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Abstract-A multilevel database is intended to provide the security 
needed for database systems that contain data at a variety of classifi- 
cations and serve a set of users having different clearances. This paper 
describes a formal security model for a such a system. The model is 
formulated in two layers, one corresponding to a reference monitor 
that enforces mandatory security, and the second an extension of the 
standard relational model, defining multilevel relations and formaliz- 
ing policies for labeling new and derived data, data consistency, and 
discretionary security. The model also defines application-independent 
properties for entity integrity, referential integrity, and polyinstantia- 
tion integrity. 

Index Terms-Classification, database security, multilevel security, 
protection, relational databases, security, security model. 

I. INTRODUCTION 
ANY civilian, defense, and commercial applica- M tions require a multilevel database system that sup- 

ports data having different access classes (security mark- 
ings) and users with different authorizations, or 
clearances. This paper presents a formal security policy 
model for a secure multilevel relational database system. 
The model was developed for the SeaView project, which 
was a three-year joint effort by SRI International (SRI) 
and Gemini Computers, Inc., sponsored by the U.S.  Air 
Force, Rome Air Development Center (RADC). Sea- 
View’s goal was to design a multilevel secure database 
system that meets the criteria for Class A1 of the DoD 
Trusted Computer System Evaluation Criteria (DoD 
5200.28-STD) [ 11 .  The model formalizes the SeaView se- 
curity policy [2] and was the foundation for Seaview’s 
formal top-level specifications (FTLS) [ 31 and design 
specifications. The SeaView project has also defined a 
multilevel data manipulation and control language we call 
MSQL [4], for multilevel SQL. ’ In addition, we have pro- 
duced a formal top-level specification of the MSQL com- 
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mands [3] using the formal specification language of the 
EHDM formal verification system [ 5 ]  and have partially 
verified that the MSQL commands conform to the prop- 
erties of the SeaView model [6]. We have also built a 
demonstration system that illustrates key aspects of the 
model and design. 

A.  Multilevel Security 
The concern for multilevel security arises when a com- 

puter system contains information with a variety of clas- 
sifications and has some users who are not cleared for the 
highest classification of data contained in the system. 

A security classification, or access class, consists of a 
hierarchical sensitivity level (e.g., TOP-SECRET, SECRET, 
CONFIDENTIAL, UNCLASSIFIED, etc.) and a set of nonhier- 
archical categories. In order for a user to be granted ac- 
cess to information, the user must be cleared for the sen- 
sitivity level as well as for each of the categories in the 
information’s access class. The sensitivity levels are lin- 
early ordered. The categories do not have such a linear 
ordering. However, the set of access classes (< sensitiv- 
ity level, category set> pairs) is partially ordered and 
forms a lattice [7]. The partial ordering relation is called 
the dominance relation. Access class A dominates access 
B if the sensitivity level of A is greater or equal to the 
sensitivity level of B and the security categories of A in- 
clude all those of B .  

The DoD policies restricting access to classified infor- 
mation to cleared personnel are called mandatory secu- 
rity. Mandatory security requires that classified data be 
protected not only from direct access by unauthorized 
users, but also from disclosure through indirect means, 
such as covert signaling channels. Covert channels are in- 
formation channels that were not designed to be used for 
information flow but can nevertheless be exploited by ma- 
licious software to signal high data to low users.* For ex- 
ample, a high process (i.e., a program instance having a 
high clearance because it is acting on behalf of a high 
user) may use read and write locks observable to a low 
process over time to encode high information (e.g., locked 
= 1 ,  unlocked = 0). Mandatory security requires that no 
information can flow from high access classes to low. 

A trusted subject is a subject (i.e, executing program) 
that is allowed to read and write within a range of access 
classes. This range defines a sublattice in the access class 
lattice. Trusted sub.jects are analogous to cleared users, in 

’For simplicity, we are using the terms “high” and “low” to refer to 
any two access classes when the second does not dominate the first. 
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that they are “trusted” to write data at an access class 
that may be lower than that of some of the data they read 
without violating security. In order for a program to be 
designated as trusted, it must be analyzed to show that it 
does not convey information downward in access class. 

Other access controls may be imposed in addition to 
mandatory security; these enforce discretionary security. 
The access controls commonly found in most database 
systems are examples of discretionary access controls. 

The “trust” in trusted computer systems rests on the 
ability to provide convincing arguments or proofs that the 
security mechanisms work as advertised and cannot be 
disabled or subverted. The concept of a reference monitor 
was developed so as to be able to demonstrate a system’s 
trustworthiness. Traditional security engineering practice 
is to segregate the security-critical functions in a refer- 
ence monitor. 

We assign access classes to subjects derived from the 
clearance of the user on whose behalf the subject is op- 
erating. The reference monitor mediates each reference to 
an object by any subject, allowing or denying the access 
based on a comparison of the access classes associated 
with the subject and with the object. The reference mon- 
itor must be tamperproof; it must be invoked for every 
reference; and it must be small enough to be verified to 
be correct and secure with respect to the policy it en- 
forces. A high degree of assurance must be provided not 
only that the mandatory security mechanisms control ac- 
cess to sensitive information, but also that they enforce 
secure information flow. The reference monitor forms the 
core of the trusted computing base (TCB), which contains 
all security-relevant code. The DoD Trusted Computing 
System Evaluation Criteria include requirements for 
“minimizing the complexity of the TCB, and excluding 
from the TCB modules that are not protection-critical” 
[l] ,  so that the reference monitor is “small enough to be 
verifiable” [ 11 .  Without such a requirement, the high de- 
gree of assurance required would not be feasible. 

B. The SeaView Design 
In pursuit of Class A1 assurance [l], in SeaView we 

have adopted a design approach that is built on the notion 
of a reference monitor for mandatory security [8], [9]. 

SeaView provides the user with the basic abstraction of 
a multilevel relation in which the individual data elements 
can be individually classified. Our design approach im- 
plements multilevel relations as views over stored single- 
level3 relations, transparent to the user. The single-level 
relations are stored in segments (of the corresponding ac- 
cess class) managed by an underlying mandatory refer- 
ence monitor. This underlying mandatory reference mon- 
itor performs a label comparison for subjects and the 
segments for which they request access, to decide whether 
to grant access. The access class of any particular data 
element in a multilevel relation is derived from the access 
class of the single-level relation in which the data element 

‘Single-level means having a single access class 

is stored, which in turn matches the access class of the 
segment in which it is stored, which is known to the ref- 
erence monitor, Thus, labels for each individual data ele- 
ment do not have to be stored, as was supposed prior to 
SeaView. 

Implementing multilevel relations as views allows in- 
sert, delete, and update operations on the multilevel re- 
lations to be translated into corresponding operations on 
the single-level stored relations. Thus, our design ap- 
proach is able to use the nucleus of a commercially avail- 
able relational database management system to manage 
the single-level relations, with an added layer of software 
to create the abstraction of multilevel relations. 

In SeaView, every database function is carried out by 
a single-level subject. Thus, a database system subject, 
when operating on behalf of a user, cannot gain access to 
any data whose classification is not dominated by the 
user’s clearance. The use of only single-level subjects for 
routine database operations provides the greatest degree 
of security possible and considerably reduces the risk of 
disclosure of sensitive data. 

This approach means that there must be at least one 
database server instance for each active access class (an 
access class is considered to be active if a subject of that 
class is active). Thus, the database system consists of 
multiple database server instances that share the same log- 
ical database. 

C. Related Work 
The SeaView security model allows the individual data 

elements within a relation to be individually classified. 
Several previous research efforts have proposed security 
models for multilevel databases. The earliest of these were 
the Hinkehchaefer model [lo], which supports classifi- 
cation at the attribute level, and the I.P. Sharp model [ l l ] ,  
which supports classification at the relation level. More 
recently, the TRW model [ 121 was developed to support 
tuple-level classification. The Navy surveillance model 
[ 131 supports multilevel relations, but does so by treating 
entities such as relations as containers of data, rather than 
as identifiers, as does SeaView. The LOCK Data Views 
model [ 141 supports element-level classification but is de- 
signed for the LOCK special-purpose architecture [ 151. 

