SELECTIVELY CONFINED SUBSYSTEMS

D.E. DENNING
P.J. DENNING
G.S5. GRAHAM
Depantment of Computer Science,
Purdua University, W-Lafayette, U.5.A.

Introduction

Satisfactory solutions are now known for a variety of procection problems ranging
from controlled accesn to prograus and data to mechanisms for debugging sub-
systems. lowvaver, a problem still requiring i{nvestigation f{s the confinement
problem: Laspson defines it as the problen of constraining a “service process” so
that it cannot leak any information about irs "customer processes” [1]. He out-
ldnea a sclution to the problem, vhich in eagence constrains che service procees
from reraining any informaction afrer it ceases to operata on behalf of a custo-
ner process, but it may share informscien with anothar process as long as the
other process 1s similarly confined, or else trusted by both the cuatomer and che
server. lWe shall refer to his as the approach of total confinement.

OQur purpose here is iaveatigating am approach to the confinement problem based on
selective rather than toral confinement. A proceas or subsystem of proceases is
regarded as being selectively confined if it im free to recain or share informa-
tion which 1{s not confidential with respect to a custcmer processa, but not infor-
mation which is; moreover, a customet may declassify previously confidencial in-
formation for retention by the service. For example, a selectively confined
{ncone cax compucing service may be alloved to recain address and billing infor-
mation on LtS use by custosers, but por informacion on its customara' incomes.
This type of ptoblem has been referred to as che cooperation berveen mucually
suspicious subsystens, one of which ia "memoryless” {2].

We begin by propoaing a mechanism which "obviously” provides selective confine-
sent; hovevar, closer inspection reveals an ioportant limitatlion in the mechanism.
Ve see no easy way to resolve the limitation, and vc are led to the conclusion
that, in the current state of the art, no solution to the coenfinement probles,
short of total confinement, is viable.

This work was supported in part by NSF Grant GI-43176. Authors’ present
addresses: P.J. Denning and D.E. Denning, Computer Sciences Department, Purdue
Universicy, W. Lafayerts, Indlana 47907, U.S.A. G.5. Craham, Department of
Cosputer Science, Untversicy of Toronto, Toronto, Ontario HSS 1A7 Canada.

56

Cenaral Properties of a Confinement Hechanisnm

nn:nunaﬂbnone:nanaauunoﬂtﬂnruunnn-nnm.....un:nn-n-anmna:nn zw.....:ﬂ.
Intarprocess communication is handled by n-umuna -oampan primitives, such
an mand message, get messsge, send reply, and get reply. The segments may be
regarded as logical or physical data structures corresponding to files, memory
units, registers, etc. and ara partitioned inco cwo classes: local and global

gments. A segment ia local (or private) if it is accessible to exactly one
procera; otherwise it is globsl (or shared). Hote that tuo procesaecs with access
to the same global segaent zn may be able to communicate by transmitting data
via N, .

i

Let P_ denote a customer process and Py a service process vhich {s to operate for
P »un-uuunnn<n~u confined mode. Let C denore data consideved confidential by
1np ae will be discussed below, the size of C can grov becsuse any data Pg (oz a

vmonaoa called by P) derives from C will be sdded to C, and it can shripk in

case P_ releascs {t%from confidential status (declassifies it}. Listed below are
six uumannu propertiea for a mechanism of selective confinement: though thay may
seem restrictive, they constitute a sinimal ser of constraints under which qn and

1: are likely to sgrees to operate, given their mutual suspicions.

A central concept helow is called engagement. In general, a process mh is naid
tn be gngaged by ite caller Py, whenever Py sends confidenctial data to mu. How=
ever, Py will not ba permitted by the system to engage Py, unless Py has previ-
ously agreed ro operata under the rulsm of selective continement, and has et all
requirenents necessary for this sode of operation. Wa postulacte a Boolean syarenm
function centified(l) which returne trus if and only if ¥y la cartified to have
wet the raquirements fur selectively confined operation. ~Then F; may engage vu
if and only 1f ceati{fied(j}, and only if mu is not already engaged.

