
~

TERESA F. LUNT, MEMBER, IEEE, DOROTHY E. DENNING, ROGER R. SCHELL, MEMBER, IEEE,
MARK HECKMAN, AND WILLIAM R. SHOCKLEY

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6, JUNE 1990

The SeaView Security
593

Model

Abstract-A multilevel database is intended to provide the security
needed for database systems that contain data at a variety of classifi-
cations and serve a set of users having different clearances. This paper
describes a formal security model for a such a system. The model is
formulated in two layers, one corresponding to a reference monitor
that enforces mandatory security, and the second an extension of the
standard relational model, defining multilevel relations and formaliz-
ing policies for labeling new and derived data, data consistency, and
discretionary security. The model also defines application-independent
properties for entity integrity, referential integrity, and polyinstantia-
tion integrity.

Index Terms-Classification, database security, multilevel security,
protection, relational databases, security, security model.

I. INTRODUCTION
ANY civilian, defense, and commercial applica- M tions require a multilevel database system that sup-

ports data having different access classes (security mark-
ings) and users with different authorizations, or
clearances. This paper presents a formal security policy
model for a secure multilevel relational database system.
The model was developed for the SeaView project, which
was a three-year joint effort by SRI International (SRI)
and Gemini Computers, Inc., sponsored by the U.S. Air
Force, Rome Air Development Center (RADC). Sea-
View’s goal was to design a multilevel secure database
system that meets the criteria for Class A1 of the DoD
Trusted Computer System Evaluation Criteria (DoD
5200.28-STD) [11 . The model formalizes the SeaView se-
curity policy [2] and was the foundation for Seaview’s
formal top-level specifications (FTLS) [31 and design
specifications. The SeaView project has also defined a
multilevel data manipulation and control language we call
MSQL [4], for multilevel SQL. ’ In addition, we have pro-
duced a formal top-level specification of the MSQL com-

Manuscript received August I, 1989; revised January 29, 1990. Rec-
ommended by T . A. Berson and S . B . Lipner. This work was supported by
the U . S . Air Force, Rome Air Development Center, under Contract

T. F. Lunt is with the Computer Science Laboratory, SRI International,

D. E. Denning is with the Systems Research Center, Digital Equipment

R. R. Schell and M. Heckman are with Gemini Computers, Inc., Car-

W. R. Shockley is with Digital Equipment Corp., Mountain View, CA

IEEE Log Number 9034814.
‘MSQL is an extension of SQL (Structured Query Language) that in-

cludes a built-in type access class to refer to data classifications, as well
as operators for data of that class. MSQL allows users to retrieve and ma-
nipulate data based on their classifications.

F30602-85-C-0243.

Menlo Park, CA 94025.

Corp., Palo Alto, CA 94301.

mel, CA 93922.

94040.

mands [3] using the formal specification language of the
EHDM formal verification system [5] and have partially
verified that the MSQL commands conform to the prop-
erties of the SeaView model [6]. We have also built a
demonstration system that illustrates key aspects of the
model and design.

A. Multilevel Security
The concern for multilevel security arises when a com-

puter system contains information with a variety of clas-
sifications and has some users who are not cleared for the
highest classification of data contained in the system.

A security classification, or access class, consists of a
hierarchical sensitivity level (e.g., TOP-SECRET, SECRET,
CONFIDENTIAL, UNCLASSIFIED, etc.) and a set of nonhier-
archical categories. In order for a user to be granted ac-
cess to information, the user must be cleared for the sen-
sitivity level as well as for each of the categories in the
information’s access class. The sensitivity levels are lin-
early ordered. The categories do not have such a linear
ordering. However, the set of access classes (< sensitiv-
ity level, category set> pairs) is partially ordered and
forms a lattice [7]. The partial ordering relation is called
the dominance relation. Access class A dominates access
B if the sensitivity level of A is greater or equal to the
sensitivity level of B and the security categories of A in-
clude all those of B .

The DoD policies restricting access to classified infor-
mation to cleared personnel are called mandatory secu-
rity. Mandatory security requires that classified data be
protected not only from direct access by unauthorized
users, but also from disclosure through indirect means,
such as covert signaling channels. Covert channels are in-
formation channels that were not designed to be used for
information flow but can nevertheless be exploited by ma-
licious software to signal high data to low users.* For ex-
ample, a high process (i.e., a program instance having a
high clearance because it is acting on behalf of a high
user) may use read and write locks observable to a low
process over time to encode high information (e.g., locked
= 1 , unlocked = 0). Mandatory security requires that no
information can flow from high access classes to low.

A trusted subject is a subject (i.e, executing program)
that is allowed to read and write within a range of access
classes. This range defines a sublattice in the access class
lattice. Trusted sub.jects are analogous to cleared users, in

’For simplicity, we are using the terms “high” and “low” to refer to
any two access classes when the second does not dominate the first.

0098-5589/90/0600-0593$01 .OO O 1990 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6, JUNE 1990

that they are “trusted” to write data at an access class
that may be lower than that of some of the data they read
without violating security. In order for a program to be
designated as trusted, it must be analyzed to show that it
does not convey information downward in access class.

Other access controls may be imposed in addition to
mandatory security; these enforce discretionary security.
The access controls commonly found in most database
systems are examples of discretionary access controls.

The “trust” in trusted computer systems rests on the
ability to provide convincing arguments or proofs that the
security mechanisms work as advertised and cannot be
disabled or subverted. The concept of a reference monitor
was developed so as to be able to demonstrate a system’s
trustworthiness. Traditional security engineering practice
is to segregate the security-critical functions in a refer-
ence monitor.

We assign access classes to subjects derived from the
clearance of the user on whose behalf the subject is op-
erating. The reference monitor mediates each reference to
an object by any subject, allowing or denying the access
based on a comparison of the access classes associated
with the subject and with the object. The reference mon-
itor must be tamperproof; it must be invoked for every
reference; and it must be small enough to be verified to
be correct and secure with respect to the policy it en-
forces. A high degree of assurance must be provided not
only that the mandatory security mechanisms control ac-
cess to sensitive information, but also that they enforce
secure information flow. The reference monitor forms the
core of the trusted computing base (TCB), which contains
all security-relevant code. The DoD Trusted Computing
System Evaluation Criteria include requirements for
“minimizing the complexity of the TCB, and excluding
from the TCB modules that are not protection-critical”
[l] , so that the reference monitor is “small enough to be
verifiable” [11 . Without such a requirement, the high de-
gree of assurance required would not be feasible.

B. The SeaView Design
In pursuit of Class A1 assurance [l], in SeaView we

have adopted a design approach that is built on the notion
of a reference monitor for mandatory security [8], [9].

SeaView provides the user with the basic abstraction of
a multilevel relation in which the individual data elements
can be individually classified. Our design approach im-
plements multilevel relations as views over stored single-
level3 relations, transparent to the user. The single-level
relations are stored in segments (of the corresponding ac-
cess class) managed by an underlying mandatory refer-
ence monitor. This underlying mandatory reference mon-
itor performs a label comparison for subjects and the
segments for which they request access, to decide whether
to grant access. The access class of any particular data
element in a multilevel relation is derived from the access
class of the single-level relation in which the data element

‘Single-level means having a single access class

is stored, which in turn matches the access class of the
segment in which it is stored, which is known to the ref-
erence monitor, Thus, labels for each individual data ele-
ment do not have to be stored, as was supposed prior to
SeaView.

Implementing multilevel relations as views allows in-
sert, delete, and update operations on the multilevel re-
lations to be translated into corresponding operations on
the single-level stored relations. Thus, our design ap-
proach is able to use the nucleus of a commercially avail-
able relational database management system to manage
the single-level relations, with an added layer of software
to create the abstraction of multilevel relations.

In SeaView, every database function is carried out by
a single-level subject. Thus, a database system subject,
when operating on behalf of a user, cannot gain access to
any data whose classification is not dominated by the
user’s clearance. The use of only single-level subjects for
routine database operations provides the greatest degree
of security possible and considerably reduces the risk of
disclosure of sensitive data.

This approach means that there must be at least one
database server instance for each active access class (an
access class is considered to be active if a subject of that
class is active). Thus, the database system consists of
multiple database server instances that share the same log-
ical database.

C. Related Work
The SeaView security model allows the individual data

elements within a relation to be individually classified.
Several previous research efforts have proposed security
models for multilevel databases. The earliest of these were
the Hinkehchaefer model [lo], which supports classifi-
cation at the attribute level, and the I.P. Sharp model [l l] ,
which supports classification at the relation level. More
recently, the TRW model [121 was developed to support
tuple-level classification. The Navy surveillance model
[131 supports multilevel relations, but does so by treating
entities such as relations as containers of data, rather than
as identifiers, as does SeaView. The LOCK Data Views
model [141 supports element-level classification but is de-
signed for the LOCK special-purpose architecture [151.

