing a large industrial
project, the operator model can take the form of a project scheduling problem, which can
represent the operator’s decisions and resource allocations to keep the project moving (e.g.,
Dimitrov and Morton [40]). This type of model has application in many settings that are
a step beyond a single infrastructure system, such as nuclear proliferation (e.g., Brown
et al. [17, 20]). In this case the operator tries to build their first nuclear weapon as quickly as
possible, possibly hiding his actual development plan by starting multiple similar projects.

4.4.6. Linear Programs. The preceding models appeal because they are easy to illustrate
with nodes and arcs, Gantt charts, etc. but additional “side constraints” and complicating
activities almost always arise that generalize beyond these network specializations. Nonetheless,
a network characterization or a Gantt chart is a powerful device to help visualize the operator
problem. Linear programs are not always as easy to illustrate, but they are quite general and
powerful in representing the resource- and protocol-limited actions of a system operator. For
example, although our graphical depiction of a petroleum system might be well illustrated by
nodes and arcs, when we have to model operations of a refinery we need general technological
constraints (e.g., Montgomery [62]). An electrical generation and distribution grid looks great
on a map of the components and their connections, but the physics of its operation requires
considerable modeling beyond networks (e.g., Salmerón et al. [75]). The multimodal transport
(e.g., over barge, rail, truck) of multiple commodities (e.g., different types of coal (Alderson
et al. [2]), or different types of petroleum-based fuels (Burton [29], Long [60])) is intuitively
appealing as a system of interconnected networks, but the additional requirements on transfer
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and storage of goods between modes requires more general constraints. We also find that
linear programs are required in situations that incorporate long-term capacity expansion and
protection (Brown [27]), use target groups (as described in §4.1) to represent interdependencies
between components (Chankij [32], Montgomery [62], Burton [29], Long [60]), or model
general interdependencies between infrastructure systems (Dixon [41]).

4.4.7. Integer-Linear Programs. If the operator must commit discrete decisions, we
need to model these. An integer-linear program can express an extensive diversity of operator
decision problems. Fortunately, we have at hand some very powerful off-the-shelf commercial
optimization packages that can be used artfully to solve very large-scale integer-linear
programs. However, we cannot always guarantee exact solutions to such operator models. We
must usually admit some integrality tolerance between solutions and bounds on the quality of
solutions not yet discovered, and we lose the ability to advantageously replace a primal linear
program by its dual. We will discuss solution tactics in the next section to accommodate these
complications.

Facility location problems are one example where discrete decisions are essential to the
formulation. Scaparra and Church [76] formulate and solve tri-level optimization for facility
location. Snyder et al. [80] consider facility location problems, network design models, and
fortification models for supply chains.

Undersea warfare is another example requiring discrete decisions, because submarines can
operate in either a “passive” (listening) mode or an “active” (pinging) search mode. BASTION
(Thomas [86], Scherer [77], Brown et al. [18]) is a tri-level decision support system to defend
an ocean area against submarine attackers. BASTION allocates defending marine patrol
aircraft and their passive sonobuoys, and stealthy attack submarines, which cannot be sensed
by an attacking submarine, as well as noisy surface ship searchers, their sonobuoy-dipping
helicopters, and attack submarines that decide to switch to much more effective “active”
search, all of which an attacking submarine can sense.

4.4.8. Nonlinear and Nonlinear-Integer Programs. Some operator models necessarily
involve nonlinear phenomena such as congestion. We can accommodate these, with the caveat
that they be solvable. For example, the operator model in Alderson et al. [8] is a convex,
nonlinear program that evaluates total travel time for a population of travelers traversing a
network. Alderson et al. [5] use a piecewise-linear approximation to an industry-standard
sixth-degree polynomial function to represent the congestion of vehicles in a regional highway
network.

4.4.9. Simulation, Simulation Optimization, Heuristics, Standard Protocols, and
Advice from Subject Matter Experts. These can each be an essential source of advice
for how an operator would respond to any contingency. However, these sources of suggested
operator actions lack any quantitative bound on what better action may be available that we
have not yet discovered. Also, one can anticipate interest in scenarios that range far outside of
the normal operating domain, and rigidly abiding by standard operating procedures in such
scenarios is not always good policy, so these resilience modeling exercises ought to consider
how the system could respond to extreme situations, as opposed to how the system normally
behaves.

5. Solution Tactics

As we can see in DEFEND-CRIT-INF, the typical defender, or defender-attacker-defender
(DAD), model is a sequence of nested decisions that share the same objective function, albeit
with opposing intent in the successive stages. There is, as yet, no standard software to solve
tri-level decision problems in min-max-min (or max-min-max) form, but these problems can
be solved. Though most published examples to date deal with decisions advised or forecast by
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models that are linear programs, perhaps with integer and/or nonlinear embellishments, one
has to be prepared to admit any decision source.