In the following, asmume that Pg,Py,P2,... denores a system of processes such
that Py = P, is the custoper, P} iv the service Py, Py for & > 1 are processes
which can be cmployed by Py, and cert{fied(i) for 1 > 0. In che sequence, { < J
iopiies that F; was called earlier than vu. A aingle ser of confidencial data C,
inicizlly pravided by Fg, is ssmumed throughout.

1. Hurtual Excluoion (one customer at a tioe). vu is engaged by Py aa scon as Py
gends Py a oeasage containing dacs froa the confidential net T, providing
that mu is not zlready engaged. While Pj 1 engeged, it may recelve confidential
data only from ice caller, or any processes it engages.

2., Closure. If Py perforws sn operacion uaing any data from C, the result of
that operarion is added to C: Any information derived from confidential data iz
treelf confidential. (Precisely etated, if any of x;,...,%; are in C, then the
result naup....usu of operation f is ndded to C.)

3. MNon-leakage. Py may place an element of C in a segment N anly if N 1s local
to #; (local segnents are inaccessible to other processes).

4. Transitivity. IE P; sends a message to Py (1#0) containing data from C, thea
P4 becomes engaged by Py, iloreover, Fj may not disengage {tself from ite caoller
until Py disengages itself from Py. In other wvords, all processes which aven-
tually Teceive daca frew Pp's set C become engaged (cffectively by Po) and musc
be confined.

5. Daclassification. Dato may be declassified {removed from C) only by Pg, on
receipt of a neasege from Py requesting declassificaclon of data contained in the
message. In general, if Py (1>1) wvants dota decleosified, {t must request so
fron ics caller Py (ici); mw»n is repesatad by o chain of wessages until the orig~
inal customer Py is conaultad.

57

6. DBlsengagement {and Non-Retenticn). When Py disenpgages from its caller Pj
{1<i), ic Is noc permirted to rverain any daca In C; to enforce chis, the aystem
will purge froa m“ all romaining elements of C as parr of the disengagement op-
aration. (If Py Tefuses to agree to chis, tha Hutual Exclusion rule will guar~-
antea the total isolotion of mh Erom the rest of the system.)

The above rules in fact specify the operarion of a melectively confined system of
procensses, with entry process mw. The aystes is the set of all seleccively con-
finad processes Eormed by taking the closure of the transitivity relacion sug-
gested by rule 5 (i.a., it is the set of all melectively confined processes that
may become engaged data either directly or indirectly by 1ou. The elepencs of
the confidential data C are distributed among the processes of the system Pp,.Pp,
F2,.... The nutunl exclusion rule onsures that any confidential data in an en-
goged process Py (1)) is a member of the one sat C. The closure rule ensures
that any data detvived in any P3y 1s added to C. The nonleskage rule keeps ele-
wents of C local to each Py. The tranaicivicy rule provides that each Py is
totally confined, or communicates only with other confined processes. The de-
ciageificacion rule permita any pracess Py to get data remaved from C, bur only
vith the explicic permission of Pg. Finally, the disengagement tule guarantees
that no element of C remains accessible to Fy when it disengages itself from ita
cnller.

loplementation

Let Pg,P1,P2,... denocte a system of gelectivaly confined processesa with customer
Py and server P). Assoclate with each process Py is an engagement list, L;, con-
taining indices of all processes directly engaged by Pyi initially Ly is aull.
Agsoclate wicth each procesa 1u an engagenent descriptor wh = (g,1), in which at a
particular time

e =1 inplies MM is engaged by Py, and

e =0 ioplies mu is not engaged and i is undefined.
Asgociace wicth each “data elempenc a special bit, called che confidentialir
aet to 1 if and only if char elezent is In C; this tag can bhe ssc to 1 for a
datum x by an unengeged process, using a system operation seffag(x). Then any
datum referenced by ?y iz considered confidential if and only if it in Ra
flagged. This could wu ioplenented trivially in a togged architecturs [3].

