
This article was downloaded by: [205.155.65.226] On: 12 October 2021, At: 13:29
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Transactions on Education

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Interactive Computing for Accelerated Learning in
Computation and Data Science
David L. Alderson

To cite this article:
David L. Alderson (2021) Interactive Computing for Accelerated Learning in Computation and Data Science. INFORMS
Transactions on Education

Published online in Articles in Advance 05 Oct 2021

. https://doi.org/10.1287/ited.2021.0261

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

This article was written and prepared by U.S. government employee(s) on official time and is therefore in the
public domain.

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ited.2021.0261
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Interactive Computing for Accelerated Learning in Computation
and Data Science
David L. Aldersona

aOperations Research Department, Naval Postgraduate School, Monterey, California 93943
Contact: dlalders@nps.edu, https://orcid.org/0000-0002-1641-5302 (DLA)

Received: February 28, 2020
Revised: April 10, 2021; July 14, 2021
Accepted: July 26, 2021
Published Online in Articles in Advance:

https://doi.org/10.1287/ited.2021.0261

Copyright: This article was written and
prepared by U.S. government employee(s) on
official time and is therefore in the public
domain.

Abstract. This article describes the motivation and design for introductory course-
work in computation aimed at midcareer professionals who desire to work in data sci-
ence and analytics but who have little or no background in programming. In particu-
lar, we describe how we use modern interactive computing platforms to accelerate the
learning of our students both in and out of the classroom. We emphasize the impor-
tance of organizing the interaction with course material so that students learn not only
to “think computationally” but also to “do computationally.”We provide details of ex-
isting courses in computation offered at the Naval Postgraduate School, and we de-
scribe their ongoing evolution in response to increased demand from members of the
civilian and military workforce.

History: This paper has been accepted for the INFORMS Transactions on Education Special Issue on The
Education Science of Delivering Analytics Education.

Funding: This workwas supported in part by funding from the Office of Naval Research.

Keywords: computation • data science • programming • end-user development

1. Why Teach Computation?
The explosive growth in demand for data science,
analytics, machine learning, and artificial intelli-
gence, both within the research community and
among practitioners, is challenging traditional para-
digms for education and training. Traditional disci-
plinary paths to the study and practice of these
topics—that dive deeply into fundamentals of com-
puter science, statistics, mathematics, and operations
research—are frequently being eschewed in favor
of hybrid programs that cover a mix of concepts
and topics focused on solving immediate problems.
Notwithstanding the ongoing debates regarding the
best way to introduce students to the relevant theo-
retical underpinnings, there is a broad consensus on
the need for students in these evolving disciplines
to be proficient in computation.

There is a widely recognized need to teach computa-
tional thinking (CT) in support of science, technology,
education, and/or mathematics education—see Wing
(2006, 2008) and National Research Council (2010,
2011)—with considerable effort now dedicated to un-
derstanding how to integrate CT into K–12 education-
al programs (e.g., Barr and Stephenson 2011, Grover
and Pea 2013, and Lye and Koh 2014). However, for
organizations looking to hire skilled workers in data
science and analytics, it is crucial that students are
able to not only “think computationally” but also

“do computationally” (Denning 2009). This recogni-
tion is consistent with the considerable gap between
“learning” and “doing” in statistics (McNamara 2016).

Students in operations research (OR) at the Naval
Postgraduate School (NPS) are midcareer, active
duty military officers with unique needs for learning
computation. First, most students have no prior
background in programming or computation. Sec-
ond, the applied nature of military OR and the short
duration of our master’s degree program mean that
traditional approaches to teaching computer science
are not appropriate or effective. Third, our students
are unlikely ever to work as software developers,
but many will use computation in their daily work
and/or oversee contractors who build software sys-
tems. Fourth, our graduates will be tasked with ad-
vising senior leaders on issues related to the use of
computation to support military operations, and
many of them will become senior leaders them-
selves. As a result, it is imperative that our course
offerings in computation are carefully designed and
integrated within the rest of our curriculum to pro-
vide a rapid path to computational productivity.

This article provides an overview of how and why
we take our students “from zero to hero” in their
computational abilities over a short period of time.
In particular, we highlight the use of modern inter-
active computing platforms, such as the Jupyter

1

INFORMS TRANSACTIONS ON EDUCATION
Articles in Advance, pp. 1–16

ISSN 1532-0545 (online)http://pubsonline.informs.org/journal/ited

October 5, 2021

mailto:dlalders@nps.edu
https://orcid.org/0000-0002-1641-5302
https://orcid.org/0000-0002-1641-5302
http://pubsonline.informs.org/journal/ited

Notebook, to achieve these results. We proceed in
several steps. First, we describe the overall needs
of our students and how these compare with broad-
er needs of practitioners in military and nonmilitary
settings. Next, we describe the way in which we
use Jupyter notebooks, both inside and outside the
classroom, to organize the way in which students
engage computing concepts and materials. We also
provide details of the organization and structure
of these courses. Finally, we provide qualitative
and quantitative evidence demonstrating the effec-
tiveness of these courses in facilitating intended
learning outcomes.

2. What to Teach in Computation?
There is no single standard defining the set of topics,
concepts, and skills that are required for an individ-
ual to be proficient in computation. However, ap-
proximately 10 years ago, the INFORMS Computing
Society (ICS) worked to identify key elements of an
undergraduate curriculum aimed at the intersection
of operations research and computer science (Hardin
et al. 2012). With a retrospective look that considers
the historical development of these fields going back
to the 1960s, the ICS divides the relevant base of
knowledge into three categories of skills:

• foundational skills: those essential for future work;
• core skills: those important for success and that are

often associated with introductory graduate work;
• recommended skills: more-advanced skills useful

to future work. (Hardin et al. 2012, p. 118)
Each of these categories is further subdivided into

topics commonly associated with mathematics, com-
puter science, and operations research. Within this tri-
chotomy, the ICS also considers “the depth to which a
subject should be known:

• competency/fluency: lucid control of the topic.
• experience: the central theme of a course.
• familiarity: a cursory introduction to the topic.”

(Hardin et al. 2012, p. 118)
Consideration for the depth of knowledge in these

individual areas is of particular relevance for teaching
and learning computation.

Denning (2002), borrowing from earlier works by
Hubert Dreyfus and Fernando Flores, describes a
“ladder of competence” for professional development
that includes the following progression: “novice
(beginner),” “advanced beginner (rookie),” “profes-
sional (competent),” “proficient professional (star),”
“expert (virtuoso),” “master,” and “legend” (p. 22).
This framework is not novel (i.e., it clearly builds on the
work of Hoffman (1998)), but it is noteworthy in that it
includes both a general description of the abilities of an
individual at each level and the modes of learning most
often associated with it. The focus in Denning (2002) is

ultimately on careers in information technology and
software engineering; however, the “ladder” is provoc-
ative in that it focuses attention on what it means to be
an “expert” in a given field and the progression one fol-
lows to get there.

It is important that our next generation of opera-
tions analysts and data scientists not only are able to
execute well defined computational tasks but also
can apply their knowledge to unfamiliar problems,
draw connections to other experiences, evaluate nov-
el situations, and ultimately create new knowledge
for dealing with emergent challenges. This progres-
sion is consistent with classic theories of learning
(e.g., Bloom et al. 1956) and more modern adapta-
tions (e.g., Krathwohl 2002). And the ICS study is not
alone in its attempt to identify the needs of students
in computation (indeed, Hardin et al. (2012) cites a
number of complementary efforts within other pro-
fessional organizations).

