Jeffrey G. Long and Dorothy E. Denning

Ultra-Structure: A Design Theory for
Complex Systems and Processes

he physicist and Nobel laureate Ilya Prigogine states that “our under-
standing of nature is undergoing a radical change toward the multiple,
the temporal, and the complex. Curiously, the unexpected complexity
found in nature has not led to a slowdown in the progress of science,
but on the contrary to the emergence of new conceptual structures
that now appear as essential to our understanding of the physical
world” [11]. We believe the challenges posed by complex systems arise
primarily from the use of conceptual structures that worked well for
static systems but do not work as well for more dynamic systems. We
therefore propose new conceptual structures based on a different
metaphysical view of the nature of complex systems.

In this article we use the word system to denote a system in the real
world (for example, a corporation, a biological system, a legal system),
and application to denote the representation of a system. Object and
entity are used interchangeably, and may refer to an object, classifica-
tions of objects, or relationships between objects.

Current approaches to complexity presume an ontology of objects
and relationships, sometimes explicitly including processes and, in sci-
ence, sometimes explicitly including observers. They represent these
in various ways. Objects and their relationships are usually declared
in data. Procedural aspects rarely are, and instead are encoded as
software with certain branching point values (parameters) possibly
defined as data. Semantic, hypersemantic, object-oriented, and func-
tional conceptual data modeling approaches are evolving to represent
“business knowledge” such as heuristic rules and temporal characteris-
tics of objects as data [7, 10]. We agree that far more information
about a system can usefully be represented in data rather than in soft-
ware, but believe there is a fundamental need to identify new concep-
tual structures that are more stable than objects, relationships, rules,
or processes and are therefore more appropriate as the basis for rep-
resenting and comprehending complex systems,

Ultra-Structure is a general theory regarding the improved represen-
tation of complex rules. It was originally derived from the linguist
Noam Chomsky’s work on transformational grammar. In applyving
Chomsky’s theory over the past nine years to businesses and other
complex systems, we have substantially modified his theory. Ultra-
Structure is based on two key hypotheses:

1) The Ruleform Hypothesis: Complex system structures and behaviors
are generated by not-necessarily-complex processes; these processes
are generated by the animation of operating rules. Operating rules
can be grouped into a small number of classes, whose form is pre-
scribed by ruleforms. While the operating rules of a system change over
time, the ruleforms remain constant. A well-designed collection of
ruleforms can anticipate all logically possible operating rules rhat

COMMUNICATIONS OF THE ACM [anuary 1995/Vol 38, No. | Io!

ULTRA-Structure

might apply to the system and
constitutes the deep structure of

the system.
2) The CORE Hypothesis: There exist
complex operating rule engines, o
COREs, consisting of <

0 ruleforms,

that are sufhicient

rules found among systems sharing

to represent all

broad family resemblances, for exam-
ple. all corporations. Their definifive
deep structure will be permanent, un-
changing, and robust for all members
of the family, whose differences in
manifest structures and behaviors will
be represented entirely as differences
in operating rules. The animation
procedures for each engine will be
relatively simple compared to current
applications, less than
100,000
generation language.

requiring

lines of code n a third

Ultra-Structure notes that the ob-
jects, relationships among objects,
and processes that we see manifested
by complex systems are evanescent
and that even the rules that generate
these objects, relationships, and pro-
cesses are subject to ongoing change.
To design for change, we can specihy
only ruleforms and their associated
animation procedures, as only these
are stable and fundamental. These
can be implemented as relational ta-
bles and ordinary software, respec-
tively. Instances of operating rules
are defined via relations (records)
within those tables, with each record
defining one rule or part of one rule.
Representing the operating rules of a
system as data leads to a different and
more maintainable structuring of the
information: an application can be
reconfigured by changing data (the
than
changing the software or table struc-

records of the tables) rather
tures. And only a relatively small
number of animation procedures are
required.

Ultra-Structure has been applied
to create several applications in real
business organizations. Order entry,
inventory, billing, cash application,
and other applications have been
implemented and maintained for

vears, and their metrics—both finan-

cial and computational—appear to

be quite favorable compared to cur-
rent approaches. It appears that ap-

nlications that would normally re-

quire tens of thousands ol records
and several million lines ol code can
be implemented with tens of thou-
sands of records and tens ol thou-
sands of lines of relatively unchang-
ing code.

In addition to presenting the basi
concepts of Ultra-Structure, this arti-
cle llustrates how a moderately
thorny business requirement. namely
customer billing, can be represented
as ruleforms and animation proce-
dures. However, it is beyond the
scope of this artcle to describe the
complete deep structure of business

or any other system.

Ultra-Structure Overview

The principal goal of an Ultra-Struc-
ture analysis is to construct a “rule
engine” consisting of a small set ol
invariant data structures and soft
ware. We call such a machine a Com-
plex Operating Rule Engine (CORE).
I'he key

Ultra-Structure aims to replace the

word here 1s “invariant’:
standard software lifecycle requiring
development, maintenance, and ap-
plication replacement with a design-
for-change approach that focuses on
data maintenance. As James Hager
notes in an article reviewing the
Navy's Software Cost Reduction pro-
,current meth

gram, ~Unlortunately

odologies for specifying, designing,
documenting, coding, and testing
software do not provide adequate vis-
ibility to maintenance concerns. The
difficulty of generating software that
is ecasily modified becomes evident
when the full engineering life cycle
costs are examined” [4].

Experience to date indicates that
each class of systems having broad

family resemblances—e.g., all games,

all scientific arguments, all laws, all
corporations—will require a separate
engine, reflecting its distinct deep
structure and animation procedures
The proposed engine for business is
CORE/6GH0 (650 1is the
Dewey Decimal classification for man-
We expect
engines to be judged by the usual cri-

called the

agement). would such

teria, such as functionality, maintain-

ability, flexibility, user-friendliness,

response time, and miial and

lifecycle cost.
In 1985, the Office of Technology
Assessment l‘(‘p()l‘[t’(li “Modern com-

104 January 1995/ Vol 38, No. | COMMUNICATIONS OF THE ACM

puter/communications systems —are
among the most complex technolo-
gies ever assembled by human beings
.. .. To be able to understand, pre-
dict, and control the behavior of these
technologies requires a powerful the-
orv of complex processes. No such
theory vet exists, although it remains
a major goal of computer science”
[12]. Two years later, Fred Brooks
wrote, “If, as I believe, the conceptual
structures we build today are too
complicated to be specified accurately
in advance, and too complex to be
built fauldessly, then we must take a
radically different approach.” [2] He
belief that ap-
proaches have reached their natural

stated his current
limits and are not likely to create
order-of-magnitude increases in soft
ware productivity. We must therefore
consider the possibility that our exist
ing
entity-relationship,

design approaches (including
object-oriented,
and relational models), useful as they
are within certain domains, are some
how missing or even misrepresenting
the essence of complex systems.

['he fundamental problem may be
that we look at complex systems using
ontological assumptions that work
only with simple systems. In particu
lar, we in Western society all seem to
share the substantialist presumption,
first ancient
and built deeply into our language,

enunciated in Greece
that systems are comprised ol (can be
reduced to) objects and that proper-
ties can be predicated of those ob

jects. More recent])1'<)(‘cw—m'%cnit‘tl

thinkers such as Alfred North White-
head and Ilya Prigogine emphasize a
greater locus on relationships be-
tween the objects, including the ob-
server as an objectin the system. Cur
rent analytical approaches derive
from these widely held and often
unconscious assumptions, which con-
stitute our paradigm or way of look-
ing at the world. Should our basic
metaphysical presuppositions turn
out to be mistaken or true only in lim-
ited cases, then the results we achieve
will also fall short. We will, in fact, hit
a perplexity barrier—until we con-
sciously define new and more vald

l)l'('lIli\(‘\.

Key Tenets and Definitions
Ultra-Structure is based on the tol-

}H\\][l‘u‘ l\(\ Premses:

o complex systems are comprised of
many objects (including observers)
and their relationships;

¢ these objects and their relation-
ships are the evanescent result of
the execution of process

® these processes, however simple
or complex, are the result of exe
cuting a series of rules; and

® these rules can and often do
change, but they change within cer-
tain limits.

While
undesirable, there i1s no uniform ter-

unnecessary neologisms are
minology or framework for discuss-
ing a broad range of systems. Ex-
pressing these ideas clearly required
us to carefully select the following ter-
minology to reinforce key distine-
tions:

e [he manifest structure and be-
havior of any system is composed of
a set of particulars, with these partic-
ulars comprising the surface structure
of the system. Particulars include
objects, relationships, and processes
of a system and their classifications
or generalizations.

e All particulars, however complex,
seemingly incomprehensible, or rid-
dled with exceptions, can be de-
scribed by a relatively small number
of operating rules. These rules com-
prise the middle siructure ol the sys-
tem and permit a substantial com-
pression of information.

® While operating rules may
change over time, there are empiri-
cal limits within which they do so.
Constraints on rules are defined in
terms of their form by ruleforms.
Any actual rules are defined as the
content of these ruleforms. A small,
simple, and invariant collection of
ruleforms comprises the deep siruc
ture of a system and permits a fur-
ther substantial compression of in-
formation. Ruleforms usually
operate in clusters that generate,
describe, and constrain particulars.
e Ruleforms are constructed from a
substructure of universals. Universals,
like ruleforms, are forms; the con-
tent of universals is symbols, such as
letters and numbers,

e The complex behavior and struc-
ture seen by the observer of a sys-
tem is simply the consequence of

the execution or anonation of the
operating rules. In this worldview,
undetectable animation procedures
generate real-world surface struc-
ture [rom undetectable middle
structure.
Ultra-Structure models can be
implemented within the constraints
of the RM/V2 relational data model
advocated by Codd [3]. But Ultra-
Structure offers a different and useful
semantic interpretation of the mean-

ing or purpose of the relations de-
fined in a relatonal database: rela-
tions do not represent objects,
relationships, classifications, proce-
dural aspects, or anything else: they
represent only rules.