Designs have been developed for systems based on 
these models. These systems differ in the amount of 
trusted code that is required, in whether they run on an 
underlying trusted operating system, and in the extent to 
which they make use of the trusted operating system’s se- 
curity mechanisms. For example, SeaView makes use of 
an underlying reference monitor to enforce mandatory se- 
curity, but performs at least part of the enforcement of the 
discretionary security policy in the database system (views 
can be used to enforce discretionary security), whereas 
the Hinke/Schaefer design relied on the underlying trusted 
operating system for enforcement of both mandatory and 
discretionary security. This latter approach allows for 
simpler and hence more trustworthy discretionary con- 
trols, but rules out the common use of views to enforce 
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discretionary security. The TRW design enforces both 
mandatory and discretionary security within the database 
system itself, hence requiring more trusted code and du- 
plication of some of the security functionality of the op- 
erating system. The need for larger amounts of trusted 
code means that a significantly greater effort must be de- 
voted to formal analysis of the trusted code, and, to the 
extent that the analysis is not complete or discovers chan- 
nels that cannot be closed, introduces more security vul- 
nerabilities. 

11. MODEL OVERVIEW 
The SeaView security policy consists of a mandatory 

access control policy, a discretionary access control pol- 
icy, and supporting policies for labeling new and derived 
data, data consistency, sanitization, and reclassification. 
The supporting policies address requirements that are se- 
curity-relevant but not part of access control. 

The SeaView model is formulated in two layers, an in- 
ner layer called the MAC model? and an outer layer called 
the TCB model. 

The MAC model defines the mandatory security policy 
and represents a reference monitor that meets the criteria 
for Class A I .  It includes the concepts of subjects, objects, 
and current access set from the Bell and LaPadula security 
model [16], but contains no components that are specific 
to database systems. It is intended to model a general- 
purpose computing base that supports a wide range of ap- 
plications. The SeaView design uses the commercially 
available GEMSOS TCB [ 171 as its reference monitor. 

The MAC model assigns two access classes to each 
subject S: read-class(S) and write-class(S) (these two 
classes are equal for untrusted subjects), where read- 
class(S) I write-class(S). The access requirements are 
formalized by the following two rules: 

1) A subject S can read data of access class c only if 
read-class(S) I c,  and 

2) A subject S can write data of access class c only if 
write-class(S) 5 c. 

The MAC model includes tranquility (i.e., access 
classes for subjects and objects are state-independent) 
[16]. The model also includes an information component, 
which represents the contents of objects, and a program 
integrity property, which is intended to prevent low in- 
tegrity software from executing with the privileges of high 
integrity software, by preventing high integrity software 
from passing control to low integrity software. These con- 
cepts are discussed more fully in [ 181. 

The TCB model defines the discretionary access control 
policy and the supporting policies. It specifies the com- 
ponents of a multilevel secure relational database system, 
including multilevel relations, views, integrity constraints 
(including classification constraints on access classes), 
and discretionary authorizations. Because the information 
implementing the TCB model is to be stored in objects 

mediated by the reference monitor, the TCB model layer 
is constrained by mandatory security. 

Each model layer is defined by the following compo- 
nents: 1) a set of types, together withfunctions on these 
types. Subjects (active entities) are modeled as a type 
SUBJECTS. States are modeled as a type STATES. One 
state, denoted so, is designated an initial state. State-de- 
pendent functions have a state variable as a formal param- 
eter. State-independent functions do not change in value 
from state to state; 2) a set of commands of the form o p ( s l ,  
S ,  xl, . e ,  x,  --* sz), where S is a subject and 
XI, * * , xn are other parameters. Each abstract command 
represents an atomic action that causes a state transition 
from state sl to state s2; 3) a set of axioms, which are the 
assumptions of the model; and 4) a set of properties, 
which represent the formal policy statement. The four 
types of properties are type properties, which apply to 
state-independent functions, state properties, which ap- 
ply to state-dependent functions, transition properties, 
which apply to commands, and command sequence prop- 
erties, which apply to sequences of commands. 

A state is secure if and only if it satisfies all state prop- 
erties. A command op(s l ,  S, xl, - * , x, --* s2) is secure 
if and only if, for all subjects S and parameters x I ,  * - , 
x,, it satisfies all transitions properties, s2 is secure when- 
ever state sl is secure, and for any command sequence 
satisfying the command sequence properties, the se- 
quence cy 0 op satisfies the command sequence proper- 
ties.5 A state s is reachable either if it is the initial state 
so or if it results from a sequence of commands: 

~ P O ( S O ,  S, X I ,  . . 9 xn + SI), * * - 2  

opk(sk, s, ylr * ’ 9  Y m  --* S I .  

A system is secure if and only if all axioms and type prop- 
erties are satisfied, the initial state so is secure, and all 
reachable states other than so result from a sequence of 
secure commands. 

We can now state the following basic security theorem. 
Theorem 1 (Basic Security Theorem): If a system sat- 

isfies all axioms and all type properties, the initial state is 
secure, and all commands are secure, then the system is 
secure. 

We have written formal specifications for SeaView. 
These specifications formalize the SeaView security 
model, and define a set of objects (tuples, relations, views, 
databases), a set of functions on those objects, and the set 
of SeaView security properties enumerated in the model. 
The formal specifications also specify the functionality of 
the SeaView MSQL interface by defining operations for 
manipulating multilevel relations [6]. 

Because the functional specification of MSQL was de- 
signed to provide a foundation for a subsequent design 
and implementation effort, it is extremely important that 
the operations as specified satisfy the SeaView security 
properties. To verify that this is the case, we constructed 
proofs for several of the operations. The verification at- 

‘Mandatory Access Control. ’We use the symbol ‘ ‘ 0 ”  to denote concatenation 
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tempts to show that the system is secure by asserting the 
axioms and type properties, asserting that the initial state 
is secure, and demonstrating that all commands are se- 
cure. Thus, for each specified operation, we must show 
that it satisfies the transition properties with respect to its 
starting and concluding states, and that if it starts in a 
secure state, it results in a secure state. 

The command sequence properties are used to model 
transaction properties, such as atomicity, serializability , 
and permanence. These are formalized in [ 181. 

111. MULTILEVEL RELATIONS 
The SeaView model supports classifications at the gran- 

ularity of individual atomic facts through element-level 
classification. In addition, the model assigns a classifica- 
tion to each tuple, which represents the access class of the 
information in (or encoded in) the tuple. 

A .  Multilevel Tuples 

ples: 
The following types and functions define multilevel tu- 

type MTUPLES of multilevel relation tuples. 
type DATUM of element values. 
mlength: MTUPLES -+ 32, which gives the number 

of data values in a tuple.6 
melement-value: MTUPLES X 32 + DATUM, 

which gives the ith data element in a multilevel tuple. 
melement-class: MTUPLES X 32 -+ CLASSES, 

which gives the access class of the ith data element in a 
multilevel tuple. 

mtuple-class: MTUPLES -+ CLASSES, which gives 
the tuple class of a multilevel tuple. 

Two tuples are equal if all of the above components are 
the same. 

Because the tuple class represents the class of the in- 
formation in (or encoded in) a tuple, it must dominate all 
element classes within the tuple, as follows. 

Property I (Tuple Class Property): Vr E MTUPLES 
and V i ,  1 5 i I mlength(r): 

melement-class( r,  i )  I mtuple-class( r ) .  
rn 
U 

Multilevel relations are sets of multilevel tuples: 
type MRELATION-VALUES C @(MTUPLES) of 

The relation value corresponding to the empty tuple set 
multilevel relation va~ues.’ 

0 is called the null relation. 