3. How to Teach Computation?
Recent emphasis on the need for computational think-
ing in curricula has stimulated considerable discussion
about how best to teach it, but there is long-standing
recognition that this is not the same as what it takes to
learn computation.

3.1. Teaching Is Not Learning
The phrase “teaching is not learning” comes from
Doumont (2004, 2010), who recognizes that teaching,
particularly in a traditional lecture, is an activity that
involves an interaction between the instructor and the
material, whereas learning is something that requires
interaction between the student and the material.
Doumont (2014) argues that the role of the instructor
should not be about trying to “cover the material” but
should instead be about “organizing the encounter”
for the student to engage the material—specifically, to
create an encounter in which to (1) allow the student
see it, (2) allow the student do it, and (3) allow the stu-
dent discover it.

3.2. Jupyter Notebooks
In the fields of scientific computing and computational
sciences, there is a need for a notebook-like construct to
serve as a means for documenting and reproducing
computational workflow (Kluyver et al. 2016). The
Jupyter Notebook—originally an outgrowth of the IPy-
thon project (Pérez and Granger 2007)—is a browser-
based platform for embedding live computational
workflow that can be saved and shared. As described
in Kluyver et al. (2016, p. 88), “Notebooks are designed
to support the workflow of scientific computing, from
interactive exploration to publishing a detailed record
of computation. The code in a notebook is organised

Alderson: Interactive Computing for Accelerated Learning
2 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

into cells, chunks which can be individually modified
and run. The output from each cell appears directly be-
low it and is stored as part of the document.” Although
Jupyter notebooks were originally written solely to sup-
port the IPython interface (e.g., their initial name as
“IPython notebooks” gives rise to their .ipynb file exten-
sion), Kluyver et al. (2016) note that there is now sup-
port for more than 100 backend kernels (Barba et al.
2019), including the popular R programming language
(R Core Team 2019). In fact, the name for Project Jupyter
was inspired in part from three of the most prominent
scientific computing languages today: Julia, Python,
andR, again emphasizing flexibility to supportmultiple
computing environments (Pérez andGranger 2017).

Jupyter notebooks support a variety of rich text
formats, making it easy to integrate formatted text
and images in addition to live code. Specifically, in-
dividual cells can contain hypertext markup lan-
guage (HTML), markdown (Gruber 2004), and La-
TeX. Moreover, Jupyter notebooks can contain both
static and dynamic visualizations generated from
the code they execute. This makes Jupyter note-
books useful for a variety of tasks, ranging from ex-
ploratory learning and rapid prototyping to infor-
mal dashboards and user interfaces.

As of 2018, there were more than two million Jupyter
notebooks on GitHub (Fenner 2018), with some of the
best examples available from an online curated gallery
(Project Jupyter 2020a). Jupyter has become a “de fac-
to standard” not only for scientific computing but also
for data exploration, classroom instruction, tutorials,
and interactive software manuals (Perkel 2018). The
IPython/Jupyter Notebook has even been categorized
as one of “ten computer codes that transformed scien-
ce” (Perkel 2021).

3.2.1. The Rise of “Computational Narratives.” Not
surprisingly, Jupyter notebooks are used for teach-
ing traditional computer science (Zastre 2019), as
well as a number of advanced topics, including
high-performance computing (Glick and Mache
2018); Internet of things, cloud computing, and
blockchain (Rao and Dave 2019); agile development
(Guerra et al. 2019); and artificial intelligence
(O’Hara et al. 2015). Moreover, Jupyter notebooks
are commonly used for teaching computer science
to non-CS students (Smith 2016, Vial and Negoi-
ta 2018).

Perhaps more important, however, “live code, nar-
rative text, and visualizations are all being integrated
together into documents that tell stories using code
and data” (Pérez and Granger 2017). These computa-
tional narratives emphasize the importance of
“programming for specific insight rather than general-
ization” (Pérez and Granger 2017).

3.2.2. Use Cases. It is relatively easy to find articles on
the use of Jupyter notebooks for teaching concepts
across a wide range of application areas, including
physics (Urcelay-Olabarria et al. 2017), engineering
(Cardoso et al. 2018), power systems dynamics and
control (Milano and Jónsdóttir 2018), architecture
(Maestre et al. 2016), optimization in manufacturing
problems (Suárez et al. 2018), and industrial and sys-
tems engineering (Wang et al. 2017). Jupyter notebooks
have even been used to develop written communica-
tion skills related to the organization and presentation
of data and their analysis (Willis et al. 2020).

There also exist a wide variety of materials to sup-
port the adoption and use of Jupyter notebooks for
instruction. These include articles to understand the
basics for how to setup and use Jupyter notebooks in
the classroom (Koehler and Kim 2018), challenges for
developing and delivering courses in data science at
scale (Swamy 2018), support tools such as nbgrader
for automating the process of grading notebooks (Ju-
pyter Project et al. 2019), and cloud computing for
bootcamp-style short courses (Holdgraf et al. 2017).

When teaching nontraditional students (e.g., practi-
tioners in industry), it is important to embed compu-
tation in a workflow that is designed with an analytic
objective in mind, not simply programming for the
sake of programming. For example, Kross and Guo
(2019) interviewed “20 data scientists who teach in a
diverse variety of settings across industry and aca-
demia” and found that a key motivating factor for
their students is the desire to analyze their data; the
study of computation is viewed solely as a means to
an end and engaged somewhat grudgingly.

This need for end-user programming—defined by Ko
et al. (2011, p. 4) as “programming to achieve the re-
sult of a program primarily for personal, rather [than]
public use”—is common across domains of data sci-
ence and analytics. It is particularly acute for military
operations research analysts.

4. Computation at NPS-OR
Students at the Naval Postgraduate School are primar-
ily midcareer military officers with approximately
7–10 years of operational experience beyond their un-
dergraduate degree. Admission to the operations
analysis curriculum requires past experience with
mathematics (at the level of calculus), but typically,
our students have no prior experience with computa-
tion or programming. For those students who have
programmed in the past (e.g., in their undergraduate
degree), we frequently hear that “it was a bad experi-
ence” or that they “didn’t learn very much.” For the
most part, we are starting from scratch.

This lack of computational background for incom-
ing students at NPS is in stark contrast to many

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 3

graduate programs that often require some prior
background in programming as a prerequisite for ad-
mission. In many graduate programs, students have
the flexibility to choose the programming environ-
ment but are left on their own to apply it in the con-
text of their coursework.

By contrast, we cannot assume this background. In-
deed, a major strength of NPS is its ability to bring stu-
dents with little or no prior background up to speed in
a short period of time. The result is a master’s degree
program that runs approximately 24 months in length.
Figure 1 shows the matrix of standard courses taken
by students who pursue the “data analytics track” for
the Master of Science in Operations Research degree.
NPS operates on four 12-week academic terms (called
“quarters”) per year. The program starts with a
“refresher quarter” targeted at students who have
been away from school more than five years (the ma-
jority of our students). Every student is required to
complete a master’s thesis. Depending on where they
are in their career progression, some students are also

required to complete an additional four-course se-
quence in joint professional military education (JPME)
through the Naval War College, which adds an addi-
tional academic term to their residence.

All students in OR degree programs at NPS are cur-
rently required to take a two-quarter sequence in in-
troductory computation. Students in the data analytics
track take additional advanced courses. We describe
the goals, organization, and methods of each.

