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Operational Models of Infrastructure Resilience

David L. Alderson,* Gerald G. Brown, and W. Matthew Carlyle

We propose a definition of infrastructure resilience that is tied to the operation (or func-
tion) of an infrastructure as a system of interacting components and that can be objectively
evaluated using quantitative models. Specifically, for any particular system, we use quantita-
tive models of system operation to represent the decisions of an infrastructure operator who
guides the behavior of the system as a whole, even in the presence of disruptions. Modeling
infrastructure operation in this way makes it possible to systematically evaluate the conse-
quences associated with the loss of infrastructure components, and leads to a precise notion
of “operational resilience” that facilitates model verification, validation, and reproducible re-
sults. Using a simple example of a notional infrastructure, we demonstrate how to use these
models for (1) assessing the operational resilience of an infrastructure system, (2) identifying
critical vulnerabilities that threaten its continued function, and (3) advising policymakers on
investments to improve resilience.
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1. INTRODUCTION

The United States has recently suffered repeated
disruptions of its national infrastructure from natu-
ral disasters (e.g., Hurricane Katrina in 2005, Super-
storm Sandy in 2012), accidental failures (e.g., the
Northeast Blackout of 2003), and intentional attack
(e.g., World Trade Center and Pentagon attacks of
September 11, 2001). In response to these events and
to the perceived threat of future ones, the U.S. gov-
ernment has identified 16 critical infrastructure and
key resource (CI/KR) sectors.(1) The term “critical
infrastructure” is defined in the USA Patriot Act of
2001(2) to mean “systems and assets, whether phys-
ical or virtual, so vital to the United States that the
incapacity or destruction of such systems and assets
would have a debilitating impact on security, national
economic security, national public health or safety, or
any combination of those matters.”
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Presidential Policy Directive 21 (PPD21) sum-
marizes the government’s objective with regard to
critical infrastructure: “The Federal Government
also has a responsibility to strengthen the security
and resilience of its own critical infrastructure, for the
continuity of national essential functions, and to or-
ganize itself to partner effectively with and add value
to the security and resilience efforts of critical in-
frastructure owners and operators.”(1) In PPD21, the
term “resilience” is defined explicitly to mean “the
ability to prepare for and adapt to changing condi-
tions and withstand and recover rapidly from disrup-
tions. Resilience includes the ability to withstand and
recover from deliberate attacks, accidents, or natu-
rally occurring threats or incidents.”

In this article, we consider the challenges asso-
ciated with assessing and improving the operational
resilience of critical infrastructure systems. The term
“operational resilience” was introduced in an ear-
lier policy document(3) in the context of needing to
“make the system better able to absorb the impact
of an event without losing the capacity to function.”
We adopt this term explicitly to mean the ability of
a system to adapt its behavior to maintain continuity
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of function (or operations) in the presence of disrup-
tions.

In response to the growing literature on in-
frastructure resilience, we describe a specific set
of analytical tools based on quantitative models
of system operation. Specifically, we consider the
perspective of the analyst who is charged with (1)
assessing the operational resilience of an infrastruc-
ture system, (2) identifying critical vulnerabilities
that threaten its continued function, and (3) advising
policymakers on investments to improve resilience.
We present an analysis technique based on the use
of a prescriptive model that represents the decisions
of an infrastructure operator. That model could
be an optimization model, an identity simulation
of operating protocols, a heuristic algorithm that
mimicks a human operator’s decisions, or one of
any number of other quantitative tools that can
help determine how to operate a system, even in
the presence of disruptions. This technique requires
that we capture the essential domain-specific details
about the infrastructure system in terms of its op-
erator’s goals and the limitations on its capabilities.
This also requires that we have an unambiguous
measure of system performance for the infrastruc-
ture. While such features are often not present for
general problems in national security and defense,
we elaborate on the special features of infrastructure
systems that make this technique well suited. To
assess the worst-case disruptions to infrastructure
function and to identify the most effective defensive
measures against them, we apply the game-theoretic
attacker–defender and defender–attacker–defender
modeling techniques introduced by Brown et al.(4,5)

We illustrate the technique with a simple example
and provide mathematical details in the appendices.

A main objective of this article is to advocate in
favor of “operational” models that capture domain-
specific details relevant to the operation of an infras-
tructure system. Our intent is not to replace current
definitions of resilience; most existing definitions cap-
ture some of the essential aspects of resilience, but
with very few exceptions they neither provide quan-
titative (and definitely not operationally based) mea-
sures of resilience, nor do they provide models that
can be used to improve resilience. Our primary con-
tribution in this article is to enhance these defini-
tions by making them more precise, and by providing
quantitative models that are tied to the performance
of the systems in a way that is of direct relevance to
the owners and operators of these systems. We hope
that these examples—worked out in detail with our

definitions, assumptions, mathematical models, and
solution algorithms—will contribute analytical sup-
port to the practice of assessing resilience and thus
enhancing infrastructure protection.

We develop our models sequentially over the
next three sections of the article. In Section 2, we
discuss the central Operator Model. Section 3 em-
bellishes the Operator Model to create the Attacker
Model, which identifies and evaluates the main vul-
nerabilities in a system and that can be used both to
assess the potential damage to a system due to a set
of possible attacks and to define the resilience of a
system to a set of attacks. In Section 4, we discuss the
Defender Model, which has both the Attacker Model
and the Operator Model as subproblems and that can
identify optimal, budget-limited ways to improve the
resilience of the system to such attacks.

2. IMPORTANCE OF MODELING THE
OPERATION OF INFRASTRUCTURE
SYSTEMS

Our view of critical infrastructure systems holds
that the function of each system, and especially con-
tinuity of that function, is of primary importance. In
this article, we view an infrastructure as a collection
of interconnected components that work together
as a system to achieve a particular, domain-specific
function. It does this through either human or auto-
mated decision making that responds to the demands
placed on the system to provide the best possible
function in any given situation. This decision making
is commonly termed the operation of the system, and
an operational model of a system is any mathematical
model that evaluates the performance of a system
(through a cost function, or some other quantita-
tive evaluation of its operation) and that explicitly
includes this operational decision making in its
formulation. Although “infrastructure function”
in a broad sense may be ambiguous, the notion of
function for any particular infrastructure system is
typically well defined and understood by its owners,
operators, users, and regulators, who develop
domain-specific operational models of system per-
formance. For example, the function of an electric
power transmission grid (consisting of genera-
tors, high-voltage transmission lines, transformers,
etc.) is commonly defined by an industry-standard
“optimal power flow model” or a related electrical-
engineering model (e.g., see p. 419 of Wood and
Wollenberg(6)) that determines how well power is
being delivered.
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Following this, the importance of a single compo-
nent within an infrastructure system is based on how
it contributes to the overall function of that system,
which we assess as follows. We use the term disrup-
tion to mean the loss of one or more system compo-
nents, and we measure the consequence that results
from a disruption in terms of the subsequent loss of
system functionality. We calculate this using the op-
erational model to evaluate the change in system per-
formance after the disruption. Having an operational
model that provides a clear measure of system func-
tion allows us to systematically evaluate the impor-
tance of components by considering the consequence
associated with their loss, but this requires that we
assess how the infrastructure system will respond to
each disruption.

In general, the contribution of a single compo-
nent to system function may depend on its interac-
tions with other components. For example, the loss
of a single component might not result in any change
to system function (because there is redundancy else-
where), but the simultaneous loss of this component
in combination with other (supposedly) redundant
components might be catastrophic to the system. As
a result, it is typically not possible to assign a single
unique numerical value to each component. More-
over, attempts to rank infrastructure components in
terms of such numerical values are certain to be mis-
guided because there might not be a single most-
important one (see Alderson et al.(7) for a detailed
discussion). Instead, it is more appropriate to dis-
cuss the value of sets of components that character-
izes how important each individual is to the payoff
generated by a coalition of players, but applied to
system components instead of players, and assess-
ing this is considerably more complicated. In concept,
we seek something similar to the “Shapley value” in
n-person cooperative games(8) that characterizes who
important each individual is to the payoff generated
by a coalition of players, but applied to system com-
ponents instead of players.