Table 1 shows some of the ontolog-
ical levels proposed by Ultra-Struc-
ture and how these levels relate 1o
current
discussion for the balance of this art-

approaches. Limiting our
cle to business as an example of com-
plex systems, we discuss these onto-
logical levels and their representation
in an Ulra-Structure model for bill-

ing.

Surface Structure

I'he surface structure of a system is 1ts
manifest structure and behavior. In a
business this includes everything that
employees do all day, evervthing that
can be physically seen, and business
events, such as issuance of customer
orders, purchase orders, manufactur-
ing orders, pavchecks, shipping or-
ders, and invoices. It also includes
such mtangibles as work processes,
market segmentation, and organiza-
tional structure.

Surface structure is complex and
ever-changing. New products are in-
troduced, employees are reorga-
nized, prices change, new merchan-
dising
branch offices are opened or closed,
work processes are
changed wholesale, subsidiaries are
acquired or sold, and so on. A pri-
mary goal of Ultra-Structure is to an-
ticipate and facilitate this evolving
surface structure, even though no one
can predict what that surface struc-
ture might look like in the future.

In an Ultra-Structure application,

programs arec .ll][]‘()(fll(‘t‘(l,

modified or

some aspects ol surface structure

must be recorded in order to trigger
or properly execute the operating

Such
sented as an attribute of an operating

rules imlormaton is repre-
rule, for example, a “quantity-on-
hand™ attribute of a product sourcing
(inventory) rule. Such information is
called a consideration, for it allects the
subsequent execution of rules.

Middle Structure
Ultra-Structure
surface structure per se, but instead

does not focus on
studies the operating rules that gen-
erate, account for, and constrain that
surface structure, as presented by
end users in small joint design ses
sions. These operating rules com
prise the middle structure of the sys-
tem. Middle structure is far simpler
and more stable than surface struc-
ture because it abstracts and general-
izes surface structure; the laws of sci-
ence constitute one (mathematical)
expression of the middle structure of
nature. By moving from particulars
to general laws we achieve an enor-
mous economy of expression: ideally
we achieve simplicity without simpli-
fication, a sort of dehydrated reality
that can be regenerated at will by just
adding water.

An operating rule in Ultra-Struc-
ture has one or more factors and one
or more considerations, both of which
are attribute values. The factors de-
termine whether the rule and its con-
siderations will be inspected by the
animation procedures and possibly
executed. In many cases, the mere
existence of a rule permits certain
things to happen without any inspec-
tion of consideranons. Once a rule
has been selected for inspection, the
considerations are used to determine
i the context of other rules whether
that rule will be executed. The con-
siderations are often used as foreign
keys into other tables, whereby other
considerations are inspected.

Abstractly, a rule with, say, three
factors A, B, and € and three consid-
erations X, Y, and Z is a conditional
statement that is interpreted as fol-

lows:
if A and B and C then consider X, Y, 7.

The factors of a rule are always
ANDed together; logical OR 1s repre-
sented by multiple rules; and each
record is unique. Unlike Al produc-
tion systems, selecting a rule does not

COMMUNICATIONS OF THE AcM [anuary 1995/Vol. 38, No. | 105

ULTRA-Structure

L]

Table 1. Ultra-Structure Ontological Levels

Ontological Level

Surface Structure

Real-World System

Particulars (Manifest
Behavior and Structure)

and Application
Behavior

Ultra-Structure

Rule Considerations,

Current

Data Structures and
Data/Objects (in the OO
sense)

Middle Structure

Operating Rules

Rule Records (relations)

Software/Methods

Deep Structure

Ruleforms

Data Structures (tables)

(No equivalent concept)

Sub-Structure

Universals

Attributes

(No equivalent concept)

Animation Procedures

Energy Imbalances;
People and Machines

Software

(No equivalent concept)

mean that it will be fired, only that 1t
will be inspected. The following sim-
ple pricing rule states that EXEMP']
agencies ABC486
products for $1,500 each during cal-
endar year 1994:

lI]El}]Jlll(']lél\.(’

if (PRODUCT = ABC486) and

(AGENCY = EXEMPT)

then consider
(UNIT_PRICE = 1500},
(UNTT_MEASURE = FACH).
(TIME_PERIOD = CY_1994).

Rules can be either positive (under
these conditions, do this) or negative
(under these conditions,
this). Almost all rules, such as the pre-
ceding rule, are positive. The ratio of
positive and negative rules relates to

don't do

how often more specific rules need to
undo more general ones, for exam-
ple, “all customers except EXEMPTs
get a surcharge.” Negative rules can
be implemented as a series of positive
rules, but creating a consideration to
indicate the negation of a rule enables
users to avoid enumerating positive
rules for all but the exception cases.

There are far fewer operating
rules for systems than one might ex-
pect, because most operating rules
are defined for large classes (e.g., all
tax-exempt all
customers, all employees) rather than
at the level of individual objects (e.g.,
customer #101).

Rules are implemented as relations

customers, external

(records), consisting of at least one
factor and one consideration. Table 2
shows a simple PRICING ruleform
and three operating rules. The first
row in this and all subsequent tables
defines the ruleform and gives the

attribute names (in bold); the rows
that follow give instances of operating
rules, that is, relations. A vertical bold
line separates the factors (primary
indexed key field(s)) of the table from
its considerations. An asterisk (*) fol-
lowing an attribute name indicates
that the attribute is a foreign key; that
1s, a reference (key) to a record in
another table.

I'he first rule in Table 2, where
AGENCY “(ANY),”
standard price for any customer
I'he AGENCY =
EXEMPT, gives a special price for
non-profit organizations, and corre-

says gives the

second, where

sponds to the example given previ-
ously. The third rule gives a price for
GU

(Georgetown University), for the first

a specific customer, namely

quarter of 1994,

An Example: Process Model for
Pricing Rules

The rules of a business are traditon-
ally implemented in two ways:

® as code to be executed by its com-
puters, and

® as policies and procedures to be
carried out by employees in conjunc-
tion with—or in spite of—the rules
carried out by the computers.

While based

substantialist assumptions have been

modeling eflorts on
successful at representing objects and
relationships, they have been less suc-
cesstul thus far in representing work
processes and other kinds of rules as
data. We introduce a simplified but
robust general work process model
for a business to illustrate these con-
cepts and the others that follow as

106 January 1995/Vol. 38, No. | COMMUMNICATIONS OF THE ACM

they apply to pricing. Pricing may not
seem to be much of a challenge, but
in most businesses it is a headache.
Tables 6 through 17, which contain
the ruleforms for this example, can
be found in the appendix.

When an order i1s placed, various
work steps must be initiated to pro-
cess the order, such as performing a
credit check, picking a product from
inventory, shipping it, and billing for
it based on a fee plus taxes and dis-
counts. These steps constitute a work
protocol, and are defined by WORK
PROTOCOL (Table 15). An
animation procedure selects the ap

rules

propriate rules from the table using
WORK METARULES (Table 16) to
generate “masks” that specify the se-
lection criteria (factors). The selected
rules are then placed in a
WORKORDERS table (Table 17),
where they are picked up and exe-
cuted by other agencies (e.g.. employ-
ees, subcontractors, other comput
ers). A more detailed description of

the model and examples will be given
as the concepts are introduced.

Rule Types. Decision tables (DTs),
decision trees, and production rules
shown to be inter-
[91,
rules as relations may remind us of
these approaches. DTs specify rules
where, for a list of all possible input
conditions, that
should be taken in the case of each

have been

translatable and representing

actions are listed
combination of conditions that may
occur. One may think of a DT as a
ruleform having factors, which list all
possible input conditions and permu-
tations thereof, and considerations,

which define all possible actions and

other
But
this obscures the critical semanuc dif-

[)L’l'[l]lllilll()l}\l thereot; i

words, conditnon-action rules.

ferences among various classes of
rules. There are a number of more
technical differences as well, having
to do both with how DTs are imple-

mented and with how they are used:

e DTs link conditions and actions
by means of binary (Y/N) values.

e DTs aim to represent all possible
factors 1_{lmlll|)|(‘lcnvss) and to repre-
sent each combination of possible
factors only once (exclusivity).
Ultra-Structure models approach
this differently, allowing in the for-
mer case general catchall rules and
in the latter case multiple proposed
actions that are then evaluated by
metarules.

e DTs are used differently, primar-
ily acting to externalize certain
branch points in software while
leaving the bulk of rules still hard
coded in software.

Ultra-Structure proposes two basic
types ol operating rules: existential
and compound.

Existential rules. For any table with
one field as its primary key, each rec-
ord in that table defines an existential
rule. Such rules declare what entities
exist, specify unique identifiers for
these entities, and provide certain
considerations regarding those enti-
ties for use in subsequent rule inspec-
tion. Existential rules declare not just
obvious concrete objects (including
activities) but also groupings or classi-
fications of those objects, and rela-
tionships among the objects. Exam-
ples of existential rules are:

® GU exists as an agency.

® There is a class of agencies called
EXEMPT.

® There is an activity called
CHK_CRD.