The ioplementation of the six properties of sslective confinezent proceeds as
follous.

H.mzamuuzn.m:wnmunnannnmuwqm—nuunwu:ucpnn=~<nnu:Ao.:smunuznnv
and ceatified()). When allovable, engagement has the effect ew seccing Dy to
(1,1) and adding i to the engagemont 1ist L;. The processes Py and Py may
exchange messages while Py is engaged by Py, but Py may communicate with no other
proceds except those it engages. Engagement ia ammnnnnn by a primitive operation
engage{Pyixl,.osiag)s vhere x),...,x, are parameters. Transmiseion of messages
containing confidential data from engaged to unengaged processed is prohibited.

2. Closure. To implement the closure rule we simply tog the result of any opar-
ation f chat is applied to operands xj,...,xp Whenever at least ona of the x1 ia
tagged. This is easily handled by harduare in a eystem with tagged architectura,
by DRing the confidentialicy tags of the operands to obtain the flag of the
result.

3. lon-leakage. To implement the non-leakage rule ve sicply raise an error
condition if Py atrenpts to transfer a ragged datum to a global segment. This
can be handled by a supervisor I/0 roucine (if tha global seyment 18 a File, say)
ot by hardvare, In the case of tagged architecture and a segmented virtual
menory. The effect of raising the error condition may result in the sutomatic
purging of all confidential data from Py's memory.

5%

The engagesent operation sust verify that if Py attempts to
engage Py, then By = (0,undefined} and cenftified(]). 1If this dia true, then
Dy i= (1,1), and] is added to the engagement lisc Ly of its engagor Py.

5. Declasnification, Postulate a aystem aperation 2efense(x) for seccing the
confidentiality tag of x to 0 without changing the value of x. This operation
could be performed only by the process (in thism cmse Pg) which set the tag in the
firat place; in terms of our modal, nelease(x) camnot ba executed by any engoged
proceas. If Py 18 engaged, it con obtoin the release of x only by sending a
nmessage to its engagor Py (icj), If 1y, Py wvould forward the mecsape to ite
engagor, and so on until Pg was contacted. The declasaified x would be trana-
mitted back to Py by a .reverae chain af messages.

6. Disengagement. mu would request disengagement by a system function disen-
gage. 1his function would be allowable only if the engagesent list Ly is null,
vhereupon it would have the effects of a) removing j from the engagement liet Ly,
vhere Dy = {1,1), then b) setcring Dy to (0,undefined), and c) purging from Py
all alemente of C - {.e., any dacta vhose confidentiality tag les set.

Leakage of Confidential Data

Unfortunately, the mechanisz we hava specificod does not prevent leakage of con-
fidencial datal Alchough a confined procass m.u cannot directly lesk data that is
flagged confidential, there im nothing in cur mechanism to prevent it from leak-
ing non-confidential dova that is equal in value to confidencial deca. For ex-
sople, if XEC and N 15 a global segment, then the value of X can be leaked hy
exacuting the stateaent

Lf X = Y then waite ¥ into N.
Lempaon discusses other subtle forms of leakage, such as leakage on “'covert
channels” {e.g., by cleverly alrering the system load) in [1].

in our affort to find a solutcion to thia problem, we made the folloving obaerva-
tion: Many very subtle examples of lcakage can be constructed by esbedding
scatexanta cozmunicating non-confidentiasl variables in progrem segments condi-
tioned on Boolean tescs on confidential data. A solution to the problem is chen
briefly stated as follows: Let b be a Boolean expression and A an action con-
ditioned on b. By the closure rule, if b contains an operand XEC, then bEC.
The problem is then wolved by inhibiting all compunication by an engaged H.u
vhile Py i3 executing A if b is confidential. Hence w.,_ vould not be allowed to
vrite inco a global segment or iseue spurious messages to another process vhile
it vas acting on confideancial daca.