We caution against the use of simple surrogate
measures of component value (such as replacement
cost, or historical importance, or how “connected”
a component is to other components), as these mea-
sures are far too coarse to indicate a component’s
contribution to function, and therefore only have
an indirect relationship to system function. Even
in simple contexts, such as maximum flow network
problems,(9) the most important component (i.e.,
the component whose loss maximally degrades
the flow in the system) is not necessarily the one

with the largest capacity or the one that carries the
most flow; in general, these intuitive and appealing
approximations do not work.(7)

We also caution against the use of simple
surrogate models of system function unless those
surrogates are validated against industry-standard
models of performance. Over the last decade,
there has been a large body of work devoted to
the development of purely topological models
of infrastructure systems that capture network
structure, but little else.(10) For example, some
researchers model the function of an electric power
grid using graph-theoretic models that emphasize
connectivity measures but ignore the physics of
electricity transmission, as governed by capacity,
inductance, phase angles, etc.(11,12) Our view is that
these topological models fall short of capturing
essential domain-specific details needed to represent
the operation of an infrastructure system. This
view is substantiated by Hines et al.,(13) who show
that “evaluating vulnerability in power networks
using purely topological metrics can be misleading.”
Similar observations have been made for topological
models of the Internet.(14,15)

2.1. An “Operational” View of Infrastructure

The Department of Homeland Security (DHS)
states that roughly 85% of the critical infrastructure
systems in the United States is owned or operated by
the private sector.(16) The behavior of these infras-
tructure systems is not arbitrary, but reflects an orga-
nization that is fundamentally driven by constraints
that are placed on their functionality.(17) For exam-
ple, there are often functional requirements on the
system as a whole (e.g., it needs to “work”), which
are often stated as objectives (e.g., minimize unmet
demand) and then measured in terms of system func-
tion. For the private sector, these objectives often
take the form of “minimize cost” or “maximize prof-
itability.” In addition, the behavior of the infrastruc-
ture is limited by what is possible, due to physical,
economic, or regulatory constraints.

In practice, modern infrastructure systems in-
volve a mix of humans (e.g., owners, operators, man-
agers) and autonomous “agents” (e.g., monitoring
systems, feedback controllers) that make decisions to
guide the behavior of the system as a whole. For ex-
ample, in California’s electric power infrastructure,
the independent system operator (ISO) makes real-
time decisions about where to “spin up” or retire
generators and which switches to open and close in
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the transmission grid so as to route power flow in
order to balance generation and demand, subject to
constraints on the capacity of individual high-voltage
transmission lines and the physics of electricity.(18)

The ISO is aided by sophisticated supervisory con-
trol and data acquisition (SCADA) systems that
implement decision rules for managing the system as
operating conditions change.

We refer to this collective decision-making entity
as “the operator” of the infrastructure. Some infras-
tructure systems have explicit operators (e.g., electric
power), while others are governed by the interaction
of many decision agents (e.g., drivers of vehicles in a
regional road system). In the latter case, we can often
represent the collective decision-making behavior in
terms of an equilibrium model.(19,20)

The key point is that the operator makes deci-
sions about the behavior of the system in order to
reconcile these objectives (what we want the system
to do) with its constraints (what the system can do) in
an intelligent manner. The language of constrained
optimization is ideally suited to represent this type
of decision problem (see Rardin(21) for an introduc-
tion), and we adopt constrained optimization here-
after, though other types of models such as simula-
tions might apply in other contexts.

Optimization models of this type are prescrip-
tive: potential courses of action are represented using
decision variables, and the solution to a particular
problem indicates decisions that should be taken to
reconcile objectives and constraints in a best possible
manner (where “best” reflects the stated objective).

Modeling the behavior of an infrastructure
system in terms of a constrained optimization prob-
lem does not necessarily mean that we believe that
the real operation of the system is truly optimal.
Rather, the key to a “good” operational model of
infrastructure is to identify the essential structural
features, defined in terms of the problem’s objectives
and constraints. We make several arguments in sup-
port of this claim. First, the solution to a constrained
optimization problem that more less gets an infras-
tructure’s basic objectives and constraints correct
is going to display behavior that looks a lot more
realistic than a model of behavior that completely
ignores system function, operating objectives, and
constraints.(10,17,22) This will be the case even if the
model solutions are only near-optimal, and even an
approximate solution to a constrained optimization
problem can provide insight into infrastructure
behavior. Second, real infrastructure owners and
operators regularly formulate and solve constrained

optimization problems to guide their decisions
about how to run their systems. Often, there are
industry-standard models of infrastructure that can
be adopted as realistic representations of infras-
tructure behavior. We advocate using such models
whenever available. Third, there is now a large
literature in operations research devoted to formu-
lating and solving these problems. Recent advances
in mathematics and computation allow us to solve
problems of realistic scale and fidelity in this manner.

There is one other key advantage to using an
optimization-based prescriptive model of system
operation as the starting point for the study of infras-
tructure behavior: these models naturally accommo-
date disruptions to infrastructure as straightforward
changes to input data. For example, Salmerón et al.(23)

present a model of electric power transmission that
takes available generators, transmission lines, trans-
formers, and buses, and identifies the set of power
flows that minimizes unmet, prioritized demand; this
model has been validated as a realistic representation
of the actual grid. If the systems loses a transformer,
we would like to know: How will this system adapt
its behavior, and what will be the consequences on
system function? We simply need to re-solve the
same operator’s problem, leaving the affected trans-
former “out” of the model (how exactly this happens
will depend on the implementation of the model, but
it is essentially an input modification); then, the so-
lution to this modified problem will indicate the best
possible response of the system. Thus, system adap-
tation is inherent to the model formulation, not an
afterthought.

This basic form of a decision model for the
operator offers exactly what we need to systemati-
cally evaluate the consequences associated with the
loss of sets of components. For example, we can
investigate specific disruption scenarios of interest by
rerunning the same model to find the best response
to each. However, because we have defined the
set of possible disruptions in terms of the loss of
components, we can also consider a broader evalu-
ation of all possible disruptions (e.g., via exhaustive
enumeration).

Observe that you could never do this with a
model that is purely descriptive (e.g., via a set of dif-
ferential equations that describe a priori all future
states of the system) because it would require that
you consider in advance all of the possible contin-
gencies in disruption and response, and account for
them in the predefined description of behavior. Thus,
the use of a prescriptive model has the benefit of not
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Fig. 1. A notional infrastructure system. (a) A white circle (node) represents a location with demand equal to one barrel of fuel. A black
circle (node) represents a location with supply equal to 10 barrels. Each link is bidirectional, has a fuel flow capacity of 15 barrels, and has
per-barrel transit cost of $1. The penalty for unsatisfied demand per node is $10 per barrel. Nodes 3, 4, and 16 each have two (parallel,
redundant) connections to the rest of the network. This network has been built to be N−1 reliable, meaning that the loss of any single link
does not disconnect any node. (b) Shows baseline flows corresponding to a minimum-cost flow solution, which results in a total cost of $25.

needing to specify the entire “trajectory” for system
behavior (or set of possible trajectories) in advance.
Rather, when there is a disruption, one simply solves
for the best course of action going forward. This is
more in line with what real infrastructure owners and
operators do in practice.

2.2. A Notional Example

Consider a notional infrastructure system de-
signed to distribute some commodity, say, fuel, to dif-
ferent locations within a city (the metaphor here is
a simplified petroleum distribution system, but the
modeling technique is general). Fig. 1(a) presents a
simple distribution network between two supply lo-
cations (represented by black nodes) and 14 demand
locations (represented by white nodes). Fuel is car-
ried by links that are bidirectional (meaning that flow
can move in either direction) and have a limited flow
capacity. Assume that the demand for fuel at each
demand location is one barrel of fuel, that the supply
of fuel at each storage location is 10 barrels, and that
each link can carry up to 15 barrels of fuel.

The operator of this infrastructure system makes
decisions about how to manage fuel flows based on
costs. Specifically, assume the operator faces a con-
tractual penalty of $10 per barrel for each location
that does not receive its demanded fuel. In addition,
assume that the per-unit cost to send fuel over a sin-
gle link is $1 per barrel.

The operator’s objective is to route the available
fuel so as to minimize the sum of all delivery costs

and penalty costs for the system. This task is compli-
cated by the fact that one or more of the links in this
system can be broken (equivalently, failed, lost, at-
tacked, or interdicted). The operator faces the same
objective even when there are broken links in the
system—in this case, she must do the best she can to
minimize the sum of delivery costs and penalties with
the surviving distribution network.

We define the Operator Model as a constrained
optimization problem of the following form:

min
y∈Y(x̂)

f (x̂, y), (1)

where x̂ is a vector that collectively represents
whether each of the components (the links in our
example) in the system is working or broken (also
called the operating state), the set Y(x̂) represents
the feasible actions of the operator (here, allowable
flows) for given state x̂ of the system, and f (x̂, y)
is a function that measures the performance (here,
the cost) that results from the choice of activities
y. The operations research literature is filled with
such models, although most do not explicitly pa-
rameterize damage. Appendix A presents a formal
mathematical representation of the Operator Model
for this example.

Given the potential for broken links, the network
in Fig. 1(a) has been constructed so as to be N − 1 re-
liable (a standard notion in system reliability, where
N denotes the total number of system components),
meaning that a single broken link cannot disconnect
any node in the network. In particular, there are two
sources of fuel, and three of the locations (labeled
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as nodes 3, 4, and 16) are each connected by parallel
links so a single break does not disconnect them.

Figure 1(b) shows the minimum-cost flows to
deliver fuel to each location when there is no bro-
ken link; this is the baseline solution to the Opera-
tor Model. This system is balanced and has excess
capacity—each of the sources are supplying 50% of
the total demand (7 of 14 units demanded), and each
has 30% reserve storage beyond what is delivered
(using 7 of 10 units of available fuel).