For infrastructure systems, developing a useful operator model (represented by the rightmost
“D” in DAD) is crucial: it must represent how the infrastructure will operate in the presence of
any foreseeable disruption with reasonable fidelity, and provide decision advice that is credible
to the infrastructure operators, compliant with operational protocols, and consistent with the
best-known characterizations of its operation.

The operator model is frequently a conventional optimization model seeking to minimize
operating costs subject to constraints on system operation, one that may be solved by an
algorithm or heuristic search. But it may also be a simulation, a prepackaged set of operator
responses, a systems dynamics model, or even a human subject matter expert decision
maker (preferably the system operator). We need to accommodate any and all operator
models from the panoply of those accepted and in use. Fortunately, there is often already an
industry-standard model or approved protocol available.

It is also possible that the attacker model (the “A” in DAD) is quite complex, as is the case
in military planning. Similarly, the defender model (the left-most D) may be governed by
complicated constraints on affordable and politically acceptable options to defend, harden, or
otherwise improve resilience of the system under consideration.

5.1. Solving the Defender-Attacker-Defender Model with Decomposition

We present a general algorithm for solving DAD models like DEFEND-CRIT-INF. This
algorithm was first presented by Alderson et al. [3]. Our algorithm requires a few new
formulations, which we explain. We then offer some specializations of this algorithm for
specific circumstances.

We refer to a generic DAD model as DAD(w,x, y)

z∗ = min
w∈W

max
x∈X

min
y∈Y (w)

f(w,x, y)

assuming (a) finite defense plans w ∈W (for notational simplicity, we have folded variables q
from DEFEND-CRIT-INF into w), (b) finite attack plans x∈X (folding variables m into x),
and (c) operational decisions y ∈ Y (w). With this notation we can then refer to the attacker
model for a fixed defense, ŵ, as DAD(ŵ, x, y), and, similarly, the operator model for a fixed
defense, ŵ, and a fixed attack, x̂, as DAD(ŵ, x̂, y). If we have a fixed attack, x̂, we refer to
the design model DAD(w, x̂, y) that represents the (idealistic) situation in which the targets
of the attack are known in advance, and the defender can design and operate the system
optimally for that attack. Although this does not model a real-world situation, it provides a
valid lower bound on system cost.

Defender-Attacker-Defender Decomposition. Because X is a finite set of attacks, we can
define a set of vectors of variables {yk}, where each element yk denotes the operator’s response
to a specific attack x̂k ∈X. In theory, DAD(w,x, y) may then be reformulated as

z∗ = min
w∈W

max
x̂k∈X

min
yk∈Y (w)

f(w, x̂k, yk),

where the max operator now simply ranges over the discrete set of attacks and where the
objective function f( ) is calculated separately for each of these attacks. The operator can now
choose each yk in anticipation of attack x̂k, so we can exchange the innermost min and max
to obtain a formulation equivalent to DAD:

z∗ = min
w∈W,

yk∈Y (w)

max
x̂k∈X

f(w, x̂k, yk).
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In practice this equivalent formulation is far too large to solve (although in some cases the
enumeration of X is not prohibitive: see Tarvin et al. [82]). However, given an enumeration of
a subset of K attacks, x̂1, x̂2, . . . , x̂K , we can create a relaxed master problem DAD-Master:

z∗= min
z,w∈W

yk∈Y (w)

z

s.t. z ≥ f(w, x̂k, yk) ∀k= 1, . . . ,K.

(DADC1)

A solution to DAD-Master provides a feasible defense ŵ and, for each attack x̂k, an optimal
operational response ŷk. For any fixed defense ŵ, a subroutine solves the attacker subproblem
DAD(ŵ, x, y) for the resulting optimal attack, and provides a new cut (DADC1) for each
such attack. (For DEFEND-CRIT-INF, this master problem turns out to be an integer-linear
program.)

Our decomposition algorithm solves DAD-master to within a prescribed optimality tolerance
εD, or terminates after a prescribed number of iterations, Kmax

DAD, and we denote the resulting
solution as w∗(x̂), its objective value as zUP, and the tightest upper bound obtained during
its solution as zLO. If zLO = zUP, then w∗(x̂) is an optimal defense for the given set of attacks.
After obtaining the solution, whether or not it is optimal, we have either zUP− zLO ≤ εD or
an iteration-limited solution. A description of the algorithm follows.