B. Named Multilevel Relations 
The SeaView model has three types of named relations: 

multilevel real relations, snapshots, and views. Multilevel 
real relations give the abstraction of stored relations and 
are subject to the three application-independent integrity 
rules: entity integrity, referential integrity, and polyin- 

6We use the notation X to denote the set of integers 2 0. 
’We use the notation 6 ( X )  to denote the powerset of the set X ;  that is, 

6 ( X )  is the set of all subsets of X .  

stantiation integrity. Snapshots correspond to stored re- 
lations that hold the intermediate and final results of com- 
putations; they are not subject to the application- 
independent integrity rules. Views are defined by multi- 
level relational expressions over the multilevel relations 
and are evaluated each time the view is used; view eval- 
uation yields a derived multilevel relation. All three types 
of relations have a degree and an associated access class. 
The access class represents the class of the identifier 
(name) of the multilevel relation. 

The three types of named relations are distinguished by 
the following three disjoint types of identifiers: 

type MREAL-IDS of multilevel real relation identi- 
jiers. 

type MVIEW-IDS of multilevel virtual relation (view) 
identijiers. 

type MSNAPSHOT-IDS of multilevel snapshot iden- 
tijiers. 

These three types are disjoint subtypes of the following 
“union” type: 

type MRELATION-IDS = MREAL-IDS U 
MVIEW-IDS U MSNAPSHOT-IDS of multilevel rela- 
tion identijiers. 

The multilevel relation identifiers are names for the 
“named objects” of the system, in the sense of the Cri- 
teria [ 1 3 .  These multilevel relation identifiers are associ- 
ated, in a given state s, with values of type MRELA- 
TION-VALUES. This association is formalized in the 
function mrelation-instance, defined in Section 111-E. 

Throughout the remainder of this paper, we use the 
words multilevel relation, relation, view, and snapshot to 
mean the identifier (name), rather than the instance. 

The class and degree of a multilevel relation are defined 
as follows: 

mrelation-class: MRELATION-IDS --f CLASSES, 
which gives the access class of the relation identifier (i.e., 
name). 

mdegree: MRELATION-IDS -, 32, which gives the 
degree of all multilevel relations that can be associated 
with the relation identifier (the length of all mtuples in the 
relation). 

Each multilevel relation identifier R has associated with 
it n attributes, where n = mdegree(R). These attributes 
are identified by an index value between 1 and n. 

SeaView requires that a relation schema or view defi- 
nition have a single access class, which is the access class 
of the relation or view identifier. Although the model as- 
signs a class to a relation identifier, it does not assign one 
to those functions that define the schema, for example, 
the function mdegree. Thus, the model leaves the en- 
forcement of this requirement to the design. In the 
SeaView design, all schema information is stored at re- 
lation-low (i.e., at the lowest access class at which data 
may be stored in the relation) [8]. 

C. Keys 
Multilevel real relations have primary keys and may 

have foreign keys. The primary key is intended to 
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uniquely identify a tuple t in a relation. A foreign key is 
a reference to a tuple r in another (designated) relation for 
which the foreign key value matches t’s primary key 
value. Primary and foreign keys are defined as follows. 

primary-key: MREAL-IDS -+ 6’ (X),  which gives 
the set of attributes that define a real relation’s primary 
key. 

key-degree: MREAL-IDS -+ 32, which gives the 
number of attributes forming the primary key. 

foreign-key-re$ MREAL-IDS X X -+ (MREAL- 
IDS x X),  which maps an attribute of one real relation 
to an attribute of another. For example, ifforeign-key-ref- 
(R, i )  = (Q, j ) ,  the the ith data attribute of relation R is 
a reference to the j t h  data attribute of relation Q. An at- 
tribute is mapped to itself if it does not reference an ex- 
ternal attribute. 

From the above, the following functions are defined: 
mtuple-key MREAL-IDS X MTUPLES -+ 

MTUPLES, which, for a given mtuple associated with a 
real relation R, returns the primary key of the mtuple. The 
primary key is also an mtuple, and has length equal to 
key-degree (R) .  Its tuple class is the least upper bound of 
the classes of the elements that constitute the key. (In Sec- 
tion 111-F-1 we will see that all elements of the key must 
have the same access class. Thus, the tuple class of the 
primary key tuple equals the key class.) 

key-class: MREAL-IDS x MTUPLES -+ 

CLASSES, which is the access class of the primary key, 
defined as: 

key-class( R, r )  = mtuple-class(mtup1e-key (R, r ) ) .  

D. Databases 

tion. 
Databases are defined by the following type and func- 

type DATABASES of database identijers. 
database-class: DATABASES -+ CLASSES, which 

gives the access class of the database identifier. 
All multilevel real relations, views, and snapshots are 

associated with some database identifier. 
mrelation-database: MRELATION-IDS + DATA- 

BASES, which gives the database to which a multilevel 
relation belongs. 

The SeaView policy requires that the access class of a 
relation identifier dominate the access class of the iden- 
tifier of the database to which it belongs (because to ac- 
cess a relation, a subject must access the database). 

Property 2 (Database Class Integrity): A system sat- 
isfies database class integrity if and only if VR E 
MRELATION-IDS : 

mrelation-class( R )  L 
database-class(mre1ation-database ( R )  ). 

0 

E. Relation Instances 
Subjects with different read-classes may retrieve data 

from the same multilevel relation, but will see different 
versions of the data. Thus, in any given state, each rela- 

tion has potentially different instances at different access 
classes. The following function associates a relation in- 
stance with each relation identifier for a given state and 
access class. 

mrelation-instance: STATES X MRELATION-IDS 
X CLASSES -+ MRELATION-VALUES, which gives 
the multilevel relation instance at a given access class in 
a given state. 

All tuples in each multilevel relation instance associ- 
ated with identifier R must have length equal to the degree 
of R. (This is formalized in [ 181 .) 

The following property states that for tuples that appear 
in instances of multilevel real relations, the tuple class 
must be the least upper bound of the element classes. This 
is because the tuple class represents the access class of 
the existence of the tuple. 

Property 3 (Real Tuple Class Property): A state s sat- 
isfies the real tuple class property if and only if VR E 
MREAL-IDS, VC E CLASSES, 

r E mrelation-instance(s, R, c )  * 
mtuple-class( r )  = 
1.u.b. { c’ I c’ = melement-class(r, i), 1 I i 5 
mlength ( r )  1 .8 

n u 

The access class c used to derive an instance represents 
an upper bound on the classes of all tuples and elements 
in the instance: 

Property 4 (Visible Data Property): A state s satisfies 
the visible data property if and only if VR E 
MRELATION-IDS, V c  E CLASSES such that c 1 mrela- 
tion-class (R) ,  V r  E mrelation-instance (s, R, c): 

1) tuple-class( r )  I c,  and 
2) Vi : 1 I i I mdegree (R),  melement-class( r, i )  I 

0 
C. 

For example, Fig. 1 shows mrelation-instance (s, 
FLIGHTS, SECRET); Fig. 2 shows mrelation-instance 
(s, FLIGHTS, UNCLASSIFIED) for the relation 
FLIGHTS. (The “null” element value shown in Fig. 2 
would appear as a blank entry to the user. We use the 
value “null” in our model as a special value to indicate 
that no value exists for the element in that tuple.) 

The SeaView policy requires that the access class of a 
relation identifier be dominated by the access class of any 
data that can be stored in the relation. For c 1 mrelation- 
class(R), this requirement is embodied in the data cor- 
rectness property (property 16) of Section IV. For c $ 
mrelation-class( R) ,  the requirement is formalized by the 
following visible relation property, which states that the 
multilevel relation instance derived at any access class that 
does not dominate the class of the relation identifier must 
be the null (i.e., empty) relation. In other words, the fol- 
lowing property requires that for any access class domi- 

‘I.u.b. = least upper bound 
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1 FLIGHT C1 I DEPARTS C2 I DEST C3 I T I 
u l u l  I 964 U I 1040 U I Chicago 

75 1400 U berlin s s  1 1125 1 1730 S I sansalvador S 1 S I 
Fig. 1. mrelation-instance ( s ,  FLIGHTS, SECRET). 

1400 U null U U 

Fig. 2.  mrelation-instance (s, FLIGHTS, UNCLASSIFIED). 

nated by the access class of the relation, no tuples asso- 
ciated with the relation are visible. 