3. ASSESSING THE RISK OF POSSIBLE
DISRUPTIONS

An operational model of infrastructure behavior
allows us to systematically evaluate how the system
will respond to any disruption (defined in terms of
the simultaneous loss of one or more system compo-
nents) and then measure the consequence in terms
of a change in system function. The key question
becomes: What kinds of disruption scenarios are of
most concern?

3.1. Nondeliberate Hazards Versus
Deliberate Threats

In practice, infrastructure owners and operators
must contend with both nondeliberate hazards (e.g.,
accidents, failures, and Mother Nature) and delib-
erate threats (e.g., vandalism, sabotage, competitors,
and terrorism). The study of failures in technological
systems has yielded an extensive literature on system
reliability.(24,25). The broader study of risk in the con-
text of nondeliberate hazards has resulted in a large
literature in probabilistic risk analysis (PRA) that de-
fines possible future scenarios, assigns a probability
to each scenario, estimates the consequence associ-
ated with each scenario, and then aggregates this in-
formation into one or more measures of risk, such as
expected value, value at risk,(26) or conditional value
at risk.(27) PRA has been particularly successful when
applied to nondeliberate hazards for which there are
data or models that can be used to assess the required
probabilities. In some cases, these data may be his-
torical (e.g., weather records, failure statistics, actu-
arial statistics, and accident reports) or can be ob-
tained via experiment (e.g., laboratory stress testing
to evaluate the mean time between failures). For so-
called rare events there is ongoing debate about how
to model the frequencies with which disruptions oc-
cur (e.g., earthquakes(28,29)), and this is an active area
of research.

Following the attacks of September 11, 2001,
there was a shift in national priority from assessing
nondeliberate hazards to preventing and protecting
against deliberate threats, and the study of risk
in national security problems has been controver-
sial ever since. Paté-Cornell and Guikema(30) are
among the first to apply the techniques of PRA to
terrorism risk. Many papers follow,(31–35) often using
simplified models that rely on the definition “Risk =
Threat (T) × Vulnerability (V) × Consequence
(C),” where subject matter experts assess the threat
and vulnerability terms as probabilities, and the
consequence term in units of, for example, economic
replacement cost, or fatalities.(36,37) When applied
to critical infrastructure, the notion is to assess
adversary intent as “threat”(38)) and then rely on
such assessments for proposed methods to optimize
defense.(39,40) DHS has promoted PRA, including
models based on the (T,V,C) construct, for assessing
the threats posed by intelligent adversaries in a
terrorist attack.(41)

The National Research Council (NRC) has,
however, criticized the use of probabilities to
model the behavior of an intelligent, goal-oriented
terrorist.(42,43) Additional work has raised concerns
about terrorism risk models based on (T,V,C). For
instance, with a number of examples, Cox(44) illus-
trates how these models can render nonsensical ad-
vice. Cox(45) further notes the deficiency of T, V, and
C values as inputs when the probabilities are corre-
lated, and Cox(46) also points out that because the
values for V and C really depend on the allocation
of effort by both the attacker and defender, they do
not make sense as independent inputs. Brown and
Cox(47,48) detail several ways in which probabilistic
assessment of terrorism risk can mislead analysts,
and they explain why it is impossible for a defender
to possess information essential to assess terrorist
intent.

Without revisiting the arguments on both sides
of this debate, we comment on a few issues most
relevant to the resilience of infrastructure systems.
First and foremost, if using a (T,V,C)-style of analysis
for an infrastructure system, one cannot assume that
the consequence associated with the loss of a set of
components is simply the sum of the consequences
associated with the loss of individual components.
In general, ignoring the dependencies between the
components of a system can be misleading. Rather,
one should be considering scenarios involving the
loss of sets of components. In some risk analyses, the
“components” of the system are themselves built of
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Fig. 2. A break on a single link in this network incurs additional operating cost, but does not prevent fuel from being delivered to each
location. (a) A break on link [7, 8] results in an increased operating cost of 32. (b) A break on link [10, 13] is the worst-possible interdiction
of a single link and results in total cost of 33; in this case, there are multiple ways the operator can reroute flows and achieve this cost.
(c) This table lists the links, if interdicted individually, that yield the greatest consequence, in rank order. “T5” and “T7” denote ties for
fifth-worst and seventh-worst, respectively.

elements, modeled, and evaluated by any of a
number of probabilistic models.(49,50). But this is not
current practice in many implementations of PRA
for critical infrastructure systems. We therefore
caution against the use of simplistic (T,V,C)-style
modeling for the study of deliberate threats to
critical infrastructure, and especially for assessing
infrastructure resilience.

Second, our operational view of infrastructure
function is agnostic to the source of a disruption—
once one or more components are lost, the operator’s
focus is on doing the best she can to maintain func-
tion with whatever is left of the system.

Third, by narrowing the set of potential disrup-
tions to the simultaneous loss of one or more (known,
and finite) components, it becomes possible, in princi-
ple, to search over the scenarios of concern. Although
the size of this set can be too large to allow this
in practice, it creates the opportunity for a different
style of analysis, as we now describe.

3.2. Using the Operator Model to
Assess Disruptions

Given the Operator Model (Equation (1)), we
can explicitly consider the consequence of any po-
tential disruption (i.e., loss of links in our notional
infrastructure) by changing x̂ and re-solving for the
minimum-cost response. For example, consider a
break in the link [7, 8] as shown in Fig. 2(a). This link
previously carried 40% of the total system flow in the
baseline solution. In response to this break, and un-
der the assumptions of this example, the system op-
erator is able to reroute flows through the network in

order to still satisfy all customers; however, the total
cost to do so increases from 25 to 32.

Although the network is N − 1 reliable, suppose
the operator is concerned about the worst-case loss
(break) of a single link because it will create the need
to reroute flows and possibly incur greater cost. One
way to find the worst single-link loss in the system is
to exhaustively enumerate each possible interdiction,
re-solving Equation (1) each time, and then identify-
ing the possible interdiction that results in the highest
operating cost.

Another way to get at this is to consider a
hypothetical intelligent adversary (an attacker)
who has perfect knowledge of the system and uses
limited resources to deliberately damage the system.
From the operator’s perspective, the attacker could
be Mother Nature, a terrorist, simple bad luck,
or anything else that causes the simultaneous loss
of components; the operator is concerned with
running the system in the best possible manner
following the loss of these components. Although
our exposition sometimes personifies the attacker,
we emphasize that our purpose is simply to discover
worst-case component losses, not model the actual
decision making of any particular adversary (e.g.,
Al-Qaeda).

Suppose the attacker has the ability to target a
single link. Which one should he break to maximize
the costs incurred by the operator? We formulate this
Attacker Model mathematically as follows:

max
x∈X

min
y∈Y(x)

f (x, y), (2)

where now x is a decision variable belonging to
the attacker, and X represents the set of all possi-
ble single-link attacks. Given any particular choice
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of attack x, the operator still faces the same cost
minimization (Equation (1)), now with an objective
function f (x, y) and a set of feasible actions y ∈
Y(x). Thus, this Attacker Model (Equation (2)) is
almost identical to the prior model (1), except that
the state parameters x̂ have become decision vari-
ables for the attacker, and we have put restrictions
on the choice of disruption. Models of this form
have been studied in the context of attacker–defender
optimization.(5,7,51)

Appendix B provides a complete mathematical
formulation for the Attacker Model in this example.
For our notional infrastructure, the worst-case single-
link disruption is the loss of link [10, 13], which results
in a total operating cost of 33 (Fig. 2(b)). The table in
Fig. 2(c) lists the links, if interdicted individually, that
yield the greatest consequence, in rank order.

An important contribution in the development
of attacker–defender optimization problems is their
connection to game theory (52). Specifically, the
mathematical program (Equation (2)) is a two-stage
sequential-play game in which the attacker moves
first, and then the operator (or defender) moves sec-
ond. These are known as Stackelberg games.(53)

If all of the decision variables for the attacker
and defender are discrete, our formulation (2) is
equivalent to a sequential matrix game of the clas-
sical layout, where in the first stage the attacker
chooses a row of the payoff matrix by choosing a
particular attack plan, and then the operator (or de-
fender) chooses a column through his choice of a spe-
cific operating plan. However, instead of enumerat-
ing all of the pure strategies for each player at each
stage of the game, we represent those (potentially
enormous) sets of pure strategies implicitly through
a set of decision variables and constraints: the ex-
ponential number of feasible solutions to this con-
strained optimization model represent the possible
pairs of strategies for the two players.

This implicit representation of the strategy
spaces allows us a great deal of power in modeling
the behavior of the two players. We can impose any
number of budget restrictions on each player (e.g.,
time, money, labor, explosives, or other materials),
and we can also add constraints that preclude illog-
ical (or physically impossible) combinations of de-
cisions, and in this way we can represent extremely
complex decision spaces with only slightly more mod-
eling effort.

The ability to solve attacker–defender problems
in this manner also has implications on how we assess
the resilience of such infrastructure systems.