Isolating the action A, however, involves a coeplex flou analysis of the code
becavese of the possibility of side effects. Considar, for example, the fnllowing
stacementd, where X is confidencial and B is a global segment:

if X = 0 then Y:=0;

if ¥ = 0 then wiite 2 into H.
Here the action "waite z .Otfo N’ fs indirectly conditioned on the confidential
Boolean "X=0". Dececting this involves a flov analywis that takss into account
date flow as well as control flow, Such a flow analysis would probably have to
be perforned on the source code (for efficiency os well as practicalicy consid-
erationa) and the compiler would have to delimit the body of the accions in the
machine coda. Upon eviluating 3 confidential Boolean, the hardware (with the
possible help of softvare routines) s then responsible for insuring that all
communication attempts are trapped vhile exmcuring instructions within the body
of the associated action.

A more actractive solution to the problem involves the use of type checking and
compile-time cettificacion. Here the prograsser declares all variables to be
either confidencial or non-confidential. The compiler uses this informatrion to

*

59

deternine which expressions have confidential results. The compiler then does a
gimple contrel flow analysis of the progras to verify that all varlables that
could be assigned valtes in the body of an action directly conditioned on a
confidential Boolean are also declared confidencial. 1I1f not, a type ercor occurs,
and the program is not cerctified. For exaople, consider aguin the seguence of
acacenents

Af X = 0 then Y:=0;

L6 ¥ = 0 then waite 2 into N;
vith X declared to be confidential, and Y declared to be non-confidential. Since
the expression "X=0" is then known to be confidential, the compiler would detect
a type error with respect to Y, and the program would not be certified.

This wolucion 18 more attractive for two reasons: the Flov analyels is simple,
and it allows most of the problem to be solved at compile-time. The only check
that wust be perforwmed dynemicelly verifies that the actual paraseters (or inputs
to the program) do pot exceed the declared confidentislity of the formal para-
neters.

Closer acrutiny, hovever, reveals thar che problem fs arill not sclved! For
exaople, consider the following oequence of statements, vherc X 15 declared con-
fidencrinl, T is declared non-canfidential, and N is a global segmenc:

I:=0; SUM:=0;

Aepeat
SUM:=SIM + X;
T:el + 1;
weife T into N
jonever
Since the tteration does not appeat to be conditioned on X, the cospller vould
cercify this prograc segment. How, pp the progran executes, but after I

Lterations S5UH overflows - i.e., che value of 5UM exceede HAX, the largest number
storable in a register. Since the value of Ij has been put in a global segment,
another process can subsequently retrieve it and escimate X Erom HAX/1Lg.

The rzason for thia problem is that the Boolean expression "5UM overflows" im-
plicicly controls the loop, alchough it is not axplicitly acated. If the pro-
gramser had instead vritten
I:=0;5UM: =0
Aepent
SUH: =SUM + X;
I:=T + 1;
weite I Onte ¥
until SUM overflows
then the coopiler would have detected the type error with respset to I and not
certified the program.

The preceding problen arises vith all dynamic error conditions, including even
softuare checka on arcay bounds. This is because all such arror conditions
represdent Boolwmans that cannot be analyzed ot compile-time. We are thus led o
our finn) conclusion: the program must contain no erroesl The compiler can
safely certify a program for confinement 1f and only if it can prove the program
to be correct. This implies that the compiler must perform range checking as
well ae cype checking. Hence, the programmer sust specify a range of values for
cach input parameter. At execution time, the syatem must also verify chat che
values of the actual parsseters Fall wichin the range of the formal paramarers,

Another possible approach is to permit a program to execute without cartification
beyond the type checking mentioned earlier. Then if an error ghould resuit
duripg execution of the program, the owmer of the confidential data would have
the opportunity to sue for bresch of confidentfalicy. In order to prave whecher
or not the program had leaked daca, a trace of the confined program's outputring

L0

behavior is required, which trace would automatically be transmitted to the
custoper 1f the service generated an error. The court sust then be able to aex-
anine this crace as wall ae the program code. In the long rum, 1% vould be
cheaper for services to provide programs vhose correctnass can be verified.