4.1. Computational Methods for OR, Part I
Students in the first nonrefresher quarter (called “Q1”)
take OA2801: Computational Methods for Operations
Research. This course meets five days per week for
50 minutes per class—four lectures and one laboratory
session perweek—over a period of 11 weeks.

The course is organized around a weekly cycle: lec-
tures Monday through Thursday introduce newmateri-
al that builds toward a laboratory assignment, which is
introduced and started during Friday’s session. The lab-
oratory assignment represents a practical computational

Figure 1. Students Following the “Data Analytics” Track in the Operations Analysis Curriculum at the Naval Postgraduate
School Take Four Courses per 12-Week Term over a Period of Two Years

Notes. Courses in computation are foundational to work in the “pillars” of optimization, statistics, stochastic processes, and simulation. In turn,
these pillars support advanced course work in warfare analysis and data analytics. Every student also completes a master’s thesis.

Alderson: Interactive Computing for Accelerated Learning
4 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

exercise that students complete on their own and submit
for grading the following Wednesday evening. There
are a total of seven laboratory assignments during the
10-week term. The course includes a weekly pencil-and-
paper quiz (typically the first 10 minutes of Thursday’s
class) that is graded but mostly intended to provide
quick feedback on a student’s conceptual understanding
of the material. The course has a midterm examination
(typically around week 6) and a final examination (after
week 10), both of which are traditional pencil-and-paper
exercises.

Because we cannot be certain which computational
environment(s) our student-officers will have in their
work after graduation, we believe it is important that
they have familiarity with a general-purpose program-
ming language. We have used the Python program-
ming language (Python Software Foundation 2020) in
this course since 2012, although previously, we had
been using the Java programming language. As of
2014, Python has become the most popular language
for teaching introductory programming (Guo 2014).

The course integrates live computation in its ses-
sions on a daily basis. Students are required to bring
their laptops to class every day, and after some initial
setup during the first week, each lecture is based on a
daily Jupyter notebook that the instructor and student
execute together during the class session. We require
students to use the same Python installation so that
we maintain a consistency in their experience.

We emphasize from the outset that this is not a pro-
gramming course in Python but rather a course on
solving problems using computation. That is, the em-
phasis is on having students learn how to implement
and analyze basic algorithms relevant to operations
analysis. To do this effectively, a student needs to un-
derstand fundamental trade-offs in representing and
manipulating data on a computer and how these affect
the outcome of any numerical analysis. This includes
both the correctness and efficiency of algorithms. The
goal is to elevate the conversation above the syntax of
“how to do it in Python,” as most concepts are inde-
pendent of the language, and also because in order to
“get the job done,” an analyst will sometimes need to
open up a book and learn a new computing language
and/or environment. Moreover, as an analyst, a grad-
uate of our curriculum will need to be able to use the
computer to produce results that (hopefully) provide
insight into decisions. Ultimately, it is the analyst (not
the computer) who is responsible for any recommen-
dations that are made based on those results. Thus, a
critical skill for the student is to discern if and when to
believe the results that the computer produces. In oth-
er words, the challenge posed to the student is not
merely to get the program to produce output but to
answer the fundamental question: How do you know
if the program “works”?

Figure 2 shows the syllabus for the course as it was
last taught in the first quarter (Q1) of academic year
2021 (the fall of calendar year 2020). The laboratory as-
signments drive the overall pace of instruction and
are carefully selected to integrate into other course-
work. The first assignment starts with the use of com-
puter as a calculator and involves computing great
circle distances and navigation (spherical trigonome-
try). The next labs involve basic numerical recipes for
calculus—specifically, numerical integration and root
finding—and a means for working with loops and
learning about iterative algorithms. By week 4, stu-
dents learn how to open a text file and parse its data,
which enables them to work with real data in comma-
separated value format. When combined with the use
of basic list and dictionary data structures, this also
paves the way to more complicated problems and so-
lution techniques. Each laboratory assignment in-
volves the use of real data sets, typically thousands of
lines each, and these laboratory assignments not only
require them to develop new skills in computation
but also reinforce the idea of computation in support
of some broader analytic question. The progress is
dramatic; in the final laboratory assignment, the stu-
dents implement a recursive stack-based algorithm to
enumerate all possible paths for a multihop aircraft
routing problem.

The ambitious schedule in this course is made possi-
ble only through the daily use of Jupyter notebooks,
both in class and outside of class. In class, the Jupyter
notebook provides a “script” for the computational nar-
rative that is the focus of each session. Students follow
along with the instructor, executing the code together
one cell at a time, and the incremental read-evaluate-
print loop nature of the interaction—the basis of inter-
active programming (see Iverson (1962) and Spence
(1975))— allows the material to build incrementally. In
the spirit of Doumont (2014), the instructor can use a
well-designed notebook to allow the student not only
to see it and to do it but also to discover key concepts in
computation. And because notebook cells can be
added, edited, or rerun on the fly, there is unlimited op-
portunity for improvisation. Student questions can be
addressed with a “let’s try it together” excursion that
reinforces the power of experimentation as a form of
self-learning. Thus, instead of an instructor “lecturing
at the students,” the classroom encounter has been or-
ganized such that the instructor and students are en-
gaging and experiencing the material together.

The use of “live computation” in the classroom is
not novel; discussions about the use of computers in
the classroom go back (at least) to the 1980s (Papert
1990). However, the use of a computer for a live dem-
onstration is challenged by the need for students to (i)
follow along with the syntax prescribed by the instruc-
tor and (ii) correctly type the appropriate syntax and

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 5

commands. The Jupyter notebook removes the need
for students to have to copy down what the instructor
is saying or typing because they already have the script
to follow along. However, the script is flexible enough
so that as questions arise, the instructor and students
can explore new ideas. This encourages students to
“try things” both during and outside of class, and it
creates a platform for self-discovery that is a natural
outgrowth of the classroom experience. In many cases,
students might not know how to discover on their
own. But by doing it together in class, the instructor re-
inforces the idea that “doing computation is not a big
deal” and instead is something that the students can
(and need to) practice daily, both in and out of class.

These Jupyter notebooks also play an important
role outside of class. Because these notebooks are

made available online in advance of each class (this is
important), students can prepare for each session by
exploring these narratives on their own, which helps
them to identify in advance questions that need atten-
tion during class. If the instructor improvises during
the class in response to questions or discussion, his or
her Jupyter notebook also serves as a record of what
was done and can be posted and made available to
the class. Thus, the notebook becomes an important
tool for reviewing material after class, for study, or as
a reference to be revisited in the future.

Just as any other teaching device, Jupyter notebooks
on their own do not automatically create a positive
classroom experience. An instructor that does nothing
more than read aloud what is in the notebook will
quickly have the students rethinking whether there is

Figure 2. OA2801: Computational Methods for Operations Research, as It Was Taught at the Naval Postgraduate School in Q1
AY2021

Alderson: Interactive Computing for Accelerated Learning
6 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

a need to attend class. Instead, the value of attending
class comes from the ability to pivot the discussion in
response to student engagement and questions, in a
manner that students can actually follow.