® There is an activity called
PRT_CUST_DEC.

e There is a relatonship
ISCWITHIN_CLASS.

called

All of these entities are equally

ruleforms and rules for agencies,
products, and locations; and Table 17
existential ruleform and
rules for The AGENCY
ruleform has one factor (AGENCY)

and one consideration (NAME). The

shows an
work.

rules define two legitimate objects
that exist as customers (GU and
ORG_A), tour classifications of cus-
tomers (EXEMPT, EXT_CUST,
MNFR, and NON_EXMPT), three
internal “departments” (CrU,
CREDIT, and BILLING_CPU), and

a wildcard (represented by (ANY))
that can refer to any customer. CPU
and BILLING_CPU
ing computer functions, are regarded

. although invok-

as agencies that perform work in the

same way as a human-run agency
(such as the credit department).
Table 6 does not indicate how any
specific customer (e.g., GU) is to be
classified (e.g., EXEMPT); those rules
are defined separately in Table 10,
The
AGENCY ruleform operationally in-

which will be discussed later.

cludes external agencies (e.g.,

internal

Cus-

tomers, buying groups),

(e.g..

divisions),

agencies employees, depart-

ments, and other third
parties (e.g., taxing bodies, customs
regulators, independent salespeople,
field engineers).

lhe PRODUCT ruleform in Table
7 includes tangible goods (ABC486

and CHEM_B), classifications of these

goods (FROZEN, ROOM_TEMP,
and NON_EXEMPT), and services
(c.g.. CHK_CRD, FEE, PICK, and

STAX). It operationally includes fin-
ished goods, components of finished
goods (parts), work in progress, raw
materials, services, warranties, freight
costs, and sales tax collection services

The LOCATIONS ruleform in
Table 8 shows a variety of different

types of object that refer o places
streets, cities, countries, areas, facto-
ries, and bins. Although the current
practice is to treat STREET, CITY,
STATE, and ZIP as separate attri-
butes of a single location within a sin-
Ultra-Structure treats

gle record,

them as a semantically repeating
group, along with bins, telephone
numbers, fax numbers, Internet ad-
dresses, and other means for contact-
ing agencies under various condi-
LOCATIONS 15
limited to geographic locations but is
the basis of contact rules.

The different types of relationships

tons. thus not

that can be formed are also regarded
as objects and are represented by an
existential ruleform, as illustrated in
[able 9. The AREA object, for exam-
ple. is used for associating locations
with larger areas. Similarly, the
STAX_TYPE object is used for associ-
ating agencies with their sales tax
classification (EXEMPT or NON_EX-
EMPT). Ultra-Structure defines rela-
tionship types to be objects in them-
that

selves are just as “real” foi

rulemaking purposes as physical ob-

jects. The relationships among ob-
jects are specified through network

rules, a special type of compound
rule (explained next).

Compound rules. For any table with
more than one field as its primary
key, each record in that table defines
a compound rule. Conversely, a com-

pound rule is a rule that has more

than one factor. It does not declare
an entity to exist, as existental rules
do: instead, it relates entities previ-
ously declared by existential rules
These rules have muluattribute keys,
which are foreign keys pointing to
the existential rules. Most operating
rules seem to work with two to fon

Table 2. PRICING Ruleform and Rules
€ Ruleform - —————————————— -

PRODUCT*

AGENCY*

“real” from the point of view of rule- i 7 R T o i

making, in the sense that a rule that i (8N Y) L0 0a FACH G400 Rule 1

operates on a class or a relationship is ABCA486 EXEMPT 1500.00 EACH CY_1994 Rule 2

just as real as a rule that operates on

an individual object. ABCA86 Ll 1250.00 EACH Q11994 Rule 3
Tables 6-8 show existential

COMMUNICATIONS OF THE ACM |anuary 1995/Vol. 38, No. 1 101

ULTRA-Structure

factors, but some of the most impor-
tant (including process definition)
have been found to require as many
lables 10-16 1il-
lustrate compound rules.

as fourteen factors.

There are four types of compound
rules:
Network,
Authorization,

Protocol, and
Metarule.

® & o @

Network rules correspond roughly to
the ordering activity that some biolo

gists call “classification™ or “division,”
while authorization rules correspond
to ordering by “systematization” o1
“arrangement.”
O'Hare states, “Classification is the
grouping of objects into classes on the

Philosopher Robert

basis of the properties of the objects
being classified. The objects in each
group are spoken of as being mem-
bers or instances of their class. In con-
trast, systematization is the arrange-
ment of objects into some larger
whole object, and the relation that the
constituent objects bear to the system
atic whole is that of a connected part
rather than a member” [8]. Protocol
rules define processes, and metarules
are rules about reading and evaluat-
g other rules; these will be furthel
explained later.

Nelwork rules. Hierarchical,
parent-per-child relationships (i.e.,
trees) fail to represent the potential

one-

richness of relationships among enti-

ties. Network rules permit definition of

true networks—not trees—

which define how objects declared

just

within a single existental ruleform

relate to each other in a variety of
ways. They declare relatonships of

the form “Class A, with respect to re-
lationship type R, is a member of
Class B,” where A and R are factors
and B is a consideration. If more than
one instance of a type of relationship
is possible, or if relationships vary as a
function of time or some other factor,
then the network ruleform must be
broadened to include those factors.
10-12
rules for agencies, products, and loca-

Tables illustrate network
tions. Each of these tables has a REL-
CODE attribute, which names the re-
lationship type and is a foreign key
into Table 9. For example, the first
rule in Table 10 says that GU, with

respect to the relavonship 1ype
CUST_TYPE, belongs to the class
EXT_CUST.

Although 1t 1s current practice to
implement classifications of an object
as attributes of that object, that ap-
proach does not facilitate changing
the type or number of ways in which
objects are classified. This is particu-
larly important because the transition
of an object from one class to an-
other—thereby bringing it under
wholly

difterent rules—gives com-
plex systems much of their seemingly
emergent and/or random behavior.
Furthermore, that approach is mis-
leading from a semantic perspective,
as it implies objects and their classifi-
cations are fundamentally different;
from the perspective of a rulemaker
they are not different.

Unless specified otherwise in a net-
work, objects inherit the relationships
of their parents. Thus, if A belongs to
B with respect to R1. and B belongs
to C with respect to R2, then A also
belongs to C with respect to R2. Fo
example, m the LOCATION
NETWORK of Table 12, WASH[ing-
ton] mherits EAST_COAST with re-
spect to REGION and US with re-
spect to AREA; the more specific
address 225RSB inherits these plus
DC with respect to STATE.

Authorization rules define what in-
puts authorized,
expected. The existence of a match-
ing record for factors A, B, and C in-
dicates they are an input combination

are allowable, or

(l.e., a situation) for which specific
behavior has been defined; now con-
sider X, Y, and Z. Tables 13 and 14
illustrate authorization rules.

The SOURCING AUTHORIZA-
TIONS [able 13
what locations each product may exist

rules in declare
in, and who may order each product
or service. It has as considerations
(non-key attributes)
hand, quantity committed, and reor-
der point. By including a generalized
location (LOCN) as a factor, the

quantity on

ruleform permits the definition of

rules for products that are at a cus-
tomer site, a field engineer site, a
third-party warehouse, or even a
competitor’s site. AGENCY indicates
the owner (normally the seller whom
the application is supporting), per-
mitting the ruleform to include prod-

108 January 1995/Vol. 38, No. | COMMUMICATIONS OF THE ACM

ucts on consignment, mstalled equip-
ment that has already been sold or is
on lease or loan, and so forth.

[he SEQUENCING AUTHORI
ZATIONS rules in Table 14 impose
sequencing constraints on work pro-
cesses. For example, credit checking
precedes inventory picking if both
are selected from the WORK PRO
I'OCOL table by the animatuon pro-
cedure that handles customer orders
Sequencing constraints are inter-
preted as precedent relations rather
than as prerequisites; thus, for exam-
ple, PRT_CUST_DEC does not need
to take place in order for SHIP to
The SEQ_NO facto
indicates whether CHILD_PROD 1s
the first, second, etc.. child ol
PARENT_PROD. (The ordering ol
children is not, however, significant.)

The
ruleform does not mean that facton

be executed.

existence of a factor i a
must be used by a particular rule o
even by any rule. The factor may
state “(ANY),” meaning it is a wildcard
and any value is acceptable. For ex-
ample, AGENCY = (ANY) mn rule |
of Table 2, which gives a default price
for any agency, and several fields are
defined as (ANY) in Table 15.
Differences in structure or behav-

ior among systems having family re-
semblances (e.g., different corpora-
within a
corporation) are caused primarily by

tions or departments
differences in operating rules. Fur-
ther, each system may use only a sub-
set of the factors available to it; thus, 4
business may have a factor that 1s ini-
tially (ANY) and later change its op
erating rules to include other values
for that factor, thereby bringing thai
factor into play in determining what
rules will be selected. And different
companies may have similar authori-
zation rules but use different ways of
categorizing input, that is, different
networking rules that map customers
into different customer categories. All
such different behaviors can be ac
commodated without the need to re
structure ruleforms or animation
procedures; one may simply add o
modity records in various existing
tables.

Protocol rules define the contents of
a work process. The WORK PROTO-
COL shown in Table 15 specifies the
work that triggered

steps may be

when an explicit order is placed (how
they are triggered is discussed in the
forthcoming section on animation
procedures). The table has six factors
and four considerations. In more
advanced versions of the CORE/G50,
this table has as many as fourteen fac-

tors and is intended to define all of

the work processes ol an organization.