Property 5 (Visible Relation Property): A state s sat- 
isfies the visible relation property if and only if VR E 
MRELATION-IDS, c E CLASSES: 

c $ mrelation-class(R) =, 

mrelation-instance(s, R, c)  = 0 
0 

The function mrelation-instance( s, R, c)  represents the 
different relation instances for the relation R that exist at 
different access classes. These instances are related to each 
other as follows. Any tuple r in the relation instance at 
class c with tuple class c’ < c must also appear in the 
relation instance at class c’. 

Any tuple r that appears in mrelation-instance@, R, c)  
with tuple-class t and key class k, # t must also appear 
in the instances at classes c ’ ,  where k, I c’ 5 t, although 
high element values will be replaced with nulls (see the 
tuple for flight 75 in Figs. 1 and 2, for example). These 
requirements are formalized as follows. 

Property 6 (Inter-Instance P r ~ p e r t y ) : ~  A state s satis- 
fies the inter-instance property if and only if VR E 

MREAL-IDS, VC E CLASSES: 

r E mrelation-instance( s, R, c)  * 
Vc’ such that mrelation-class(R) I c’ < c: 

1) mtuple-class(r) 5 c’ =, 

r E mrelation-instance( s, R, c’ ); and 

2) mtuple-class(r) > c’ and key-class(R, r )  I c’ 

3r’ E mrelation-instance( s, R, c’ ) such that 
mtuple-key(R, r ’ )  = mtuple-key(R, r )  and 
Vi: key-degree(R) < i I mdegree(R): 

a) melement-class(r, i )  I cf  * 

’This statement of the Inter-Instance Property corrects an error in the 
original property as state in [19]. This error was pointed out to us by Sushi1 
Jajodia and Ravi Sandhu 1201. 

melement-value( r’, i )  = melement-value( r, i )  
and melement-class( rf , i )  = melement-class( r, 
i ) ;  and 

b) melement-class(r, i )  $ c’ * 
melement-value( r f  , i )  = null and 
melement-class( r’, i )  = key-class( R, r ) .  

0 
F. Relational Integrity Rules 

In the relational data model, consistency is defined, in 
part, by the two basic integrity rules of the relational 
model: entity integrity and referential integrity. (These 
rules apply to real relations only, i.e., not to views or 
snapshots.) The SeaView model includes these rules along 
with an additional rule, polyinstantiation integrity (we will 
discuss polyinstantiation in Section 111-F-3). All three 
rules must apply at each access class; that is, every in- 
stance of a multilevel real relation must satisfy the rules. 

I) Multilevel Entity Integrity: Entity integrity states 
that no tuple in a relation can have null values for any of 
the primary key attributes. If this constraint is to be sat- 
isfied with respect to the data visible at each access class, 
then in any given tuple, all the elements forming the pri- 
mary key must all have the same access class. Otherwise, 
a subject whose access class is lower than that of the high- 
est key element would see null values for some of the 
elements forming the key. In addition, the access class 
for the primary key must be dominated by the access 
classes of all other elements in the tuple. If the primary 
key class were not dominated by the class of some ele- 
ment in the tuple, then that element could not be uniquely 
selected by a subject operating at the element’s access 
class. Thus multilevel entity integrity is expressed as fol- 
lows. 

Property 7 (Entity Integrity): A state s satisfies entity 
integrity if and only if VR E MREAL-IDS such that n = 
mdegree(R) and k = key-degree(R), V c  I mrelation- 
class(R), and V r  E mrelation-instance( s, R, c),  where p 
= mtuple-key(R, r ) :  

1) v i :  1 I i s  k :  melement-value(p, i )  # null, and 
2) v i : l  < i I k :  

melement-class(p, i )  = key-class( r ) ,  and 

3) v i :  1 I i 5 n: 

key-class( r )  I melement-class( r, i ) .  
0 

2) Multilevel Referential Integrity: Referential integ- 
rity states that every secondary key must reference a tuple 
that exists in some other relation where the key is pri- 
mary. In a multilevel database, this means that a second- 
ary key element cannot reference a tuple with a higher or 
noncomparable access class because the referenced tuple 
would appear to be nonexistent at the access class of the 
reference. Multilevel referential integrity requires that if 
a foreign key is visible at a given access class, then a tuple 
containing the referenced primary key must also be visi- 
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ble at that access class, and that the class of the foreign 
key element must equal the class of the referenced pri- 
mary key. lo 

Property 8 (Referential Integrity): A state s satisfies 
referential integrity if and only if VR E MREAL-IDS, 
Vi: 1 5 i I mdegree(R), where ( Q ,  j )  = foreign-key- 
ref(R, i ) ,  Vc 1 mrelation-class@), V r  E mrelation-in- 
stance(s, R, c): 

melement-value(r, i) # null =) 

3 q  E mrelation-instance(s, Q, c)  such that 

1) melement-value(?-, i) = melement-value(q, j ) ,  and 
2) melement-class(r, i) = melement-class(q, j ) .  

n 
U 

3) Pofyinstantiation: Unlike the standard relational 
model, which prohibits multiple tuples with the same pri- 
mary key, in the SeaView model, a multilevel relation can 
have multiple tuples with the same primary key data 
value(s), but different access classes for either the key 
value(s) or for other data elements in the tuples. These 
tuples are referred to as polyinstantiated data. Polyin- 
stantiation refers to the simultaneous existence of multi- 
ple data objects with the same name, where the multiple 
instantiations are distinguished by their access classes. 
Polyinstantiation is necessary, as we will see below, in 
order to hide the actions of high subjects from low sub- 
jects, thereby preventing signaling channels. 

PolyInstantiated tuples (PITS) are tuples identified by a 
primary key and associated key class, so that the same 
multilevel relation may contain several tuple instances for 
a primary key value corresponding to different access 
classes. Polylnstantiafed elements (PIES) are elements 
identified by a primary key, key class, and element class 
(in addition to the attribute name), so that there may be 
multiple elements for an attribute that have different ac- 
cess classes, but are associated with the same (primary 
key, key class) pair. 

A polyinstantiated tuple arises whenever a subject in- 
serts a tuple that has the same primary key value as an 
existing but invisible (more highly classified) tuple. The 
effect of the operation is to add a second tuple to the re- 
lation, whose primary key is distinguishable from the first 
by its access class. Although the polyinstantiation is in- 
visible to this subject, subjects at the higher access class 
can see both tuples. To illustrate, if an unclassified sub- 
ject adds a tuple for flight number 1 125 to the unclassified 
relation shown in Fig. 2, then the outcome, as seen by a 
SECRET subject, is as shown in Fig. 3.  

A polyinstantiated element arises whenever a subject 
updates what appears to be a null element in a tuple, but 
which actually hides data with a higher access class. In 
this case, the update has the effect of creating a polyin- 
stantiated element for the tuple. A polyinstantiated ele- 

‘‘This is a change from an earlier version of the SeaView model [19], 
which required only that the class of the foreign key element dominate the 
class of the referenced primary key. The change was made to eliminate the 
possibility of referential ambiguity, as pointed out by George Gajnak [21]. 

ment can also arise when a high subject updates a low 
element-instead of overwriting the low element value, a 
PIE is created. 

We model PIE’S as separate tuples. To illustrate, if our 
unclassified subject now replaces the perceived null value 
for the destination for flight 75 (see Fig. 2) with the value 
“paris,” the outcome, as seen by a SECRET subject, is 
as shown in Fig. 4. Note, however, that the unclassified 
subject does not see two flights numbered 75-the unclas- 
sified subject’s view of the relation is as shown in Fig. 5. 

Polyinstantiation integrity specifies that there must 
never be two tuples with the same primary key unless they 
represent polyinstantiated tuples or elements and controls 
the effects of polyinstantiation. 

