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A new inference control, called random sample queries, is proposed for safeguarding confidential data 
in on-line statistical databases. The random sample queries control deals directly with the basic 
principle of compromise by making it impossible for a questioner to control precisely the formation 
of query sets. Queries for relative frequencies and averages are computed using random samples 
drawn from the query sets. The sampling strategy permits the release of accurate and timely statistics 
and can be implemented at very low cost. Analysis shows the relative error in the statistics decreases 
as the query set size increases; in contrast, the effort required to compromise increases with the query 
set size due to large absolute errors. Experiments performed on a simulated database support the 
analysis. 
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1, INTRODUCTION 

Protecting confidential personal records in on-line, centralized databases from 
unauthorized disclosure or modification is a problem of wide interest. These 
systems may include access controls to protect Tecords from unauthorized query 
or update, authentification schemes to certify the identities of users at terminals, 
information flow controls to restrict data to their allowed security levels, and 
encryption schemes to protect data while in transit through an insecure channel 
or while stored in an insecure medium [12]. 

None of these controls deals successfully with the inference problem-the 
deduction of confidential data by correlating the declassified statistical summaries 
and prior information. For example, comparing the mean salary of two groups 
differing only by a single record may reveal the salary of the individual whose 
record is in one group but not the other. The objective of inference controls is to 
make the cost of obtaining information in this way unacceptably high. 

Census bureaus have dealt successfully with this problem for years. They 
remove from the database information that easily identifies an individual, e.g., 
social security numbers and exact geographical locations; they release statistics 
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drawn from only a small sample of the entire population [4, 201. Unfortunately, 
these techniques do not work well in small or medium data management systems 
where records are added, deleted, or updated frequently. Modern relational 
database systems have powerful query languages which make it easy to request 
statistics about arbitrary subgroups of individuals. It has remained an open 
question whether inference can be controlled in such systems. 

Most of the research in this area has studied efficient attacks rather than 
effective safeguards. With few exceptions, proposed inference controls are either 
easy to circumvent or impractical to implement (see [lo, 11, 15,331). Despite its 
negative tone, this research is valuable because the nature of the threat must be 
understood before effective countermeasures can be built. 

The common feature of all attacks is thtit the user can control which set of 
records is queried. This paper investigates a new class of queries, called random 
sample queries (RSQs), that deny the intruder precise control over the queried 
records. RSQs introduce enough uncertainty that users cannot isolate a confiden- 
tial record but can get accurate statistics for groups of records. 

We briefly review our model of statistical databases and methods of compromise 
in Sections 2 and 3 and then introduce random sample queries in Section 4. 
Section 5 discusses a possible implementation. Section 6 analyzes the errors in 
the statistics and compares them with the errors observed in experiments with a 
simulated database. Section 7 studies the ability of RSQs to withstand attack. 

2. STATISTICAL DATABASE MODEL 

A statistical database contains N confidential records. Each record contains M 
fields, where the jth field (j = 1, . . . , M) contains a data value for the jth 
attribute (variable, category). An example of an attribute is SEX, whose two 
possible values are MALE and FEMALE. We assume the database is static; that 
is, records are not inserted, deleted, or updated. 

Statistics are obtained through queries of the database. A query is given in 
terms of a characteristic formula C, which, informally, is any logical formula over 
the values using the operators and ( - ), or (+), and not (-). The set of records 
whose values match C is called the query set Xc of C. The simplest forms of raw 
statistics are counts and sums: 

COUNT(C) = nc, 

where nc = 1 Xc 1 is the size of Xc, and 

SUM(C, j) = C Uij, 
iEXC 

where Uij is the value of field j in record i. Note that SUM queries apply only to 
numeric data (e.g., SALARY). The responses from COUNT and SUM queries 
are used to calculate relative frequencies and means: 

COUNT(C)=~ 
RFREQ(C) = N 

N 

SUMAC, j) 
AVG(C, J) = COUNT(C). 