The AGENCY factor indicates the
agency by whom the explicit request
was placed, while the ASSIGN_TO
consideration specifies the internal
agency that will handle the work pro-
cess. PRODI indicates the request
type (e.g., DELIVER); PROD2 indi-
cates the product ordered; PROD3
indicates the service to be performed;
PROD4 indicates the product that is
the recipient of the service (often the
same as PROD2); and QTY indicates
the amount of the product to be ser-
viced. The SEQ_NO attribute is used
to ensure uniqueness ol the primary
key. A ditto (") in a record field
means “substitute the value specified
in the work request.”” The sample
operating rules shown in the table are
interpreted as follows:

) It am external customer
(AGENCY = EXT_CUST) wants de-
livery (PRODI = DELIV) of any
product (PROD2 = (ANY)) from any
US warehouse (SHIP_FROM = US)
to anywhere 1 the US (SHIP_TO =
US), then generate a work order for
the computer (ASSIGN_TO = CPU)
to check his or her credit (PROD3 =
CHK_CRD).

2) Same as 1), but if the SHIP_TO
location i1s Europe, generate a work
order for the people in the Credit
Department (ASSIGN_TO = CRED-
IT) to check their letter of credit
(PROD3 = CHK_LTR).

3) I any external customer wants
delivery of an ABC486 product from
any U.S. warehouse to any European
location, then generate a work order
to the computer to print a customs
declaration (PROD3 = PRT_CUST_
DEC).

4) It any agency, whether internal or
external (AGENCY = (ANY)) wants
delivery of any product (PROD2 =
(ANY)) from any warchouse
(SHIP_FROM = (ANY)) to any loca-
tion (SHIP_TO = (ANY)), then gen-
erate a work order to the default fac-

tory (ASSIGN_TO = FACTORY 1) 1o
pick (PROD3 = PICK) the specific
product they requested (PROD4 = ")
and the specific quantity they re-
quested (QTY = "),

5) Same as 4), but generate a work
order to ship (PROD3 = SHIP).

6) If any external customer wants
delivery of an ABC486 product from
any U.S. warehouse to any location
(SHIP_TO = (ANY)), then generate
a work order to the billing computer
(ASSIGN_TO = BILLING_CPU) 1o
compute a fee (PROD3 = FEE) with a

unit price of $1500.00 (QTY =
1500.00).
7) It any nonexempt agency

(AGENCY = NON_EXEMPT) wants
delivery of a nonexempt product
(PROD2 = NON_EXEMPT)
any location to any D.C. location,
then generate a work order to the
billing computer to compute a sales
tax (PROD3 = STAX) with a tax rate
of 5.75% (QTY = 0.0575).

8) If any external customer wants
delivery of an ABC486 product from
any U.S. warehouse to any European

from

location, then generate a work order
to the billing computer 1o compute a
(PROD3 = DISCN'T)
with a discount rate of 5% (QTY =
0.05).
9) 1Ii Georgetown University
(AGENCY = GU) wants delivery of
an ABC486 product from a U.S.
warchouse to one of its D.C.
puses, then generate a work order to
the billing computer to compute a fee
(PROD3 = FEE) with a unit price of
$1.250.00 (QTY = 1250.00).
Metarules are rules for reading
rules. They specity a sequence of
RELCODE transtormations on keys
to produce various masks in a speci-
fied order. A mask is a set of values

sales discount

canmni-

for the factors of a rule, that is, the
key attributes in the table. The ani-
mation procedures use the masks as
patterns for matching operating
rules; the rules that match are then
selected for consideration and possi-
ble execution. Metarules rules may be
embedded in the animation proce-
dures, but in cases where such rules
are particularly complex or change-
able, they are better defined explicitly
as data.

Table 16 shows WORK META-
RULES that are used with the WORK

PROTOCOL rules i lable 15, The
attributes PRODI, AGENCY,
PRODZ2, SHIP_TO, and

SHIP_FROM correspond to the pri-
mary key attributes in Table 15. Note,
however, that only PRODI, which
specifies the request type, is part of
the primary key in Table 16. The
SEQ_NO factor, which forms the
other half of the primary key, is used
to pick rules in sequence; thus, the
rules are picked in the order in which
they are listed. The rules all apply to
external sales orders for a delivery
(PRODI = DELIV) and are
preted as follows:

nter-

1) Create a mask by generalizing the
SHIP_TO based on RELCODE =
STATE and SHIP_FROM based on
RELCODE = AREA. AGENCY and
PROD2 must match exactly (denoted
by “SAME™).

2) Create a mask by generalizing
AGENCY based on RELCODE =
CUST_TYPE and SHIP_TO and
SHIP_FROM based on RELCODE =
AREA.

3) Same as 2), but the mask should

match any product (PROD2 =
(ANY)).

4) Same as 2), but the mask should
match any SHIP_TO location

(SHIP_TO = (ANY)).

5) Create a mask by generalizing
AGENCY and PROD2 based on REL-
CODE = STAX_TYPE and SHIP_
TO based on RELCODE = STATE.
SHIP_FROM should match anything.
6) Create a mask that marches any-
thing.

Deep Structure

We presume that the operating rules
(laws) of natural systems remain un-
changed over time, but this presump-
tion clearly does not work for inten-
tional systems where the rules can
change frequently. The
Ruleform Hypothesis states that we
may abstract rules into broad classes

and do

based on their form. Ruleforms are to
rules abstract
numbers are to collections of things.
They are the result of a process of
ignoring everything in the set except
one feature of the members of the set.

collections of what

Ruleforms abstract morphology,
while numbers abstract quantity; in a
sense, ruleforms model the geometry

ol rules, and letters abstract nho-

COMMUNICATIONS OF THE ACM [anuary 1995/ Vol 38, No. | 109

ULTRA-Structure

nemes. Although Ultra-Structure
postulates that it is possible to find
ruleforms that are invariant, the ben-
efits of Ultra-Structure can be ob-
tained as long as the ruleforms sel-
dom change.

Designers acquiescing to initial
end-user perceptions tend to see each
class of objects as fundamentally dif-
ferent and therefore as requiring its
own separate ruleform (table). Thus,
there may be separate tables to spec-
ify each customer’s tax status, pricing
status, sales territory, etc. Only care-
ful examination of the use of an entty
will determine whether it is really the
same as or different from an existing
class of entities. Thus, “customers”
may ultimately be grouped with “em-
ployees”™ and “vendors” under the
rubric of AGENCIES, since it turns
out they are all subject to similar
rules. But the class called AGENCIES
is not likely to include geographic lo-
cations, which are subject to different

rules. However, “telephone num-

numbers,” and “email

ultimately be

bers,” “fax

addresses” may
grouped with geographic locations,
as these designate rules for contacting
an agency.

This form ol semantc analysis is
central to identfying the invariant
classes of entity that form the basis fo1
modeling a system. Ultra-Structure
therefore asks designers to transcend
both the surface structure of natural
language and the surface structure of
a system’s own history, with then
olten false distinctions, to determine
operationally (1.e., by usage) whether
an entity is subject to the same types
of rules as another entity and should
therefore be defined in the same
ruleform.

Rarely is a single ruleform ade-
quate to prescribe a behavior; typi-
cally a group or cluster of ruleforms is
used by an animation procedure. The
ruleforms in Tables 6-16, for exam-
ple, form a cluster for the work pro-
cess animation procedure, but the
individual ruleforms within the clus-
ter are also used in several other clus-
ters for completely different purposes
(e.g., compute price quotation, check
We
have found that in practice, the ani-

inventory, lookup customer).

mation procedures must often in-
spect four to ten ruleforms before

|
|

making a deasion. A frequent erron
of new designers is to attempt to de
fine rules by a single ruleform rather
than via a cluster of ruleforms; even
such a simple rule as “three strikes
and you're out” requires a cluster of
ruleforms to implement the general-
ized capability in a game of determin-
ing when a player’s turn is over.

I'he term deep structure refers to the
collection of all ruleforms and then
interactions in a specific application.
Deep structure is remarkably simple
and offers an enormous new econ-
omy of expression.

The “correctness” of a deep struc-
ture is not a simple yes or no decision;
there are degrees of breadth of a deep
I'he CORE Hypothesis
postulates that with enough experi-

structure.

cnce 1n h('}ll'(llill‘l_" {}ll counter-

instances, one can discover a defini-
tive deep structure, which s, by
definition, permanent, unchanging,
and robust in the face of any middle
structure it may be called on to repre-
sent for that family of svstems.

By going from surface structure to
deep structure we move from how a
system appears to what it is: We move
away from phenomenology 1o
glimpse the ontology ol a system.
This will be a crucial tool in helping
us gain a better understanding of the
fundamental nature of business, of

games, of laws, and ol other systems.

Substructure
Ruleforms contain rules, but
ruleforms are not the atomic units

out of which complex systems and

processes are built; rather, they
themselves consist of relationships of
universals. Universals collectively
constitute the substructure of a sys-
tem. Fach umiversal 1s a distinguish-
Work

far suggests that about 400 univer-

able facet of a system. thus
sals will be required to define a com-
plete

corporation.

business system, e.g.,

any

As rows (records) are the horizon-
tal division of behaviors into rules,
columns (attributes) are the vertical
division of behaviors into thenr funda-
mental domains (universals), such as
locations, descriptions, time periods,
and weights. Each constitutes an attri-
bute (factor or consideration) from
which ruleforms, and thereby rules,

' 10 January 1995/Vol. 38, No. | COMMUNICATIONS OF THE ACM

are constructed. They are the do-

mains within which real-world sys
tems may be modeled. Contrary to
conventional philosophical use of the
term, “redness” would not be an ex-
ample of an Ultra-Structure universal
because redness is the value of the
universal, not the universal itself;
rather, “color” might be an example,
or “weight. ”

Looking at the “real meaning” of
each universal in an application fre
quently leads a designer to observe
that many universals with different
names actually describe the same
underlying concept. In Ultra-Struc

ture, such cases are interpreted as a

semantic repeating group. Ultra-Struc-

ture does not permit ruleforms to
contain such groups; instead, they
are replaced by a single, more inclu
sive universal.