Algorithm DAD-Decomp
Input : Full DAD problem data, iteration limit Kmax

DAD > 0 and optimality tolerance ε for
the decomposition, tolerance εD for the master problem, and iteration limit Lmax

AD

and tolerance εAD ≥ 0 for the subproblem, with ε≥ εD + εAD .
Output : ε-optimal iteration-limited defense plan w∗ and corresponding attack plan x∗;

(1) Select a feasible initial attack, x̂0 ∈X;
(2) Solve design model DAD(w, x̂0, y) to determine the optimal defense, ŵ1, and

operational cost, z∗, given this known attack;
(3) Initialize LB← z∗; UB←∞; iteration counter K← 1;
(4) Subproblem: Solve attacker subproblem DAD(ŵK , x, y) with solution tolerance εAD

and iteration limit Lmax
AD for attack x̂K ;

(5) If (UB> zUP
AD){UB←ZUP

AD ;w∗← ŵK ;x∗← x̂K ;}
(6) If (UB−LB≤ ε|LB| or K ≥Kmax

DAD) goto End;
(7) Master problem: Given attack plans x̂k, l= 1, . . . ,K, solve DAD-master to determine

defense plan ŵK+1 and zUP, zLO such that zUP− zLO ≤ εD|LB|;
(8) If (LB< zLO)LB← zLO;
(9) If (UB−LB≤ ε|LB|) or iteration limit exceeded goto End;

(10) K←K + 1; goto (4);
(11) End: Solve DAD(ŵ∗, x̂∗, y) to determine optimal flows ŷ∗. Print(“Best found defense

and corresponding attack and flows are,” ŵ∗, x̂∗, ŷ∗);

It is possible that some attack x̂K will repeat a prior attack; this could happen because the
master or subproblem is not solved to optimality, but when the subproblem is also an integer
linear program it can happen regardless of the quality of the solutions. Because of this, every
version of this algorithm we have implemented for real infrastructure systems contains a
mechanism to detect repeated solutions and prohibit them from reappearing in subsequent
solves. When attack decisions are binary vectors, we can simply check each successive attack
x̂K against the attacks seen so far, and if it is a repeated attack, we can ignore it and add one
solution elimination constraint (SEC) to the attacker subproblem:∑

(i, j): x̂k
ij=0

xij +
∑

(i, j): x̂k
ij=1

(1−xij)≥ 1,



Alderson, Brown, and Carlyle: Operational Resilience of Critical Infrastructures
Tutorials in Operations Research, c© 2014 INFORMS 201

for each prior attack. Re-solving the restricted version of DAD(ŵK , x, y) yields a new, distinct
x̂K that we can use to build a new cut in the master. These SECs do not yield valid bounds
on the overall decomposition, and could lead to premature termination. Therefore, when
these SECs are enforced, steps 5 and 6 are skipped. See Alderson et al. [8] and its references.
We must be careful to enforce these constraints only when we need them; they are used
immediately after a repeated attack, to force the generation of a new attack, and then are
removed in successive solves.

Similarly, step 7 may yield a repeated defense plan ŵK+1. Again, we enforce SECs for w
until a new defense plan is discovered, and while these temporary SECs are in place, steps 8
and 9 are skipped.

5.2. Attacker Subproblem

Our algorithm assumes that there is a subroutine to solve the attacker model, DAD(ŵ, x, y),
with two parameters chosen by the user: a solution tolerance εAD , and an iteration limit Lmax

AD .
Regardless of the method used to solve the attacker subproblem, we must have termination
criteria that guarantee a finite algorithm; in the absence of solution quality guarantees, the
iteration limit Lmax

AD can be used as a bound on the number of steps in a heuristic algorithm,
or on the number of replications in a regenerative simulation, etc.

Attacker-Defender Subproblem and Solution via Decomposition. Given a fixed defense plan
ŵ ∈W , DAD(ŵ, x, y) represents the resulting attacker model as a subproblem of the defender
model:

z∗AD(ŵ) = max
x∈X

min
y∈Y (ŵ)

f(ŵ, x, y).

We solve DAD(ŵ, x, y) using Benders decomposition (Geoffrion [44]). Given an enumeration
of L feasible operational plans ŷ1, . . . , ŷL, the AD-master problem at iteration L is

zLAD(ŵ, ŷ) = max
z,x∈X

z

s.t. z ≤ f(ŵ, x, ŷl) ∀ l= 1, . . . ,L.
(ADC1)

For any fixed attack x̂, we solve the operator subproblem DAD(ŵ, x̂, y) to obtain the resulting
optimal operational plan, and add a new constraint, or “cut,” (ADC1) for each such plan. We
maintain an upper bound zUP

AD from the successive master problem objective values and a
lower bound zLO

AD from the sequence of incumbent attacks, xK , and their associated values
when evaluated in the operator subproblem. The attacker subproblem Benders decomposition
algorithm would then terminate when zUP

AD − zLO
AD < εAD |zLO

AD | or when the number of attacker
master iterations L exceeds a prescribed bound Lmax

AD . We denote the resulting feasible attack
as x∗(ŵ).

See Cormican et al. [35] as well as Israeli and Wood [53] for more details about solutions of
AD models of this form by Benders decomposition. If we solve the attacker subproblem using
a heuristic method that does not provide guaranteed, improving bounds on solution quality,
we might need to ignore the optimality tolerance, but we still need some sort of iteration limit
to guarantee a reasonable completion time for the algorithm (e.g., Scherer [77]).