(1) 
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More general forms can be defined; for example, the SUM query could be 
modified to add up terms like (ui;)k, thereby providing the raw statistics for the 
kth moment. We will use q(C) to denote any of these kinds of queries. 

3. A REVIEW OF RESEARCH ON METHODS OF COMPROMISE 

Compromise (or disclosure) occurs when a questioner deduces, from the responses 
of one or more queries, confidential information of which he was previously 
unaware [6]. Researchers have studied methods of controlling compromise but 
have found that each method succumbs to simple attack or is impractical to use. 

Most of the attacks are based on isolating a single data element at the 
intersection of several query sets; the confidential value is obtained by solving a 
system of equations employing the responses of these queries. The defenses 
against these attacks are of four kinds: controls on the sizes of query sets; controls 
on the overlaps of query sets; distorting the data or the query responses; and 
sampling from the database. These controls will be reviewed briefly in the next 
sections. 

3.1 Controls on the Sizes of Query Sets 

The minimum query size control aims to defend against attacks employing very 
large or very small query sets, e.g., with a formula C that identifies a single record 
[5, 221. Let k denote a parameter giving the lower bound on allowable query set 
size. A query q(C) is not answered unless k I no I N - k. Unfortunately, this 
control is often easily subverted (even for k near N/2) by a simple snooping tool 
called the “tracker” [13,14,29,31,35]. A tracker is a set of characteristic formulas 
whose query sets pad the query set of the original formula to form answerable 
queries; the questioner subtracts out the effect of the tracker to determine the 
answer to the query for the original formula. Trackers are generally easy to find 
and apply. One of the most powerful trackers is the general tracker: a formula T 
such that 2k 5 nT 5 N - 2k [ 13, 351. Given an unanswerable query q(C) and a 
tracker T, only a few queries are required to compute the answer to q(C) from 
answerable queries which pad C with T. For example, when nc < k, relative 
frequencies and averages can be computed from 

RFREQ( C) = RFREQ(C + T) + RFREQ(C + p ) - 1 

AVG(C,j) = [AVG(C + T,j)RFREQ(C + T) 

+ ~vG(c + P’, ~)RFREQ(C + P ) 

- AVG( T, j)RFREQ( T) 

- AVG( T, j)RFREQ( T)]/RFREQ( C). 

Similar equations are used when nc > N - k (see [13]). 

(2) 

3.2 Controls on the Overlap of Query Sets 

The minimum overlap control inhibits the responses from queries that have more 
than a predetermined number of records in common with each prior query [16]. 
No efficient implementation of this control is known: before responding, the 
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query program could have to compare the current query group against every 
previous one. This control may also be subverted by queries that overlap by small 
amounts (e.g., by solving a system of equations) [8, 9, 16, 23, 28, 29, 34, 361. 

An effective method of preventing a clever intruder from isolating a record by 
overlapping queries is partitioning the database [37]. Records are stored in 
groups, each containing at least some predetermined number of records. Queries 
may apply to any set of groups, but never to subsets of records within any group. 
It is therefore impossible to isolate a record. A variant is called microaggregation: 
individuals are grouped to create many synthetic “average individuals”; statistics 
are computed for these synthetic individuals rather than the real ones [17]. 
Partitioning has two severe practical limitations in dynamic databases. First, the 
free flow of useful statistical information can be severely inhibited by excessively 
large groups or by ill-considered groupings. Second, forming and reforming groups 
as records are inserted, updated, and deleted from the database can lead to costly 
bookkeeping. 

3.3 Distorting the Data or the Query Responses 

The minimum query size control and minimum overlap control give exact answers 
when they respond. Rounding aims to prevent inference by perturbing the 
responses. Under direct rounding, the answer to a query is rounded up or down 
by some small amount before it is released [19, 20, 25, 271. Rounding by adding 
a zero-mean random value (noise) is insecure since the correct answer can be 
deduced by averaging a sufficient number of responses to the same query. 
Rounding by adding a pseudorandom value that depends on the data is preferable, 
because then a given query always returns the same response. The method can 
sometimes be subverted with trackers [30] by adding dummy records to the 
database [24] or simply comparing the response to several queries in order to 
narrow the range of values containing the confidential value [l, 211. 