As an example, Table 3 contains a
general ledger table with attriburtes
for each month. Ultra-Structure in-
terprets the months as a semantic
repeating group of’ the universal
“time period” (TIME_PER). Table 4
shows the effect of replacing the
group with the universal.

Identifying and eliminating se-
mantically equivalent universals s
critical to designing ruleforms that
are Yet
smacks of pure philosophizing: how

invariant. such analysis
is a product different from a service:
How is posting to a GL account like
fixing a machine at a customer siter
How 1s a vendor different from an
employee? How is a bank account like
a drill press? End users often have lit-
tle patience for such inquiries until
they see the power, breadth, and
even truth given to them by the re-
sulting model.

Whether attributes are the same o1
not cannot be determined solely by
their common-sense or current intei
pretation; instead, the designer must
their operational defini-
tions, i.e., how they are used, regard-
less of initial appearances. This is
very similar to the process of deter-
mining whether entities defined in

examine

existential rules are fundamentally
the same or not. In that case, if the
ruleforms the entities participate in
are similar, then the entities are fun
damentally similar (e.g., employees

and vendors are both agencies be-

cause they are both subject o the
same types of constraints). Likewise,
in this case, if the attributes (e.g.,
JAN, FEB. MAR) are subject to the
same kinds of operations, then they
are fundamentally similar and should
be treated as such. The fact that a
company now uses a l2-period ac-
counting cycle 1s surface structure; it
could at any time go to a I3-period
cycle, or an n-period cycle!

Animation Procedures

Animation procedures detine and 1m-
plement the
whereby behavior is produced ac-

generative process
cording to the operating rules de-
fined in a ruleform cluster. As with
ruleforms, animation procedures are
simple and small; experience to date
indicates that no CORE will require
more than 100,000 lines of 3GL code
to implement its animation proce-
dures.

Animation procedures inspect the
operating rules, determining which
operating rules are looked at in what
order and what to do in the face of
collisions (selecting among competing
rules), and performing compression
that
apply). An animation procedure for a
protocol rule (e.g., Table 15) takes an
mput (e.g., the customer order for a
delivery) and uses metarules (e.g.,

(eliminating redundant rules

[able 16) to translate the input into
masks. The masks are then used as
patterns on the protocol rules to se-
lect candidate rules for inspection.
Some of the selected rules may be
eliminated by collision or compres-
sion; the remainder will be written to
the WORKORDERS table for some
agency (either people or computers)
to process.

If the mask formed directly from a
sumulus or input fails to match any
rule, then it usually is successively
generalized until a match occurs o
the metaprotocol is exhausted. This
generalization is done using network
rules. For example, if a mask with
ORG_A for AGENCY fails to match
any of the rules, then there may be
a metarule that says to use
CUST_TYPE to generalize, whereby
the software would then find
EXT_CUST wusing rule 3 in the
AGENCY NETWORK
I'able 10.

rules of

Tabie 3. GENERAL LEDGER

GL_ACCT

123-45-678 350.25 600.15 24.560 12.75

123-45-679 150.00 450.00 100.25 19.50

123-46-000 111.90 350.00 75.00 125.00
Tabled. GENERAL LEDGER with with values for PRODI, AGENCY
New Factor PRODZ2, SHIP_-10O, and SHIP

| TIME_PER*
193-45-678 | JAN_94 350.25
123-45-678 | FEB_94 600.15
123-45-678 | MAR_94 927.50

Metarules are usually constructed
so that operating rules are read in the
following order: specific rules first;
increasingly generalized rules next
(based on specific RELCODES); and
wildcards last.

The following summarizes the ani-
mation procedure for the rule cluster
consisting of Tables 6-16. The exam-
ple illustrates the use of several masks
during rule selection.

1) Read an incoming event, in this
case a customer order for delivery.
The event will specify five attributes:
AGENCY, PRODI1, PROD?2, SHIP_
TO, and QTY, where AGENCY is the
agency placing the order, PRODI =
DELIV, PROD2 is the product to be
delivered, SHIP_TO is the ship-to
location, and QTY is the quantity
ordered.

2) Ensure that the product and
quantity specified are available by
creating masks of PROD (using
PROD2) and (ANY), then key-
sequentially reading the SOURCING

AUTHORIZATIONS (Table 13). It

no record is found for that product,
or if the computed quantity available
is inadequate, notify the user; other-
wise, determine its warchouse loca-
tion (SHIP_FROM) using LOCA-
I'TONS (Table 8) and LOCATIONS
NETWORK (Table 12).

3) To determine what WORK PRO-
TOCOL rules to apply, create a mask

FROM by selecting the first record in
the WORK METARULES (Table 16;
and performing the specified transla-
tion on the data obtained in Steps |
and 2. “(SAME)” means do not trans-
late the input but use it as entered;
“(ANY)" means ignore the input and
utilize (ANY) in the mask: and any
other value signifies a RELCODE
used to navigate the appropriate net-
work table, obtain a translaton of the
input, and then use that translation
in the mask. The mask specifies pat-
terns for the factors in Table 15. It 1s
concatenated with values for the con-
siderations, where ASSIGN_TO is set
to the warehouse location for the
product as found in Step 2: PROD4 1s
set to the original (untranslated)
value of PROD2 (the product or-
dered); and QTY is used as given
4) Select matching records from the
WORK PROTOCOL (Table 15;
“(SAME)” as a consideration means
use the value as it was set in step 3;
otherwise use the constant in Table
15.

5) Read the next record of the
WORK METARULES PROTOCOIL.
(Table 16) to determine the next
translation rule for the input data, in
order to create the next mask (the
considerations are not altered). Re-
peat Steps 4 and 5 unul all transla-
tions have been performed.

As work
tound, the animation procedure de-
termines whether they are to be exe-
cuted; i so, 1t them to the
WORKORDERS (Table 17).
Assuming one order from George-

protocol records are

writes
table

town University for delivery of 2
ABC486 products to 225RSB, the
generated work protocol would in-
clude the records shown in Table 17,
records #1-0 through [-4. Assuming

COMMUNICATIONS OF THE acsm [anuary 1995/ Vol 38, No. | 1 ' '

ULTRA-Structure

another order from ORG_A for Paris
delivery of two ABC486 products, the
generated work protocol would in-
clude records #2-0 through 2-6 of
Table 17, In a real application 25-30
such records might be generated for
a product sale to an external domestic
customer.

Records 1-0 and 2-0 correspond to
the original orders. The two numbers
under (M, P) to the right of the other
rows show which metarule (M) was
used to generate the mask and which
protocol rule (P) was selected and
used to generate a work order event.
For example, the FEE record 1-1 was
generated from metarule 1 in Table
16 and protocol rule 9 in Table 15;
the FEE record 2-4 was generated
from metarule 4 and protocol rule 6.
Although this pair could have gener-
ated a FEE for GU as well, it was not
selected because the more specific
metarule 1 had already selected a
FEE work order. This example illus-
trates a collision.

After generating the proper work
content, the application would then
read the SEQUENCING AUTHORI-
ZATIONS (Table 14) wo
the sequencing of the work, i.e., what

determine

work order records should have then
STATUS consideration set to (A)vail-

WORKORDERS table
I'he rest are left, tempo-

able in the
(Table 17).

rarily, as (U)navailable. For the Gl
order, the work process CHK_CRD is
the only one marked Available.

The various ASSIGN_TO agencies
that process work orders (e.g.,
CREDIT, BILLING_CPU) scan the
(A)vailable
When
agency finishes with a record, it issues
a command that invokes an anima-
tion procedure to mark the record
(Cyomplete and consult the SE-
QUENCING AUTHORIZATIONS
(Table 14) to determine which work

Events table and select

records for processing. an

orders can have their STATUS
changed to (A)vailable.
Animation procedures typically

execute interactively, invoked from a
menu of commands selected by an
end user. An order entry workstation,
for example, would have commands
o [(H]]I'Jll[(' l‘]]‘il'(' llll()[}lli(]l]h. cntel
orders, change orders, look up cus-
check

inventory, and provide other cus-

tomer names and addresses,

tomer support capabilines. Tha
workstation would access Tables 6-16
or any other ruleforms in the

ruleform clusters for price compu-
tations, delinitions, order
changes, and so forth. Other worksta-

tions might share some of these com-

process

mands but also have unique com-
mands of their own, based on then
desired funcrionality. Animation pro-
cedures may also be executed as stan-
dard background or batch rasks, trig-
gered, of course, by rules.

Ultra-Structure ruletorms and ani-
mation procedures can be imple-
mented using any commercially avail-
able RDBMS toolset.

The Deep Structure of
Organizations

Development of ruleforms for vari-
ous businesses has led to the observa-
tion that, fundamentally, they all
manage work. The content of that
work, the specific work processes fol-
lowed, the volume of work, whether
itis performed in-house or by outside
vendors, and many other current dis-
tinctions simply reflect the differing
surface and middle
these organizations. The CORE Hy-
pothesis predicts that there is a com-
mon, definitive deep structure for all
systems having certain family resem-
blances, for example, all organiza-
tions. As developed thus far, this
CORE/650 can be defined as a feed-
back loop having the stages illus-
trated in Figure 1.