This first course has a few other features worth not-
ing. For each laboratory assignment, students are
placed in study groups of (typically three) students. Stu-
dents are allowed to collaborate freely with members
of their study group (i.e., they can look at each other’s
code and help with debugging); however, at no point
are they allowed to possess another student’s code, ei-
ther electronically or in printed form (i.e., each student
has to type in their own code in his or her own
“voice”). Study groups are not permitted to collabo-
rate; if a group gets stuck, they can always seek help
from the instructor. In order to minimize groupthink
and maximize the potential for learning from different
approaches and styles, these study groups are as-
signed (at random) by the instructor and change with
each laboratory assignment. Although students can
collaborate on their laboratory assignments, each stu-
dent is required to participate in one-on-one code review
meetings with the instructor at several points during
the course. These short (e.g., 15-minute) meetings are
focused on the most recent laboratory assignment, and
they typically start with the instructor asking, “How
did it go? Tell me what you did.…” These conversa-
tions are intended to be low stress but are incredibly
revealing—within a few minutes, it becomes obvious
how comfortable the student is with the concepts and
practice of computation. By reviewing the assignment
together, the instructor can identify student miscon-
ceptions and provide recommendations for improving
the quality of the written code. It also provides an op-
portunity for the student to ask specific questions that
do not arise in class. These code reviews are a large
time investment—particularly given that there are no
teaching assistants at NPS, so the instructor is doing all
the lecturing, grading, and office hours, among other
things—but this investment always pays dividends in
student learning outcomes, and it typically also makes
it easier to grade the laboratory assignment itself.

At the end of this first course, students are profi-
cient in basic computation in Python using Jupyter
notebooks. However, Jupyter notebooks are not ideal
for all computational tasks. In particular, a complicat-
ed workflow that requires automation should be im-
plemented in the form of a traditional stand-alone
program or script that can be executed from the com-
mand line terminal or within an integrated develop-
ment environment (IDE). Long blocks of code should
be organized in functions that can be debugged once
and then used when needed. All the principles of
good software engineering still apply, and students
are slowly introduced and taught best practices for or-
ganizing and managing their code.

In parallel to this course, the students also use Python
in an introductory probability course (see Figure 1)
to perform computation on applied problems. In the fu-
ture, we hope to similarly integrate the use of computa-
tion into the linear algebra course that is also taken
concurrently.

4.2. Computational Methods for OR, Part II
During the second quarter (Q2), students take the se-
quel course, OA3801: Computational Methods for Op-
erations Research II. This course is also organized
around 50-minute class sessions, but it meets only
four days per week. Rather than being driven by a
weekly laboratory assignment, the course is divided
into modules that delineate key concepts. Laboratory
assignments are used as practical exercises, but there
are fewer of them. The final exam is replaced with a fi-
nal project; however, there are two midterm examina-
tions that are administered as live coding exams.

The exams in this course follow a two-part format
and are implemented using Jupyer notebooks, as fol-
lows. Part 1 of the exam begins at the start of the class
session, whereby students are given access (via the
course website) to a Jupyter notebook and correspond-
ing data file. The notebook contains instructions and
questions for the exam in the form of a computational
narrative. That is, the exam is focused on a particular
data set, and the exam questions require the student to
perform a sequence of computations on the data. Stu-
dents answer the questions in the cells of the notebook
and submit the notebook on the course website at the
end of the hour. This is followed by a second, take-
home portion of the exam. Upon submission of the first
notebook, the students are given access to a second Ju-
pyter notebook that theymust complete outside of class.
This second notebook contains all of the same instruc-
tions and questions as the first notebook, but it typically
includes a few more questions that extend the narrative
and analysis. Students submit the second notebook via
the course website, due by the start of class the next
day. During both the in-class and take-home portions of
the exam, students are given free access to course mate-
rials and online help. The only restriction is that they
are not allowed to interact with another person either
inside or outside the class. The two notebooks are grad-
ed independently for an overall combined score.

The in-class portion of the exam is time constrained
to 50 minutes, and accordingly, it measures the ability
of the student to quickly conceive and engage the
computational task presented. Relatively speaking,
the take-home portion of the exam is not time con-
strained, and it is intended to assess how the student
can perform on his or her own, given ample time. On
the take-home portion, students can (and typically do)
submit responses that differ from what they submit-
ted during the in-class portion.

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 7

These live-coding exams create a learning experi-
ence as well as an opportunity for assessment. Many
students who were comfortable in OA2801 working
on weeklong laboratory assignments in the comfort of
a study group are less comfortable or less capable
when having to work on their own in a timed environ-
ment. However, history shows that students learn a
tremendous amount from this first experience and
adapt for the second exam. Most students who strug-
gle on the first midterm exam show dramatic improve-
ment and often excel on the second midterm exam.

In terms of its content, this second course continues
to focus on representation and analysis of data using
algorithms and data structures; however, it additional-
ly introduces the basics of object-oriented program-
ming and software design, and it focuses on student
proficiency for manipulating and visualizing data.
Figure 3 shows the syllabus for the course as it is
taught in Q2 of academic year 2021 (the winter of cal-
endar year 2021). The first module of the course focuses

on Python classes and how they work. The goal is for
students to understand how to create their own
“customized containers” for data when needed, as well
as to understand more deeply how Python works. The
second module introduces the NumPy library
(Oliphant 2006) and the notion of vectorized computa-
tion, with considerable time dedicated to introducing
and practicing the use of pandas (McKinney 2010) for
large-scale data analysis. The third module is dedicated
to collecting and manipulating data commonly found
on the internet, including web scraping of HTML pa-
ges, eXtensible Markup Language (XML), and Java-
script Object Notation (JSON). The fourth module ex-
poses students to the rapidly expanding suite of
Python-based visualization tools now freely available.

In lieu of a final examination, this course has a final
project. Students self-select into teams (approximately
three students each) and execute a project of their own
choosing. The requirements are that the project in-
volves (1) using a real data set obtained on the internet;

Figure 3. OA3801: Computational Methods for Operations Research II, as It Was Taught at the Naval Postgraduate School in
Q2 AY2021

Alderson: Interactive Computing for Accelerated Learning
8 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

(2) using the tools from the course to represent, manip-
ulate, and analyze the data; and (3) visualizing the re-
sults in a manner that provides insight into a question
of interest. Student teams present their project in class
during the last week of the term, and they submit a
short executive summary of their findings along with
their source code and data. The objective is to integrate
their computational thinking and doing into a practical
exercise that can be shared with the class and whereby
everyone learns from the collective experience.

In parallel to this course, the students are involved
in two other courses making significant use of compu-
tation (again, see Figure 1). In OA3201: Linear Pro-
gramming, students use the Python-based pyomo
module (Hart et al. 2011, 2017) to formulate and solve
mathematical programs. In OA3102: Statistics, stu-
dents are introduced to the R programming language
(R Core Team 2019), which is used throughout the sta-
tistics sequence of courses. In general, students learn
both Python and R in the NPS-OR curricula. There is
some support and coordination for the introduction
and use of R in OA3801; in particular, Jupyter note-
books can also be used with R and provide the same
opportunity for accelerated learning as with Python.

4.3. Advanced Courses in Data Analytics
Computation pervades all courses in the NPS-OR cur-
riculum. However, students in the data analytics track
take two specific courses in advanced computation.

The course OA3802: Computational Methods for
Data Analytics is also module and project based, with
a few significant differences. There is an emphasis on
working with very large data sets both on customized
high-performance computing systems and in cloud-
based environments (e.g., Amazon Web Services). The
course uses both Python and R to support computa-
tion, with an emphasis on seeing the pros and cons of
each for individual tasks. In general, students get to
choose which of these computational environments
they use for each assignment. Moreover, student work
requires more self-study and discovery to work
through challenges common to data in the real world.