Designs have been developed for systems based on
these models. These systems differ in the amount of
trusted code that is required, in whether they run on an
underlying trusted operating system, and in the extent to
which they make use of the trusted operating system’s se-
curity mechanisms. For example, SeaView makes use of
an underlying reference monitor to enforce mandatory se-
curity, but performs at least part of the enforcement of the
discretionary security policy in the database system (views
can be used to enforce discretionary security), whereas
the Hinke/Schaefer design relied on the underlying trusted
operating system for enforcement of both mandatory and
discretionary security. This latter approach allows for
simpler and hence more trustworthy discretionary con-
trols, but rules out the common use of views to enforce

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT et al.: SEAVIEW SECURITY MODEL 595

discretionary security. The TRW design enforces both
mandatory and discretionary security within the database
system itself, hence requiring more trusted code and du-
plication of some of the security functionality of the op-
erating system. The need for larger amounts of trusted
code means that a significantly greater effort must be de-
voted to formal analysis of the trusted code, and, to the
extent that the analysis is not complete or discovers chan-
nels that cannot be closed, introduces more security vul-
nerabilities.

11. MODEL OVERVIEW
The SeaView security policy consists of a mandatory

access control policy, a discretionary access control pol-
icy, and supporting policies for labeling new and derived
data, data consistency, sanitization, and reclassification.
The supporting policies address requirements that are se-
curity-relevant but not part of access control.

The SeaView model is formulated in two layers, an in-
ner layer called the MAC model? and an outer layer called
the TCB model.

The MAC model defines the mandatory security policy
and represents a reference monitor that meets the criteria
for Class A I . It includes the concepts of subjects, objects,
and current access set from the Bell and LaPadula security
model [16], but contains no components that are specific
to database systems. It is intended to model a general-
purpose computing base that supports a wide range of ap-
plications. The SeaView design uses the commercially
available GEMSOS TCB [171 as its reference monitor.

The MAC model assigns two access classes to each
subject S: read-class(S) and write-class(S) (these two
classes are equal for untrusted subjects), where read-
class(S) I write-class(S). The access requirements are
formalized by the following two rules:

1) A subject S can read data of access class c only if
read-class(S) I c, and

2) A subject S can write data of access class c only if
write-class(S) 5 c.

The MAC model includes tranquility (i.e., access
classes for subjects and objects are state-independent)
[16]. The model also includes an information component,
which represents the contents of objects, and a program
integrity property, which is intended to prevent low in-
tegrity software from executing with the privileges of high
integrity software, by preventing high integrity software
from passing control to low integrity software. These con-
cepts are discussed more fully in [181.

The TCB model defines the discretionary access control
policy and the supporting policies. It specifies the com-
ponents of a multilevel secure relational database system,
including multilevel relations, views, integrity constraints
(including classification constraints on access classes),
and discretionary authorizations. Because the information
implementing the TCB model is to be stored in objects

mediated by the reference monitor, the TCB model layer
is constrained by mandatory security.

Each model layer is defined by the following compo-
nents: 1) a set of types, together withfunctions on these
types. Subjects (active entities) are modeled as a type
SUBJECTS. States are modeled as a type STATES. One
state, denoted so, is designated an initial state. State-de-
pendent functions have a state variable as a formal param-
eter. State-independent functions do not change in value
from state to state; 2) a set of commands of the form o p (s l ,
S , xl, . e , x, --* sz), where S is a subject and
XI, * * , xn are other parameters. Each abstract command
represents an atomic action that causes a state transition
from state sl to state s2; 3) a set of axioms, which are the
assumptions of the model; and 4) a set of properties,
which represent the formal policy statement. The four
types of properties are type properties, which apply to
state-independent functions, state properties, which ap-
ply to state-dependent functions, transition properties,
which apply to commands, and command sequence prop-
erties, which apply to sequences of commands.

A state is secure if and only if it satisfies all state prop-
erties. A command op(s l , S, xl, - * , x, --* s2) is secure
if and only if, for all subjects S and parameters x I , * - ,
x,, it satisfies all transitions properties, s2 is secure when-
ever state sl is secure, and for any command sequence
satisfying the command sequence properties, the se-
quence cy 0 op satisfies the command sequence proper-
ties.5 A state s is reachable either if it is the initial state
so or if it results from a sequence of commands:

~ P O (S O , S, X I , . . 9 xn + SI), * * - 2

opk(sk, s, ylr * ’ 9 Y m --* S I .

A system is secure if and only if all axioms and type prop-
erties are satisfied, the initial state so is secure, and all
reachable states other than so result from a sequence of
secure commands.

We can now state the following basic security theorem.
Theorem 1 (Basic Security Theorem): If a system sat-

isfies all axioms and all type properties, the initial state is
secure, and all commands are secure, then the system is
secure.

We have written formal specifications for SeaView.
These specifications formalize the SeaView security
model, and define a set of objects (tuples, relations, views,
databases), a set of functions on those objects, and the set
of SeaView security properties enumerated in the model.
The formal specifications also specify the functionality of
the SeaView MSQL interface by defining operations for
manipulating multilevel relations [6].

Because the functional specification of MSQL was de-
signed to provide a foundation for a subsequent design
and implementation effort, it is extremely important that
the operations as specified satisfy the SeaView security
properties. To verify that this is the case, we constructed
proofs for several of the operations. The verification at-

‘Mandatory Access Control. ’We use the symbol ‘ ‘ 0 ” to denote concatenation

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

596 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 6, JUNE 1990

tempts to show that the system is secure by asserting the
axioms and type properties, asserting that the initial state
is secure, and demonstrating that all commands are se-
cure. Thus, for each specified operation, we must show
that it satisfies the transition properties with respect to its
starting and concluding states, and that if it starts in a
secure state, it results in a secure state.

The command sequence properties are used to model
transaction properties, such as atomicity, serializability ,
and permanence. These are formalized in [181.

111. MULTILEVEL RELATIONS
The SeaView model supports classifications at the gran-

ularity of individual atomic facts through element-level
classification. In addition, the model assigns a classifica-
tion to each tuple, which represents the access class of the
information in (or encoded in) the tuple.

A . Multilevel Tuples

ples:
The following types and functions define multilevel tu-

type MTUPLES of multilevel relation tuples.
type DATUM of element values.
mlength: MTUPLES -+ 32, which gives the number

of data values in a tuple.6
melement-value: MTUPLES X 32 + DATUM,

which gives the ith data element in a multilevel tuple.
melement-class: MTUPLES X 32 -+ CLASSES,

which gives the access class of the ith data element in a
multilevel tuple.

mtuple-class: MTUPLES -+ CLASSES, which gives
the tuple class of a multilevel tuple.

Two tuples are equal if all of the above components are
the same.

Because the tuple class represents the class of the in-
formation in (or encoded in) a tuple, it must dominate all
element classes within the tuple, as follows.

Property I (Tuple Class Property): Vr E MTUPLES
and V i , 1 5 i I mlength(r):

melement-class(r, i) I mtuple-class(r) .
rn
U

Multilevel relations are sets of multilevel tuples:
type MRELATION-VALUES C @(MTUPLES) of

The relation value corresponding to the empty tuple set
multilevel relation va~ues.’

0 is called the null relation.

B. Named Multilevel Relations
The SeaView model has three types of named relations:

multilevel real relations, snapshots, and views. Multilevel
real relations give the abstraction of stored relations and
are subject to the three application-independent integrity
rules: entity integrity, referential integrity, and polyin-

6We use the notation X to denote the set of integers 2 0.
’We use the notation 6 (X) to denote the powerset of the set X ; that is,

6 (X) is the set of all subsets of X .

stantiation integrity. Snapshots correspond to stored re-
lations that hold the intermediate and final results of com-
putations; they are not subject to the application-
independent integrity rules. Views are defined by multi-
level relational expressions over the multilevel relations
and are evaluated each time the view is used; view eval-
uation yields a derived multilevel relation. All three types
of relations have a degree and an associated access class.
The access class represents the class of the identifier
(name) of the multilevel relation.

The three types of named relations are distinguished by
the following three disjoint types of identifiers:

type MREAL-IDS of multilevel real relation identi-
jiers.

type MVIEW-IDS of multilevel virtual relation (view)
identijiers.

type MSNAPSHOT-IDS of multilevel snapshot iden-
tijiers.

These three types are disjoint subtypes of the following
“union” type:

type MRELATION-IDS = MREAL-IDS U
MVIEW-IDS U MSNAPSHOT-IDS of multilevel rela-
tion identijiers.

The multilevel relation identifiers are names for the
“named objects” of the system, in the sense of the Cri-
teria [1 3 . These multilevel relation identifiers are associ-
ated, in a given state s, with values of type MRELA-
TION-VALUES. This association is formalized in the
function mrelation-instance, defined in Section 111-E.