The first stage accepts explicit
work orders and generates the 1m-
plicit work called for by these explicit
requests; this is called preprocessing
The second stage assigns, sequences,
and releases implicit work orders to
assigned agencies and provides facili-
ties (funcrion-specific workstations)
for end users to complete the work
assigned to them (main processing).
The third
pleted work orders and allows execu-

stage accumulates com-
tives to analyze these results, which
may lead to better business policies
for the ftuture (postprocessing). The
preprocessing step of this process
model was illustrated by the example
in Tables 6-17.

Pre-Processing. Fach different type
of work process that be

Calnl per-

formed by an organization is called a

' 12 January 1995,/ Vol 38, No. | COMMUNICATIONS OF THE ACM

structures of

work protocol. We have idenufied over
50 different kinds of work protocols
that organizations invoke by means of
various types of explicit requests, for
example:

e Request from an external cus-
tomer (domestic or foreign) to pu
chase finished goods

® Request from an external cus-
tomer (domestic or foreign) to lease
finished goods

® Request for an external customer
(domestic or foreign) to borrow fin-
ished goods

® Request to an external customen
(domestic or foreign) to return o
destroy finished goods

e Request for field services at the
site of an external customer

® Request for in-house services

(e.g., equipment refurbishing) tor

an external customer

e Request from an internal cus-
tomer (e.g., a department) to utilize
finished goods

e Request from an internal cus-
tomer (e.g., a department) to utlize
supplies

® Request from an internal cus-
tomer (e.g., a department) to utihze
raw materials

® Request for a vendor (internal or
external) to perform cycle counts

* Request for a vendor (internal o
external) to perform preventive
maintenance

e Request for a vendor (internal o1
external) to make a new product

I'he essential task of the WORK
PROTOCOIL Rules described in
Table 15 is to translate these explicit
requests from authorized agencies
into the appropriate detailed work
orders that must be executed to sat-
isly all parties to the transaction
seller, customer, taxing jurisdictions,
other domestic or foreign govern-
mental agencies, salespeople, ven-
dors, and any others with an interest
in the transaction. Work protocols are
prescribed for a given set of circum-
stances by policies, procedures, laws,
and traditions. Work protocols there-
fore involve the following:

o work content or implicit requests
(the steps in the process—not
when, but what must be done),

e the necessary sequencing of the
steps in the process,

e (e preferred assignment of the
steps to various persons, depart-
ments, vendors, etc., and

® consequences of certain contin-
gencies (e.g., a rejected credit
request).

The example allustrated the firse
two of these requirements. Our expe-
rience to date indicates that the fol-
lowing existential rules are the basis
of all business rules:

® Agencies: entities within or out-
side the firm that can generate o
complete work for each other.

® Products: any activity, service, ot
good used internally or externally
by the organization.

® [ocations: any physical location
or grouping of locations, or any
mode of contact.

® Relationships: any legitimate po-
tential relationships between any
like objects.

e Time periods: dates and group-
ings of dates, e.g., Mondays, fiscal
quarters.

® Commitments: any binding o
nonbinding promises of perfor-
mance by any agency.

® Scenarios: modes of existence,
e.g., actual data or marketing
projections.

® Existential types: general types of
object, e.g., product or activity.

® Units of measure: any semantics
associated with a number.,

® Priorities: any precedence status,
mcluding special handling and
timeouts.

® Reasons: causes for the genera-
tion of work or explanations for
how work completed.

Simple versions of the first four were
illustrated by Tables 6-9. It may seem
problematic to try to force all business
objects, relationships, and processes
into these categories, and in many
cases considerable analysis effort
must be invested in determining
where in this particular ontology a
particular business concept belongs.
Our experience to date 1s that there
are always appropriate and techni-
cally sensible but sometimes nonobvi-
ous categories from the preceding list
for every business concept. For exam-
ple, “bank accounts™ are “agencies”

that can perform certain kinds of

work. "GL accounts” identity specific
accounting services performed for
shareholders, regulators, and man-
agement; they therefore are actually
services (therefore “products™) of-
fered by the organization to some of
its Most important customers.

Main Processing. LEach agency
(vendor, department, or individual)
that does work has a logical or physi-
cal queue as defined by the AS-
SIGN_TO agency attribute of Table
17. Each agency may specily various
selection criteria in order to see rec-
ords assigned to it, for example, “all

workorders” or “available work

accounting).

The ruleforms for these summari-
szations are not shown. The data de-
fined may then be read at the lowest
level it was stored in (e.g., sales by
product by month) or may be read
and summarized at higher levels
through use of the Network Rules
(e.g., sales by product line by fiscal
quarter).

Scalability. The ruleforms
may be used in multiple contexts. For
example, SOURCING AUTHORI-
ZATIONS (Table 13) may be used
for: finished
goods, work-in-process, or raw mate-

same

tracking of internal

Define business
policies as records/
work protocols

Enter/generate
explicit work orders

]

Stage +
1 \|
| Generate implicit
work orders from
| explicit orders

i

Summarize and
Analyze work
results

Agencies perform
work, update status
Stage
f |2
Assign/Sequence/ |
Release implicit
work to agencies |

only.” These may then be sorted as
desired, by any field shown on the
screen. Finally, the agency will com-
plete each work order using various
Work orders that
completed cause animation proce-
dures to check the SEQUENCING
AUTHORIZATIONS (Table 14) and
update the STATUS of any new work
orders that are now (A)vailable, so
other agencies may start work on the
next step as soon as possible. When a
computer is the assign-to agency, the
work orders are executed in the
order in which they are received.
Postprocessing. As work orders for
a particular request are completed,
they may be summarized for subse-
quent management analysis in terms
of: work content statistics (each step
tracked separately); work process sta-
tistics (inter-step metrics); and finan-
cial statistics (both cost and financial

commands. are

Figure 1. General business work
process cycle

rials at the bin, warehouse. or other
(e.g., regional)
products or equipment at customer,
vendor, or field engineer sites; and
indicating what customers or cus-
tomer types are allowed to order
what products or services.

Because of this reuse, achieved by
broadening the definitions of PROD-
UCT, LOCATION, AGENCY, etc.,
the number of ruleforms in an appli-

level: tracking of

cation increases very slowly as more
functionality is added. Almost any
apphication will require 10-15
ruleforms; but that application taken
to its most sophisticated extreme is
not likely to require more than 50
ruleforms. The goal is not simply to

COMMUNICATIONS OF THE AcM [anuary 1995/ Vol 38, No.1 T13

ULTRA-Siructure

minimize the number ol tables (which
would be foolish), but instead to be
semantically “correct,” and thereby
to gain a more profound understand-
ing of the ontology of the system we
are modeling.

Experience to date indicates an
asymptotic approach to <50 rule-
forms having <20 attributes per rule-
form as more and more functionality
is supported by an application. While
a large company will likely have more
customers than a smaller one, and
thus have more existential rules de-
claring the existence of those custom-
ers and their classifications, it is not
logically necessary that the number of
compound rules (largely based on
groupings anyway) will also increase.
The complexity of rules is indepen-
Ultra
Structure addresses these indepen

dent of their number, and
dent issues in ways that should work
as well for representing large systems

as for smaller systems.

Benefits for Business. 1hese obser-
vations permit a new and different
software in the

vision of business

future:

® Instead of automating the genera-
tion of millions of lines of code
and/or maintaining a large library
of reusable code. we may see an
end to the need for software main-
tenance and an increase in the need
for end users who are trained as fu-
alitators, expert at defining heuristic
business rules as data.

® Instead of patchworking together
dozens of large applications devel-
oped by different vendors or de-
partments, we may see a new and
extremely high level of integration
that transcends the current applica-
tion divisions of, for example, man-
ufacturing and accounts payable.

® We may see companies selecting
from among several standard busi
ness engines, offered by different
vendors, that would not define the
rules of their business in advance
through software but would define
merely the format of all logically
possible rules, permitting companics
to establish policies and procedures
based on the complex conditional
rules that are now necessary to
meet today’s global competitive

challenges.

Results

The theories presented here were ini-
tially developed by Intellinomics Cor-
poration, a small California firm in-
corporated in 1980 and wound up in
1993, Under Intellinomics Corpora-
non, Ulmra-Structure was used to
build applications for companies with
revenues ranging from $25 million to
Fortune 100 size, on DEC VAX, PC
LAN, and HP MPE-XL platforms.
Various
supported, up to about 50,000 or-

transaction volumes were
ders/day. While some pieces of the
CORE/650 have been implemented
in production, most have not. Prov-
ing the CORE Hypothesis will re-
quire, among other things, that a sin-
gle version of a CORE/6G50 be
implemented to support different
companies in different industries.
To demonstrate these analytical
principles and associated technology
in situations where the problem is
known to be relevant and nontrivial,
hired Intellinomics 1o

some [irms

build a working prototype ol one of

their most complex applications on a
PC.
oped over short periods of three to
five days. Prototypes developed for
various companies include:

These prototypes were devel-

¢ [ot-specific manufacturing re-
source planning (MRP) for a $200-
million drug manufacturer.

e ‘[rust accounting for a $36-billion
mutual fund.

® Military goods exporting and
tracking for a major international
freight tforwarder.

® Order entry through billing for
the U.S. division of a $10-billion
manulacturer.

® Corporate cash management for a
$35-billion oil company.

e Planned reorders for distribu-
tors of a major greeting card
manufacturer.

® Product configuration validauon
for a $1-billion manufacturer.

e Factory and warehouse sourcing
for a $200-million agricultural
products company.

¢ Global billing for a major parcel
delivery firm.