4. ASSESSING AND IMPROVING
RESILIENCE

Resilience has recently become an important
topic in discussions about the way that systems of all
kinds respond to both nondeliberate hazards and de-
liberate threats. This section describes how our oper-
ational view of infrastructure function naturally leads
to a precise and quantifiable notion of “operational
resilience,” and we describe how our optimization-
based attacker–defender models lend themselves to
characterizing it in a way that facilitates model verifi-
cation, validation, and reproducible results—features
that are essential to making the study of resilience
more scientifically rigorous.

4.1. Notions of Resilience

Park et al.(54) provide a partial survey and
summary of the growing literature on resilience and
its relationship to the study of risk. They report how
use of the term “resilience” in engineering systems
followed the foundational work of Holling(55) in
ecology, with considerable growth in the number of
papers in the last decade that relate to resilience in
engineering, physics, and mathematics. Hollnagel
et al.(56) provide an early treatment of “resilience
engineering” that builds on the study of system
safety. As noted by Madni and Jackson,(57) an
important contribution in this early work is the
argument that “safety is something (that results
from what) a system or an organization does, rather
than something a system or an organization has.”
As a result, much of this literature stresses the need
to study safety as a process instead of safety as a
property of the system itself. The study of resilience
in engineering systems has followed this lead, in the
sense that resilience is viewed as an expression of
system behavior in response to an event rather than
something inherent to the system itself.(57,58)

A complicating factor in previous attempts to de-
fine resilience is the recognition that “[r]esilience is a
family of related ideas, not a single thing.”(59) Zolli
and Healy(60) provide perhaps the most comprehen-
sive and provocative discussion of the myriad no-
tions of resilience. Nonetheless, a common feature
across many definitions of engineering resilience is
the ability of the system to adapt in response to a
disruption.(57,58,61–63) Importantly, Park et al.(54) ob-
serve that in a resilient system the result of this adap-
tation is “the persistence of relationships, rather than
stability in quantitative measures of state variables.”



570 Alderson, Brown, and Carlyle

Thus, a distinguishing feature of resilience is adap-
tation in the way that components work together to
achieve persistence in these relationships. Our notion
of operational resilience is consistent with these ideas
in the sense that our focus is persistence in the ability
of a system to function, over time, in the presence of
disruptions.

Park et al.(54) further comment on why resilience
in engineering systems should be different from that
in ecology, and why it is distinct and complementary
from the study of risk. They argue that the emer-
gent, nonlinear, self-organizing features in coupled
complex systems make hazard identification difficult
if not impossible, that assessing the probabilities of
harm may be unknowable, and that “we have a poor
understanding of how failures propagate and amplify
within and across complex systems.” Although we
agree with the notion of resilience “not as some-
thing a system has, but a characteristic of the way
it behaves,” we take issue with the claim that engi-
neering resilience in a system “cannot be predicted
or calculated from aggregation of the individual sys-
tem components.”(54) Modern infrastructure systems
are complicated, and they can also exhibit features
of complexity (see Ottino(64) for a discussion of the
distinction between “complicated” and “complex”);
however, designating an infrastructure as a “com-
plex system” does not mean that we are at the mercy
of nonlinear, emergent chaos or self-organization.
Rather, the fundamental belief underlying our Op-
erator Model is that by capturing the essential ob-
jectives and constraints driving system behavior, we
build a representation that is explanatory and not
merely descriptive, in the sense of Willinger et al.,(65)

and that this representation will therefore have su-
perior predictive power for assessing the “what-ifs”
associated with disruption.

In the last decade, there have been consider-
able efforts within the engineering community to as-
sess the resilience of infrastructure systems. Haimes
et al.(66) observe that “[o]ne approach to measuring
the resilience of an infrastructure is to predict the
trajectory of recovery time following a catastrophic
event.” Reed et al.(67) present resilience scoring met-
rics and build on the work of Haimes(58) in using
input-output models to measure the resilience of in-
terconnected systems. These ideas have been preva-
lent in the civil engineering literature, particularly in
assessing the resilience of freight transportation(68,69)

and its dependence on maritime systems,(70,71) with
emphasis to evaluate the resilience of transportation
networks after a disaster.(72,73)

Using ideas from control theory, Vugrin et al.(74)

characterize resilience in terms of the deviation (both
magnitude and duration) from “normal” operation
that follows a disruptive event; in this context, a sys-
tem is more resilient if it experiences smaller devi-
ations. Vugrin et al.(75) use their definition to assess
the resilience of the U.S. petrochemical sector in re-
sponse to two hypothetical hurricane scenarios in the
Gulf Coast region. Rose(76–78) has studied economic
resilience to disasters in terms of distinct phases of
service restoration and economic recovery over time.

Despite recent efforts to develop common
resilience metrics across infrastructure systems,
Haimes(58) cautions against the use of scoring for
system resilience: “attempts to characterize the re-
silience of a system with a specific numerical descrip-
tor (as a metric) and to use the metric to compare the
resilience of different systems could be misleading”
because of the differences in operating environments
for different infrastructure systems.

As noted, resilience has become an important
concept in discussions about homeland security and
defense. A March 2010 report by the U.S. Govern-
ment Accountability Office (GAO)(79) traces the his-
tory in the definition and use of resilience in the U.S.
government’s official documents on homeland secu-
rity and also details the increased role of resilience in
the updated 2009 National Infrastructure Protection
Plan. DHS currently defines resilience as the “abil-
ity to adapt to changing conditions and prepare for,
withstand, and rapidly recover from disruption.”(80)

Outside the government, Flynn(81) points to vul-
nerabilities that threaten our national welfare and
provocatively asks how the United States can rebuild
itself into a more resilient nation.

Despite this recent flurry of activity, a key chal-
lenge remains how to define resilience in a manner
that is (1) quantitative and rigorous enough for ob-
jective and precise assessment, (2) flexible enough to
capture many facets of resilience already under dis-
cussion by researchers, and (3) connected to the op-
erational details of the system under study so that
proposed system changes can be naturally evaluated
and actually implemented. We proceed in direct sup-
port of this objective.

4.2. Assessing Operational Resilience

Resilience is fundamentally about the behavior
of a system in response to a disruption. Our focus
on infrastructure systems and use of an Operator
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Fig. 3. Worst-case simultaneous interdictions. (a) The worst-case single interdiction is of link [10, 13], resulting in a total cost of 33. In this
case, the flow cost increases but all nodes are still served. (b) The worst-case simultaneous two-link interdiction is of links [2, 7] and [9, 13],
which denies nodes 1, 2, 3, 5, and 9 (now shaded) any flow. The total cost is 62 (=12 + 50), most of which is unmet demand penalty cost. (c)
The worst-case simultaneous three-link interdiction is of links [2, 7], [10, 13], and [11, 15], resulting in a total cost of 87 (=7 + 80). (d) The
worst-case simultaneous four-link interdiction is of links [2, 7], [8, 12], [10, 11], and [10, 13], resulting in a total cost of 113 (=3 + 110). (e)
The worst-case simultaneous five-link interdiction is of links [6, 10], [7, 8], [8, 12], [10, 11], and [10, 13], resulting in a total cost of 131 (=1
+ 130). (f) The worst-case (rank 1) attack for 1–5 simultaneous interdictions increases approximately linearly. The second-worst (rank 2)
through fifth-worst (rank 5) attacks do less damage, but all are significantly worse than the baseline (no interdiction) case that has operating
cost 25.

Model to represent infrastructure behavior requires
us to define the system in question, specify its com-
ponents, and provide an unambiguous measure of
system performance. In this section, we show how
our definition of operational resilience—that is, the
ability of a system to adapt its behavior to maintain
continuity of function (or operations) in the presence
of disruptions—can be assessed in a straightforward
manner by performing parametric analysis using our
Attacker Model.

Alderson et al.(7) introduce the notion of a re-
silience curve as that which plots the best achievable
worst-case performance of a system as a function of
the disruption “magnitude” that we measure, for ex-
ample, in terms of the number of simultaneously lost
components. The usefulness of a resilience curve is
based on two underlying ideas. First, by classifying
disruptions in terms of the number of lost compo-
nents, we obtain a natural mechanism for considering
disruptions that range from “small” to “large.” This

is important in comparing different systems because
the way that each responds to disruptions of different
sizes can be dramatically different and even make it
difficult to say which one is “more resilient” (for a de-
tailed discussion, see Alderson et al.(7)). Second, for
any particular magnitude of disruption, we conser-
vatively focus on the worst-case loss of components.
Thus, our notion of the “worst-case” component loss
is always implicitly conditioned on some admissible
set of combinations of lost components. Most simply,
we often consider the set defined by the maximum
number of lost components (i.e., a cardinality con-
straint), but this generalizes to any notion of “bud-
get” including an explicit list of attack options that
are affordable to a specific attacker. We find this pa-
rameterization to be of more practical value than the
“absolute worst-case,” which reasonably might cor-
respond to the simultaneous loss of all components.