Throughout the remainder of this paper, we use the
words multilevel relation, relation, view, and snapshot to
mean the identifier (name), rather than the instance.

The class and degree of a multilevel relation are defined
as follows:

mrelation-class: MRELATION-IDS --f CLASSES,
which gives the access class of the relation identifier (i.e.,
name).

mdegree: MRELATION-IDS -, 32, which gives the
degree of all multilevel relations that can be associated
with the relation identifier (the length of all mtuples in the
relation).

Each multilevel relation identifier R has associated with
it n attributes, where n = mdegree(R). These attributes
are identified by an index value between 1 and n.

SeaView requires that a relation schema or view defi-
nition have a single access class, which is the access class
of the relation or view identifier. Although the model as-
signs a class to a relation identifier, it does not assign one
to those functions that define the schema, for example,
the function mdegree. Thus, the model leaves the en-
forcement of this requirement to the design. In the
SeaView design, all schema information is stored at re-
lation-low (i.e., at the lowest access class at which data
may be stored in the relation) [8].

C. Keys
Multilevel real relations have primary keys and may

have foreign keys. The primary key is intended to

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT et al.: SEAVIEW SECURITY MODEL 591

uniquely identify a tuple t in a relation. A foreign key is
a reference to a tuple r in another (designated) relation for
which the foreign key value matches t’s primary key
value. Primary and foreign keys are defined as follows.

primary-key: MREAL-IDS -+ 6’ (X), which gives
the set of attributes that define a real relation’s primary
key.

key-degree: MREAL-IDS -+ 32, which gives the
number of attributes forming the primary key.

foreign-key-re$ MREAL-IDS X X -+ (MREAL-
IDS x X), which maps an attribute of one real relation
to an attribute of another. For example, ifforeign-key-ref-
(R, i) = (Q, j) , the the ith data attribute of relation R is
a reference to the j t h data attribute of relation Q. An at-
tribute is mapped to itself if it does not reference an ex-
ternal attribute.

From the above, the following functions are defined:
mtuple-key MREAL-IDS X MTUPLES -+

MTUPLES, which, for a given mtuple associated with a
real relation R, returns the primary key of the mtuple. The
primary key is also an mtuple, and has length equal to
key-degree (R) . Its tuple class is the least upper bound of
the classes of the elements that constitute the key. (In Sec-
tion 111-F-1 we will see that all elements of the key must
have the same access class. Thus, the tuple class of the
primary key tuple equals the key class.)

key-class: MREAL-IDS x MTUPLES -+

CLASSES, which is the access class of the primary key,
defined as:

key-class(R, r) = mtuple-class(mtup1e-key (R, r)) .

D. Databases

tion.
Databases are defined by the following type and func-

type DATABASES of database identijers.
database-class: DATABASES -+ CLASSES, which

gives the access class of the database identifier.
All multilevel real relations, views, and snapshots are

associated with some database identifier.
mrelation-database: MRELATION-IDS + DATA-

BASES, which gives the database to which a multilevel
relation belongs.

The SeaView policy requires that the access class of a
relation identifier dominate the access class of the iden-
tifier of the database to which it belongs (because to ac-
cess a relation, a subject must access the database).

Property 2 (Database Class Integrity): A system sat-
isfies database class integrity if and only if VR E
MRELATION-IDS :

mrelation-class(R) L
database-class(mre1ation-database (R)).

0

E. Relation Instances
Subjects with different read-classes may retrieve data

from the same multilevel relation, but will see different
versions of the data. Thus, in any given state, each rela-

tion has potentially different instances at different access
classes. The following function associates a relation in-
stance with each relation identifier for a given state and
access class.

mrelation-instance: STATES X MRELATION-IDS
X CLASSES -+ MRELATION-VALUES, which gives
the multilevel relation instance at a given access class in
a given state.

All tuples in each multilevel relation instance associ-
ated with identifier R must have length equal to the degree
of R. (This is formalized in [181 .)

The following property states that for tuples that appear
in instances of multilevel real relations, the tuple class
must be the least upper bound of the element classes. This
is because the tuple class represents the access class of
the existence of the tuple.

Property 3 (Real Tuple Class Property): A state s sat-
isfies the real tuple class property if and only if VR E
MREAL-IDS, VC E CLASSES,

r E mrelation-instance(s, R, c) *
mtuple-class(r) =
1.u.b. { c’ I c’ = melement-class(r, i), 1 I i 5
mlength (r) 1 .8

n u

The access class c used to derive an instance represents
an upper bound on the classes of all tuples and elements
in the instance:

Property 4 (Visible Data Property): A state s satisfies
the visible data property if and only if VR E
MRELATION-IDS, V c E CLASSES such that c 1 mrela-
tion-class (R) , V r E mrelation-instance (s, R, c):

1) tuple-class(r) I c, and
2) Vi : 1 I i I mdegree (R), melement-class(r, i) I

0
C.

For example, Fig. 1 shows mrelation-instance (s,
FLIGHTS, SECRET); Fig. 2 shows mrelation-instance
(s, FLIGHTS, UNCLASSIFIED) for the relation
FLIGHTS. (The “null” element value shown in Fig. 2
would appear as a blank entry to the user. We use the
value “null” in our model as a special value to indicate
that no value exists for the element in that tuple.)

The SeaView policy requires that the access class of a
relation identifier be dominated by the access class of any
data that can be stored in the relation. For c 1 mrelation-
class(R), this requirement is embodied in the data cor-
rectness property (property 16) of Section IV. For c $
mrelation-class(R) , the requirement is formalized by the
following visible relation property, which states that the
multilevel relation instance derived at any access class that
does not dominate the class of the relation identifier must
be the null (i.e., empty) relation. In other words, the fol-
lowing property requires that for any access class domi-

‘I.u.b. = least upper bound

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 6, JUNE 1990

1 FLIGHT C1 I DEPARTS C2 I DEST C3 I T I
u l u l I 964 U I 1040 U I Chicago

75 1400 U berlin s s 1 1125 1 1730 S I sansalvador S 1 S I
Fig. 1. mrelation-instance (s , FLIGHTS, SECRET).

1400 U null U U

Fig. 2. mrelation-instance (s, FLIGHTS, UNCLASSIFIED).

nated by the access class of the relation, no tuples asso-
ciated with the relation are visible.

Property 5 (Visible Relation Property): A state s sat-
isfies the visible relation property if and only if VR E
MRELATION-IDS, c E CLASSES:

c $ mrelation-class(R) =,

mrelation-instance(s, R, c) = 0
0

The function mrelation-instance(s, R, c) represents the
different relation instances for the relation R that exist at
different access classes. These instances are related to each
other as follows. Any tuple r in the relation instance at
class c with tuple class c’ < c must also appear in the
relation instance at class c’.

Any tuple r that appears in mrelation-instance@, R, c)
with tuple-class t and key class k, # t must also appear
in the instances at classes c ’ , where k, I c’ 5 t, although
high element values will be replaced with nulls (see the
tuple for flight 75 in Figs. 1 and 2, for example). These
requirements are formalized as follows.

Property 6 (Inter-Instance P r ~ p e r t y) : ~ A state s satis-
fies the inter-instance property if and only if VR E

MREAL-IDS, VC E CLASSES:

r E mrelation-instance(s, R, c) *
Vc’ such that mrelation-class(R) I c’ < c:

1) mtuple-class(r) 5 c’ =,

r E mrelation-instance(s, R, c’); and

2) mtuple-class(r) > c’ and key-class(R, r) I c’

3r’ E mrelation-instance(s, R, c’) such that
mtuple-key(R, r ’) = mtuple-key(R, r) and
Vi: key-degree(R) < i I mdegree(R):

a) melement-class(r, i) I cf *

’This statement of the Inter-Instance Property corrects an error in the
original property as state in [19]. This error was pointed out to us by Sushi1
Jajodia and Ravi Sandhu 1201.

melement-value(r’, i) = melement-value(r, i)
and melement-class(rf , i) = melement-class(r,
i) ; and

b) melement-class(r, i) $ c’ *
melement-value(r f , i) = null and
melement-class(r’, i) = key-class(R, r) .

0
F. Relational Integrity Rules

In the relational data model, consistency is defined, in
part, by the two basic integrity rules of the relational
model: entity integrity and referential integrity. (These
rules apply to real relations only, i.e., not to views or
snapshots.) The SeaView model includes these rules along
with an additional rule, polyinstantiation integrity (we will
discuss polyinstantiation in Section 111-F-3). All three
rules must apply at each access class; that is, every in-
stance of a multilevel real relation must satisfy the rules.