In each case, Intellinomics provided
a designer and a programmer, and
the client provided from two 1o ten
technical and subject experts familiax

1148 .00y 1995,/V01. 38, No. | commumMicaTIONS OF THE Acw

with the apphcaton area. Every pro-
totype successfully demonstrated sub-
stantial functionality to the satisfac-
tion of customer experts. At least one
was loaded with production data and
found to be quite robust. They
worked not because of any industry-
held by Intel-

linomics’ developers, but rather be-

specific expertise
cause ol an ability to discern and im-
plement
animation procedures quickly.
Measured Results in Existing Appli-
cations. In

simple ruleforms and

1989 Intellinomics mea-
sured certain key metrics across eight
production applications built by In-
1985
order

tellinomics or 1ts clients after

These applications include
entry, inventory, and billing; sales
analysis; financial products tracking
and management; and governmental
freight forwarding. At the
measurement, the systems built by
Intellinomics had been in production

for an average of 18 months and

time of

those built by others for 20 months.
The applicatons utilized DEC, PC
LAN, or Datapoint platforms, in
DATABUS (one application) or “C”
(seven applications) languages. 1n
Table 5, column 2 indicates Intel-

b5

linomics” average and column 3 indi
cates the average achieved by two
customers who built applications for
themselves or other clients. These
numbers are for introductory discus-
sion and have not been adjusted for
constant dollar value, for varying
overheads or billing rates, or fom
other criteria a thorough economi
analysis should consider.

A Case History. Intellinomics used
an early version of these concepts to
develop order entry, inventory con
trol, and billing applications for a
wholesale replacement auto glass
business in 1985, after the customen
had unsuccesstully tried to automate
for seven years. In the first nine years
after installation, the customer more
than tripled its gross revenues, to
about $40 million per year. Its DEC
MicroVAX I1 with a 9-MB internal
memory supported 48 active on-line
users and 12 background tasks at
eight sites around California. It ini-
tially processed about 30,000 orders
per month having one to 99 line
items per order. By 1991 the com-

pany had moved to a VAX 3600 with

a 32MB
handling over 50,000 orders a month
through more than 60 active users.
The company has no software staff at

internal memory and was

all; Intellinomics maintained the ap-
plication with less than 15 person-
hours per month. The customer as-
serts that it has the lowest operating
costs (not just MIS, but all areas) in its
industry. It now has 21 sites around
the U.S.

Life-Cycle Costs of a CORE for
Business. Fortune 100 companies
average 35 million lines of code to
implement their business rules [5]. If
we attribute 95% of this to interdivi-
sional duplication (e.g., 25 different
inventory applications, 20 different
GL applications) and cross-applica-
tion bridges, we may speculate that
ideally such a company could be run
with 2 million lines of code. Using
Barry Boehm’s COCOMO model [1]
of the development costs for such a
(semidetached) application without
cost drivers factored in and an indus-
try rule of thumb for maintenance
costs, we get the following lifecycle
costs:

e number of lines of 3GL code in
conjunction with DBMS—2 million
e initial person-years of develop-
ment effort—1,245

e initial project cost @ $5,000/
person-month—$75 million

® maintenance/year as percent of
initial cost—40%

e annual maintenance cost (unin-
flated)—$30 million

® development cost per line of
code—$37

e five-year cost per line of code—

$112

These figures indicate
ideal, wholly integrated enterprise-
wide business application might cost
about $225 million for development
and five years’ use. The application
might then be wholly replaced, start-
ing a new life cycle. Myers uses sev-
eral approaches to estimate cost and
effort for a hypothetical two-million-
line command-and-control applica-
tion, and generally observes that,
depending on organizational produc-
tivity, the effort is in the range of
2,250-10,833 person-years at an un-
inflated cost of $300 million to $1.6
billion [6]. This excludes long-term

that an

Table 5. Ultra-Structure Application Metrics

Application Profiles Intellinomics Others
Applications: 4 1
Orders Entered/Year: 102,300 684,000
$ Value of Orders/Year: 3+ billion 366 million
Users/Application: 25 18
Screens/Application: 82 31
Reports/Application: 42 24
Basic Metrics
Calendar Months to Develop: 8 10
Person-Months to Develop: 11 23
Person-Months to Maintain: 2 31
Tables/Application: 18 28
Lines Hand-Written Code (HWC(): 5,248 20,505
S Development Cost: 88,196 124,500
$ Maintenance Cost: 34,346 155,000
Derived Metrics
$ Development Cost/Line HWC: 16,81 6.07
Annual Maintenance as % of Development $: 12 40

maintenance, a critical indicator of

design robustness that at least dou-
bles the software development cost [1,
4]. Certamnly for MIS-type applica-
tions the costs would be lower.

By way of illustration, we present
an ideal CORE/650. We have not put
an enterprise-wide complex operat-
ing rule engine into production, so
our estimates of its life-cycle costs are
largely conjectural. Nevertheless, as a
first approximation, we believe such
an application might look as follows:

e number of lines of 3GL code in
conjunction with DBMS—100,000
® initial person-years of develop-
ment effort—43.5

® initial project cost @ $5,000/
person-month—$2.6 million

® maintenance/year as percent of
initial cost—15%

e annual maintenance cost (unin-
flated)—$0.4 million

® development cost per line of
code—%26

® five-year cost per line of code—
$46

These figures indicate that an ideal
enterprise-wide business applica-
tion—stating rules as data rather
than software, but otherwise using
standard development
tools—might cost only $4.6 million
for development and five years’ use.
Unlike applications that must be dis-
carded after the surface structure

software

they support changes too much and
they can no longer be patched eco-
nomicall}', this application could be
supported indefinitely if its deep
structure did in fact anticipate all log-
ically possible rules. Although simple
comparison of these figures is risky.
we are interested here in general or-
ders of magnitude., not minor per-
centages. These two ideals differ by a
factor of 49.

A company using standard off-the-
shelf packages rather than creating
custom applications will need to ei-
ther adapt itself to the surface struc-
tures supported by the packages o
modify the packages. In semiregu-
lated areas such as financial account-
ing, this is not usually a problem, be-
cause different businesses tend to fol-
low the same work processes anyway
(e.g., for posting of journal entries),
encoding their accounting differ-
ences as data via their chart of ac-
counts. In application areas where
inter- or intracompany surface struc-
ture differences can be great, package
modifications pose significant
technical and financial risks.

In theory, a CORE/650 should not
have to be custom written, as was as-
sumed in the preceding cost predic-
tions, but could be installed simply by
entering appropriate operating rules
for a given business. That is, in fact,
the objective of Ultra-Structure. In
that case, the cost savings would be

can

COMMUNICATIONS OF THE ACM |anuary 1995,/ Vol 38, No. | 115

ULTRA-Siructure

substantally greater than we have

speculated.

Conclusion

Humans are adept at formulatung
apparent
behavior of a system. Secking this

rules from the observed
truth behind appearances is an an-
cient and important activity, and we
have developed this capability over
the last three centuries into an en-
deavor we now call science. But what
happens when there are so many
rules—tens of thousands and more—
that we cannot begin to comprehend
them, or their implications, as a
whole? That is the state of our cur-
rent understanding in business, sci-
ence, government, and other areas of
complex systems and processes.
Rules processes,
specify systems. To understand com-

specily which

plex systems we must understand
complex processes, and to under-
stand complex processes we musi
understand complex rules. By ab-
stracting complex rules to a higher
level, we find systems that obey differ-
ent rules can still share the same rule
formats. This abstraction of rules pro-
vides additional simplicity without
simplification, and is made possible
through the new conceptual struc
ture of ruleforms. In the process of
discovering the ruleforms of a system,
we also obtain a deeper understand-
ing of the fundamental nature or on-
tology of that system.

Because we can represent the rules
of systems with very few ruleforms
and relatively simple animation pro-
cedures, we can implement proto
types very quickly on a computer.
I'he ability of a model 10 accurately
represent complex rules, including
exceptions, can be experimentally
verified. Alternative deep structures
for systems can be tested experimen-
tally, and Occam’s razor can be ap
plied to shed unnecessary ruleforms
New development versions of an appli-
cation can be developed and ex-
plored every four to six weeks until
no counterinstances of unsupport-
able rules are found. This process
and its objectives contrasts sharply
with traditional approaches.

Future Work. Intellinomics Corpo-
ration was closed and The George

Washington University Notational

Engineerimg Laboratory (NEL) was
full

time to studying the comparative his-

established in order to devote
torical and theoretcal foundations of
various formal symbol systems (nota-
tions). Work 1s under way to:

e Understand the structure of nota-
tional revolutions (such as the move
from Roman to Arabic numerals) by
examining the evolution of various
notational systems (the alphabet,
mathematics, chemistry, music,
dance, logic, cartography, time, and
money).

e Specily criteria or characteristics
that major new notational systems
might have.

e Apply Ultra-Structure to derive
the deep structure of a variety ol
different types of systems, including
scientilic arguments, law, biology,
physics, games, and music.

Preliminary results are very encour-
aging. The discovery ol simplicity

the study of semantic form

throug
may vet permit us to overcome the
complexity barrier we now face. 3

Acknowledgments
We are grateful to Peter Denning and
Robert Fearing for many constructive

comiments.

References

L. Boehm, B Software Engmeering Eco-
nomics. Prentice-Hall,
Cliffs, N.J., 1982,

Englewood

2. Brooks, }‘.]’..‘}I.

sence and accidents of software engi

No silver bullet: Es-

neering. Computer (Apr. 1987)

3. Codd, E.F. The Relational Model for
Database Management, Version 2. Ad-

dison-Wesley, Reading, Mass., 1990

57

4. Hager, J.A. Software cost reducton
methods in practice. IEEE Trans. Soft

Eng. 15 (Dec. 1989), 1638-1644.