Properly 9 (Pofyinstantiation Integrity): A state s sat- 
isfies polyinstantiation integrity if and only if VR E 
MREAL-IDS, where n = mdegree(R), and V c  E 
CLASSES such that c 1 mrelation-class(R): 

V r , ,  r2 E mrelation-instance@, R, c) such that r I  # r2 

where pI  = mtuple-key(R, r,),  p2 = mtuple-key(R, r2), 
vi:key-degree(R) < i I n: 

1) There is a functional dependency from the primary 
key (including the key class) and ith element class to the 
ith element value: 

pl = p2 and element-class(r,, i) = element-class- 
(r2, i> 
* element-value(r,, i) = element-value(r2, i); and 

2) There is a multivalued dependency from the primary 
key to the ith element class and value: 

PI  = p2 * 3r3, r4 E mrelation-instance(s, R, c )  such 
that mtuple-key(R, r4) = pI  and 

element-value(r3, i) = element-value (r2, i) 
element-class(r3, i) = element-class(r2, i) 

element-value(r4, i) = element-value(rl , i) 
element-class(r,, i) = element-class(r,, i) 

and v j :  key-degree(R) < j I n ,  j # i: 

element-value(r3, j )  = element-value(r,, j )  
element-class(r3, j )  = element-class(rl, j )  

element-value(r,, j )  = element-value(r2, j )  
element-class(r4, j )  = element-class(r2, j ) .  

0 
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Fig. 4. A polyinstantiated element. 
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Fig. 5 .  View of polyinstantiated element to an unclassified subject. 

G. Derived Data 
New multilevel relations can be derived through rela- 

tional operators. Rather than defining a fixed set of op- 
erators, the SeaView model includes a type called a mul- 
tilevel relational experssion, which, when evaluated in a 
given state, returns a new relation. 

type MREL-EXPS of multilevel relational expres- 
sions. The terms of a multilevel relational expression are 
constants or multilevel relation identifiers (real relations, 
views, or snapshots). 

Multilevel relational expressions are evaluated by a 
function meval, which maps a state, expression, and ac- 
cess class to a multilevel relation: 

meval: STATES X MREL-EXPS X CLASSES -+ 

MRELATION-VALUES, which returns the relation in- 
stance that results from evaluating a relational expression 
in a given state using the data visible at a given access 
class (i.e., visible to subjects whose read-class dominates 
the evaluation class). 

The policy requires that the access class of derived in- 
formation must dominate the access classes of the infor- 
mation used in the derivation. This reflects the fact that 
simply labeling data elements with their associated access 
classes is not enough; a tuple can encode information that 
is classified higher than any of the individual elements 
appearing in the tuple. To illustrate how this can happen, 
consider the multilevel EMPLOYEES relation shown in 
Fig. 6 .  Now suppose a subject performs the following 
query : 

select emp-name from employees 
where job = ‘spy’ 

The single tuple returned from this query contains only 
the unclassified data elements “shockley ” and “mon- 
terey” ; however, this tuple clearly encodes secret infor- 
mation (namely, that employee “shockley” is a spy). 

Thus, SeaView requires that the tuple class of a derived 
tuple r E meval(s, e, e)  must dominate the classes of all 

U 1 sunnyvale smith U 1 programmer i 
miller U menlo park U president 

sbockley U monterey U engineer 

sbockley U monterey U spy 

Fig. 6. EMPLOYEES relation. 

data used to derive r, which in turn means that r could be 
derived from data at class mtuple-class(r); that is, r E 

meval(s, e, mtuple-class (r)). For example, if a tuple with 
a tuple class of SECRET is contained in a derived relation 
at class TOP-SECRET, then it is also contained in a re- 
lation instance derived at class SECRET. Moreover, the 
model requires that the class of r must be dominated by 
c ,  because all of the data used to evaluate r must be dom- 
inated by c. These requirements are formalized as fol- 
lows. 

Property 10 (Labeling Derived Data Property): A state 
s satisfies the labeling derived data property if and only 
if for every multilevel relational expression e and class c: 

1 )  r E meval(s, e, mtuple-class(r)), and 
2 )  r E meval(s, e, e )  * mtuple-class(r) I e. 

0 

Property 10 would require the tuple returned from the 
query in the example above to be labeled as shown in Fig. 
7. 

In [ 2 2 ]  we state how the tuple class should be derived 
for each of the five basic relational operators in order to 
satisfy the above property. 

H. View Dejnitions 
A multilevel view is defined by a relational expression 

(formula), which derives a multilevel view: 
mview-defi MVIEW-IDS + MREL-EXPS, which 

gives the formula for a view. 
The SeaView policy requires that the class of each view 

definition dominate the class of any relation or view 
named in the view definition. Letting mview-mrels ( R )  
denote the set of multilevel relations (real or virtual) 
named in the view definition of R,  this requirement is for- 
malized by the following. 

Property 11 (View Class Integrity): A system satisfies 
view class integrity if and only if VR E MVIEW-IDS, V R ‘  
E mview-mrels ( R ) :  

mrelation-class ( R  ) I mrelation-class (R’ ). 
0 

This property also implies that the class of each view 
name dominates the classes of all relations that are ref- 
erenced indirectly in the view formula (by transitivity of 
the dominance relation). 

The next property states that the relation instance as- 
sociated with a view must be the same as that obtained by 
evaluating the view definition expression. 
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Fig. 7. Query result 

Property 12 (View Instance Property): A state s satis- 
fies the view instance property if and only if V R  E 

mrelation-instance (s, R, c )  = meval (s, mview- 
MVIEW-IDS, V C  E CLASSES: 

def(R),  c) .  
0 

I. Snapshots 
The purpose of snapshots is to give the user a mecha- 

nism for saving an instance of a multilevel relation or 
view, or saving the result of a query on some state of the 
database. In any given state s, each snapshot R has only 
one associated value, namely the multilevel relation in- 
stance defined at mrelation-class (R) .  All instances of R 
having classes that dominate mrelation-class (R ) are equal 
to the instance at mrelation-class (R)-thus, there are not 
multiple “views” of snapshots as there are for real rela- 
tions and views. In addition, the relation instance asso- 
ciated with a snapshot identifier in any given state must 
be a true “snapshot” of the database in some previous 
state-that is, it cannot be an arbitrary relation created by 
the user. These properties are formalized in the SeaView 
model report [ 181. 

IV. APPLICATION-SPECIFIC CONSTRAINTS 
The SeaView policy requires that users be able to spec- 

ify rules that define consistency of information and that 
authorized users be able to specify how information en- 
tering the system is to be assigned an access class. These 
requirements are modeled by application-dependent con- 
straints on the values and classes that can be assigned to 
data entered into a multilevel real relation. 

A .  Value Constraints 
Application-dependent value constraints correspond to 

user-specifiable integrity rules that restrict the values that 
data elements may take. Each multilevel real relation R 
has zero or more value constraints associated with each 
attribute at each access class that dominates mrelation- 
class(R). Each of these constraints is defined by a mul- 
tilevel relational expression, which in turn defines a view. 
For example, the constraint 1 I X I 16 on attribute X 
of R can be expressed as the multilevel relational expres- 
sion “mselect(R, ‘1 I X I 16”” which defines a view 
on R. 

When an insert or update is performed on a real relation 
at a given access class (typically the subject write-class), 
the value constraints that are visible at that class are eval- 
uated. If the new or updated tuple is contained in all of 
the view instances defined by the value constraints, then 
the insert or update is accepted; otherwise, it is rejected. 
(We formalize this property later.) 

Value constraints are defined by the following compo- 

type VALUE-CONSTRAINTS of value constraints. 
value-constraint-class: VALUE-CONSTRAINTS -, 

CLASSES, which gives the access class associated with 
a value constraint. 

STRAINTS + MREAL-IDS, which gives the multilevel 
real relation identifier for which the constraint applies. 

STRAINTS + 32, which gives the attribute index for 
which the constraint applies. 

value-constraint-exp: VALUE-CONSTRAINTS + 

MREL-EXPS, which gives the multilevel relational 
expression defining the allowable values specified by the 
value constraint. 