I) Multilevel Entity Integrity: Entity integrity states
that no tuple in a relation can have null values for any of
the primary key attributes. If this constraint is to be sat-
isfied with respect to the data visible at each access class,
then in any given tuple, all the elements forming the pri-
mary key must all have the same access class. Otherwise,
a subject whose access class is lower than that of the high-
est key element would see null values for some of the
elements forming the key. In addition, the access class
for the primary key must be dominated by the access
classes of all other elements in the tuple. If the primary
key class were not dominated by the class of some ele-
ment in the tuple, then that element could not be uniquely
selected by a subject operating at the element’s access
class. Thus multilevel entity integrity is expressed as fol-
lows.

Property 7 (Entity Integrity): A state s satisfies entity
integrity if and only if VR E MREAL-IDS such that n =
mdegree(R) and k = key-degree(R), V c I mrelation-
class(R), and V r E mrelation-instance(s, R, c), where p
= mtuple-key(R, r) :

1) v i : 1 I i s k : melement-value(p, i) # null, and
2) v i : l < i I k :

melement-class(p, i) = key-class(r) , and

3) v i : 1 I i 5 n:

key-class(r) I melement-class(r, i) .
0

2) Multilevel Referential Integrity: Referential integ-
rity states that every secondary key must reference a tuple
that exists in some other relation where the key is pri-
mary. In a multilevel database, this means that a second-
ary key element cannot reference a tuple with a higher or
noncomparable access class because the referenced tuple
would appear to be nonexistent at the access class of the
reference. Multilevel referential integrity requires that if
a foreign key is visible at a given access class, then a tuple
containing the referenced primary key must also be visi-

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT et al . : SEAVIEW SECURITY MODEL

FLIGHT C1 DEPARTS C2

964 U 1040 U

75 U 1400 U

1125 S 1730 S

1125 U 1925 U

599

DEST C3 T

chicago u u
berlin s s
san Salvador S S

san francisco U U

ble at that access class, and that the class of the foreign
key element must equal the class of the referenced pri-
mary key. lo

Property 8 (Referential Integrity): A state s satisfies
referential integrity if and only if VR E MREAL-IDS,
Vi: 1 5 i I mdegree(R), where (Q , j) = foreign-key-
ref(R, i) , Vc 1 mrelation-class@), V r E mrelation-in-
stance(s, R, c):

melement-value(r, i) # null =)

3 q E mrelation-instance(s, Q, c) such that

1) melement-value(?-, i) = melement-value(q, j) , and
2) melement-class(r, i) = melement-class(q, j) .

n
U

3) Pofyinstantiation: Unlike the standard relational
model, which prohibits multiple tuples with the same pri-
mary key, in the SeaView model, a multilevel relation can
have multiple tuples with the same primary key data
value(s), but different access classes for either the key
value(s) or for other data elements in the tuples. These
tuples are referred to as polyinstantiated data. Polyin-
stantiation refers to the simultaneous existence of multi-
ple data objects with the same name, where the multiple
instantiations are distinguished by their access classes.
Polyinstantiation is necessary, as we will see below, in
order to hide the actions of high subjects from low sub-
jects, thereby preventing signaling channels.

PolyInstantiated tuples (PITS) are tuples identified by a
primary key and associated key class, so that the same
multilevel relation may contain several tuple instances for
a primary key value corresponding to different access
classes. Polylnstantiafed elements (PIES) are elements
identified by a primary key, key class, and element class
(in addition to the attribute name), so that there may be
multiple elements for an attribute that have different ac-
cess classes, but are associated with the same (primary
key, key class) pair.

A polyinstantiated tuple arises whenever a subject in-
serts a tuple that has the same primary key value as an
existing but invisible (more highly classified) tuple. The
effect of the operation is to add a second tuple to the re-
lation, whose primary key is distinguishable from the first
by its access class. Although the polyinstantiation is in-
visible to this subject, subjects at the higher access class
can see both tuples. To illustrate, if an unclassified sub-
ject adds a tuple for flight number 1 125 to the unclassified
relation shown in Fig. 2, then the outcome, as seen by a
SECRET subject, is as shown in Fig. 3.

A polyinstantiated element arises whenever a subject
updates what appears to be a null element in a tuple, but
which actually hides data with a higher access class. In
this case, the update has the effect of creating a polyin-
stantiated element for the tuple. A polyinstantiated ele-

‘‘This is a change from an earlier version of the SeaView model [19],
which required only that the class of the foreign key element dominate the
class of the referenced primary key. The change was made to eliminate the
possibility of referential ambiguity, as pointed out by George Gajnak [21].

ment can also arise when a high subject updates a low
element-instead of overwriting the low element value, a
PIE is created.

We model PIE’S as separate tuples. To illustrate, if our
unclassified subject now replaces the perceived null value
for the destination for flight 75 (see Fig. 2) with the value
“paris,” the outcome, as seen by a SECRET subject, is
as shown in Fig. 4. Note, however, that the unclassified
subject does not see two flights numbered 75-the unclas-
sified subject’s view of the relation is as shown in Fig. 5.

Polyinstantiation integrity specifies that there must
never be two tuples with the same primary key unless they
represent polyinstantiated tuples or elements and controls
the effects of polyinstantiation.

Properly 9 (Pofyinstantiation Integrity): A state s sat-
isfies polyinstantiation integrity if and only if VR E
MREAL-IDS, where n = mdegree(R), and V c E
CLASSES such that c 1 mrelation-class(R):

V r , , r2 E mrelation-instance@, R, c) such that r I # r2

where pI = mtuple-key(R, r,), p2 = mtuple-key(R, r2),
vi:key-degree(R) < i I n:

1) There is a functional dependency from the primary
key (including the key class) and ith element class to the
ith element value:

pl = p2 and element-class(r,, i) = element-class-
(r2, i>
* element-value(r,, i) = element-value(r2, i); and

2) There is a multivalued dependency from the primary
key to the ith element class and value:

PI = p2 * 3r3, r4 E mrelation-instance(s, R, c) such
that mtuple-key(R, r4) = pI and

element-value(r3, i) = element-value (r2, i)
element-class(r3, i) = element-class(r2, i)

element-value(r4, i) = element-value(rl , i)
element-class(r,, i) = element-class(r,, i)

and v j : key-degree(R) < j I n , j # i:

element-value(r3, j) = element-value(r,, j)
element-class(r3, j) = element-class(rl, j)

element-value(r,, j) = element-value(r2, j)
element-class(r4, j) = element-class(r2, j) .

0

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

600

EMP-NAME C1 ADDRESS C2

IEEE TRANSACTlONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 6. JUNE 1990

JOB c3 FLIGHT C1

1040 U

1400 U

1925 U

964 U

75 U

75 U

1125 S

1125 U

Chicago u u
paris u u
san frandsco U U

DEPARTS C2 DEST C3

1040 U Chicago U

1400 U berlin S

1400 U paris U

1730 S san salvador S

1925 U san frandsco U

Fig. 4. A polyinstantiated element.

I FLIGHT C1 IDEPARTS C2 I DEST C3 I T I
964 U

75 U

1125 U

Fig. 5 . View of polyinstantiated element to an unclassified subject.

G. Derived Data
New multilevel relations can be derived through rela-

tional operators. Rather than defining a fixed set of op-
erators, the SeaView model includes a type called a mul-
tilevel relational experssion, which, when evaluated in a
given state, returns a new relation.

type MREL-EXPS of multilevel relational expres-
sions. The terms of a multilevel relational expression are
constants or multilevel relation identifiers (real relations,
views, or snapshots).

Multilevel relational expressions are evaluated by a
function meval, which maps a state, expression, and ac-
cess class to a multilevel relation:

meval: STATES X MREL-EXPS X CLASSES -+

MRELATION-VALUES, which returns the relation in-
stance that results from evaluating a relational expression
in a given state using the data visible at a given access
class (i.e., visible to subjects whose read-class dominates
the evaluation class).

The policy requires that the access class of derived in-
formation must dominate the access classes of the infor-
mation used in the derivation. This reflects the fact that
simply labeling data elements with their associated access
classes is not enough; a tuple can encode information that
is classified higher than any of the individual elements
appearing in the tuple. To illustrate how this can happen,
consider the multilevel EMPLOYEES relation shown in
Fig. 6 . Now suppose a subject performs the following
query :

select emp-name from employees
where job = ‘spy’

The single tuple returned from this query contains only
the unclassified data elements “shockley ” and “mon-
terey” ; however, this tuple clearly encodes secret infor-
mation (namely, that employee “shockley” is a spy).