A method of indirect rounding is called error inoculation; this control aims to 
prevent inference by perturbing or replacing the values stored in records [2-41. 
Like direct rounding, this control attempts to trade accuracy in the statistics for 
security. One approach is to modify the data when the record is created (losing 
the original data); the problem with this approach is that correctness of the raw 
data may be essential for other uses of the data, e.g., storage and retrieval of 
patients’ medical records. A better approach stores a “perturbation factor” in the 
record along with the original data and applies this factor when the data are used 
in a query [2]. 

A variation of error inoculation which may not disturb the accuracy of the 
statistics is multidimensional transformation or data swapping: the values of 
fields of records are exchanged so that the record for any particular individual is 
likely to be incorrect, but so that all i-order statistics are preserved for i = 
0 a.3 m and some m (an i-order statistic is one derived from a characteristic 
formula over the values of i attributes); higher order statistics are not necessarily 
correct [7, 321. Data swapping reduces the risk of compromise since there is no 
way of knowing with which individual a disclosed value is actually associated. 
The problem with the approach is that no efficient method for finding groups of 
records whose values can be swapped or of determining whether a valid swap 
even exists is known. 
ACM Transactions on Database Systems, Vol. 5, No. 3, September 1980. 



Secure Statistical Databases with Random Sample Queries . 295 

3.4 Random Samples 

All the controls listed above are subverted by a single basic principle of compro- 
mise; because the questioner can control the composition of each query set, he 
can isolate a single record or value by intersecting query sets. Rounding and error 
inoculation perturb the responses, but the “noise” can often be removed by 
averaging responses for carefully selected query sets. 

The U.S. Census Bureau has for years used the principle of random sampling 
to prevent inference. The questioner may apply responses to a set of records no 
longer selected by him. This prevents inference by depriving him of the ability to 
isolate a known record. The 1960 U.S. Census, for example, was distributed on 
tape as a random sample of one record in 1000 [20]. The best snooper would have 
at best a l/1000 chance of associating a given sample record with the right 
individual. 

Commercial data management systems now permit the construction of small- 
to medium-scale dynamic databases. A small fixed subsample would not be 
statistically significant and would not represent the current status of the data. 
For this reason, random sampling has been ignored as a possible inference control 
in modern statistical database systems. 

The remainder of this paper shows that random sampling using large samples 
may effectively reduce risk but maintain high accuracy. 

4. RANDOM SAMPLE QUERIES 

Our proposal for random sampling differs in two important ways from the 
traditional statistical sampling methods used by the Census Bureau: 

(1) To insure accurate statistics, each sample contains a large proportion of the 
records in the query set. To assure timely statistics, the sample is formed at 
the time a query is made. 

(2) Instead of a query being applied to a sample of the entire database, a sample 
is formed from each query set. This enables implementation of the control at 
a very low cost. 

The random sample queries (RSQ) control is defined as follows: As the query 
system locates records satisfying a given characteristic formula C, it applies a 
selection function f(C, i) to each record i satisfying C; f determines whether i is 
kept for the sample. This produces a sampled query set X8 = {i E Xc ] f(C, i) = 
l}. The statistic returned to the user is calculated from X$. A parameter p 
specifies the sampling probability that a record is selected. 

The uncertainty introduced by this control is the same as the uncertainty in 
sampling the entire database, with a probability p of selecting a particular record 
for the sample. The expected size of a random sample over the entire database of 
size N is pN. 