With this in mind, consider the worst-case dis-
ruption in our notional example associated with the
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simultaneous loss of from one to five links (Fig. 3).
Specifically, in the presence of the worst-case loss
of a single link (Fig. 3(a)), our network is able to
reroute flows in order to satisfy demand at all nodes.
However, the worst-case loss of two and more links
(Figs. 3(b)–(e)) effectively isolates nodes and incurs
escalating operating costs (Fig. 3(f)), due primarily to
the model penalties for unmet demand. The frontier
associated with the worst-case losses of one-to-five
links (black bars in Fig. 3(f)) is our “resilience curve”
for this example; here, it shows that an attacker can
get approximately linear returns for each additional
attack.

The relative shape of this “curve” reveals a lot
about the resilience of the system. We would say that
a system for which operating costs grow more quickly
with the number of lost components is “less resilient”
than our example, and that a system whose operating
costs grow less quickly with the number of lost com-
ponents is “more resilient.”

We obtain the results in Fig. 3 by solving the
Attacker Model (Equation (2)) with a simple con-
straint on the feasible number of attacks, which we
vary parametrically from k = 1 to k = 5 total attacks
(see Appendix B for details). Fig. 3(f) also shows
the operating costs associated with the second-worst
(i.e., rank order 2) through fifth-worst (rank order
5) combination of losses for each magnitude of dis-
ruption. In principle, obtaining these rank-ordered
disruptions is no more complicated than exhaustively
enumerating each possible loss of k components and
then sorting by consequence. However, due to
the large number of combinations, in practice it
is more efficient to solve the Attacker Model re-
peatedly, each time with an additional constraint
that eliminates the previous solution from further
consideration (see example S1 on p. 156 of Brown
and Dell(82)). Discovering the worst, second-worst,
third-worst, etc., disruptions has important practical
considerations for assessing system resilience and ad-
vising defensive investment. If there is only a single
unique worst-case disruption with consequence that
is much larger than the second-worst, then defending
against that single disruption might be sufficient to
dramatically increase the resilience of the system. In
contrast, if the worst-case disruption is not unique
but is accompanied by many equally bad ones, then
defending against only one of them is unlikely to help
at all.

Thus, an analysis of infrastructure function using
the attacker–defender technique leads to a natural
characterization of operational resilience.

4.3. Improving Operational Resilience

Our ultimate goal is not just defining and assess-
ing, but improving operational resilience of our in-
frastructure systems. In the context of our Operator
Model, this means mitigating the worst-case operat-
ing cost that can result from the simultaneous loss of
components. However, doing so will require invest-
ment, and our ability to spend on improvements will
be constrained by limited resources. To quantify this
decision, we formulate this Defender Model mathe-
matically as follows:

min
w∈W

max
x∈X

min
y∈Y(w,x)

f (w, x, y), (3)

where w is a decision variable representing defensive
investments, and W represents the set of feasible in-
vestments. These investments potentially change the
operating cost f (w, x, y) faced by the operator, as
well as the set of feasible actions y ∈ Y(w, x). Mod-
els of this form have been studied in the context
of defender–attacker–defender optimization.(5,83) Ap-
pendix C provides a complete mathematical formu-
lation for the Defender Model in this example.

4.3.1. Protection

We consider two defensive strategies for im-
proving operational resilience. First, assume we have
the ability to protect (equivalently, “harden”) a link
so that it is invulnerable to loss. For our notional
attacker, this means that an attack on the protected
component will not affect system performance. In
order to identify the worst-case disruption in the
presence of protection, we further assume that this
attacker can see which links have been protected
before he decides what to attack. Given some limited
ability to defend links in this way, which links should
we protect, and how will this change the worst-case
attack and the resulting consequence?

Fig. 4 displays the optimal defenses against a
given number of attacks. Each row corresponds to a
single link in our notional infrastructure. Each col-
umn corresponds to a scenario involving a speci-
fied number of defenses and attacks. The column
values for each scenario represent the optimal de-
fenses (denoted as “O”) against that number of at-
tacks, as well as the worst-case attacks (denoted
as “X”) in response to those defenses. Fig. 5 illus-
trates in more detail the optimal defenses against the
worst-case attack on three links. Here we obtain in-
sight into the strategy for defensive protection—the
optimal defense is one that “breaks up the set of
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attacks 1 2 3 4 5
defenses 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
edges
[1,2] X X X X X
[1,5]
[2,3]
[2,7] X O O O O X O O O O O X X O O X X O O O X X O O
[4,8]
[5,9] X
[6,7]
[6,10] X X X X
[7,8] X O O O X O O O O X O O O O X O O O X X O O O
[8,12] X O X X O X X X X X X X X O O X X O X X X
[9,13] X O O X O O O X X X O X O X X O X X X X O
[10,11] X X X O O O X X X X X O O O
[10,13] X O O O O O X X O X X O O O O O X O O O O O X O O O O O
[11,12] X X
[11,15] X X O X X X X X X X X
[12,16]
[13,14] X X X X X X X X X X
[14,15] X

cost 33 32 30 29 27 27 62 50 47 47 42 40 87 80 67 64 49 43 113 82 74 71 63 55 131 104 96 80 65 59

Fig. 4. Optimal defensive “hardening” of links can mitigate the worst-case attack. Here, an “O” represents the protection of a link, and an
“X” represents an attack. For a given number of attacks, an optimal defense “breaks up” the worst-case set of attacks, and the attacker finds
the next-worst set of attacks. The case of three attacks is additionally illustrated in Fig. 5. Scanning across rows here reveals that the links in
this network cannot be ranked in a simple priority list of importance; however, the frequency with which a link appears in attack or defense
solutions provides an indication of relative importance. The bottom row shows the optimal, postattack operating cost for each scenario.

attacks” that yield the worst-case operating cost. For
our notional example, the high penalty costs associ-
ated with unmet demand means that the worst-case
attack is the one that disconnects as many nodes
as possible. The optimal defense prevents this by
ensuring that as many nodes stay connected as pos-
sible, even in the presence of three interdicted links.

This general pattern is observed throughout
Fig. 4. Moving from left right for a fixed number of
attacks, each successive column could be interpreted
as a type of iterative fictitious play—in which the at-
tacker selects an attack set, the defender protects a
link to “break up” the attack set, then the attacker
selects a new attack set, after which the defender
protects another link to counter that attack set, and
so on—that is used to obtain the final solution to
that specific combination of attacks and defenses.
We emphasize, however, that the actual “game” be-
ing played here has only three stages: the defender
moves first by protecting some links, the attacker se-
lects the vulnerable links to interdict, and the op-
erator runs the residual system as best she can to
minimize operating costs of the surviving system. The
solution for each column is obtained by solving an
instance of our Defender Model (Equation (3)) with
the corresponding number of defenses and attacks.

Fig. 4 also reports the resulting postattack op-
erating cost for each scenario. We illustrate these
in Fig. 6 as the resilience curves associated with in-
creased defenses. In the absence of protection, af-
ter the first attack, the postattack operating costs
(for our simple example) grow approximately lin-
early with the number of attacks.

In the case where all attacks are equally costly,
the resilience curve for an infrastructure can also be
viewed as a simplified form of the attacker’s return on
investment (ROI). For our simple example, the linear
shape of this curve is not good news for the opera-
tor. Fortunately for this system, with each additional
defense this curve becomes less steep, reflecting the
fact that attacks become less effective. Thus, protect-
ing links in this manner improves the resilience of the
system—the system denies consequences to the at-
tacker, no matter his actions.

4.3.2. New Construction

Another strategy for creating resilience in an
infrastructure system is to augment it with new
construction. Specifically for our notional example,
assume we have the ability to build any of the
dashed-line links shown in Fig. 7(a) and that any
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Fig. 5. Protecting links mitigates a worst-case three-link attack. Panels (a)–(f) display a worst-case attack on three links in the presence of
0–5 defenses, respectively. In the case of three attacks, the defensive importance of individual links follows a simple priority list: [10, 13, 7,
8, 10, 11, 2, 7, 9, 13]. With each additional defense, the worst-case attack results in a lower consequence (however, note the associated attack
changes completely). The corresponding costs appear in Fig. 4.

Number of Protected Links 

Fig. 6. Resilience curves. In the absence of protection, the postat-
tack operating costs grow approximately linearly with the number
of attacks. With each additional protection, this curve (for our sim-
ple example) becomes less steep, indicating improved operational
resilience for the system.

newly built links will be invulnerable to attack.
However, we also assume that it “costs” twice as
much to build a new link than to protect an existing
one. Under these assumptions, which links, if any,
should we build, and which links should we protect?

The table in Fig. 7 shows the postattack operat-
ing cost for different defensive budget levels. Here,
we represent defensive budget in simple cardinal-
ity terms (to simplify exposition—we have included
much more complicated investment considerations in
other such models), where it “costs” one unit of de-
fense to protect a single link and two units of defense
to build a new, invulnerable link. For each budget
level, we consider all possible combinations of links
to build and protect, and for each combination we
solve the Defender Model (Equation (3)) with each
assumed number of attacks. The values in this table
report the resulting postattack operating costs, and a
smaller cost value indicates a better defense.