More complicated subproblems (e.g., nonlinear and convex) can be handled as well, but we
do not discuss those generalizations in this tutorial. See Geoffrion [44] for a discussion of
models that could be handled by decomposition algorithms similar to ours.

5.3. Specializations

If a decision model is not solved exactly, and if we can develop no bound on how much
better a solution might be, the termination conditions resort to primitive iteration limits. For
example, if we solve the AD subproblem in step 4 with a method that provides no bound, we
have ZUP

AD =∞ and thus need to terminate the solution effort with the iteration limit Lmax
AD .
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Figure 3. Random attacks on the Soviet railway compared with optimal ones.

Notes. The maximum-flow (system performance) degrades with an increasing number of damaged activities.
For an attack budget of num attacks = 1,2, . . . ,7, we present the worst-case disruption, along with 10,000
randomly generated attacks. As the number of possible attack combinations increases, it becomes harder and
harder to find the worst-case attack by random sampling. The dashed line connects the worst-case disruptions
for this system is our resilience curve, where the term “curve” refers here to a discrete frontier of points.
(Figure from Alderson et al. [7], Figure 5.)

Similarly, if we solve the master problem in step 7 with no bound, we have ZLO =−∞, step 7
is ineffective, and we need to terminate this solution effort with the iteration limit Kmax

AD . In
practice, we might adopt slightly more sophisticated stopping rules than a mere iteration
limit, but such limits at least serve to bound the algorithms.

For cases in which we cannot get a bound on the optimal solution, the tests for repeated
decisions are crucial, as well as a termination condition sensing complete enumeration. (We
are reminded that when we cannot solve a problem exactly, a bound on the achievable value
of any undiscovered solution is as important as the best solution found.) If our algorithm
is likely to explore a large number of attacks, then detecting a repeat attack can become
burdensome; over the course of the algorithm, after K iterations of the master problem we
will have spent O(|E|K2) work to detect repeats if we simply search a linear list of dense
vectors {x̂k}, each of length |E|. We can reduce this effort to about O(K) with sparse storage
schemes for the attack vectors and a hash function to rapidly look up each new attack.

5.4. Sampling-Based Solution Techniques

One may be tempted to just try many random attack or defense decisions in a Monte Carlo
simulation, returning the best solution found. Figure 3 shows an example comparing the
optimal solution to DAD(ŵ, x, y) for various numbers of targets with the results of randomly
sampling 10,000 attacks. Even for a small, simple maximum-flow problem, the most damaging
random result is far from optimal, and there is no way of identifying this without knowledge
of the true optimal attack decision. (This caution also applies to local search heuristics.)

Exhaustive decision enumeration can be quite useful. Consider a hypothetical problem to
decide which three bridges to protect in the San Francisco Bay area against a worst-case pair
of simultaneous attacks. There are only seven bridges in the area, so if you have an operator
model (say, a traffic congestion model), you need only solve it

(
7
3

)(
7
2

)
= 35× 21 = 735 times

(e.g., Tarvin et al. [82]) to find the exact best solution (and with the sole termination test
being exhaustive enumeration).
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5.5. Linear Programs Perhaps with Integer Features

Many of our decision models are linear programs, and linear programs can be replaced and
solved via their duals. A frequent instance of this is solving DAD(ŵ, x, y) when the attacker
model is a linear or linear-integer program with decisions x, and the operator model is a linear
program with continuous decisions y. Replacing the operator decision model linear program
by its dual yields a standard (i.e., single-level) integer-linear program that is equivalent to the
attacker subproblem, but does not contain the operator variables explicitly. If we use this to
solve the attacker subproblem to determine a (near-) optimal attack, x̂, then a single solve of
DAD(ŵ, x̂, y) recovers optimal operator decisions, y∗ (e.g., Brown et al. [22], [16], Scaparra
and Church [76], Zhao and Zeng [93]).

If the attacker decision model is a linear program, we can replace it by its dual, yielding an
integer-linear program that is equivalent to the design model but without attack variables
represented explicitly. After solving this monolithic optimization for w∗ and y∗ (with attacker
influence expressed via its dual variables and constraints), we can recover the continuous
attacker actions by solving DAD(w∗, x, y∗) (e.g., Brown et al. [18]).

5.6. Importance of Cost-Based Interdiction

We are tempted to present our tri-level formulation as

min
w∈W

max
x∈X(w)

min
y∈Y (w,x)

f(w,x, y).

However, although attacks x do influence the domain of operations, Y , in practice, we do not
model this directly through constraints, but rather by penalty costs—what we call “cost
interdiction.” Penalty terms in the objective function are associated with each attack variable,
and high penalty costs on an activity component targeted by an attack will “encourage” the
operator to avoid using that component. A large enough penalty renders such a component
essentially unusable by the operator. Similarly, defenses w influence the domain of attacks, X,
but again use “cost interdiction.” Specifically, the design decisions determine which version of
each activity is available to the operator; these different versions can have different penalty
costs, and therefore the same attack will have a different effect in the objective for different
design choices. These cost interdictions work well in practice, though they are not explicit
constraints, and the above-mentioned influences of defenses on attacks, and of attacks on
operation, are implicit in our notation.