5. IMPLEMENTATION 

A simple case results whenp = 1 - +k for some k > 0. Let r(i) be a function which 
maps the ith record into a random sequence of m > k bits. Let g(C) be a function 
which maps formula C into a random sequence of length m over the alphabet 
(0, 1, *}; this string includes exactly k bits and m - k asterisks (asterisks denote 
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“don’t care”). The ith record is e&uded from the sampled query set whenever 
r(i) matches g(C) (a “match” exists whenever each nonasterisk character ofg(C) 
is the same as the corresponding symbol of r(i)). The selection function f(C, i) is 
thus given by 

f(C, d = 
1 

i 
if r(i) does not match g(C), 
if r(i) matches g(C). 

The above method applies for p > 3 (e.g., p = 0.5, 0.75, 0.875, and 0.9375). For 
p < 4, use p = 3”; the ith record is included in the sample if and only if r(i) 
matches g(C). 

Example. Suppose that p = 3, that m = 8, and that g(C) = “ *lO*l***“. If r(i) 
= “11011000” for some i, that record would match g(C) and be excluded from 
Xt. If r generates unique random bit sequences, then the expected size ofXI is 
$ that of Xc. 

Encryption algorithms, such as DES [26], are excellent candidates for the 
functions r and g, since they yield seemingly random bit sequences. If the 
database is encrypted for other security reasons, the function r could simply 
select m bits from some invariant part of the record (e.g., the identifier field); this 
would avoid the computation of r(i) during query formation. With a good 
encryption algorithm, two formulas C and D having almost identical query sets 
will map to quite different g(C) and g(D), thereby ensuring thatX& andX$ differ 
by as much as they would if purely random sampling were being used. 

Under RSQs, it is more natural to return relative frequencies and averages 
directly, as defined by eq. (l), since the statistics are not based on the entire 
database, and the users may not know what percentage of the records are included 
in the random samples. The sampled relative frequencies and means are 

RFREQ*(C) = p$ 

where n& = ] Xc* ] is the sampled query set size, and 

AVG*(C,j) =-$ 2 u+ 
’ f 

Note that the expected value of n& is pnc; therefore the e:xpected value of the 
sampled frequency is nc/N, the true frequency. Although the use of relative 
frequencies and averages in place of counts and sums is not required for security, 
security is enhanced due to the rounding errors introduced by division (provided 
not too many significant digits are provided). However, a user who knows p and 
N can compute approximations for both the sampled and unsampled counts and 
sums: 

COUNT*(C) = RFREQ*(C) .pN 

SUM*(C,j) = AVG*(C,j).COUNT*(C) 

COUNT(C) = RFREQ*(C). N 

SUM(C,j) = AVG*(C,j).COUNT(C). 
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Indeed, it may be necessary for the database designers to publish the values for 
p and N so that users can judge the significance of the estimates returned. 

A minimum query set size restriction may be necessary with RSQs if the 
sampling probability p is large. Otherwise, all the records of a small query set are 
included in a sample with high probability and compromise is possible (see 
Section 7). One alternative to this restriction is a variable p that decreases in 
proportion to the query set size. This could be implemented in at least three 
ways. The first method makes two passes over the data records: (1) to determine 
the query set size and select p, and (2) to calculate the response. 

The second method calculates statistics for more than one value of p simulta- 
neously, and selects one for the response after the query set size is known. The 
third method “guesses” an appropriate value for p by selecting p proportional to 
the reciprocal of the number of records scanned until the first record in the query 
set is found. The method best suited for a particular database would depend on 
the organization of the records in the database. 

Ideally, the function g should use a normal form for formulas C, so that g(C) 
= g(D) whenever formulas C and D are reducible to each other. This would 
prevent a questioner from determining the true answer to a query by repeatedly 
asking the same query, though expressed in different forms, and averaging the 
responses. Unfortunately, the problem of reducing a formula to a normal form is 
intractable; even if an efficient algorithm could be found, there are other methods 
for removing the sampling errors (see Section 7.3). 