As a final capstone, students pursuing the data ana-
lytics track also take the course OA4820: Case Studies
in Applied Defense Analytics, in which they are orga-
nized into teams and work with a real sponsor on a
real problem using real data over the span of an
11-week period. They iterate with the sponsor on a
weekly basis, rapidly prototyping a specific analytic
tool in the spirit of lean software development (e.g.,
Poppendieck and Poppendieck 2003), ultimately de-
livering a functional tool by the end of the term.

4.4. Short Courses in Computation
There is a real and ongoing need among practitioners
to refresh, update, or expand their computational skills.

Many of the computational tools and libraries that are
the mainstay of data analytics did not exist as little as 5
or 10 years ago. Although there are now a large number
of online courses, both for fee and free, it is often un-
clear which of these will be most beneficial. As a result,
there is a rise in demand for short bootcamp-style
courses in computation. Within the last 18 months, the
author has delivered short courses in computation for
the U.S. Naval Academy, U.S. Naval Warfare Centers
(laboratories), and the U.S. Marine Corps, as well as
tutorial sessions at conferences sponsored by both
INFORMS and the Military Operations Research Socie-
ty (MORS). Although short-course instruction is not a
primary mission for NPS, there is growing demand for
this type of career-long learningwithin both the civilian
andmilitary workforces.

These short courses have all been delivered using
Jupyter notebooks, and all the advantages of note-
books for accelerated learning in traditional residen-
tial courses hold (and are even more important) in
these limited encounters. However, there is one key
difference in the delivery of these short courses. It of-
ten takes a few hours to get a room of students set up
with a local Python installation (assuming that all stu-
dents have administrator privileges), and this is typi-
cally too much time to lose in a short course. Rather,
we often use a cloud-based computing environment
such as CoCalc (a paid service designed for instruc-
tion; see https://cocalc.com) or Google Colaboratory
(a free service; see https://colab.research.google.com).
These services allow the user to run a Jupyter note-
book in a web browser, but instead of running the
notebook on the local machine, the notebook is hosted
on a server in the cloud.

4.5. Instructional Changes During COVID-19
Along with the rest of the world, NPS moved to strict-
ly online instruction in March 2019 to limit the spread
of the novel coronavirus. As a school, NPS is subject
to restrictions imposed by the Department of the
Navy and the State of California. Over the last year,
there have been two complete iterations of the intro-
ductory OA2801–OA3801 sequence. For the most part,
these courses did not need to change substantially. Be-
cause our use of Jupyter notebooks already had stu-
dents following along on their own computers, the
transition to an online interactive format (via Zoom)
was relatively straightforward. Lectures remained
largely the same and were recorded for those who
were unable to attend or wanted to rewatch a lesson.
Exams were administered via the course website, and
they made use of Jupyter notebooks. Student meetings
and presentations occurred online.

The most significant impact resulting from the online
format was the reduction in (or lack of) direct student
interaction. The usual opportunities for in-residence

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 9

https://cocalc.com
https://colab.research.google.com

students to interact informally in the few minutes be-
tween classes, walking across campus, at lunch, or in
the library largely disappeared. Students have access to
videoconferencing or social media platforms, but syn-
chronous interaction often requires explicit coordina-
tion and possibly a scheduled appointment. In a time of
“toomany Zoom calls,”much of this interaction simply
stopped. Moreover, the majority of our students fall
into one of two categories: either they have young fami-
lies that require their attention at home or they are
young and single and often living alone. Both situa-
tions create additional challenges for long-term remote
learning.

Overall, this lack of interaction has hurt the weaker
students disproportionately. Whereas the stronger
student can often manage the academic burden of in-
creased self-study, the weaker student often struggles.
In particular, our faculty did not fully appreciate the
extent to which the weaker students are supported by
a variety of mechanisms associated with being on
campus. Indeed, the ethos of “leaving no person
behind” is strong within our student body, but the
lack of direct interaction limits the extent to which the
group can support itself.

One significant change in the introductory OA2801
course was to replace one lecture a week with a
“practicum” session devoted to student team work.
Specifically, on Thursday each week, the students are
divided into study groups and given the task of navi-
gating a lesson together via a Jupyter notebook filled
with code examples intended to stimulate self-
discovery and practice. Students are required to sub-
mit the practice problems in order to receive a solution
set, but these problems are not graded. The study
groups remain the same for the practicum and labora-
tory sessions that week, giving the students a bit more
time together. Initial feedback suggests that this is a
welcome change and one that is likely to be continued
when in-residence instruction resumes.

5. Assessment
An understanding of what and how to teach when it
comes to computational thinking and doing is only
one part of the puzzle. An ongoing challenge is to un-
derstand “how will we know if we have succeeded?”
(e.g., Brown 2004).

Measuring success in the delivery of education for
computational thinking has unresolved issues. Zhong
et al. (2016) provide recent reviews on the challenges
associated with assessing the effectiveness and out-
comes for teaching computational thinking in K–12
education. As noted by Denning (2017), part of this
challenge is because ongoing efforts to educate stu-
dents in CT still suffer from vague definitions, a lack
of effective assessment techniques, and overreaching

claims that everyone needs to learn CT. More prag-
matically, he argues that our focus should remain on
“making educational offers that help people learn to
be more effective in their own domains through
computation” (Denning 2017, p. 39). That is precisely
what we are doing—making military operations re-
search analysts more effective at addressing real-
world problems through the use of computation.

Since 2012, there have been a total of 593 students
who have taken OA2801 and 270 students who have
taken OA3801. On the surface, the success of these
courses is evident in the increased computational pro-
ficiency of the students in their downstream courses
and thesis research; as a whole, they go “farther and
faster” in computation than at any point previously.

In this section, we present some quantitative evi-
dence of improvement in learning outcomes during the
author’s tenure, a period that spans approximately 15
years. The evidence comes in three forms: (1) student
course evaluations required by NPS at the end of every
term, (2) a direct survey of the most recent cohort of
students to take these courses, and (3) unsolicited feed-
back from senior students and recent graduates.

5.1. Student Course Evaluations
The computation courses at NPS-OR undergo contin-
uous change (and hopefully, improvement) as part of
the routine business of graduate instruction. Course
evaluations are required from every student for every
course, and the results are stored and available for fu-
ture use. Course evaluations are standardized—the
same questions are asked for every course—however,
there was a change in these questions in 2018. Because
graduate instruction is a primary mission for NPS,
teaching evaluations and student feedback are taken
seriously and considered explicitly in promotion and
tenure processes.

For analysis, the author reviewed student evalua-
tions for 24 courses taught between 2007 and 2021; by
coincidence, these were split 50/50 across OA2801
and OA3801. Table 1 shows five representative ques-
tions from course evaluations that were specifically
considered in this analysis. The intent in selecting
these questions was to understand the use of time in
the classroom and effectiveness in allowing students
to engage the material.

The responses to these questions follow typical sen-
timent analysis and use a Likert scale with rank order
(Likert 1932). Specifically, students can select one of
the following: (1) strongly disagree, (2) disagree, (3)
neutral/no opinion, (4) agree, or (5) strongly agree.
Figure 4 shows the results of these student surveys for
the questions in Table 1 during three discrete periods.
We use a diverging stacked bar chart, which is com-
monly believed to be most useful for this type of
data. Figure 4(a) and 4(b) shows the responses to the

Alderson: Interactive Computing for Accelerated Learning
10 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

questions in Table 1 (left) during the period 2011–2012,
when the Python programming language was first in-
troduced into these courses. Figure 4(c) and 4(d), shows
the responses to the questions in Table 1 (left) during
the period 2017–2018, after the courses had been rede-
signed around the use of Jupyter notebooks. Figure 4(e)
and 4(f), shows the responses to the questions in Table
1 (right) as they were last taught this year, as in Figures
2 and 3, respectively.