Thus, SeaView requires that the tuple class of a derived
tuple r E meval(s, e, e) must dominate the classes of all

U 1 sunnyvale smith U 1 programmer i
miller U menlo park U president

sbockley U monterey U engineer

sbockley U monterey U spy

Fig. 6. EMPLOYEES relation.

data used to derive r, which in turn means that r could be
derived from data at class mtuple-class(r); that is, r E

meval(s, e, mtuple-class (r)). For example, if a tuple with
a tuple class of SECRET is contained in a derived relation
at class TOP-SECRET, then it is also contained in a re-
lation instance derived at class SECRET. Moreover, the
model requires that the class of r must be dominated by
c , because all of the data used to evaluate r must be dom-
inated by c. These requirements are formalized as fol-
lows.

Property 10 (Labeling Derived Data Property): A state
s satisfies the labeling derived data property if and only
if for every multilevel relational expression e and class c:

1) r E meval(s, e, mtuple-class(r)), and
2) r E meval(s, e, e) * mtuple-class(r) I e.

0

Property 10 would require the tuple returned from the
query in the example above to be labeled as shown in Fig.
7.

In [2 2] we state how the tuple class should be derived
for each of the five basic relational operators in order to
satisfy the above property.

H. View Dejnitions
A multilevel view is defined by a relational expression

(formula), which derives a multilevel view:
mview-defi MVIEW-IDS + MREL-EXPS, which

gives the formula for a view.
The SeaView policy requires that the class of each view

definition dominate the class of any relation or view
named in the view definition. Letting mview-mrels (R)
denote the set of multilevel relations (real or virtual)
named in the view definition of R, this requirement is for-
malized by the following.

Property 11 (View Class Integrity): A system satisfies
view class integrity if and only if VR E MVIEW-IDS, V R ‘
E mview-mrels (R) :

mrelation-class (R) I mrelation-class (R’).
0

This property also implies that the class of each view
name dominates the classes of all relations that are ref-
erenced indirectly in the view formula (by transitivity of
the dominance relation).

The next property states that the relation instance as-
sociated with a view must be the same as that obtained by
evaluating the view definition expression.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT er al . : SEAVIEW SECURITY MODEL

EMP-NAME C1 ADDRESS C2

60 1

T

Fig. 7. Query result

Property 12 (View Instance Property): A state s satis-
fies the view instance property if and only if V R E

mrelation-instance (s, R, c) = meval (s, mview-
MVIEW-IDS, V C E CLASSES:

def(R), c) .
0

I. Snapshots
The purpose of snapshots is to give the user a mecha-

nism for saving an instance of a multilevel relation or
view, or saving the result of a query on some state of the
database. In any given state s, each snapshot R has only
one associated value, namely the multilevel relation in-
stance defined at mrelation-class (R) . All instances of R
having classes that dominate mrelation-class (R) are equal
to the instance at mrelation-class (R)-thus, there are not
multiple “views” of snapshots as there are for real rela-
tions and views. In addition, the relation instance asso-
ciated with a snapshot identifier in any given state must
be a true “snapshot” of the database in some previous
state-that is, it cannot be an arbitrary relation created by
the user. These properties are formalized in the SeaView
model report [181.

IV. APPLICATION-SPECIFIC CONSTRAINTS
The SeaView policy requires that users be able to spec-

ify rules that define consistency of information and that
authorized users be able to specify how information en-
tering the system is to be assigned an access class. These
requirements are modeled by application-dependent con-
straints on the values and classes that can be assigned to
data entered into a multilevel real relation.

A . Value Constraints
Application-dependent value constraints correspond to

user-specifiable integrity rules that restrict the values that
data elements may take. Each multilevel real relation R
has zero or more value constraints associated with each
attribute at each access class that dominates mrelation-
class(R). Each of these constraints is defined by a mul-
tilevel relational expression, which in turn defines a view.
For example, the constraint 1 I X I 16 on attribute X
of R can be expressed as the multilevel relational expres-
sion “mselect(R, ‘1 I X I 16”” which defines a view
on R.

When an insert or update is performed on a real relation
at a given access class (typically the subject write-class),
the value constraints that are visible at that class are eval-
uated. If the new or updated tuple is contained in all of
the view instances defined by the value constraints, then
the insert or update is accepted; otherwise, it is rejected.
(We formalize this property later.)

Value constraints are defined by the following compo-

type VALUE-CONSTRAINTS of value constraints.
value-constraint-class: VALUE-CONSTRAINTS -,

CLASSES, which gives the access class associated with
a value constraint.

STRAINTS + MREAL-IDS, which gives the multilevel
real relation identifier for which the constraint applies.

STRAINTS + 32, which gives the attribute index for
which the constraint applies.

value-constraint-exp: VALUE-CONSTRAINTS +

MREL-EXPS, which gives the multilevel relational
expression defining the allowable values specified by the
value constraint.

The SeaView policy requires that the access class of a
value constraint dominate the access class of the identifier
of the relation to which it applies.

nents:

value-constraint-rnrelation: VALUE-CON-

value-constraint-attribute: VALUE-CON-

Property 13 (Value Constraint Class Property):

VVC E VALUE-CONSTRAINTS:
value-constraint-class (VC) 2
mrelation-class (value-constraint-mrela-
tion(V C)) .

0

B. Classijication Constraints

The SeaView policy requires that users be able to spec-
ify rules, called classijication constraints, that define how
information entering the system is to be assigned an ac-
cess class. Classification constraints are similar to value
constraints, except that they restrict the access classes of
data elements rather than their values. For example, the

class (FLIGHTS. FLIGHT) where PAY LOAD. FLIGHT
= FLIGHTS.FLIGHT” on the CARGO attribute of re-
lation PAYLOAD assigns the access class of the cargo’s
flight (as stored in the FLIGHTS relation) to CARGO val-
ues.

Each multilevel real relation R has zero or more clas-
sification constraints associated with each attribute at each
access class that dominates mrelation-class (R) . R also has
at least one classification constraint at the access class
mrelation-class (R) . Each of these constraints maps to a
multilevel relational expression, which defines a view, and
a class expression, which represents a lower bound on the
access class of data that falls within the view defined by
the relational expression. When an insert or update is per-
formed on a real relation at a given access class, the mul-
tilevel relational expressions for the classification con-
straints visible at that class are evaluated. If the tuple to
be inserted or updated is associated with one or more of
the views defined by the relational expressions, then the
insert or update is accepted, and the element is labeled
with the least upper bound of the classes assigned by the
class expressions for those views; otherwise, the tuple is
rejected.

- constraint ‘ ‘class (PAYLOAD. CARGO) -

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 6, JUNE 1990

We first define class expressions and a function class-
eval for evaluating a class expression.

type CLASS-EXPS of class expressions. The terms
of a class expression represent constant classes (e.g., SE-
CRET), the classes of elements in the database, the write-
class of the subject, or a class provided by the subject.
The operators include the least-upper-bound operator.

Each class expression evaluates to an access class
through the following function.

class-eval: STATES X CLASS-EXPS X CLASSES
x SUBJECTS x MTUPLES + CLASSES, which re-
turns the class that results from evaluating a class expres-
sion in a given state at a given access class relative to a
given subject and to a given tuple (the tuple being updated
or inserted).

The class-eval function maps from a subject in order to
implement classification constraints in which data are
specified to have the access class of the data source or to
be source-labeled.

Classification constraints are defined by the following
components:

type CLASS-CONSTRAINTS of classiJication con-
straints.

class-constraint-class: CLASS-CONSTRAINTS +

CLASSES, which gives the access class associated with
a classification constraint.

STRAINTS -+ MREAL-IDS, which gives the multilevel
real relation identifier for which the constraint applies.

class-constraint-attribute: CLASS-CONSTRAINTS
-+ 32, which gives the attribute index for which the con-
straint applies.

class-constraint-mrel-exp: CLASS-CONSTRAINTS
-+ MREL-EXPS, which gives the relational expression
(if any) for a constraint. If no relational expression is as-
sociated with a classification constraint C, we denote this
by class-constraint-mrel-exp(C) = " ". Such a con-
straint can be used to, in effect, prohibit new data from
being entered for an element.

STRAINTS -+ CLASS-EXPS, which gives the expres-
sion defining the result class for a constraint.

To avoid disclosing the existence of a relation to sub-
jects with access classes lower than the relation class,
SeaView requires that the access class of a classification
constraint dominate the access class of the identifier of the
relation to which it applies.

Property 14 (Classijication Constraint Class Prop-
erty): VCC E CLASS-CONSTRAINTS:

class-constraint-class (CC) 2
mrelation-class (class-constraint-mrelation (CC)).

0
Value and classification constraints are not defined for

views, because insert or update operations on views are
mapped to corresponding operations on the underlying real
relations, and the value and classification constraints on
those real relations apply.

class-constraint-mrelation: CLASS -C ON -

class-constraint-class-exp: CLASS-CON-

In order to ensure that a complete set of classification
constraints is visible at every access class at which a re-
lation is visible, the SeaView policy requires that every
attribute of a relation have a classification constraint at
the class of the relation schema.