The SeaView policy requires that the access class of a 
value constraint dominate the access class of the identifier 
of the relation to which it applies. 

nents: 

value-constraint-rnrelation: VALUE-CON- 

value-constraint-attribute: VALUE-CON- 

Property 13 (Value Constraint Class Property): 

VVC E VALUE-CONSTRAINTS: 
value-constraint-class ( VC ) 2 
mrelation-class ( value-constraint-mrela- 
tion( V C ) ) .  

0 

B. Classijication Constraints 

The SeaView policy requires that users be able to spec- 
ify rules, called classijication constraints, that define how 
information entering the system is to be assigned an ac- 
cess class. Classification constraints are similar to value 
constraints, except that they restrict the access classes of 
data elements rather than their values. For example, the 

class (FLIGHTS. FLIGHT) where PAY LOAD. FLIGHT 
= FLIGHTS.FLIGHT” on the CARGO attribute of re- 
lation PAYLOAD assigns the access class of the cargo’s 
flight (as stored in the FLIGHTS relation) to CARGO val- 
ues. 

Each multilevel real relation R has zero or more clas- 
sification constraints associated with each attribute at each 
access class that dominates mrelation-class ( R ) .  R also has 
at least one classification constraint at the access class 
mrelation-class (R) .  Each of these constraints maps to a 
multilevel relational expression, which defines a view, and 
a class expression, which represents a lower bound on the 
access class of data that falls within the view defined by 
the relational expression. When an insert or update is per- 
formed on a real relation at a given access class, the mul- 
tilevel relational expressions for the classification con- 
straints visible at that class are evaluated. If the tuple to 
be inserted or updated is associated with one or more of 
the views defined by the relational expressions, then the 
insert or update is accepted, and the element is labeled 
with the least upper bound of the classes assigned by the 
class expressions for those views; otherwise, the tuple is 
rejected. 

- constraint ‘ ‘class (PAYLOAD. CARGO) - 
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We first define class expressions and a function class- 
eval for evaluating a class expression. 

type CLASS-EXPS of class expressions. The terms 
of a class expression represent constant classes (e.g., SE- 
CRET), the classes of elements in the database, the write- 
class of the subject, or a class provided by the subject. 
The operators include the least-upper-bound operator. 

Each class expression evaluates to an access class 
through the following function. 

class-eval: STATES X CLASS-EXPS X CLASSES 
x SUBJECTS x MTUPLES + CLASSES, which re- 
turns the class that results from evaluating a class expres- 
sion in a given state at a given access class relative to a 
given subject and to a given tuple (the tuple being updated 
or inserted). 

The class-eval function maps from a subject in order to 
implement classification constraints in which data are 
specified to have the access class of the data source or to 
be source-labeled. 

Classification constraints are defined by the following 
components: 

type CLASS-CONSTRAINTS of classiJication con- 
straints. 

class-constraint-class: CLASS-CONSTRAINTS + 

CLASSES, which gives the access class associated with 
a classification constraint. 

STRAINTS -+ MREAL-IDS, which gives the multilevel 
real relation identifier for which the constraint applies. 

class-constraint-attribute: CLASS-CONSTRAINTS 
-+ 32, which gives the attribute index for which the con- 
straint applies. 

class-constraint-mrel-exp: CLASS-CONSTRAINTS 
-+ MREL-EXPS, which gives the relational expression 
(if any) for a constraint. If no relational expression is as- 
sociated with a classification constraint C, we denote this 
by class-constraint-mrel-exp(C) = " ". Such a con- 
straint can be used to, in effect, prohibit new data from 
being entered for an element. 

STRAINTS -+ CLASS-EXPS, which gives the expres- 
sion defining the result class for a constraint. 

To avoid disclosing the existence of a relation to sub- 
jects with access classes lower than the relation class, 
SeaView requires that the access class of a classification 
constraint dominate the access class of the identifier of the 
relation to which it applies. 

Property 14 (Classijication Constraint Class Prop- 
erty): VCC E CLASS-CONSTRAINTS: 

class-constraint-class ( CC ) 2 
mrelation-class ( class-constraint-mrelation ( CC ) ). 

0 
Value and classification constraints are not defined for 

views, because insert or update operations on views are 
mapped to corresponding operations on the underlying real 
relations, and the value and classification constraints on 
those real relations apply. 

class-constraint-mrelation: CLASS -C ON - 

class-constraint-class-exp: CLASS-CON- 

In order to ensure that a complete set of classification 
constraints is visible at every access class at which a re- 
lation is visible, the SeaView policy requires that every 
attribute of a relation have a classification constraint at 
the class of the relation schema. 

Property 15 (ClassiJication Constraint Completeness 
Property): V R  E MREAL-IDS, v i ,  1 I i I mde- 
gree ( R  ): 

3CC E CLASS-CONSTRAINTS such that 
class-constraint-class ( CC ) = mrelation-class 
( R ) ,  
class-constraint-mrelation ( CC ) = R ,  and 
class-constraint-attribute ( CC ) = i. 

n 
U 

C. Correctness Properties 

When an element is inserted or updated in a real rela- 
tion R,  the value of the element must satisfy the value 
constraints associated with the corresponding attribute of 
R. In addition, the access class of the element must satisfy 
the classification constraints associated with the corre- 
sponding attribute of R ,  and this class must dominate the 
class of the relation name. In order to state this property 
formally, we first define what it means for an element to 
satisfy the constraints in a particular state. (The SeaView 
model does not require that all constraints be satisfied in 
all states, but the constraints must be satisfied by the states 
that result from insert and update operations.) 

Each constraint has an associated relational expression 
e. For any given state s and class c ,  this expression de- 
fines a relation instance I .  For the purposes of constraint 
application, a tuple is considered to be associated with the 
relation instance I if the values of its elements correspond 
to the values of the elements of a tuple in I (the classes of 
the elements and the tuple class need not match). This is 
expressed by a function mrelation-associated ( I ,  r )  which 
returns true if and only if tuple r is associated with rela- 
tion instance I. 

Now, an element of a tuple satisfies the value con- 
straints of the corresponding attribute in a given state with 
respect to a particular subject if the tuple is associated 
with the view corresponding to each constraint, where the 
views are evaluated with respect to the read-class of the 
subject. The following definition states that an element is 
correct in a state s with respect to a subject S if for all 
value constraints that apply to the element, the tuple is 
associated with the view defined by the constraint. 

Dejnition 1 (Value Correctness): Let S be a subject 
with read-class rc. Let R E MREAL-IDS, and r E mre- 
lation-instance(s, R ,  rc ) .  Then element i of tuple r ,  for 
1 I i 5 mlength ( r ) ,  is correct in state s with respect to 
S if and only if VVC E VALUE-CONSTRAINTS: 

value-constraint-mrelation ( VC ) = R,  
value-constraint-attribute ( VC ) = i, 
value-constraint-exp ( VC ) = e ,  and 
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value-constraint-class ( VC ) I rc 3 

mrelation-associate (meval (s, e ,  r c ) ,  r )  = true. 
0 

Similarly, an element of a tuple satisfies the classifica- 
tion constraints of its corresponding attribute in a given 
state with respect to a particular subject if for each con- 
straint such that the tuple is associated with the view cor- 
responding to the constraint, the class of the element 
dominates the class specified by the constraint; again, the 
views are evaluated with respect to the read-class of the 
subject. 