6. ANALYSIS OF ERRORS 

RSQs control compromise by introducing small sampling errors into the statistics. 
The relative errors in frequencies are a function of the probability p of including 
a record in a sample and of the query set size. The relative errors in averages are 
a function of p, the query set size, and the distribution of values in the selected 
category field. Experimental results support the analysis. 

6.1 Relative Frequencies 

Let RFREQ*( C) be the response returned for a query RFREQ( C). The relative 
error between the sampled frequency and the true frequency is given by 

f 
c 

= RFREQ*(C) - RFREQ(C) 

RFREQ(C) ’ 

Appendix A shows that the sampled relative frequency is an unbiased estimator 
of the true relative frequency; thus the expected relative error is zero. The root- 
mean-squared relative error is shown to be 

- 

I&) = d 1-P 
- 
ncp 

for query set size nc. Thus for fixedp, the expected error decreases as the square 
root of the query set size. 

Figure 1 shows a graph of the error &(fc) as a function of nc for several values 
of p. For p > 0.5, nc > 100 gives less than a 10 percent error. For p = 0.9375, 
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Fig. 1. Expected root-mean-squared relative error in frequency. 

nc > 667 gives < 1 percent error. Low relative errors are possible with high p 
even though query set sizes are relatively small. 

However, for extremely small query sets, the relative errors may be unaccept- 
ably high. For example, for p = 0.5 and nc = 9, R(fc) = 0.33. If a larger value of 
p is used for small query sets, then the relative errors decrease, but the risk of 
compromise increases (see Section 7). It may be preferable to impose a minimum 
query set size restriction than to release statistics with large errors. 

Absolute errors for counts are greater than these for frequencies by a factor of 
N, however, their relative errors are comparable. The same is true for sums and 
averages. 

6.2 Averages 

Let AVG*(C, j) be the response returned for a query AVG(C, j). Let E(x) and 
Var(x) denote the mean and variance of the values of attribute j taken over the 
query set Xc; thus E(x) = AVG(C, j). Appendix B shows that AVG*(C, j) is a 
biased estimator of the true average, where 

E(AVG*(C,j)) = E(x)[l - (1 - p)““]. 

For values of p of interest here (p I 0.5) and moderately large nc (nc > lo), the 
factor [ 1 - (1 - p)““] is negligible and can be ignored. Otherwise the response 
AVG* (C, j) can be divided by [ 1 - (1 - p)““] to yield an unbiased estimator. 

The relative error between the sampled average and actual average is given by 

ac,] = 
AVG*(C,j) - AVG(C,j) 

AVG(C,j) . 
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Appendix B gives an exact formula for the root-mean-square relative error fi(o,j). 
For suffkiently large query set size nc (the larger ]p - 0.5 1, the more asymmetric 
the distribution of the sampled query set size, and the higher the necessary nc), 
k(ao,;) is approximately 

I 

&xC,j) ‘5 CV(x) d 
1-P - 

pbc-1) 

= W(x) z-i(fc,, 

where CV(x) = ( VCW(X))“~/E(X) is the coefficient of variation for the distribution 
of data values. 

As an example, suppose the data values for a category are uniformly distributed 
on [l, s]. The mean and variance for the query set are 

s+l 
E(x) = f jl i = 2’ 

Vu?-(x) = ; g 
s2 - 1 

I 
(i - E(x))2 = --jy-. 

Thus 

where 

1 1 

R(UC,j) '5 D(S) R(fC) (4) 

D(s) = & J 
s2 - 1 yj-. 

The results discussed in the next section show that J?(oo,j) closely approximates 
the actual errors observed in our experiments. 

The function D(s) rises rapidly and quickly approaches the limit: 

lim D(s) = 4. 
s-+m 

Thus for moderately large s (s 2 10) and nc, 

When the data in a given category are uniformly distributed, the relative errors 
in averages behave the same as in frequencies but are 40 percent smaller. 