6. Key Insights and How to Present Them

Our mathematical modeling results are not of much use unless we find a way to convey the
“what” of our predictions so clients can draw informed conclusions about the “why,” and
decide what to do to increase resilience either by defensive measures or changes to operating
procedures.

6.1. Performance and System Reconstitution Over Time

Operators of infrastructure systems are often concerned not just with the instantaneous loss
of function from an attack, but also the way in which and the rate at which we can best
recover over time. That is, we may care about the total loss time, and so we need to follow
the best operational recovery over time.

If the system is able to recover from an event, we model this reconstitution in discrete
stages (time epochs) over each of which the system performance is constant; at the end of each
successive epoch, the performance improves as repairs are completed until reaching a fully
reconstituted state. Each epoch can have a different duration depending on the difficulty of
the repairs being modeled, and the overall consequence of the event can then be an integral
over time (really just a summation) of the consequences over the finite set of epochs.
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Figure 4. Reconstitution of a notional system following two different events.
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Notes. Event A causes a complete (100%) outage of system function for the first couple days, after which the
system recovers quickly and achieves full reconstitution (0% outage) after nine days. Event B causes a smaller
(45%) outage, but the system recovers more slowly; it still experiences a 20% outage three weeks following the
event.

Figure 4 compares the reconstitution of a notional system following two distinct events.
Event A causes a complete shutdown (100% outage), but the system is able to recover
relatively quickly. Event B causes a smaller outage, but the system recovers more slowly.
For cases in which the operator’s objective is a function of system outage over the entire
time horizon of interest (i.e., calculated as a summation over discrete time epochs), we face
trade-offs between severity and duration in infrastructure disruption; these trade-offs arise
frequently in attacker and defender models.

We typically represent the time required for reconstitution of each component as deterministic
input data to the operator model. For cases in which reconstitution efforts compete for
shared resources (e.g., when there is a limited number of repair crews), prioritization of
reconstitution and recovery efforts is itself an important topic (e.g., Ang [10], Lee et al. [57],
Nurre et al. [67], Cavdaroglu et al. [31]) and can additionally be included as part of the
operator model (e.g., Gong et al. [45], Coffrin et al. [34], Thiébaux et al. [85]).

6.2. Moving Beyond Single Points of Failure

In our experience, it is common for decision makers to focus on the loss of single components
and/or single infrastructure sites. In a recent, private conversation, we asked an independent
system operator of an electric grid about not just N − 1 reliability (i.e., the ability to provide
service after the loss of any single component), but worst-case N −K reliability (after losing K
components). His initial response was “Oh, that just can’t happen,” because in his experience
single equipment failures had occurred so infrequently, and could be repaired so quickly, that
the idea of planning for two or three happening simultaneously was not worth the effort.
Consistent with this mindset, electrical systems in the United States are regulated to be N − 1
reliable, but there is no requirement for continuity of function after losing more than one
major component.

However, there are cases where infrastructure systems suffer multiple losses, often due to
unexpected circumstances, and operators can suffer serious consequences if they are unable to
restore system function quickly. For example, from June 1997 to December 1998, the Union
Pacific Railroad suffered a severe disruption in its ability to transport cargo because of
extreme congestion caused by a confluence of unrelated events that included (a) a derailment
in a key rail yard outside of Houston, Texas; (b) downtime of an important regional rail
corridor because of unscheduled maintenance; (c) labor troubles in the neighboring Mexican
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railroad because of political instability; and (d) unusual operating conditions at competing
railroads (see Alderson [6], p. 4). This “perfect storm” of events was so improbable that it was
beyond the imagination of the system operator before it occurred; yet it nearly caused the
company to go bankrupt. A conservative worst-case analysis assessing the impact of losing a
small number of track segments might have revealed this potential vulnerability in advance.

Of course, natural disasters and extreme weather events can cause damage to large numbers
of system components, but in such cases the concern for continuity of function is typically
replaced by a major mobilization to recover function.

6.3. Interpreting Resilience Curves

Solving the attacker model for different levels of atk budget allows us to draw a resilience curve
that provides a useful, quantitative characterization of operational resilience. Figure 5 shows
the notional resilience curves for three separate systems, labeled A, B, and C. The relative
shape of each curve reveals that these systems have very different resilience. Specifically,
the performance of system B degrades approximately linearly with each component lost.
By contrast, system A is “more resilient” because it suffers relatively little performance
degradation with up to four component losses, and system C is “less resilient” because it
suffers considerable performance degradation with only a single lost component.