In many of these cases, we observe that it is more
effective to build new links than to defend existing
ones. This is not surprising because adding links
to the network serves to shorten the average path
length between nodes in the network, and this helps
to reduce the operating cost of the system, in addition
to providing redundant paths. However, building
new links is not a strictly dominant strategy, and even
in this small example we observe all combinations of
build-only, build-some-protect-others, and protect-
only. Figs. 7(b)–(e) illustrate in more detail the best
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Fig. 7. Improving operational resilience with new construction. Panel (a) shows the potential (dashed) links that are available for construc-
tion. Under the assumption that building a new link costs twice as much as protecting an existing one, we consider the optimal defensive
investment for different budget levels. The table shows the postattack operating cost for 0–5 attacks; values in bold correspond to the op-
timal (lowest-cost) defensive investments for the given budget and the specified number of attacks. The values in boxes correspond to the
cases in Panels (b)–(e), showing the optimal investment of a defensive budget of four when there are 2–5 attacks, respectively. In some sit-
uations, it is better to build new links, while in others it is better to protect existing ones. In this example, the defenses cannot be prioritized
into a rank-ordered list.

defense solutions when the defense budget is four
units. An optimal defense against two attacks (Fig.
7(b)) is to build two new links, specifically [3, 8] and
[5, 10]. An optimal defense against three attacks (Fig.
7c) is to build one new link ([3,8]) and then protect
two links ([10,11] and [10,13]). An optimal defense
against four attacks (Fig. 7(d)) is to build a different
new link ([5,10]) and then protect a different pair
of links ([1,5] and [10, 11]). An optimal defense
against five attacks (Fig. 7(e)) is to protect four links
([2, 7], [7, 8], [10, 11], and [10, 13]). Thus, the best
combinations of links to build or protect can be very
different depending on the number of attacks.

4.3.3. Committing to a Defense

Casting infrastructure resilience in terms of our
Attacker Model (Equation (2)) and Defender Model
(Equation (3)) allows us to identify the sets of
component losses that result in worst-case operat-
ing costs, as well as the defenses (via protection
or new construction) that optimally mitigate these
worst-case disruptions. However, as shown with our

notional infrastructure system, what is “best” in
terms of defense often depends specifically on the
number of attacks, and thus the links in our exam-
ple cannot be strictly prioritized into a simple rank-
ordered list. This is ubiquitous because the value of
a component depends on its interaction with others
(see Alderson et al.(7) for a discussion).

In general, we will not know the size of the dis-
ruption that we will face. The point of this is that
by presenting the resilience of the system in terms
of a curve, one does not make any judgments a pri-
ori about the specific disruption magnitudes that are
relevant. Uncertainty about the actual magnitude of
disruption that we face is mitigated by showing the
sensitivity of the system to different levels of disrup-
tion magnitude.

Nonetheless, decisions about defensive invest-
ment, particularly when they involve physical con-
struction that is permanent, require that we commit
to a single defensive plan, often articulated as a prior-
ity list and perhaps implemented in stages over time.
Given the necessity to select only a single defense,
we can solve for a prioritized list of components tot
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Fig. 8. Example of nondominant investment options. The
resilience curves that would result from three defensive
investments—namely (1) protect links [2, 7] and [10, 13], (2) build
link [3, 8], and (3) build link [5, 10]—show that none of these
is strictly “more resilient” than the others. However, given these
choices, building link [5, 10] seems to be the best choice.

protec in an iterative manner. Specifically, we enu-
merate the number of defenses (i.e., defense tbudget
= 1, 2, . . .), and solve for a single new defense at each
step and then fix the defense variable correspond-
ing to that defended component for subsequent
steps.

More simply, in the context of our notional in-
frastructure, assume that we have a defensive budget
of two units, meaning for this system that we can ei-
ther build a single new link or that we can protect two
links. Based on the results in Fig. 4, we observe that
links [2, 7] and [10, 13] are among the most impor-
tant to protect. Also, our analysis of new construc-
tion reveals that links [3, 8] and [5,10] are among the
most important to build. Given these three defense
options, which one is the best, and how does it com-
pare to the status quo?

Fig. 8 illustrates the resilience curve for the
baseline system, along with the resilience curves that
would result from each of these three possible defen-
sive investments. We observe that each of these three
options results in postattack operating costs that are
strictly lower than the baseline system, meaning that
any of these defensive investments would yield a sys-
tem that is more resilient than the current one. How-
ever, we also observe that none of the new resilience
curves is strictly lower than the others, meaning
that none of these solutions dominates the others in
terms of the resilience that it provides. Nonetheless,
we observe that building link [5, 10] yields the lowest
postattack operating cost for all cases except for two

attacks, and even there it is a close second choice.
For this reason, building link [5, 10] seems to be the
best defensive investment decision for this assumed
budget based on resilience as the only criteria.

In practice, real defensive investment decisions
are likely to depend on not just resilience and cost, as
described here, but also other regulatory, economic,
and political criteria. Further, the example shows that
the resilience curves for different investment options
might not strictly dominate one another, making it
impossible to say that one system is more resilient
than another.(7) Even so, the use of resilience curves
to quantify operational resilience is a critically im-
portant first step toward more rigorous cost-benefit
analysis for infrastructure defense.

5. DISCUSSION OF MODELS

While it might not be possible to specify a pri-
ori the final consequence associated with any disrup-
tion, the ability to articulate the Operator Model as
a set of rules, operating procedures, or as a norma-
tive decision model means that it is possible to ex-
plore “what-if” scenarios using numerical simulation
or other techniques.

In the models presented here, we restrict atten-
tion to a system of components, and in doing so we
narrow the view of possible disruptions to those that
are known to affect the function of the infrastructure.
Moreover, when assessing the operational resilience
of an infrastructure system, we restrict the adaptive
behavior of the system to the choices defined in the
Operator Model. Some researchers have argued that
a key feature of resilience is the ability of a system to
reconfigure itself in the presence of disruption (i.e.,
to self-organize, as might be done by humans in re-
sponse to a disaster). To the extent that one can de-
scribe the way in which this might happen, it becomes
possible to incorporate this in the Operator Model.
If one is unable to describe either this emergent be-
havior or the rules that might lead to it, then our ap-
proach to resilience suffers no more than any other
in predicting system response to disruption.

Nonetheless, the models in this article have been
deliberately restricted in scope to keep our analy-
sis simple and accessible. We therefore comment on
ways in which the techniques presented in this article
can be adapted to consider a broader range of issues.

5.1. Model Scalability

The notional infrastructure in this article is de-
liberately small for illustrative purposes, but the type



Operational Models of Infrastructure Resilience 577

of Operator Model presented here can be solved at
very large scale. In the commercial world, compa-
nies routinely solve problems involving millions of
variables and hundreds of thousands of constraints.
The bilevel Attacker Model is typically at least an
order of magnitude or more larger than the Opera-
tor Model to which it is applied because of the need
to solve for the best flows in response to every com-
bination of attacks under consideration. Even here,
these models can be solved at large scale. For ex-
ample, when considering worst-case disruptions to an
electric power grid, Salmerón et al.(23,84) have solved
Attacker Models consisting of thousands of electri-
cal buses, high-voltage lines, transformers, and sub-
stations. Defender Models are more complicated yet
because of the interaction of defense and attack com-
binations. Nonetheless, using appropriate decompo-
sition algorithms,(83,85) the trilevel optimization in the
Defender Model can be solved very efficiently—all of
the computational results in this article take less than
30 minutes to generate on a laptop computer.

We have formulated and solved Defender Mod-
els significantly larger than the example presented in
this article. One such realistic model that we have
built and solved considers the traffic handling func-
tion of the major roads and bridges of the San Fran-
cisco Bay Area.(86) The Operator Model contains
91 nodes and 266 directed arcs, represents origin–
destination traffic demands between every pair of
2,292 census tracts, includes an extremely accu-
rate piece-wise-linear approximation to the nonlin-
ear congestion function currently used by California
Department of Transportation traffic engineers,(87)

and has been validated against rush-hour traffic pat-
terns under many actual scenarios, including the loss
of the San Francisco Bay Bridge during major re-
pairs. Results from this model include (1) the dis-
covery that the blockage of a small section of Inter-
state 880 for a single day can cause more short-term
disruption to commuting traffic than the complete
closure of any of the seven major bridges over the
same time, and (2) the loss of the Bay Bridge for two
years is more disruptive than the loss of the Golden
Gate Bridge for five years. Insights from this model
have been cited directly by the DHS,(88) and the
Defender Model, which explicitly models increased
operational costs (such as delays and reduced ca-
pacity) for protecting bridges, tunnels, and highway
segments, solves within a few hours and provides
clear defensive plans that are both face-valid, mathe-
matically sound, and politically defensible.