6.3 Experimental Results 

Random sample queries were tested on databases of size N = 100, N = 500, and 
N = 1000. The objective of the experiments was to measure the trade-off between 
the error in the statistics and the threat of compromise. Four values of p were 
used-0.5, 0.75, 0.875, and 0.9375, corresponding to specifications of between 1 
and 4 bits, respectively, in the function g(C). A pseudorandom number generator 
was used to create records for the database and to specify the functions r and g. 
Each record i had an H-bit randomly generated ID field and several data fields; 
the ID field was used at the value of r( i). The data fields were generated randomly 
over a uniform distribution. 

Three hundred random characteristic formulas were used to measure the error 
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in the statistics. For each formula C, the experimental relative error in 
RFREQ* (C) and AVG* (C, j) (for all data fields j) were calculated. Errors were 
classified according to ten equal intervals of [0, N]. For each interval, the 
experimental absolute values of the relative errors and the root-mean-squared 
relative errors were calculated for frequencies and averages. For comparison, the 
theoretical root-mean-squared errors fi(fo) and J?(ao,i) were also computed for an 
interval of the form [K(N/lO) + 1, (K + l)(N/lO)] using nc = [(N/10)& + a)] in 
eqs. (3) and (4). 

The results are shown in Table I for N = 100 and N = 1000, and forp = 0.5 and 
p = 0.9375. E ac ta h bl e gives the experimental mean relative error, the experi- 
mental root-mean-squared relative error, and the theoretical root-mean-squared 
relative error for frequencies and averages. Averages are shown for a variable 
uniformly distributed in the range [l, 641; thus using eq. (4), 

The theoretical root-mean-squared relative errors closely approximate the exper- 
imental root-mean-squared errors. The approximation is not as close in the first 
interval since most of the actual query sets turned out to be smaller than the 
midpoint of the interval and since eqs. (3) and (4) hold only for large query sets. 
The mean relative errors are about 20 percent smaller than the root-mean- 
squared relative errors. 

7. COMPROMISE 

RSQs control compromise by reducing a questioner’s ability to interrogate the 
desired query sets precisely. We have studied the extent to which the control 
may be circumvented by three different methods of attack: small query sets (of 
size 0 or l), general trackers, and error removal by averaging. Compromise may 
be possible with small query sets unless p is small or a minimum query set size 
restriction is imposed. Trackers, on the other hand, are no longer a useful tool for 
compromise. Attacks based on removing the sampling errors by averaging re- 
sponses require a large number of “equivalent” queries. 

7.1 Small Query Sets (of Size 0 or 1) 

Suppose that a questioner knows an individual represented in the database 
satisfying formula C. If RFREQ(C) = l/N, then the questioner can deduce 
whether or not that individual also has an additional property a by posing the 
query RFREQ(C.a) [22], since 

1 

RFREQ(Cea) = 
- * the individual has property a 
N 
0 * the individual does not have property a. 

This technique can be used to compromise under RSQs only if the questioner 
can infer with high probability that a response RFREQ* (C) = l/N (or 0) implies 
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Table I. Mean Relative Error, Root-Mean-Squared Relative Error, and the 
Theoretical Root-Mean-Squared Relative Error 

Query set Number 
size range queries 

RFREQ*(C) AVG*(C, j) 

Mean rms Mean rms 
relative relative relative relative 

error error R^( fc) error error R^(ac.,) 

A. Frequencies and Averages for N = 100 andp = 0.5 

I-10 50 0.518 0.646 0.447 
10-20 21 0.115 0.150 0.258 
20-30 31 0.127 0.156 0.200 
30-40 15 0.160 0.201 0.169 
40-50 27 0.106 0.131 0.149 
50-60 71 0.090 0.107 0.135 
60-70 27 0.094 0.109 0.124 
70-80 28 0.079 0.111 0.115 
80-90 20 0.094 0.106 0.108 
90-100 6 0.104 0.112 0.103 