The Foregelog discussion has shown that enfor t of the proposed Hon-Leakage
Rule (an engaged procese may output only nenconfidential daca) is considarably
more difficult than superficial con¢ideration might lead one to believe. In the
present state of the art, the only feasible Hon-Leakage Rule ia: An unwumnu pro—
clrcumstances write int lobal segment or cormunicate

occurred anywhere in the confined system. iinder this rule the pechanism we have
proposed is an implementatlon of Lampson's totally confined asyacem, with the
following exceptions: Daca declzssified by the customer may be retained in the
local segments of a process after disengagement, and other non-confidential data
may be recained if no ercors have occurred.

He do not Dean to suggest that there does nor exist a sultable set of programming
restricrions which would pecmit certificstion of confined programs withour firac
praving their corractnesa. However, we do not know of any.

Conclugions

We have oxanlped the problem of selective confinemenct, and have proposed a
pechanisn that permits and enforces this type of proctection. The nechanisa ia
based on the classification of data into two lavels: nen-confidencial and
confidential, where confidential data cannot be retained in any segaenis unless
declassified by the custemer. Any data that is retrieved from a global setment
16 considered non-confidential. One direction for further research is the in-
vegtigation of condicions (LF any) whereby confidential data could be transferred
to and from certain global segmenta. Another direction is the investigaticn of
condicions (if any) under which {seemingly) mon-confidential daca may be retainad
by a confined pracess in its local sogments. Still another possible direction is
tovestigation of a mechanism uhere che data is classified into n confidentiality
levels - e.g., denoted O,%,,..,n, data at level i being considered less confiden~-
tial than data at level 1+1; chese lovels might corraspond to the authority levels
levels of the ADEFT-50 system [4].

We have shown an implementation for the mechanism based primarily on compiler
certification and tagged acrchitecture., It is intecesting to note chat togged
architecture is baginning to appear very attractive, Lf noc essenciel, for the
efficient implementation of certain protection mechanisns. Fabry discusses the
use of tagged architeccure for the implementation of capability based systeas
tn [5]. The role of coopilers in the implementation of protection mechznisma
for informution aystems has baen examined more carefully by Convay et al [61, and
Horris suggests language features that may ba used to implement certain protec—
tion features [7]. Our research suggests that compilers may also be used to
verify certain protection properties. Hovever, puch more research in this ares
ia clearly neceassrcy.

Acknowledgenents

We are grateful zo R. Stockton Gaines and to Herbert D. Schuetman for helpful
inaights vhile we wera preparing this work.

6l

References

L. Lampson, B. "A Note on the Confinement Problem,” Cowm. ACH, 16, 10,
Ocr. 1973. It

2. Graban, G.5. and Denning, P.J. "Protection - Principles and Practice,"
AFEP5 Conf. Proc., 40, 1972 SJCC.

3. Feustel, E.A. "On the Advantoges of Tagged Architecture,” IEEE Trans=-
actione on Computers, €-22, 7, July 1971,

4. HWelssman, C. "Securlty Contrels in the ADEPT=%0 Time-Sharing Systen,”
AFIPS Conf. Proc. 35, 1969 FJCC.

5. Fabry, R.5. "The Caso for Capability Based Cooputers," Fourth Symposium
on Operating Systems Principles, Occ. 1973.

6. Conway, R.W., Maxwell, H.L., and Horgan, WH.L., "implementation of Security
Scructures in Information Systems™, Comm, ACH, 135, 4, April 1973,

7.

Morris, J.H. “Pretection in Progracming Languages,™ Comm. ACH, 16, 1,
Jan. 1973, -