5.2. Model Extensions

The constrained optimization problems de-
scribed here are general mathematical programs, and
as such, the example in this article can be extended in
any number of ways. For example, we can replace the
simple constraints on the number of attacks and the
number of defenses with more general constraints
on attacker and defender capabilities, including re-
source constraints that express, for example, limits on
finances, personnel, or equipment, logical constraints
on permitted or prohibited combinations of targets.
That is, if we have a reasonable estimate of the re-
sources that constrain adversary behavior (money,
labor, explosives, etc.), and we have reasonable es-
timates of the cost of each attack in terms of each of
these resources, then we can write one budget con-
straint for each resource, and end up with a model
that considers those details, but is no harder to solve
than the original. Examples of such constraints have
been applied to large capital planning models(89) and
models of industrial projects.(90) We can have as
many of these constraints as we desire; they do not
complicate the models significantly, and our solution
algorithms remain effective. With more general con-
straints on attacker capability we can, for instance,
model defense options that make attacks more ex-
pensive. (To a limited extent, we have already done
this. Attacking the parallel links has a cost of two,
and we assume that new construction costs twice that
of protection. Again, see the appendices for details.)

Thus, we can also model deterrence—that is, the
“stay at home” behavior of an attacker whose costs
have been rendered intolerable by our defenses.

In addition, our models can easily incorporate
persistence in defenses. That is, if, for any reason, we
are committed to protecting a subset of components,
we can fix the associated defensive variables in our
Defender Model (Equation (3)). And just as for at-
tacks, we can identify not just the optimal course ac-
tion for the defender, but also the second-best (or
third-best, etc.) defenses and their relative benefit.
Such an enumeration of near-optimal courses action
allows a policymaker to reconcile tradeoffs between
the quality of a defense and other factors not explic-
itly represented in the model (e.g., political or social
acceptability).

Here, we have restricted attention to the com-
plete loss (or defense) of components. This technique
generalizes to accommodate the partial loss (or de-
fense), but we do not describe that here. We can
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also model other “shocks” to the system, for exam-
ple, a dramatic change in the demands placed on the
system, as happens for regional transportation when
there is a mass evacuation.

Although building an Operator Model requires
significant up-front investment, the relatively slow
pace at which infrastructure changes means that
these models are available for reuse when the need
arises.

The model in this article considers only a single
instantaneous attack and a single instantaneous
response to that attack. We can also model the
behavior of the system over time, including the
repair (or reconstitution) of components that return
to operation on some forecast schedule. However,
we typically do not model multiple attacks over time
because we assume that after the first attack, the
operating conditions change substantively enough
for both the operator and the attacker to preclude
other attacks over our planning horizon. Here, we
are modeling singular events, not full-scale war.

5.3. Model Applicability

The modeling and analysis techniques described
in this article have been applied to a variety of
systems. Most relevant to this article, these tech-
niques have been applied to real infrastructure
systems across a range of sectors. In the context of
the electric power grid, attacker–defender models
have been used to analyze the vulnerability of
major portions of the U.S. national grid,(91) the
dependence of U.S. military installations on the
public grid,(92) and the resilience of electric infras-
tructure in U.S. territories.(93) The basic technique
has also been successfully applied to civilian and
military petroleum pipeline systems(4,5,94,95) and
multimodal transport of petroleum and coal.(96–98)

The use of constrained optimization to improve
operations or system restoration has also been
applied to natural gas infrastructure systems.(99,100)

Attacker–defender techniques have been applied to
telecommunication systems, specifically terrestrial
backbone networks,(101) undersea cable systems,(102)

and wireless networks.(103) Defender–attacker–
defender techniques have been successfully applied
to regional highway transportation systems(83,86) and
railroad systems.(7,104)

The use of constrained optimization and game
theory for identifying worst-case disruptions to op-
erations and for planning defenses against them has
applicability to more than just infrastructure systems.

Again, the key to the successful application of this
technique is the development of operational mod-
els of system behavior. Recent success stories include
the study of worst-case adversarial action in the con-
text of industrial projects,(90) undersea warfare,(105)

and ballistic missile defense.(106) These are examples
where the Operator Model does not take the form of
a network flow problem. We have built dozens of op-
erational models of various infrastructures, each with
their own peculiarities, and so far we have not found
any that cannot be modeled in some reasonable way.
If the Operator Model can be formulated and solved
in a reasonable amount of time then the formulations
of the Attacker Model and the Defender Model are
usually straightforward, and the algorithms to solve
them are now standard.(85)

If the Operator Model is nonconvex, or if it is
nonlinear and contains discrete variables, the mod-
els might take significantly longer to solve, or might
require a linear or quadratic approximation. How-
ever, the formulations for the Attacker and De-
fender Models would still follow the same pattern.
It is even possible to use simulation-optimization,
where the Operator Model is itself a simulation, and
the Attacker and Defender Models use optimization
wrapped around this. The algorithms to solve these
models have to be adapted a bit, and might end up
being more heuristic, but the technique is general.(85)

5.4. The Role of Uncertainty

The mathematical formulations here are deter-
ministic, in the sense that all model inputs are as-
sumed with certainty, and the “result” of any single
model excursion follows directly from those inputs.
In practice, we plan on solving many model excur-
sions with different inputs. This type of parametric
analysis can be of much greater practical value than
the classical sensitivity analysis taught in optimiza-
tion textbooks (see Brown and Rosenthal(107) for a
discussion).

Although our focus in this article is on worst-case
disruptions to infrastructure operation, our Operator
Model is agnostic about the source of a disruption. In
the realm of natural disasters, accidents, or random
failures, we might try to define a probability distribu-
tion over the set of disruptive events X, and replace
the worst-case (“max”) operator from the Attacker
Problem with, for example, an expectation or some
other measure of risk.

In practice, the expected value is often a poor
choice of measure for risk-informed decisions.(108,109)
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Our point here is simply that one can use probabilis-
tic techniques for risk in conjunction with our Op-
erator Models, for those who favor these techniques.
For simplicity, we restrict attention to calculating and
minimizing the expected disruption.

The appropriate form of the expected disrup-
tion, as formulated here, is a stochastic optimization
problem:

Ex̃

[
min

y∈Y(x̃)
f (x̃, y))

]
. (4)

Here, x̃ is a random variable and Ex̃ denotes the ex-
pectation with regard to x̃. As with Equation (2), the
operator takes action only after the (now random)
disruption, and thus Equation (4) represents the
expected cost of operating the system in the presence
of disruption. The validity of such calculations hinges
entirely on estimates of the probability distribution
for x̃ . We are wary of such estimates, particularly
when they involve correlations between system
components, and we therefore choose to focus
exclusively here on the admittedly (and deliberately)
conservative max–min formulation.

Defending against random disruptions becomes
no more complicated. We seek defensive investment
w to minimize the expected cost of operating the sys-
tem in the presence of a disruption:

min
w∈W

Ex̃

[
min

y∈Y(w,x̃)
f (w, x̃, y))

]
. (5)

As long as the Operator Model is formulated as an
optimization problem (see Birge and Louveaux(110)

for an introduction to formulating and solving
stochastic optimization models), our models and al-
gorithms can be applied with no significant change.

In practice, infrastructure system owners and op-
erators must contend with both expected and worst-
case disruptions, and in principle a combination of
Equations (3) and (5) could be used to obtain the
required insight. Such ideas have been considered
by Zhuang and Bier(111) in the context of “inten-
tional and unintentional threats,” but their inner-
most models are not sufficiently “operational” to
study infrastructure in the way we have described
here.

5.5. Interdiction Versus Hijacking

The technique in this article works well for situ-
ations involving interdiction of system components.
But it implicitly assumes that components are ei-
ther going to be present and functional, or absent.

This assumption is sometimes known as “fail off”
in the context of communication systems, and it has
been an underlying assumption for the architectural
design of the Internet.(112,113) However, a very dif-
ferent situation arises when the system has compo-
nents that “fail on”—that is, they continue to interact
with other system components, but do not follow the
rules, or protocols, for interaction. This type of dis-
ruption can lead to system hijacking, that is, the sys-
tem continues to operate but behaves in a way that is
not intended.(17,113) Instances of hijacking are preva-
lent in technological and biological systems, and they
represent some of the most challenging problems in
these domains because it is sometimes the very mech-
anisms designed to create robustness and resilience
that are hijacked for other purposes.(14,17,114)

The techniques in this article are not designed to
assess the impact of hijacking. Nonetheless, the types
of disruptions considered here account for a large
number of possible scenarios, and addressing them
would go a long way to making infrastructure systems
more resilient. Handling these types of hijacking sce-
narios, particularly as they pertain to cyber vulnera-
bilities, is an important topic for future research.

5.6. Robust Optimization

There is now a growing literature in the field of
robust optimization that dates back to Wald’s min-
max model for worst-case uncertainty.(115,116) Ro-
bust optimization has been applied to a variety
of problems in discrete optimization and network
flows.(117,118) Most of these models take a bilevel
form—there is an initial design stage followed by the
realization of an uncertain scenario. In the context
of our infrastructure defense problems, this corre-
sponds to a defender–attacker problem,(5) in which
the defender makes an initial investment in harden-
ing or prepositioning, and the attacker follows with
the worst-case attack. Our trilevel Defender Model
can be viewed as a type of robust optimization in
which there is an additional inner model of operation
(after the uncertain attack is realized) that includes
adaptation. This inclusion of adaptation through the
use of an Operator Model is what distinguishes
our models from the existing literature in robust
optimization.