Dejinition 2 (Classijcation Correctness): Let S be a 
subject with read-class rc. Let R E MREAL-IDS, and r E 
mrelation-instance(s, R, r c ) .  Then element i of tuple r ,  
for 1 I i I mlength ( r ) ,  is classijed correctly in state s 
with respect to subject S if and only if: 

1) There exists at least one classification constraint that 
assigns a class to the element and that is visible to the 
subject: 

3CC E CLASS-CONSTRAINTS and x E CLASSES 
such that: 

a) class-constraint-mrelation ( CC ) = R, class-con- 
straint-attribute ( CC ) = i ,  and class-constraint- 
class (CC)  I rc, i.e., the constraint is associated with 
the ith attribute of R and is visible at the subject’s read- 
class; 

class-constraint- 
mrel-exp(CC), r c ) ,  r )  = true, i.e., the tuple r is asso- 
ciated with the view defined by the classification con- 
straint evaluated at class rc; 

c) class-eval (s ,  class-constraint-class-exp ( CC ), rc, 
S ,  r )  = x (i.e., the class assigned by the constraint is x ) ;  
and 

d) x 2 mrelation-class ( R )  - i.e., the assigned class 
dominates the class of the relation name. 

b) mrelation-associate ( meval( s, 

2) For all such constraints satisfying the above, 

element-class ( r ,  i ) = the lub of the x 

(to force consistency). 0 
The classification specifications visible at any access 

class must be consistent; that is, if two or more must be 
satisfied simultaneously, then they must yield the same 
access class. Because the class returned by a constraint is 
taken to be a lower bound on the class to be assigned to 
the element, the definition of classification correctness, 
above, ensures that the classification constraints visible at 
any access class are consistent by taking the least upper 
bound of the classes returned by all the visible constraints 
that apply. 

The SeaView policy requires that the access class of a 
relation identifier be dominated by the access class of any 
data that can be stored in the relation. This requirement 
is formalized through conditions (Id) and (2) in Definition 
2. 

The following transition property requires that all up- 
dated and inserted elements satisfy the value and classi- 
fication constraints. . 

Property 16 (Data Correctness Property): A command 
o p ( s , ,  S, XI, * * * , x,  + s2)  satisfies the data correctness 
property if and only if VR E MREAL-IDS, Vc E 
CLASSES: 

1) No new tuples are associated with R: 

mrelation-instance (s’, R, c) G mrelation-instance (s, 
R, c ) ,  
or 

2) For each tuple r that represents an insert into R, all 
element values satisfy the value constraints and all ele- 
ment classes satisfy the classification constraints: 

Vr E mrelation-instance(s’, R, c )  such that 1 3 q  E 
mrelation-instance (s, R, c) where mtuple-key ( R ,  r )  
= mtuple-key(R, q )  (since the primary key is an 
mtuple, the classes of the elements are included for 
the comparison; thus, polyinstantiated tuples are not 
equal) 

V i ,  1 I i I mlength ( r ) :  element i of r is correct 
in state s’ with respect to S ,  and element i of r is 
classified correctly in state S’ with respect to S, 

or 

3) For each tuple r that represents an update, each up- 
dated element satisfies the classification constraints and 
value constraints: 

Vr E mrelation-instance (s’, R, c) such that 3 q  E mre- 
lation-instance (s, R, c )  where mtuple-key (R, r )  = 
mtuple-key(R, q ) ,  V i ,  1 5 i I mlength(r): if 1 3 p  
E mrelation-instance (s, R, c)  where mtuple-key ( R ,  
r )  = mtuple-key (R, p )  and element-class ( r ,  i ) = 
element-class ( p ,  i ) and element-value ( r ,  i ) = ele- 
ment-value(p, i )  (i.e., we really have a new ele- 
ment-recall that primary key and element class must 
determine element value), 
then element i of r is correct in state s’ with respect 
to S ,  and element i of r is classified correctly in state 
s’ with respect to S .  

0 
Mandatory security requires that write-class ( S  ) 5 c I 

read-class ( S  ); otherwise mrelation-instance (s ’ ,  R, c )  = 
mrelation-instance (s, R, c ) .  This is enforced by the un- 
derlying reference monitor. 

V. DISCRETIONARY SECURITY 
The SeaView policy requires that no user be given ac- 

cess to information unless that user has been granted dis- 
cretionary authorization to the information. This policy is 
formalized in terms of subjects and protected database ob- 
jects. The protected database objects are databases, re- 
lations (real relations, views, and snapshots), and objects 
at the MAC interface. The TCB model allows users to 
specify which users and groups are authorized for specific 
modes of access to particular database objects, as well as 
which users and groups are explicitly denied authorization 
for particular database objects. 
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The TCB model uses access modes to signify autho- 
rized access to database objects, and includes different sets 
of access modes applicable to different types of objects. 
A special mode, called the “null” mode, is used to sig- 
nify that no access to the information is authorized. 
Granting “null” authorization is the means of denying 
authorization. The “null” mode supercedes all other 
modes. 

To obtain access to a database object 0, a user must be 
authorized for the corresponding access mode for 0. The 
SeaView model applies a most specific rule: if an individ- 
ual user is explicitly granted or denied authorization to a 
database object, this takes precedence over any autho- 
rizations that are granted or denied to groups to which the 
user belongs. 

A user may be authorized for access mode m to a view 
defined on one or more multilevel relations without being 
authorized for mode m to the underlying multilevel rela- 
tion(s). However, for a user to obtain access to a view, 
the user must be authorized for the reference mode on all 
referenced multilevel relations. This allows for the fol- 
lowing common use of views for access control: suppose 
user U1 has all authorizations for a multilevel relation 
R ( A ,  B ,  C ), and attribute C contains personal informa- 
tion relevant only to U1. Suppose also that U1 wants to 
make attributes A and B available to user U2 for retrieval 
and update. U1 can create a view V on R consisting of 
attributes A and B only and can then grant U, retrieval and 
update authorization for V without granting U, any au- 
thorizations (other than the reference mode) for R. (In 
order for U, to use view V ,  UI has to grant U, the refer- 
ence mode for R.) Note that even if U2 had been able to 
create the view, U, still could not obtain any authoriza- 
tions for the view that U, did not also hold on R. 

When a user creates a database object other than a view, 
default initial authorizations are granted to the user for the 
object. When a user creates a view, the user acquires only 
those access modes (or a subset of them) that are held on 
each directly referenced underlying relation and view 
(i.e., those relations and views named in the view for- 
mula). In addition, certain groups are automatically 
granted authorizations for new multilevel relations. 

A user can grant or revoke an access mode for a data- 
base object to or from other users and groups, provided 
the granting user is so authorized. The propagation of ac- 
cess modes is controlled through the access modes 
“grant” and “give-grant.’’ If a user is authorized the 
“grant” access mode for a database object 0, then that 
user can grant and revoke any access mode other than 
“grant” and “give-grant’’ for 0, and also can deny all 
authorization to 0 from a user or group. A user authorized 
the “give-grant’’ access mode can additionally grant and 
revoke the “grant” and “give-grant’’ access modes. 
Revocation of authorizations does not extend dynamically 
to users who may have been granted authorization by the 
user from whom authorization is being revoked as in Sys- 
tem R [23]. 

Unlike the mandatory security policy, the discretionary 
security policy does not require secure information flow. 
In our model, the granting and revoking of access modes 
affects the current authorizations but not the current ac- 
cesses (it affects future accesses). Thus, the discretionary 
security properties are stated as transition properties and 
relate the discretionary authorizations and accesses in the 
current state to the accesses in the next state. 

To enforce the discretionary policy, discretionary au- 
thorizations and accesses for a multilevel relation R must 
be stored in objects classified at mrelation-class ( R ) .  Oth- 
erwise, relevant authorization information about R might 
not be visible. The underlying reference monitor prevents 
the discretionary authorizations from being used as covert 
signaling channels because any authorizations stored at 
access class c cannot be applied to subjects at classes 
lower than c. 

VI. MODEL IMPLEMENTATION ISSUES 
The SeaView policy requires that the security mecha- 

nisms of a system that enforce discretionary security and 
all supporting policies be constrained by a reference mon- 
itor that enforces mandatory security. 

For TCB model components defined as types (domains 
of values), the only elements visible to a subject S are 
those whose access class is dominated by read-class (S ). 
All information implementing the TCB model, including 
both state-dependent and state-independent functions, is 
contained in objects of appropriate classification, which 
in turn are managed by the reference monitor. Implicit in 
the state properties and the state-independent properties 
and axioms of the TCB model is the requirement that the 
properties be true for all c E CLASSES with respect to 
the information visible at that class. Implicit in the tran- 
sition properties and the command sequence properties is 
the requirement that the visible values of the state-depen- 
dent functions in the new state depend only on the visible 
values of any functions in the previous state, where visi- 
ble means at the read-class of the subject causing a state 
transition. 