Property 15 (ClassiJication Constraint Completeness
Property): V R E MREAL-IDS, v i , 1 I i I mde-
gree (R):

3CC E CLASS-CONSTRAINTS such that
class-constraint-class (CC) = mrelation-class
(R) ,
class-constraint-mrelation (CC) = R , and
class-constraint-attribute (CC) = i.

n
U

C. Correctness Properties

When an element is inserted or updated in a real rela-
tion R, the value of the element must satisfy the value
constraints associated with the corresponding attribute of
R. In addition, the access class of the element must satisfy
the classification constraints associated with the corre-
sponding attribute of R , and this class must dominate the
class of the relation name. In order to state this property
formally, we first define what it means for an element to
satisfy the constraints in a particular state. (The SeaView
model does not require that all constraints be satisfied in
all states, but the constraints must be satisfied by the states
that result from insert and update operations.)

Each constraint has an associated relational expression
e. For any given state s and class c , this expression de-
fines a relation instance I . For the purposes of constraint
application, a tuple is considered to be associated with the
relation instance I if the values of its elements correspond
to the values of the elements of a tuple in I (the classes of
the elements and the tuple class need not match). This is
expressed by a function mrelation-associated (I , r) which
returns true if and only if tuple r is associated with rela-
tion instance I.

Now, an element of a tuple satisfies the value con-
straints of the corresponding attribute in a given state with
respect to a particular subject if the tuple is associated
with the view corresponding to each constraint, where the
views are evaluated with respect to the read-class of the
subject. The following definition states that an element is
correct in a state s with respect to a subject S if for all
value constraints that apply to the element, the tuple is
associated with the view defined by the constraint.

Dejnition 1 (Value Correctness): Let S be a subject
with read-class rc. Let R E MREAL-IDS, and r E mre-
lation-instance(s, R , rc) . Then element i of tuple r , for
1 I i 5 mlength (r) , is correct in state s with respect to
S if and only if VVC E VALUE-CONSTRAINTS:

value-constraint-mrelation (VC) = R,
value-constraint-attribute (VC) = i,
value-constraint-exp (VC) = e , and

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT et U / . : SEAVIEW SECURITY MODEL 603

value-constraint-class (VC) I rc 3

mrelation-associate (meval (s, e , r c) , r) = true.
0

Similarly, an element of a tuple satisfies the classifica-
tion constraints of its corresponding attribute in a given
state with respect to a particular subject if for each con-
straint such that the tuple is associated with the view cor-
responding to the constraint, the class of the element
dominates the class specified by the constraint; again, the
views are evaluated with respect to the read-class of the
subject.

Dejinition 2 (Classijcation Correctness): Let S be a
subject with read-class rc. Let R E MREAL-IDS, and r E
mrelation-instance(s, R, r c) . Then element i of tuple r ,
for 1 I i I mlength (r) , is classijed correctly in state s
with respect to subject S if and only if:

1) There exists at least one classification constraint that
assigns a class to the element and that is visible to the
subject:

3CC E CLASS-CONSTRAINTS and x E CLASSES
such that:

a) class-constraint-mrelation (CC) = R, class-con-
straint-attribute (CC) = i , and class-constraint-
class (CC) I rc, i.e., the constraint is associated with
the ith attribute of R and is visible at the subject’s read-
class;

class-constraint-
mrel-exp(CC), r c) , r) = true, i.e., the tuple r is asso-
ciated with the view defined by the classification con-
straint evaluated at class rc;

c) class-eval (s , class-constraint-class-exp (CC), rc,
S , r) = x (i.e., the class assigned by the constraint is x) ;
and

d) x 2 mrelation-class (R) - i.e., the assigned class
dominates the class of the relation name.

b) mrelation-associate (meval(s,

2) For all such constraints satisfying the above,

element-class (r , i) = the lub of the x

(to force consistency). 0
The classification specifications visible at any access

class must be consistent; that is, if two or more must be
satisfied simultaneously, then they must yield the same
access class. Because the class returned by a constraint is
taken to be a lower bound on the class to be assigned to
the element, the definition of classification correctness,
above, ensures that the classification constraints visible at
any access class are consistent by taking the least upper
bound of the classes returned by all the visible constraints
that apply.

The SeaView policy requires that the access class of a
relation identifier be dominated by the access class of any
data that can be stored in the relation. This requirement
is formalized through conditions (Id) and (2) in Definition
2.

The following transition property requires that all up-
dated and inserted elements satisfy the value and classi-
fication constraints. .

Property 16 (Data Correctness Property): A command
o p (s , , S, XI, * * * , x, + s2) satisfies the data correctness
property if and only if VR E MREAL-IDS, Vc E
CLASSES:

1) No new tuples are associated with R:

mrelation-instance (s’, R, c) G mrelation-instance (s,
R, c) ,
or

2) For each tuple r that represents an insert into R, all
element values satisfy the value constraints and all ele-
ment classes satisfy the classification constraints:

Vr E mrelation-instance(s’, R, c) such that 1 3 q E
mrelation-instance (s, R, c) where mtuple-key (R , r)
= mtuple-key(R, q) (since the primary key is an
mtuple, the classes of the elements are included for
the comparison; thus, polyinstantiated tuples are not
equal)

V i , 1 I i I mlength (r) : element i of r is correct
in state s’ with respect to S , and element i of r is
classified correctly in state S’ with respect to S,

or

3) For each tuple r that represents an update, each up-
dated element satisfies the classification constraints and
value constraints:

Vr E mrelation-instance (s’, R, c) such that 3 q E mre-
lation-instance (s, R, c) where mtuple-key (R, r) =
mtuple-key(R, q) , V i , 1 5 i I mlength(r): if 1 3 p
E mrelation-instance (s, R, c) where mtuple-key (R ,
r) = mtuple-key (R, p) and element-class (r , i) =
element-class (p , i) and element-value (r , i) = ele-
ment-value(p, i) (i.e., we really have a new ele-
ment-recall that primary key and element class must
determine element value),
then element i of r is correct in state s’ with respect
to S , and element i of r is classified correctly in state
s’ with respect to S .

0
Mandatory security requires that write-class (S) 5 c I

read-class (S); otherwise mrelation-instance (s ’ , R, c) =
mrelation-instance (s, R, c) . This is enforced by the un-
derlying reference monitor.

V. DISCRETIONARY SECURITY
The SeaView policy requires that no user be given ac-

cess to information unless that user has been granted dis-
cretionary authorization to the information. This policy is
formalized in terms of subjects and protected database ob-
jects. The protected database objects are databases, re-
lations (real relations, views, and snapshots), and objects
at the MAC interface. The TCB model allows users to
specify which users and groups are authorized for specific
modes of access to particular database objects, as well as
which users and groups are explicitly denied authorization
for particular database objects.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

604 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 6. JUNE 1990

The TCB model uses access modes to signify autho-
rized access to database objects, and includes different sets
of access modes applicable to different types of objects.
A special mode, called the “null” mode, is used to sig-
nify that no access to the information is authorized.
Granting “null” authorization is the means of denying
authorization. The “null” mode supercedes all other
modes.

To obtain access to a database object 0, a user must be
authorized for the corresponding access mode for 0. The
SeaView model applies a most specific rule: if an individ-
ual user is explicitly granted or denied authorization to a
database object, this takes precedence over any autho-
rizations that are granted or denied to groups to which the
user belongs.

A user may be authorized for access mode m to a view
defined on one or more multilevel relations without being
authorized for mode m to the underlying multilevel rela-
tion(s). However, for a user to obtain access to a view,
the user must be authorized for the reference mode on all
referenced multilevel relations. This allows for the fol-
lowing common use of views for access control: suppose
user U1 has all authorizations for a multilevel relation
R (A , B , C), and attribute C contains personal informa-
tion relevant only to U1. Suppose also that U1 wants to
make attributes A and B available to user U2 for retrieval
and update. U1 can create a view V on R consisting of
attributes A and B only and can then grant U, retrieval and
update authorization for V without granting U, any au-
thorizations (other than the reference mode) for R. (In
order for U, to use view V , UI has to grant U, the refer-
ence mode for R.) Note that even if U2 had been able to
create the view, U, still could not obtain any authoriza-
tions for the view that U, did not also hold on R.

When a user creates a database object other than a view,
default initial authorizations are granted to the user for the
object. When a user creates a view, the user acquires only
those access modes (or a subset of them) that are held on
each directly referenced underlying relation and view
(i.e., those relations and views named in the view for-
mula). In addition, certain groups are automatically
granted authorizations for new multilevel relations.