6. CONCLUSION

To introduce and demonstrate our definition
of system resilience, along with supporting analytic
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techniques, we intentionally chose a model instance
that is so simple the reader can grasp normal oper-
ations by inspection. Yet, for the same example it is
not easy to answer straightforward questions about
how the system operator would respond to damage,
how interdependencies between components yield
vulnerabilities that can seriously disrupt system
function, or how the defender should allocate limited
resources to increase resilience to damage. This is
where having a validated mathematical model of
system operation offers tremendous value—it can
provide a rapid and objective calculation of the con-
sequence of damage to any set of components, and
can therefore be used to identify vulnerabilities and
to evaluate the improvement in resilience provided
by any defensive plan.

The United States is currently spending billions
of dollars on homeland security via federal, state, and
local governments, and the most recent policy guid-
ance in PPD21 suggests that resilience is going to be
a key objective in future spending. Given this large
investment, we strongly advocate the use of methods
that (1) reflect the operation of an infrastructure as
a system and evaluate its continuity of function in
the presence of a disruptive event, (2) incorporate
the inherent ability of existing infrastructure systems
to adapt to disruptions or changes to their operating
environment, and (3) facilitate the systematic explo-
ration of disruptive events and their potential conse-
quences, whether or not they are perceived as likely
threats.

Our definition of resilience is qualitatively
consistent with suggestions that have been made
in the past, including by our most senior govern-
ment policymakers, but we also show how to make
quantitative assessments and evaluate specific alter-
natives for real systems. These techniques scale up
to realistic size and fidelity,(91–100) and admit a host
of standard models, many already in use by system
operators. We have used scores of these models to

assess resilience of a wide range of systems. Again
and again, the same insights emerge: (1) the ability
to assess actual system function is the key to an
objective evaluation of consequence, (2) systems
consist of individual components, but these compo-
nents interact in complex ways and usually cannot
be evaluated in isolation, (3) simple rank ordering
of actions by any player is usually impossible, (4)
trying to guess what an attacker might do instead of
systematically evaluating his feasible courses of ac-
tion underestimates vulnerability, and overestimates
resilience, and (5) it is important to have a definition
of resilience that is unambiguous and relies on
well-documented, reproducible modeling and com-
putation. We have been able to present our resilience
assessments to senior policymakers at the local, state,
and federal levels, with confidence that they fully
understand our analysis, and we have frequently
seen this advice implemented to good effect.
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APPENDIX A: OPERATOR MODEL
MATHEMATICAL FORMULATION

Although the example in this article is simple
enough that the base flows can be solved by inspec-
tion, we present the formal Operator, Attacker, and
Defender Models needed to obtain complete results.

In what follows, we use barrels as fuel units and
dollars as cost units, but this is generic.
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Indices and Sets

n∈N nodes (alias i, j)

[i, j]∈E undirected edge between nodes i and j, i < j

(i, j)∈A directed arc from node i to node j

[i, j]∈E ⇐⇒ (i < j)∧ ((i, j)∈A∧ (j, i)∈A))

Data [units]

cij per unit cost of traversing arc (i, j)∈A [dollars/barrel]

uij upper bound on total (undirected) flow on edge [i, j]∈E [barrels]

x̂ij 1 if edge [i, j]∈E damaged, 0 otherwise [binary]

qij per unit penalty cost of traversing arc (i, j)∈A if damaged [dollars/barrel]

dn fuel supply at node n∈N [barrels]

(-demand for dn < 0)

pn per unit penalty cost for demand shortfall n∈N [dollars/barrel]

Decision Variables [units]

Yij flow on arc (i, j)∈A [barrels]

Sn fuel shortfall at node n∈N [barrels]

Formulation

min
Y ,S

∑

[i ,j ]∈E

[(cij + qij x̂ij )Yij +(cj i + qj i x̂ij )Yj i ] +
∑

n∈N

pn Sn (D0)

s.t.
∑

(n ,j )∈A

Yn j −
∑

(i ,n )∈A

Yin −Sn ≤ dn ∀n∈N (D1)

0≤ Yij + Yj i ≤ uij ∀[i, j]∈E (D2)

Sn ≥ 0 ∀n∈N (D3)

Discussion

The objective function (D0) combines the to-
tal flow cost and the total penalty cost. Constraints
(D1) enforce balance of flow at each node. Stipu-
lations (D2) and (D3) ensure bounds on decision
variables. This formulation implements cost-based
interdiction—that is, damage to an arc makes it ex-
tremely expensive but not infeasible—which makes
the problem easier to solve computationally.

In the above example, we have dn = 10 for n ∈
{8, 10} and dn = −1 otherwise. In addition, we set
ci j = 1, ui j = 15, and qi j > 10 for all (i, j) ∈ A, ui j ≥
14 for all [i, j] ∈ E, and pn = 10 for all n ∈ N.

APPENDIX B: ATTACKER MODEL
MATHEMATICAL FORMULATION

The Attacker Model builds on the previous for-
mulation but has additional elements.
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Additional Data [units]

rij “cost” to break edge [i, j]∈E [cardinality]

attack budget budget constraint on the number of simultaneous attacks [cardinality]

Additional Decision Variables [units]

Xij 1 if attacker breaks edge [i, j]∈E, 0 otherwise [binary]

Formulation

max
X

min
Y ,S

∑

[i ,j ]∈E

[(cij + qij Xij )Yij +(cj i + qj iXij )Yj i ] +
∑

n∈N

pn Sn (AD0)

s.t. (D1), (D2), (D3)
∑

[i ,j ]∈E

rij Xij ≤ attack budget (AD1)

Xij ∈ {0,1 ∀} [i, j]∈E (AD2)

The objective function (AD0) is the same as that
for the Operator Model (D0), except that parame-
ters x̂i j have been replaced by decision variables Xi j .
Constraint (AD1) limits the number of simultaneous
attacks, and the cost to attack each edge can be dif-
ferent. Stipulations (AD2) require that attacks are
binary. We note that qi j = 0 implies that arc (i, j) is
effectively invulnerable because attacking it does not
not increase the flow cost for the operator.

In the above example, we model parallel edges
as costing twice as much to attack. That is, we have
r2,3 = r4,8 = r12,16 = 2 and all other ri j = 1.

APPENDIX C: DEFENDER MODEL
MATHEMATICAL FORMULATION

The Defender Model builds on the previous for-
mulation but has additional elements.
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Additional Sets

EB set of additional edges available to be built, EB ∩E = ∅

[i, j]∈EB ⇐⇒ (i < j)∧ ((i, j)∈A∧ (j, i)∈A))

Additional Data [units]

hij “cost” to protect edge [i, j]∈E [cardinality]

hB
ij “cost” to build edge [i, j]∈EB [cardinality]

defense budget budget constraint on the number of defenses [cardinality]

Additional Decision Variables [units]

Wij 1 if defender protects edge [i, j]∈E, 0 otherwise [binary]

W B
ij 1 if defender builds edge [i, j]∈EB , 0 otherwise [binary]

Formulation
min

W ,W B
max

X
min
Y ,S

∑

[i ,j ]∈E

[(cij + qij Xij (1−Wij ))Yij +(cj i + qj iXij (1−Wij ))Yj i ]+

∑

[i ,j ]∈E B

[cij Yij + cj iYj i ] +
∑

n∈N

pn Sn (DAD0)

s.t. (D1), (D2), (D3), (AD1), (AD2)

0≤ Yij + Yj i ≤ uij W
B
ij ∀[i, j]∈EB (DAD1)

∑

[i ,j ]∈E

hij Wij +
∑

[i ,j ]∈E B

hB
ij W

B
ij ≤ defense budget (DAD2)

Wij ∈ {0,1 ∀} [i, j]∈E (DAD3)

W B
ij ∈ {0,1 ∀} [i, j]∈EB (DAD4)

The objective (DAD0) includes the cost of flow
over existing (and possibly damaged or protected)
edges, flow over newly built edges, and penalties for
unmet demand. Constraints (DAD1) allow flow only
on new edges if they have been built. The constraint
(DAD2) requires that the cost of all defenses fall
within the existing defense budget; the cost of pro-
tecting and building edges can be different. Stipula-
tions (DAD3) and (DAD4) enforce binary defenses.

In the above example, we assume that it costs
twice as much to build a new edge as to protect an
existing one, that is, hi, j = 1,∀[i, j] ∈ E and hB

i, j =
2,∀[i, j] ∈ EB.

In principle, solving the Defender Model re-
quires nothing more than enumerating every possible
combination of defense and attack, then solving the
corresponding Operator Model for each, and then
finding the one that yields the lowest cost. In practice,
such enumeration is impractical. Alderson et al.(83,85)

provide details of a decomposition algorithm to solve
models of this type without exhaustive enumeration.
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