6.4. Identifying Attack Sets and Defending Against Them

The contribution of a component to overall system function often depends on the availability
of other components, and therefore we have argued that the focus when studying critical
infrastructure systems should be on sets of components. However, presenting the results of
such analysis can be challenging.

Tables 2 and 3—taken from a real-world, but anonymous, electric power system—follow a
form that we have found to be useful in both written documents and presentations. Consistent
with Salmerón et al. [74, 75], the assumption in the analysis underlying these figures is that
the attacker’s budget is measured in terms of number of human attackers available, and that
each component has a minimum number of attackers needed (i.e., a cost) to interdict it.

Table 2 shows that the worst-case attack depends on the available attack budget and
that the target list associated with the worst-case attack is not monotonic in that budget.
We see that many components appear on some, but not all, target lists as the attacker’s
budget increases. This is evidence that it is the combined function of sets of components that

Figure 5. Resilience curves for three notional systems, and for disruptions that include the loss of up
to five components.
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Table 2. Most-disruptive interdictions by attack budget.

atk budget

Component name atk cost 1 2 3 4 5 6 7 8 9 10 11 12

Line1 1 X X
Line2 1 X
Substation 1 2 X X X X X X
Substation 2 2 X
Substation 3 3 X X X
Substation 4 3 X X X X X X X
Substation 5 4 X X X X X
Substation 6 2 X X X X
Substation 7 3 X

Note. Each component has a different cost to interdict; specifically, an overhead line can be interdicted by a
single attacker, whereas the number of attackers required to interdict a substation is two or more. An “X”
indicates the component is targeted in the worst-case attack. Note that as the number of attackers increases
(this is a simple surrogate for an atk budget), the components attacked do not simply accumulate. Rather,
sets of components arise whose simultaneous loss cause most systemic damage. The lesson here is that the
contribution of individual components to system function is only a first-order effect; much more important is
the synergetic operation of component sets. To discover these synergistic effects, one must evaluate the entire
system.

matters, rather than the contribution of any single component. In practice, we do not know in
advance what the attacker’s budget will be (or more generally, how large an incident we can
reasonably expect). In many cases, however, the infrastructure operator will have a sense of
how many components could reasonably be lost simultaneously, and this can provide some
insight into the sets of components that are of most concern. Even if this is not the case,
we observe an informal measure of component “importance” by the frequency with which
individual components appear in the target lists for each worst-case attack. In Table 2, we
observe substation 1 appears in many worst-case attacks, particularly when the attacker
budget is small, whereas substation 4 appears in all worst-case attacks when the attacker
budget is at least six.

Table 3. Optimal defensive “hardening” of links can mitigate the worst-case attack.

def budget

Component name atk cost 0 1 2 3 4 5

Substation 1 4 X
Substation 2 3 X O O O O O
Substation 3 2 X
Substation 4 3 X X X X X
Substation 5 2 X O O O O
Substation 6 3 X X X X O
Substation 7 2 X X X O O
Substation 8 2 X O O O
Substation 9 2 X X X
Substation 10 2 X X
Substation 11 3 X

Note. Here, an “O” represents the protection of a link visible to the attacker, and an “X” represents an attack.
We consider the case from Table 2 when atk budget = 10. For a given number of attacks, an optimal defense
“breaks up” the worst-case set of attacks, and the attacker finds the next-worst set of attacks. The activities in
this system cannot be ranked in a simple priority list of importance, however, the frequency with which an
activity appears in attack or defense solutions provides an indication of relative importance.
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Table 3 lists the optimal defenses against an attack with atk budget = 10. Here, we have a
case where the defenses are monotonic: as more defensive resources become available, new
components are added to the defended set, and remain in that set. This is because defenses in
this simple example all have the same cost, and this system does not have alternate low-order
sets of vulnerable components that are particularly critical. Such is not always the case, but
here this suggests a simple defensive strategy.

The optimal defenses here can be understood intuitively by observing the role that each
defense plays in “breaking up” the target list for the worst-case attack. Specifically, we observe
that in the absence of any defenses, the worst-case attack targets substations 1–3. The best
single defense must protect one of these substations (or it will not mitigate the worst-case
attack), and in the example here it protects substation 2. With substation 2 defended, the
worst-case attack now targets substations 4–7 (note that it does not target substation 1 or
substation 3). The best defensive strategy for two substations is to protect substation 2 and
substation 5, thereby breaking up each of the target lists associated with these observed
worst-case attacks. Reading the columns of Table 3 from left to right, we observe what can be
interpreted as a type of “iterative and incremental fictitious play” between attacker and
defender, where the defender breaks up the current worst target list, and the attacker then
finds a new worst target list. This is not what is happening in our model or solution algorithm;
each of the entries in Table 3 comes from a separate run of our tri-level model. However, the
form of this table reveals key features regarding the relative importance of sets of components.