In the SeaView design, all information about a multi- 
level relation R (e.g., mdegree, primary-key) is stored in 
objects of class mrelation-class(R). This means that a 
subject S with read-class rc I mrelation-class (R ) is un- 
able to obtain information about R. Value and class con- 
straints classified higher than mrelation-class (R ) are 
stored in objects at their respective (higher) classifica- 
tions. 

Relation instances, which are a function of a state s, 
relation identifier R, and access class c 2 mrelation- 
class ( R ) ,  are derived from the contents of objects at class 
c or lower as follows. For a mutlilevel real relation R,  
mrelation-instance (s, R, c) is derived (using the standard 
relational operators) from standard, single-level relations 
at classes dominated by c as described in Section VI-A, 
below. Thus, each multilevel real relation is effectively a 
view over single-level relations, where each single-level 
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relation R I  has a class cI  I c and is stored in one or more 
objects at class c1. For a multilevel view R ,  mrelation- 
instance(s, R ,  e )  is derived from the multilevel relations 
referenced in the view definition formula, where the in- 
stances used to derive the view are at class c. For both 
real relations and views, a subject with read-class rc can 
obtain mrelation-instance(s, R ,  c )  only if re L e. For a 
snapshot R ,  mrelation-instance(s, R ,  c )  for c 2 mrela- 
tion-class ( R )  is stored in a standard, single-level relation 
R I  of class mrelation-class ( R ) ,  which is stored in one or 
more objects of that class. 

A. The Sea View Decomposition 
As we discussed in Section I-B, SeaView implements 

multilevel real relations as views over underlying single- 
level stored relations. Each single-level standard relation, 
in turn, is mapped onto one or more single-level seg- 
ments, which are protected by an underlying reference 
monitor. Therefore, a subject S will be unable to access 
any data in an underlying relation (in order to derive a 
multilevel relation) unless read-class ( S ) dominates the 
class of the object(s) that contains the stored data. 

The decomposition automatically satisfies polyinstan- 
tiation integrity. The redundancy defined by the multival- 
ued dependencies is removed in the decomposition, but 
restored when the full relation is instantiated. 

The following decomposition corrects the decomposi- 
tion and recovery formula in our previously-published 
multilevel relational data model [22] .  The formula in that 
paper used the full outer join operator to perform the re- 
covery, which had the effect of reclassifying the low key 
values associated with high “orphans” as high, an ap- 
proach which, as we saw above, could result in the failure 
to preserve polyinstantiation integrity. Our formula uses 
the left outer join, which avoids this problem.” Other- 
wise, our decomposition here is similar to the approach 
there, with the notable exception that here we require far 
fewer base relations. 

All attributes of a multilevel real relation R that are uni- 
formly classified (that is, attribute groups whose values 
have like classifications within any given tuple) are han- 
dled as a unit. Thus, in the following discussion, each A, 
in the relation R ( A , ,  C , ,  * - , A,, C,,) represents a set 
of attributes that are uniformly classified, and C, repre- 
sents a classification attribute for the set. (A user may 
designate a set of attributes to be uniformly classified in 
order to control polyinstantiation.) Note that because 
multilevel entity integrity requires the apparent primary 
key to be uniformly classified, the attributes forming the 
apparent primary key belong to the same attribute group, 
which we can assume with no loss of generality to be A , .  
(The apparent primary key is composed of those attributes 
designated by the user as forming the primary key.) A I  
may include other attributes besides the key attributes if 

“In [SI, we inadvertently wrote “right outerjoin” where the left outer 
join had been intended This error waq also pointed out by JaJodia and 
Sandhu (201 

those additional attributes are also uniformly classified at 
the key class. We let K denote the set of attributes forming 
the apparent primary key; thus K G A , .  

The domain of the classification attribute C; is the range 
of classifications for data that can be associated with at- 
tribute group A;.  This domain is a sublattice of the lattice 
of access classes, having a lowest class L, and a highest 
class H , .  We designate this domain range ( A i )  = [ L;, H; 1 .  

Our decomposition of multilevel real relations into sin- 
gle-level base relations is as follows. We create one sin- 
gle-level relation R I ,  for each c E [ L I ,  H I  ] .  Each of these 
relations has classification c and consists of the attribute 
group A ,  (which includes the key attributes). Then for 
each attribute group Ai for i > 1, a standard base relation 
Ri,< is created for each class c E [ L;,  H i ] .  Each of these 
relations has classification c and consists of the key at- 
tribute K ,  the key class CI,  and the attribute Ai. In short: 

Primary Key Group Relations: Vc E [ L I ,  H I  3, create 
R l , c ( A , )  with class e. 

Attribute Group Relations: For i = 2 ,  . * * , n:  Vc E 
[ L ; ,  H i ] ,  create R;,,(K, Cl,  A ; )  with class c. 

Note that multilevel entity integrity guarantees that CI 
I C,,  so that the values for K can be stored in a relation 
of class c. By encoding the primary key class as a field in 
the base relation itself, instead of in its name, we need 
fewer base relations for the decomposition that did the 
previously published formula [22] ,  which created a base 
relation for each possible combination of key class and 
attribute class. In addition, by including in A I  all non-key 
attributes that are uniformly classified at the key class, we 
also need fewer base relations than did our earlier formula 
[22] .  We do not actually create a base relation from the 
multilevel relation until data exists at the appropriate 
class. 

Our recovery of a multilevel real relation from its sin- 
gle-level base relations is as follows. Let represent 
the derived relation (derived from R I , < )  

and let 
PLC = ( A ’ ,  c, = c )  

represent the derived relation (derived from 
Ri.c) 

= ( K ,  Cl, A; ,  C, = e ) .  
In each of these, Ci = c represents the constant column 
of value e. Now we can derive R as follows: 

R = ( P I  da P2 da - * * R P,,) 
where f o r i  = 1 - - n ,  

P; = U Pi,< 
C E  [L, H, 1 

and where b4 denotes the left outer join operator, and all 
joins are on the attributes A I ,  C,; that is, on the key value 
and key class. 

B. Data Design Considerations 

When a multilevel relation is defined, an allowable ac- 
cess class domain is specified for each data attribute or 
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attribute group. If all attribute groups of a multilevel re- 
lation R are single-level (i.e., their domains all contain a 
single class), then polyinstantiation does not arise in R 
and no unions are used to recover R. If furthermore all 
the single-level attribute groups are the same class, then 
the decomposition of R yields a single base relation, so 
that there is no overhead in instantiating R. 

Uniformly classified attributes form attribute groups in 
a multilevel relation schema; for example, latitude and 
longitude would probably be uniformly classified. If all 
attributes form a single group, the relation is in effect 
classified at the tuple level, and no joins are needed to 
instantiate the multilevel relation. 

Specifying narrow classification ranges for attributes 
can potentially improve performance of the recovery al- 
gorithm by reducing the number of unions needed. 
Grouping uniformly classified attributes whenever possi- 
ble reduces the number of base relations needed in the 
decomposition and the number of joins needed in the re- 
covery. Both narrowing the classification ranges and 
grouping the attributes also reduce the effects of polyin- 
stantiation. MSQL allows users to specify these data de- 
sign decisions. 

VII. CONCLUSIONS 
Multilevel security has all-pervasive effects on the data 

model, data consistency, database system architecture and 
design, and data manipulation language. We have pre- 
sented SeaView’s security model, which defines multi- 
level relations to contain classification attributes as well 
as data attributes. We discussed Seaview’s multilevel re- 
lational integrity rules, which extend the integrity con- 
straints of the relational model in order to provide consis- 
tency for data at different access classes, including data 
that becomes polyinstantiated. We also discussed Sea- 
View’s decomposition method for mapping all multilevel 
real relations into standard (single-level) base relations. 
By implementating multilevel relations as views over sin- 
gle-level base relations, we obtain element-level labeling 
without significant storage overhead. The SeaView design 
builds on an existing database management system ported 
to an existing reference monitor to obtain A1 assurance 
for mandatory security for the system as a whole. 
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