Overall, the results in Figure 4 show an improve-
ment in course outcomes as recorded in student course
evaluations. The number of responses that select
“disagree” or “strongly disagree” are reduced, and the

number of responses for “strongly agree” are in-
creased. In the most recent instantiation of these
courses (Figure 4(e) and 4(f)), nearly all respondents se-
lected “agree” or “strongly agree” for these questions.

The results in Figure 4 need to be viewed with a
healthy dose of caution. No two iterations of a course
were ever the same; the material covered and prob-
lems changed over time, as did the order and depth of
some lessons. Additionally, the background and abili-
ty of the students is not the same from one cohort to
the next. Even when we have two subsequent cohorts
of similar ability, over time, we tend to ask them to do
more in their coursework and research. Moreover, the

Table 1. Five Relevant Questions on NPS Course Evaluations Prior to (Left) and Since (Right) January 1, 2018

NPS student opinion form questions (prior to Jan 1, 2018) NPS course evaluation form questions (since Jan 1, 2018)

Q2. Time in class was spent effectively. Q1.1. I developed new skills and abilities.
Q4. Difficult concepts were made understandable. Q1.2. I improved my understanding of the subject.
Q9. The instructor made the course a worthwhile

learning experience.
Q1.5. Overall, I learned a great deal.

Q10. The instructor stimulated my interest in the subject area. Q2.1. The course material engaged me in the subject matter.
Q13. Overall, I would rate this course: … Q3.1. The instructor created a productive classroom environment.

Figure 4. Progression of Student Course Evaluations for Computation Courses over the Last Decade

Notes. Raw counts of responses to questions from Table 1 demonstrate some improvement over three time periods. Panels (a) and (b) show re-
sults during the period when the Python programming language was first introduced into these courses. Panels (c) and (d) show results after the
courses had been redesigned around the use of Jupyter notebooks. Panels (e) and (f) show the results for the most recent delivery of these
courses. Figures created in Python are based on code developed by Bart (2018).

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 11

questions in the two columns of Table 1 (showing
evaluations before 2018 and from 2018 onward) do
not directly correspond one to one with each other,
making most recent assessments not directly compa-
rable with those in the past. In summary, although we
see qualitative evidence of improvement for course
outcomes that coincides with our use of the Jupyter
notebook (among other things), the ongoing evolution
of these courses was not designed as a scientific exper-
iment, and therefore the extent to which we can statis-
tically prove significance (e.g., with a t-test) is limited.

5.2. Survey of Recent Students
As a second form of evaluation, we surveyed students
who most recently completed the OA2801 and
OA3801 sequence of courses this year. A total of 39
students completed these courses; however, only 27 of
them completed a voluntary (and anonymous) survey
intended to serve as feedback to improve the experi-
ence and outcomes for future students.

Figure 5 shows responses to questions about the
self-assessed ability of students to perform computa-
tional tasks both before and after taking OA2801. The
computational tasks in the questions are taken directly
from the stated learning objectives for the course. The
dramatic improvement in responses serves as evi-
dence of the effectiveness of the overall course design
and method of instruction.

Figure 6 shows responses to questions about the self-
assessed ability of students to perform computational
tasks after taking OA3801 (the end of the introductory
computation sequence). These questions are targeted at
the confidence and ability of students to both “think
computationally” and “do computationally” in their
downstream courses and thesis. Again, the overall re-
sponses demonstrate successful outcomes for this se-
quence of instruction.

In addition, we asked these students the following
question: “Looking across both OA2801 and OA3801,
how important were [individually named] elements
to helping me learn?” with possible responses of (1)
distracting, (2) not useful, (3) neutral, (4) useful, and
(5) essential. The top five responses among the 27
completed surveys were the following:

• Jupyter notebooks: essential (96.3%) and useful
(3.7%)

•Direct instructor engagement: essential (77.8%) and
useful (22.2%)

• Laboratory assignments: essential (77.8%), useful
(14.8%), neutral (0%), not useful (3.7%), and distracting
(3.7%)

• Organization of the course website: essential
(70.4%), useful (25.9%), and neutral (3.7%)

• Official online Python documentation: essential
(66.7%), useful (25.9%), neutral (3.7%), and not useful
(3.7%)

It is clear that Jupyter notebooks are an important
component of this learning progression.

5.3. Anecdotal Evidence from the Force
The final source of evidence is purely anecdotal and
comes from unsolicited responses or correspondence
that instructors receive from current or past students.
Much of this feedback tends to be verbally communi-
cated, but sometimes, students will take the time to
write their thoughts, which is always appreciated.
One such quote was recently received from a soon-to-
graduate student:

[W]orking on my thesis over the past two months, I
have realized that all of the steps I have needed to
take have practically been a large comp methods lab.
A ton of data cleaning, merging dataframes, convert-
ing to dictionaries, looping through requirements of
those dictionaries, etc., etc. It has been a hefty task,
but there has never been a question of me not know-
ing what needed to be done thanks to what I had
learned during Comp Methods.

But by far, the most powerful and rewarding feed-
back comes from our graduates who have returned to
the Force and are working as analysts in support of
real operations. The following message was received
in summer 2020 from an officer who had graduated
one year earlier and took the time to write about his
first assignment after NPS:

It’s been a huge learning experience for me to say the
least. I was originally slated just to serve as an ana-
lyst, but the deputy director billet was gapped so
I was asked to double fill both roles for my time
here.…While I’m still pretty green with the roles, the
biggest shock when coming into the workplace was
how important speed was to how we do things and
deliver products. As an analytics and business intelli-
gence group, we don’t typically find ourselves doing
a lot of incredibly deep analysis, but it blew my mind
(and continues to blow my mind) at how much speed
plays into things and how it differentiates us. One of
our main functions is to support the operations de-
partment and that is a train that never stops moving,
sir. It constantly reminds me of the Comp Methods II
midterm where we had the live coding portion. I re-
member we all laughed thinking we would never
code against a clock. I kid you not when I say that
most days when I log into work, my job feels like that
Comp Methods II midterm.

Such correspondence instills additional confidence
that we are on the right track, although more work
remains.

6. Summary and Conclusion
This paper describes ongoing work at the Naval Post-
graduate School to develop and deliver accelerated
learning in computation to students who do not have

Alderson: Interactive Computing for Accelerated Learning
12 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

a prior background. A key principle underlying this
pedagogy is the need to immerse students in interac-
tive computing exercises both inside and outside of
class. This interaction is currently achieved using web
browser-based Jupyter notebooks. These notebooks
create an encounter that allows the students to active-
ly explore and discover key principles of computation
while developing their practical skills. In so doing,
students at NPS learn not only to “think
computationally” but also “do computationally.”

The pace of development within the scientific com-
puting community continues at breakneck speed.

Computing libraries and tools that are now consid-
ered standard did not exist as little as three to five
years ago. This means that our coursework and curric-
ulum must continue to evolve; in practice, we are
making significant changes to our courses on a yearly
basis. Many of these changes originate with our spon-
sored research projects that require innovation in the
use of these tools—this is graduate education as it
ought to be.