If necessary, we can force attack and/or defense monotonicity by sequentially fixing variables
as we increase atk budget and/or def budget. Although this may render solutions that are
easier to brief, you never know how much better you can do without solving the unrestricted
case. See Koç et al. [55] for a discussion of how to build priority lists that are robust to
uncertainties in available budget, as well as when such priority lists can be optimal.

6.5. Uniqueness and Relative Quality of Solutions

The solution to ATTACK-RAIL-NET identifies a single worst-case attack, for a given level of
atk budget (attacker capability). However, this solution on its own does not reveal whether
there are many such attacks that can achieve the same consequence, or how different the
“worst” is from other attacker options. We can solve for this information by the use of solution
elimination constraints (§5.1). Investigating these attack alternatives informs us whether we
can mount defenses visible to the attacker that are robust. Figure 6 shows a notional example.

We can do the same when solving for best defenses. If there are many defensive solutions
that are about the same in quality, this allows the decision maker to select the one that
best fits other criteria perhaps not represented explicitly in the formulation (e.g., the most
politically palatable).

6.6. Accepting Exogenous Advice

It is important that the decision domains admit exogenous guidance. We have found it
essential to be able to evaluate a defender decision that has been suggested as policy. We have
also had to use defender decisions dictated by standard defense planning guidance (doctrine).
We have been pleased to reassure decision makers when a suggested defense policy is a good
one, and we have attempted to change what we have discovered to be poor doctrine. For
example, if we are analyzing the resilience of the San Francisco Bay Area transportation
network to attacks against bridges, our optimal solution for a particular scenario might be to
defend the Bay Bridge and the San Mateo Bridge. If a city planner demands that we defend
the Golden Gate Bridge because of its historic value and status as a national icon, we can fix
that single component in w in the defender model and determine how to best expend any
remaining resources. We can quantify exactly how much resilience we lose if we commit to this
suboptimal defense, and a decision maker can then weigh this cost against the political value
of defending an “obvious” target.
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Figure 6. Top five rank-ordered attacks for target lists containing one to three components.

Notes. For a given number of components in a target list, what are the best worse-case alternatives for the
attacker? Here, with just one component targeted, the rank ordering of the attacker’s best five alternatives
differs only slightly from the best to the fifth-best attack. With two components targeted, the best two attacks
are much more damaging than the lesser alternatives. With three components targeted, the best attack is
much better that the lessor alternatives (here, a target list with three components has discovered a particular
set of components that, together, are acutely vulnerable).

6.7. Assessing Attacker and Defender Capabilities

Many critical physical infrastructures are quite vulnerable to primitive physical attacks (e.g.,
Smith [79]). In our unclassified work, we use reasonable first-order estimates of the resources
and level of effort required to attack some component or target complex of components, and
we usually assume an attacked vulnerable component is disabled. These estimates turn out
to be reliable enough for the sort of resilience drills we run. In particular, these quickly
reveal synergistic effects among sets of components, worthy of attention whether or not our
estimates of attacker capability are precise. There is a huge literature available on this topic: a
simple Google search of “weapons effects” yields many thousands of relevant hits.

In the military, we have engineers whose profession is testing and cataloging for our
uniformed forces the kinetic means required to achieve any end in terms of physical damage.
We also have special operations forces available to help us plan small-unit attacks. That our
cyber infrastructure is also vulnerable is not lost on us, and we are assisting our Cyber Corps
to assess threats there.

Similarly, our unclassified assessments of defensive measures are based on our judgment of
things such as the ability to defend components, to harden them, to identify and localize
component damage, the availability of spare components and repair parts, the preparation of
personnel and equipment to restore damage, and the affordability of the measures themselves.
Here, we strive to advise wise investments to mitigate the worst vulnerabilities.

7. Through the Looking Glass: Resilience from the “Top-Down”

Given the ultimate objective to improve the operational resilience of an infrastructure system,
it is tempting to start with an optimization problem of the form

max
w∈W

h(w), (25)

where the function h(w) represents the resilience of the system after choosing design w.
The simplicity of this optimization problem is appealing, but two challenges arise in the

definition of h(w). First, determining the appropriate units of “resilience” is not straightforward,
and second, even if the units of h have been decided, how does the function h(w) map a
design decision to the resilience to the as-yet unrepresented disruption(s)?



Alderson, Brown, and Carlyle: Operational Resilience of Critical Infrastructures
Tutorials in Operations Research, c© 2014 INFORMS 209

One of the major insights we have gained while studying critical infrastructure systems is
that the term resilience itself is meaningless without context: in order to begin studying
the resilience of any specific system, we always find ourselves asking the same question:
“Resilience to what?” That is, without specifying the source of the disruption, and, more
specifically, some limitations on the magnitude of the disruption, one can only talk about
resilience in the most generic, relative terms. This follows the basic argument in Alderson
et al. [7] (a similar argument for discussing “robustness” was made in Alderson and Doyle [9]).