5. Melymuka, K. Managing mainte-
nance: The 4.000-pound gorilla. CIO
(Mar. 1991), 74-82. Quoted in Zwass,
V. Management

Wm. C. Brown,

Information
1992,

Systems

6. Myers, W. Allow plenty of ume for
large-scale software. IEEE Soft 6 (July
1989), 92-99.

1 ‘6 January 1995/ Vol 38, No. | COMMUNICATIONS OF THE ACM

Navathe, S.B. Evoluton of data mod
eling for databases. Commun. ACM 35,
9 (Sept. 1992), 112-123.

-]

8. O'Hare, R.J. Systematic generahiza-
tion, historical fate, and the species
problem. Syst. Biol. (Sept. 1993).

9. Palvia, 5.C., and Gordon, 5.R. Tables,
trees, and formulas in decision analy-
sis. Commun. ACM 35, 10 (Oct. 1992}

10. Pouer, W.D., and Trueblood, R.P
Tradiuonal, semantic, and hyper
semantic approaches to data model-
ing. Computer (June 1988), 53-63.

11. Prigogine, L. Order Out of Chaos: Man's
New Dialog With Nature. Bantam
Books, New York, 1984.

12. U.S. Congress Office of Technology

Assessment. Information

R&D: Critical Trends and Issues. Gov-

Technology

ernment Printing Office, Washington,
DC, 1985,

JEFFREY G. LONG is the director of the
Notational Engineering Laboratory at
George Washington University. Current
research interests include the comparative
evolution of notational systems, the phi
losophy of notation, and the critique ol
tools for the representation of general
complex svstems. Author’s Present Ad-
dress: George Washington University
CMEE, Room
T03A, 20052;

email: jlong@seas.gwu.edu

Center,
DC

Academic
Washington,

DOROTHY E. DENNING 1s Professor of
Computer Science at Georgetown Univer-
sity. Current research is focused on policy
and technical issues relating to cryptogra-
phy and wiretapping. Author’s Present
Address: Georgetown University, Depart
ment of Computer Science, 225 Reiss Sci-
ence Building, Washington, DC 20057,

email: denning@cs.georgetown.edu

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the
title of the publication and its date appear, and
notice is given that copying is by permission of
the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee
and/or specific permission.

© ACM 0002-0782/95/0100 $3.50

Appendix: Sample ruieforms for work orders

Table 6. AGENCY Ruleform and Rules

Table 7. PRODUCT Ruleform and Rules

AGENCY

NAME

PROD

DESCRIPTION

BILLING_CPU

Billing Computer

ABC486

Laptop Computer

CPU Computer CHE_CRD Check Customer Inhouse Credit
CREDI'] Credit Department CHK_LTR Check Customer Letter of Credit
EXEMPT Exempt from Sales Tax DELIV Deliver Product

EXT_CUSTI External (Paying) Customers DISCN'T Compute Fee Discount
FACTORY1 Factory #1 FEE Compute Fee

GU Georgetown University FROZEN Frozen Products

MNFR Manufacturer NON_EXEMPT Subject to Sales Taxes
NON_EXEMP1 Subject to Sales Tax PICK Pick Inventory

ORG_A Organization A CHEM_B Chemical B

(ANY) (Any Agency) PRT_CUST_DEC Print Customs Declaration

ROOM_TEMP

Room Temperature Products

SHIP Ship Inventory
STAX Compute Sales Tax
(ANY) (Any Product or Service)
Table 8. LOCATION Ruleform and Rules

LOCATION DESCRIPTION

225RSB 225 Reiss Science Bldg.

37BHT 37 Bret Harte Terrace

BINO1L Bin #1

BIN15 Bin #1565

bC District of Columbia

EAST COAST

East Coast

EURO European Locations
FACTORY1 Factory 1

FRANCE France

PARIS Paris

US U.S. Locations
WASH Washington

(ANY) (Any Location)

COMMUNICATIONS OF THE ACM |anuary 1995/ Vol 38, No. 1 ' "

ULTRA-Structure

L

RELCODE DESCRIPTION
AREA Economic Community
(1LY City

CUST-TYPE

External or Internal Customen

REGION

General Region

STATE

State

STAX TYPE

Sales Tax Status

STORAGE_TYPE

I'ype of Storage Required

Table 9. RELCODE
Ruleform and Rules

STREET Street
AGENCY1* RELCODE* AGENCY2*
Table 10. AC N
ENCY NETWORK Gl CUST_TYPE EXT_CUST
Ruleform and Rules]
GU STAX_TYPE EXEMPT
ORG_A CUST_TYPE EXT_CUST
ORG_A STAX_TYPE NON_EXEMPT
PRODI1* RELCODE* PROD2#*
le11. PRO TNETWO
ABC486 STORAGE_TYPE ROOM_TEMP Table DUC RK
Ruleform and Rules
ABC486 STAX_TYPE NON_EXEMPI
CHEM_B STORAGE_TYPE FROZEN
LOCNI1* RELCODE#* LOCN2*
Table 12. LOCATION NETWORK BINOT AREA FACTORY]1
Ruleform and Rules _
BIN15 AREA FACTORY1
FACTORY1 STREET 37BH'1
225RSB CElY WASH
37BH1 CI'TY WASH
WASH STATE DC
D(REGION FAST_COAST
EAST_COAS'] AREA US
PARIS REGION FRANCE
FRANCE AREA EURO

1 18 January 1995/Vol 38, No. | COMMUNICATIONS OF THE ACM

Table 13. SOURCING AUTHORIZATIONS Ruleform and Rules

AGENCY* PROD* LOCN* QTY_ON_ Ory REORDR_
HAND COMM PT

(SELLER) ABC486 BINO1 50 20 15

(SELLER) ABC486 BIN15 150 100 15

GU ABC486 DC 12 12 0

Table 14. SEQUENCING AUTHORIZATIONS Ruleform and Rules

PARENT PROD* SEQ_NO CHILD_PROD#*
CHK_CRD 1 PICK

PICK 1 PRT-CUST_DEC
PRT_CUST-DEC 1 SHIP

PRI CLST DEC 2 FEE

CHEK_LTR 1 PICK

Table 15. WORK PROTOCOL Ruleform and Rules

PRODI1* | AGENCY* PROD2* SHIP_ | SHIP_ SEQ_ ASSIGN_ PROD3* PROD4* QTY
TO* FROM®* | NO TO
15 DELIV EXT_ (ANY) Us Us 1 CPU CHE_
CUST CRD
2 | DEL1V EXT (ANY) EURO | US 1 CREDIT CHE_
CLUST LTR
3 | DELIV EXT_ ABC486 EURO | US 1 CPU PRT_
CUST CUST_DEC
4 | DELIV (ANY) (ANY) (ANY) | (ANY) 1 FACTORY1 | PICK " u
5 | DELIV (ANY) (ANY) (ANY) | (ANY) 1 FACTORY!1 | SHIP " "
6 | DELIV EXI. ABC486 (ANY) | US 1 BILLING. FEE u 1500.00
CLsT CPU
7 DELLV NON_ NON_ DC (ANY) 1 BILLING_ STAX " 0.0575
EXEMPT EXEMPT CPL
8 | DELIV EXT_ ABC486 EURO | US 1 BILLING. DISCNT 0.05
CUST CPU
9 | DELIV GU ABC486 DC uUs 1 BILLING_ FEE N 1250.00
CPU ‘
| J

COMMUNICATIONS OF THE ACM [anuary 1995/Vol 38, No. 1 1 ‘9

ULTRA-Structure

L

Table 16. WORK METARULES Ruleform and Rules

PRODI1* SEQ_NO AGENCY PROD2 SHIP_TO* SHIP_FROM* —|
DELIV 1 (SAME) (SAME) STATE AREA
DELIV ‘3 CLIST TYPP [H,\Nl...l‘,,) AREA AREA
DELIV 3 CUST_TYPF (ANY) ARFA AREA
I DELIV l CUST 1 YPE (SAME) (ANY) AREA
_-_I}l.l.l\ ‘ 3] STAX_TYPE STAX .l\l’l: STATE (ANY)
DELIV 6 (ANY) (ANY) (ANY) 1 \._\Y')V
rable 17. WORKORDERS Ruleform and Rules
SEQ ASSIGN_TO AGENCY* " PRODI* PROD4* SHIP. SHIP_ STA- QTY M
-NO o FROM#* TUS
1-0 Gl DELIV ABC486 225RSB FACTORY 2
1-1 BILLING_CPU Gl FEE ABCA486 DC l‘a U 1250.00 1,
1-2 CPL EXT_CUSTI CHK_CRD . | us Us \ 2,'1.1111_1111 .
1-3 FACTORY1 V PICK AH(D-H[) L 29 6,
1-4 FACTORY1 SHIP \.]’»('l.\:h (2 6,
2-0 ()R(r;,,\. DELIV ABC486 . PARIS FACTORY1 =
2-1 F \(.l'()l\’.\'l EXT_CUST PRT_CL 5'1;. : EURO US - L 1 2
DEC
----- M‘Z—E BILLING_CPU EXT_CUST DISCNT s EURO US U 0.05 2
2-3 CREDI'T EXT_CUST CHEK_LTR EURO Us A 3000.00 3
2-4 BILLING_CPU EXT CUST FEE ABCARG uUs L 1500.00 1
2-5 FACTORY1 PICK ABCA86 l 2 6
2-6 FACTORY1 SHIP ABC486 U 2 6

120 January 1995/Vol. 35, No. | COMMUNICATIONS OF THE ACM