A user can grant or revoke an access mode for a data-
base object to or from other users and groups, provided
the granting user is so authorized. The propagation of ac-
cess modes is controlled through the access modes
“grant” and “give-grant.’’ If a user is authorized the
“grant” access mode for a database object 0, then that
user can grant and revoke any access mode other than
“grant” and “give-grant’’ for 0, and also can deny all
authorization to 0 from a user or group. A user authorized
the “give-grant’’ access mode can additionally grant and
revoke the “grant” and “give-grant’’ access modes.
Revocation of authorizations does not extend dynamically
to users who may have been granted authorization by the
user from whom authorization is being revoked as in Sys-
tem R [23].

Unlike the mandatory security policy, the discretionary
security policy does not require secure information flow.
In our model, the granting and revoking of access modes
affects the current authorizations but not the current ac-
cesses (it affects future accesses). Thus, the discretionary
security properties are stated as transition properties and
relate the discretionary authorizations and accesses in the
current state to the accesses in the next state.

To enforce the discretionary policy, discretionary au-
thorizations and accesses for a multilevel relation R must
be stored in objects classified at mrelation-class (R) . Oth-
erwise, relevant authorization information about R might
not be visible. The underlying reference monitor prevents
the discretionary authorizations from being used as covert
signaling channels because any authorizations stored at
access class c cannot be applied to subjects at classes
lower than c.

VI. MODEL IMPLEMENTATION ISSUES
The SeaView policy requires that the security mecha-

nisms of a system that enforce discretionary security and
all supporting policies be constrained by a reference mon-
itor that enforces mandatory security.

For TCB model components defined as types (domains
of values), the only elements visible to a subject S are
those whose access class is dominated by read-class (S).
All information implementing the TCB model, including
both state-dependent and state-independent functions, is
contained in objects of appropriate classification, which
in turn are managed by the reference monitor. Implicit in
the state properties and the state-independent properties
and axioms of the TCB model is the requirement that the
properties be true for all c E CLASSES with respect to
the information visible at that class. Implicit in the tran-
sition properties and the command sequence properties is
the requirement that the visible values of the state-depen-
dent functions in the new state depend only on the visible
values of any functions in the previous state, where visi-
ble means at the read-class of the subject causing a state
transition.

In the SeaView design, all information about a multi-
level relation R (e.g., mdegree, primary-key) is stored in
objects of class mrelation-class(R). This means that a
subject S with read-class rc I mrelation-class (R) is un-
able to obtain information about R. Value and class con-
straints classified higher than mrelation-class (R) are
stored in objects at their respective (higher) classifica-
tions.

Relation instances, which are a function of a state s,
relation identifier R, and access class c 2 mrelation-
class (R) , are derived from the contents of objects at class
c or lower as follows. For a mutlilevel real relation R,
mrelation-instance (s, R, c) is derived (using the standard
relational operators) from standard, single-level relations
at classes dominated by c as described in Section VI-A,
below. Thus, each multilevel real relation is effectively a
view over single-level relations, where each single-level

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

LUNT rr ul . : SEAVIEW SECURITY MODEL 605

relation R I has a class cI I c and is stored in one or more
objects at class c1. For a multilevel view R , mrelation-
instance(s, R , e) is derived from the multilevel relations
referenced in the view definition formula, where the in-
stances used to derive the view are at class c. For both
real relations and views, a subject with read-class rc can
obtain mrelation-instance(s, R , c) only if re L e. For a
snapshot R , mrelation-instance(s, R , c) for c 2 mrela-
tion-class (R) is stored in a standard, single-level relation
R I of class mrelation-class (R) , which is stored in one or
more objects of that class.

A. The Sea View Decomposition
As we discussed in Section I-B, SeaView implements

multilevel real relations as views over underlying single-
level stored relations. Each single-level standard relation,
in turn, is mapped onto one or more single-level seg-
ments, which are protected by an underlying reference
monitor. Therefore, a subject S will be unable to access
any data in an underlying relation (in order to derive a
multilevel relation) unless read-class (S) dominates the
class of the object(s) that contains the stored data.

The decomposition automatically satisfies polyinstan-
tiation integrity. The redundancy defined by the multival-
ued dependencies is removed in the decomposition, but
restored when the full relation is instantiated.

The following decomposition corrects the decomposi-
tion and recovery formula in our previously-published
multilevel relational data model [22] . The formula in that
paper used the full outer join operator to perform the re-
covery, which had the effect of reclassifying the low key
values associated with high “orphans” as high, an ap-
proach which, as we saw above, could result in the failure
to preserve polyinstantiation integrity. Our formula uses
the left outer join, which avoids this problem.” Other-
wise, our decomposition here is similar to the approach
there, with the notable exception that here we require far
fewer base relations.

All attributes of a multilevel real relation R that are uni-
formly classified (that is, attribute groups whose values
have like classifications within any given tuple) are han-
dled as a unit. Thus, in the following discussion, each A,
in the relation R (A , , C , , * - , A,, C,,) represents a set
of attributes that are uniformly classified, and C, repre-
sents a classification attribute for the set. (A user may
designate a set of attributes to be uniformly classified in
order to control polyinstantiation.) Note that because
multilevel entity integrity requires the apparent primary
key to be uniformly classified, the attributes forming the
apparent primary key belong to the same attribute group,
which we can assume with no loss of generality to be A , .
(The apparent primary key is composed of those attributes
designated by the user as forming the primary key.) A I
may include other attributes besides the key attributes if

“In [SI, we inadvertently wrote “right outerjoin” where the left outer
join had been intended This error waq also pointed out by JaJodia and
Sandhu (201

those additional attributes are also uniformly classified at
the key class. We let K denote the set of attributes forming
the apparent primary key; thus K G A , .

The domain of the classification attribute C; is the range
of classifications for data that can be associated with at-
tribute group A;. This domain is a sublattice of the lattice
of access classes, having a lowest class L, and a highest
class H , . We designate this domain range (A i) = [L;, H; 1 .

Our decomposition of multilevel real relations into sin-
gle-level base relations is as follows. We create one sin-
gle-level relation R I , for each c E [L I , H I] . Each of these
relations has classification c and consists of the attribute
group A , (which includes the key attributes). Then for
each attribute group Ai for i > 1, a standard base relation
Ri,< is created for each class c E [L;, H i] . Each of these
relations has classification c and consists of the key at-
tribute K , the key class CI, and the attribute Ai. In short:

Primary Key Group Relations: Vc E [L I , H I 3, create
R l , c (A ,) with class e.

Attribute Group Relations: For i = 2 , . * * , n: Vc E
[L ; , H i] , create R;,,(K, Cl, A ;) with class c.

Note that multilevel entity integrity guarantees that CI
I C,, so that the values for K can be stored in a relation
of class c. By encoding the primary key class as a field in
the base relation itself, instead of in its name, we need
fewer base relations for the decomposition that did the
previously published formula [22] , which created a base
relation for each possible combination of key class and
attribute class. In addition, by including in A I all non-key
attributes that are uniformly classified at the key class, we
also need fewer base relations than did our earlier formula
[22] . We do not actually create a base relation from the
multilevel relation until data exists at the appropriate
class.

Our recovery of a multilevel real relation from its sin-
gle-level base relations is as follows. Let represent
the derived relation (derived from R I , <)

and let
PLC = (A ’ , c, = c)

represent the derived relation (derived from
Ri.c)

= (K , Cl, A; , C, = e) .
In each of these, Ci = c represents the constant column
of value e. Now we can derive R as follows:

R = (P I da P2 da - * * R P,,)
where f o r i = 1 - - n ,

P; = U Pi,<
C E [L, H, 1

and where b4 denotes the left outer join operator, and all
joins are on the attributes A I , C,; that is, on the key value
and key class.

B. Data Design Considerations

When a multilevel relation is defined, an allowable ac-
cess class domain is specified for each data attribute or

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 6, JUNE 1990

attribute group. If all attribute groups of a multilevel re-
lation R are single-level (i.e., their domains all contain a
single class), then polyinstantiation does not arise in R
and no unions are used to recover R. If furthermore all
the single-level attribute groups are the same class, then
the decomposition of R yields a single base relation, so
that there is no overhead in instantiating R.

Uniformly classified attributes form attribute groups in
a multilevel relation schema; for example, latitude and
longitude would probably be uniformly classified. If all
attributes form a single group, the relation is in effect
classified at the tuple level, and no joins are needed to
instantiate the multilevel relation.

Specifying narrow classification ranges for attributes
can potentially improve performance of the recovery al-
gorithm by reducing the number of unions needed.
Grouping uniformly classified attributes whenever possi-
ble reduces the number of base relations needed in the
decomposition and the number of joins needed in the re-
covery. Both narrowing the classification ranges and
grouping the attributes also reduce the effects of polyin-
stantiation. MSQL allows users to specify these data de-
sign decisions.