If we define the set of potential disruptive events X, then we might introduce the function
g(w,x) to represent the system resilience to the disruptive event x∈X when the system is
designed according to w. Taking a conservative approach, our overall goal might be to come
up with a design that maximizes the resilience in the presence of the worst possible disruptive
event:

max
w∈W

min
x∈X

g(w,x). (26)

The corresponding case for nondeliberate events modeled stochastically follows from (23):

min
w∈W

Ex̃[g(w, x̃)]. (27)

The common requirement for (26) and (27) is specification of a function g(w,x) that directly
measures the consequence to the system resulting from disruption x applied to design w. For
systems in which damage can be directly assessed in a deterministic manner, this might be
straightforward. For instance, if the only “consequence” is that the operator immediately pays
a replacement cost to completely and instantaneously recover the full operation of his system,
g(w,x) simply measures the total replacement cost of the components damaged or destroyed
by the disruption x. This is the basic perspective in Bier [13], Zhuang and Bier [95], Bier
et al. [14], Hauksen et al. [50], and Levitin and Hauksen [58].

For many systems, the consequence associated with a disruption depends not only on the
initiating event but also on how the system responds to it. Indeed, system response is a
common theme across many recent discussions of resilience in engineering systems (e.g., Hale
and Heier [48], Woods [92], Haimes [46], Madni and Jackson [61], Vugrin et al. [88], Park
et al. [68]). However, when writing a descriptive function g(w,x), this creates the additional
challenge of specifying in advance the response to every possible disruption. Such a task can
be daunting, if not impossible, because the set of feasible disruptions, X, can be enormous.

Our second and possibly more important insight in our study of critical infrastructure
systems is that we can drastically simplify the modeling of the response of the system to each
disruption if we explicitly model the operation of the system by an operator who is actively
working post-event to minimize consequences that result from a known disruption. This
requires an operational model of the system accounting for design decisions and disruptions.
Given such a model as a starting point, we arrive at the third, and final, level of the
formulation:

min
w∈W

max
x∈X

min
y∈Y (w)

f(w,x, y). (28)

Of course, this tri-level formulation is the starting point for this tutorial. The corresponding
model for random disruptions is

min
w∈W

Ex̃ min
y∈Y (w)

f(w, x̃, y). (29)

We could walk through this line of reasoning for every infrastructure system whose resilience
we wish to improve, but we always end up in the same place—we need an operational model
that explicitly accounts for any design decisions that have been made, allows for the system to
respond to disruptive events, and also explicitly accounts for any consequence that could
result from any combination of these. Building such models would be arduous, were it not
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Figure 7. In our experience, the most productive path to assessing and improving operational
resilience is to model infrastructure systems “from the bottom up” starting with an operator model
that is parameterized to account for any system design and any operational setting.

min  max  min f (w, x, y)
y∈Y(w)x∈X

ˆ
ˆ

max  min f(w, x, y)
y∈Y(w)x∈X

ˆ
ˆ

ˆmin f (w, x, y)
y∈Y(w)

min  max g(w, x)
w∈W x∈X

min h(w)
w∈W

w∈W

min Ex [g(w, x)]
w∈W

~
~

min Ex
w∈W

~ min f (w, x, y)~

y∈Y(w)

ˆ
ˆmin f(w, x, y)

y∈Y(w)Ex~
~

Notes. The function f measures the performance of the system as viewed and experienced by the system
operator. Our attempts to represent system resilience directly (via the functions h or g) are incomplete or are
not useful when it comes to informing defensive or operational decisions. [Figure adapted from Alderson
et al. [4]].

for our third, and final, insight: the operator of the system is constantly making decisions
about system behavior not only in response to disruptive events, but under normal operating
conditions as well. Assessing and improving operational resilience is greatly facilitated by
modeling the decisions that govern this “normal” case and then parameterizing the model to
account for any changes in design and for any disruptions that may occur.

Figure 7 summarizes the relationship between these “top-down” and “bottom-up” views of
assessing and improving the operational resilience of critical infrastructure systems.

8. Summary

Modern society depends on a multitude of critical infrastructure systems at the national,
regional, and local levels. Owners, operators, and managers of these systems face economic
pressure to increase the efficiency of these systems, often at the expense of operational
resilience. Often, we discover this only when things go badly wrong, and we are left asking,
“How could this have happened?”

The U.S. government has stated that we must consider resilience when allocating investment
in infrastructure systems. There is a need for analysts to assess the resilience of these
infrastructure systems and to identify investments that improve them.

The technique presented here requires knowledge of the objectives and the constraints for
the system in question. It also requires some understanding of how disruptions to system
components will impact the operational costs or constraints. However, we do not presume to
know in advance the impact of an attack on the system as a whole; rather, our models solve
for this.

We have applied models and methods like these with real-world, highly detailed, empirical
data, and have had to scale up to larger scope and finer fidelity. We have confirmed with theory
and a lot of empirical experience that our declared principles hold in all these circumstances.
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