Meanwhile, the Jupyter Project itself continues to
advance with the introduction of JupyterLab, a new
web-based interface that allows the user to combine

Figure 5. Self-Assessment of Learning Outcomes in OA2801

Notes. The questions administered in this survey come directly from the course objectives. Overall, there is a dramatic improvement in student
ability after taking this course.

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 13

and arrange individual components (including the Ju-
pyter Notebook, terminal windows, text editors, and
more) in a flexible manner (Project Jupyter 2020b). In
JupyterLab, a user can customize his or her workflow
for developing and executing codes in a manner that
is similar to that supported in modern IDEs, such as
RStudio (RStudio Team 2015). Understanding how
best to use these and other tools for computational do-
ing remains a source of ongoing experimentation.

Acknowledgments
The techniques and best practices described here are the
result of considerable experimentation and collaboration
on the part of many colleagues at the Naval Postgraduate
School, notably Jon Alt, Matt Carlyle, Sam Huddleston,
Jeff Hyink, Matt Norton, and Ross Schuchard.

References
Barba LA, Barker LJ, Blank DS, Brown J, Downey AB, George T,

Heagy LJ, et al. (2019) Teaching and Learning with Jupyter. Ac-
cessed February 21, 2020, https://jupyter4edu.github.io/
jupyter-edu-book/.

Barr V, Stephenson C (2011) Bringing computational thinking to K-
12: What is involved and what is the role of the computer sci-
ence education community? ACM Inroads 2(1):48–54.

Bart AC (2018) Answer to “Create a diverging stacked bar
chart in matplotlib.” Stack Overflow (forum), December 29,
2016, edited June 21, 2018, https://stackoverflow.com/a/
41384812.

Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR
(1956) Taxonomy of Educational Objectives: The Classification of Ed-
ucational Goals—Handbook I: Cognitive Domain (David McKay
Company, New York).

Brown GG (2004) How to write about operations research. Phalanx
37(3):7–13.

Cardoso A, Leitão J, Teixeira C (2018) Using the Jupyter notebook
as a tool to support the teaching and learning processes in engi-
neering courses. Auer M, Tsiatsos T, eds. Proc. 21st Internat.
Conf. Interactive Collaborative Learn. (Springer, Cham, Switzer-
land), 227–236.

Denning PJ (2002) Career redux. Comm. ACM 45(9):21–26.
Denning PJ (2009) The profession of IT beyond computational think-

ing. Comm. ACM 52(6):28–30.
Denning PJ (2017) Remaining trouble spots with computational

thinking. Comm. ACM 60(6):33–39.
Doumont J (2004) Teaching is not learning: How to make students

learn. Presentation at the California Institute of Technology,
Pasadena, CA.

Doumont J, ed. (2010) English Communication for Scientists (NPG Ed-
ucation, Cambridge, MA).

Doumont J (2014) Teaching is not learning: Going beyond the tradi-
tional lecture. Presentation at the Chicago Center for Teaching,
September 25, University of Chicago, Chicago. YouTube video,

Figure 6. Self-Assessment of Computational Ability at the End of the OA2801–OA3801 Sequence

Note. Students report positive outcomes in their ability to think computationally and do computationally.

Alderson: Interactive Computing for Accelerated Learning
14 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

https://jupyter4edu.github.io/jupyter-edu-book/
https://jupyter4edu.github.io/jupyter-edu-book/
https://stackoverflow.com/a/41384812
https://stackoverflow.com/a/41384812

1:29:05, posted October 9, 2014, by UChicago CCT, https://
youtu.be/07QxQRl1viI.

Fenner M (2018) Fernando Pérez and the Project Jupyter Team hon-
ored with 2017 ACM Software System Award. Berkeley Institute
for Data Science News (April 24), https://bids.berkeley.edu/
news/perez-project-jupyter-2017-acm-software-system-award.

Glick B, Mache J (2018) Using Jupyter notebooks to learn high-
performance computing. J. Comput. Sci. Colleges 34(1):180–188.

Grover S, Pea R (2013) Computational thinking in K–12: A review
of the state of the field. Ed. Res. 42(1):38–43.

Gruber J (2004) Markdown project page. Accessed February 17,
2020, https://daringfireball.net/projects/markdown/.

Guerra H, Gomes LM, Cardoso A (2019) Agile approach to a CS2-
based course using the Jupyter notebook in laboratory classes.
Cardoso A, Restivo MT, eds. 2019 5th Experiment Internat.
Conf. (IEEE, Piscataway, NJ), 177–182.

Guo P (2014) Python is now the most popular introductory teaching
language at top U.S. universities. Comm. ACM (blog), July 7,
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-u-s-
universities/fulltext.

Hardin JR, Holder A, Beck JC, Furman K, Hanna A, Rader D, Rego
C (2012) Recommendations for an undergraduate curriculum at
the interface of operations research and computer science. IN-
FORMS Trans. Ed. 12(3):117–123.

Hart WE, Watson J-P, Woodruff DL (2011) Pyomo: Modeling and
solving mathematical programs in Python. Math. Programming
Comput. 3(3):219–260.

Hart WE, Laird CD, Watson J-P, Woodruff DL, Hackebeil GA, Nich-
olson BL, Siirola JD (2017) Pyomo—Optimization Modeling in Py-
thon, 2nd ed. (Springer Science & Business Media, New York).

Hoffman RR (1998) How can expertise be defined? Implications of
research from cognitive psychology. Williams R, Faulkner W,
Fleck J, eds. Exploring Expertise (Palgrave Macmillan, London),
81–100.

Holdgraf C, Culich A, Rokem A, Deniz F, Alegro M, Ushizima D
(2017) Portable learning environments for hands-on computa-
tional instruction: Using container-and cloud-based technology
to teach data science. Proc. Practice Experience Adv. Res. Com-
put. 2017 Sustainability, Success Impact (ACM, New York),
Article 32.

Iverson K (1962) A Programming Language (John Wiley & Sons, New
York).

Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M,
Frederic J, Kelley K, et al. (2016) Jupyter notebooks—A publish-
ing format for reproducible computational workflows. Loizides
F, Schmidt B, eds. Positioning and Power in Academic Publishing:
Players, Agents and Agendas (IOS Press, Amsterdam), 87–90.

Ko AJ, Abraham R, Beckwith L, Blackwell A, Burnett M, Erwig M,
Scaffidi C, et al. (2011) The state of the art in end-user software
engineering. ACM Comput. Surveys 43(3):1–44.

Koehler JF, Kim S (2018) Interactive classrooms with Jupyter and
Python. Math. Teacher 111(4):304–308.

Krathwohl DR (2002) A revision of Bloom's taxonomy: An over-
view. Theory Into Practice 41(4):212–218.

Kross S, Guo PJ (2019) Practitioners teaching data science in indus-
try and academia: Expectations, workflows, and challenges.
Proc. 2019 CHI Conf. Human Factors Comput. Systems (ACM,
New York).

Likert R (1932) A technique for the measurement of attitudes. Arch.
Psych. 22(140):1–55.

Lye SY, Koh JHL (2014) Review on teaching and learning of compu-
tational thinking through programming: What is next for K-12?
Comput. Human Behav. 41(December):51–61.

Maestre CR, Gregori FA, López MP, Aldeguer RR (2016) Jupyter
Notebook: Theory and practice of mathematical models in engi-
neering and architecture. Gómez Chova L, López Mart́ınez A,

Candel Torres I, eds. Proc. 9th Annual Internat. Conf. Ed. Res. In-
novation (IATED, Valencia, Spain), 6523–6530.