VII. CONCLUSIONS
Multilevel security has all-pervasive effects on the data

model, data consistency, database system architecture and
design, and data manipulation language. We have pre-
sented SeaView’s security model, which defines multi-
level relations to contain classification attributes as well
as data attributes. We discussed Seaview’s multilevel re-
lational integrity rules, which extend the integrity con-
straints of the relational model in order to provide consis-
tency for data at different access classes, including data
that becomes polyinstantiated. We also discussed Sea-
View’s decomposition method for mapping all multilevel
real relations into standard (single-level) base relations.
By implementating multilevel relations as views over sin-
gle-level base relations, we obtain element-level labeling
without significant storage overhead. The SeaView design
builds on an existing database management system ported
to an existing reference monitor to obtain A1 assurance
for mandatory security for the system as a whole.

REFERENCES
[I] Nat. Comput. Security Center, Dep. Defense Trusted Computer Sys-

tem Etuluatioii Criteria, Tech. Rep. DOD 5200.28-STD, Dec. 1985.
[2] T. F. Lunt, D. E. Denning, P. G. Neumann, R. R. Schell, M. Heck-

man, and W. R. Shockley, Final Report Vol . I : Security Policy and
Policy Interpretation for a Class AI Multilevel Secure Relational Da-
tuhuse System. Comput. Sci. Lab., SRI International, Menlo Park,
CA. Tech. Rep., 1988.

131 T. F. Lunt and R. A. Whitehurst. Final Report Vol. 3A: The SeaView
Formal Top Level Specijications. Comput. Sci. Lab., SRI Interna-
tional. Menlo Park, CA. Tech. Rep., 1989.
T . F. Lunt. R. R. Schell. W. R. Shockley, M. Heckman, and D.
Warren, “Toward a multilevel relational data language,” in Proc.
Fourth Aerospuce Computer Security Applications Conf., Orlando,
FL, IEEE Computer Society Press, Dec. 1988.
J . S . Crow, R. Lee. J . M. Rushby, F. W. von Henke, and R. A.
Whitehurst, “EHDM verification environment: An overview,” in
Proc. 1 Ith Nut. Computer Security Conf., Nat. Bureau Standards/
National Computer Security Center. Baltimore, MD, Oct. 1988.

[6] R. A. Whitehurst and T. F. Lunt, “The SeaView verification,’‘ in
Proc. Second Workshop Foundations of Computer Security., Fran-
conia, NH, IEEE Computer Society Press, June 1989.

[7] D. E. Denning, Cryptography and Data Security. Reading, MA:
Addison-Wesley , 1982.

[8] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D.
Warren, “A near-term design for the SeaView multilevel database
system,” in Proc. 1988 IEEE Symp. Security and Privacy, Oakland,
CA, IEEE Computer Society Press, Apr. 1988.

191 T. F. Lunt, “Multilevel database systems: Meeting class A I , ” in
Database Security 11, Status and Prospects. New York: Elsevier
Science, Oct. 1988.

[lo] T. H. Hinke and M. Schaefer, “Secure data management system,”
System Development Corp., Tech. Rep. RADC-TR-75-266, Nov.
1975.

[I 11 M. J . Grohn, “A model of a protected data management system,” I .
P. Sharp Associates Ltd., Tech. Rep. ESD-TR-76-289, June 1976.

1121 T. H. Hinke, C. Garvey, N. Jensen, J . Wilson, and A. Wu, “A1
secure DBMS design,” in Postscript to Proc. 11th Nut. Computer
Security Conf., Nat. Bureau StandarddNat. Comput. Security Cen-
ter, Baltimore, MD, Oct. 1988.

[I31 R. D. Graubart and J. P. L. Woodward, “A preliminary naval sur-
veillance DBMS security model,” in Proc. 1982 fEEE Symp. Secu-
rity and Privacy., Oakland, CA. IEEE Computer Society Press. Apr.
1982.

[141 P. Dwyer. E. Onuegbe, P. Stachour, and B. Thuraisingham, “Query
processing in LDV: A secure database system,” in Proc. Fourth
Aerospace Computer Security Applications Conf., Orlando, FL. IEEE
Computer Society Press, Dec. 1988.

[I51 0. S . Saydjari, J . M. Beckman, and J. R. Leaman. “LOCK trek:
Navigating uncharted space,” in Proc. 1989 Symp. Research in Se-
curity and Privacy, Oakland, CA, IEEE Computer Society Press, May
1989.

[16] D. E. Bell and L. J . LaPadula, “Secure computer systems: Unified
exposition and multics interpretation.” MITRE Corp., Bedford, MA,
Tech. Rep. ESD-TR-75-306, Mar. 1976.

[I71 R. R. Schell, T. F. Tao. and M. Heckman, “Designing the GEMSOS
security kernel for security and performance,” in Proc. 8th Nut.
Computer Security Con$, Nat. Bureau StandardsiNat. Comput. Se-
curity Center, 1985.

[18] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley, “Final report Vol. 2: The SeaView formal security policy
model,” Comput. Sci. Lab., SRI International. Menlo Park, CA,
Tech. Rep., 1989.

[I91 D. E. Denning, T. F. Lunt, R. R. Schell, W. R. Shockley, and M.
Heckman, “The SeaView security model,” in Proc. 1988IEEE Symp.
Security and Privacy., Oakland, CA, IEEE Computer Society Press,
Apr. 1988.

[20] S . Jajodia and R. Sandhu, “Polyinstantiation integrity in multilevel
relations.” Center of Excellence for Command, Contr., Commun.,
Intell., George Mason Univ., Fairfax, VA, unpublished paper, 1989.

[21] G. E. Gajnak, “Some results from the entityirelationship multilevel
secure DBMS project,” in Proc. Fourth Aerospace Computer Secu-
rity Applications Conf., Orlando, FL, IEEE Computer Society Press,
Dec. 1988.

[22] D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman. and W. R.
Shockley, “A multilevel relational data model,” in Proc. 1987IEEE
Symp. Security and Privacy., Oakland, CA, IEEE Computer So-
ciety Press, Apr. 1987.

[23] P. P. Griffiths and B. W. Wade, “An authorization mechanism for a
relational database system,” ACM Trans. Database Syst., vol. 1 . no.
3, Sept. 1976.

Teresa F. Lunt (M’89) received the A.B. degree
from Princeton University, Princeton, NJ, in
1976, and the M.A. degree in applied mathemat-
ics from Indiana University. Bloomington. in
1979.

She is with SRI’S Computer Science Labora-
tory, where she manages a research program in
computer security. She is leading two landmark
programs: the SeaView multilevel secure rela-
tional database system and the IDES Intrusion-
Detection system. She is also leading a new re-

search area in security for knowledge-based systems and using AI tech-
niques for computer security. Prior to joining SRI in early 1986, she worked

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

607 LUNT 6'1 o l . : SEAVIEW SECURITY MODEL

at The MITRE Corporation and later at SYTEK's Data Security Division.
She has also worked o n audit trail analysis, automated security guards,
security models. and formal verification o f secure systems. She has pub-
lished over 30 conference and journal papers and over 15 technical reports
in the area of computer security. She is founding editor and principal con-
tributor to the Data Securirv Letter.

years he was the Deputy Director of the Department of Defense Computer
Security Center. He was an Associate Professor of Computer Science at
the Naval Postgraduate School from 1978 to 1981. He has served as pro-
gram manager for large military software developments, has been a sys-
tems programmer, and introduced the security kernel technology.

Dorothy E. Denning received the Ph.D. degree
in computer science from Purdue University, West
Lafayette, I N .

She is a member of the Research Staff at Digital
Equipment Corporation Systems Research Cen-
ter. Before joining Digital, she was a senior staff
scientist at SRI and an Associate Professor of
Computer Science at Purdue University. She is
author of Cryptography arid Data Security and nu-
merous articles on computer security.

Dr. Denning is past President of the Interna-
tional Association for Cryptologic Research:

Roger R. Schell (S'69-M'74) received the B S
degree in electrical engineering from Montana
State College. the M S degree in electricdl engi-
neering from Waqhington State University, Pull-
man, and the Ph D degree in computer science
from the Massachusett\ Institute ot Technology,
Cambridge

He is Vice President for Engineering and one
of the founder5 of Gemini Computers, Inc . Mon-
terey, CA Hi\ interests include databases, oper-
ating systems, dnd computer security For three

William R. Shockley,
of publication.

Mark Heckrnan received the B.S. degree in com-
puter engineering from the University of Califor-
nia at San Diego in 1982.

He is the Director of Engineering Services at
Gemini Computers, Inc., where he is the chief
contact for customer technical support. He is cur-
rently responsible for the design and implemen-
tation of systems security and system administra-
tor capabilities for the Gemini Multi-processing
Secure Operating System, in addition to partici-
pating actively in the Multilevel Secure Data
Views project.

photograph and biography not available at the time

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 8, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