McKinney W (2010) Data structures for statistical computing in Py-
thon. van der Walt S, Millman J, eds. Proc. 9th Python Sci. Conf.
(Austin, TX), 56–61.

McNamara A (2016) On the state of computing in statistics educa-
tion: Tools for learning and for doing. Preprint, submitted Octo-
ber 1, https://arxiv.org/abs/1610.00984.

Milano F, Jónsdóttir GM (2018) Jupyter notebooks for computer-
based laboratories on power system dynamics and control.
Gómez Chova L, López Martı́nez A, Candel Torres I, eds. 10th
Internat. Conf. Ed. New Learn. Tech. (EDULEARN 2018) Proc.
(IATED, Valencia, Spain), 112–121.

National Research Council (2010) Report of a Workshop on the Scope
and Nature of Computational Thinking (National Academies Press,
Washington, DC).

National Research Council (2011) Report of a Workshop on the Peda-
gogical Aspects of Computational Thinking (National Academies
Press, Washington, DC).

O’Hara K, Blank D, Marshall J (2015) Computational notebooks for
AI education. Russell I, Eberle W, eds. Proc. 28th Internat. Florida
Artificial Intelligence Res. Soc. Conf. (Association for the Advance-
ment of Artificial Intelligence, Menlo Park, CA), 263–268.

Oliphant TE (2006) A Guide to NumPy, vol. 1 (Trelgol Publishing
USA, Austin, TX).

Papert S (1990) A critique of technocentrism in thinking about the
school of the future. Accessed January 23, 2020, http://www.
papert.org/articles/ACritiqueofTechnocentrism.html.

Pérez F, Granger BE (2007) IPython: A system for interactive scien-
tific computing. Comput. Sci. Engrg. 9(3):21–29.

Pérez F, Granger B (2017) The state of Jupyter: How Project Jupyter
got here and where we are headed. O’Reilly Ideas (January 26),
https://www.oreilly.com/radar/the-state-of-jupyter/.

Perkel JM (2018) Why Jupyter is data scientists’ computational note-
book of choice. Nature 563(7732):145–147.

Perkel JM (2021) Ten computer codes that transformed science. Na-
ture 589(7842):344–348.

Poppendieck M, Poppendieck T (2003) Lean Software Development:
An Agile Toolkit (Addison-Wesley, Boston).

Project Jupyter (2020a) A gallery of interesting Jupyter Notebooks.
Accessed January 20, 2020, https://github.com/jupyter/
jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks.

Project Jupyter (2020b) Jupyter Project home page. Accessed January
27, 2020, https://jupyter.org/.

Project Jupyter, Blank DS, Bourgin D, Brown A, Bussonnier M,
Frederic J, Granger B, et al. (2019) nbgrader: A tool for creating
and grading assignments in the Jupyter notebook. J. Open
Source Ed. 2(11):32.

Python Software Foundation (2020) Python programming language.
Accessed September 20, 2021, www.python.org.

Rao AR, Dave R (2019) Developing hands-on laboratory exercises
for teaching stem students the Internet-of-things, cloud comput-
ing and blockchain applications. 2019 IEEE Integrated STEM Ed.
Conf. (IEEE, Piscataway, NJ), 191–198.

R Core Team (2019) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
https://www.R-project.org.

RStudio Team (2015) RStudio: Integrated development environment
for R. RStudio, Inc., Boston, http://www.rstudio.com/.

Smith AA (2016) Teaching computer science to biologists and chem-
ists, using Jupyter notebooks: Tutorial presentation. J. Comput.
Sci. Colleges 32(1):126–128.

Spence R (1975) APL demonstration 1975. YouTube video, 27:59,
posted July 12, 2013, by Imperial College London, https://
www.youtube.com/watch?v=_DTpQ4Kk2wA.

Suárez A, Alvarez-Feijoo MA, Fernandez Gonzalez R, Arce E (2018)
Teaching optimization of manufacturing problems via code

Alderson: Interactive Computing for Accelerated Learning
INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS 15

https://youtu.be/07QxQRl1viI
https://youtu.be/07QxQRl1viI
https://bids.berkeley.edu/news/perez-project-jupyter-2017-acm-software-system-award
https://bids.berkeley.edu/news/perez-project-jupyter-2017-acm-software-system-award
https://daringfireball.net/projects/markdown/
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://arxiv.org/abs/1610.00984
http://www.papert.org/articles/ACritiqueofTechnocentrism.html
http://www.papert.org/articles/ACritiqueofTechnocentrism.html
https://www.oreilly.com/radar/the-state-of-jupyter/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://jupyter.org/
http://www.python.org
https://www.R-project.org
http://www.rstudio.com/
https://www.youtube.com/watch?v&hx003D;_DTpQ4Kk2wA
https://www.youtube.com/watch?v&hx003D;_DTpQ4Kk2wA

components of a Jupyter notebook. Comput. Appl. Engrg. Ed. 26
(5):1102–1110.

Swamy V (2018) Pedagogy, infrastructure, and analytics for data sci-
ence education at scale. Technical Report UCB/EECS-2018-81,
Electrical Engineering and Computer Sciences Department,
University of California, Berkeley, Berkeley. https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html.

Urcelay-Olabarria I, Lazkoz R, Urrestilla J, Leonardo A, Igartua JM
(2017) Jupyter Notebook as the physics experimental laboratory’s
logbook—First approach. Escudeiro P, Costagliola G, Zvacek S,
Uhomoibhi J, McLaren BM, eds. Proc. 9th Internat. Conf. Comput.
Supported Ed.—Vol. 1: CSEDU (SciTePress, Setúbal, Portugal),
458–463. http://dx.doi.org/10.5220/0006352104580463.

Vial G, Negoita B (2018) Teaching programming to non-programmers:
The case of Python and Jupyter notebooks. Ram S, Rosemann M,
Pries-Heje J, eds. Proc. 39th Internat. Conf. Inform. Systems, vol. 4
(CurranAssociates, RedHook, NY), 2832–2848.

Wang Y, Hill KJ, Foley EC (2017) Computer programming with
Python for industrial and systems engineers: Perspectives
from an instructor and students. Comput. Appl. Engrg. Ed. 25
(5):800–811.

Willis A, Charlton P, Hirst T (2020) Developing students’ writ-
ten communication skills with Jupyter notebooks. Proc. 51st
ACM Tech. Sympos. Comput. Sci. Ed. (ACM, New York),
1089–1095.

Wing JM (2006) Computational thinking. Comm. ACM 49(3):33–35.
Wing JM (2008) Computational thinking and thinking about com-

puting. Philos. Trans. Roy. Soc. A 366(1881):3717–3725.
Zastre M (2019) Jupyter Notebook in CS1: An experience report. Ste-

phenson B, ed. Proc. Western Canadian Conf. Comput. Ed. (ACM,
New York), 1–6.

Zhong B, Wang Q, Chen J, Li Y (2016) An exploration of three-
dimensional integrated assessment for computational thinking.
J. Ed. Comput. Res. 53(4):562–590.

Alderson: Interactive Computing for Accelerated Learning
16 INFORMS Transactions on Education, Articles in Advance, pp. 1–16, © 2021 INFORMS

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html
http://dx.doi.org/10.5220/0006352104580463

	s1
	s2
	s3
	s3A
	s3B
	s3B1
	s3B2
	s4
	s4A
	s4B
	s4C
	s4D
	s4E
	s5
	s5A
	s5B
	s5C
	s6