B. Frequencies and Averages for N = 1000 andp = 0.5 

l-100 40 0.232 0.348 0.141 
100-200 24 0.060 0.073 0.082 
200-300 25 0.047 0.058 0.063 
300-400 11 0.031 0.037 0.053 
400-500 32 0.039 0.047 0.047 
500-600 65 0.034 0.044 0.043 
600-700 33 0.034 0.043 0.039 
700-800 43 0.032 0.037 0.037 
800-900 26 0.024 0.029 0.034 
900-1000 1 0.029 0 0.032 

C. Frequencies and Averages for N = 100 and p = 0.9375 

l-10 39 0.079 0.102 0.115 
10-20 27 0.053 0.065 0.067 
20-30 25 0.041 0.049 0.052 
30-40 9 0.025 0.037 0.044 
40-50 35 0.030 0.035 0.038 
50-60 56 0.029 0.035 0.035 
60-70 34 0.030 0.036 0.032 
70-80 32 0.020 0.024 0.030 
80-90 27 0.021 0.025 0.028 
go-100 12 0.016 0.019 0.026 

D. Frequencies and Averages for N = 1000 and p = 0.9375 

l-100 48 0.042 0.059 0.037 
100-200 18 0.022 0.027 0.021 
200-300 30 0.012 0.015 0.016 
300-400 11 0.011 0.013 0.014 
400-500 30 0.008 0.010 0.012 
500-600 75 0.009 0.011 0.011 
600-700 28 0.008 0.010 0.010 
700-800 37 0.007 0.008 0.009 
800-900 18 0.008 0.010 0.009 
900-1000 5 0.005 0.004 0.008 

0.385 0.534 0.254 
0.104 0.132 0.147 
0.102 0.127 0.114 
0.059 0.077 0.096 
0.066 0.077 0.085 
0.063 0.076 0.077 
0.040 0.052 0.070 
0.053 0.065 0.065 
0.047 0.056 0.061 
0.045 0.052 0.059 

0.082 0.117 0.080 
0.037 0.048 0.047 
0.021 0.027 0.036 
0.030 0.034 0.030 
0.025 0.029 0.027 
0.021 0.026 0.024 
0.019 0.023 0.022 
0.015 0.019 0.021 
0.016 0.018 0.019 
0.000 0 0.018 

0.019 
0.029 
0.018 
0.017 
0.017 
0.012 
0.015 
0.012 
0.013 
0.011 

0.013 0.021 0.021 
0.010 0.013 0.012 
0.008 0.011 0.009 
0.006 0.008 0.008 
0.006 0.007 0.007 
0.006 0.007 0.006 
0.005 0.006 0.006 
0.004 0.005 0.005 
0.004 0.005 0.005 
0.005 0.005 0.005 

0.081 0.065 
0.045 0.038 
0.025 0.030 
0.024 0.025 
0.023 0.022 
0.016 0.020 
0.019 0.018 
0.016 0.017 
0.018 0.016 
0.015 0.015 
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Fig. 2. Probabilities EO and El that the sampling frequency is the 
true frequency as a function of p. 

RFREQ( C) = l/N (or 0). In Appendix C we show that 

EI = Pr RFREQ(C) = $ RFREQ*(C) = ; 1 a1 = A’(1 - 1.4 
EO = Pr[RFREQ(C) = 0 ] RFREQ*(C) = 0] = ao 

41 -P)’ 

where ak(Fz = 0, . . . , N) = Pr[nc = k] is the probability that C specifies a query 
set of size k, 

N 

A(z) = C ULZ? 
k-0 

is the generating function for the distribution of a,,, . . . , oN, and A’(z) is the 
derivative of A(z). 

As an example, suppose that the ak are geometricaIIy distributed with param- 
eter X, for 0 < X < 1. For large N, ok = Xk (1 - X) (see Appendii C). The 
cumulative distribution function Ak = Pr[nc 5 k] is given by 

Ak = ; (-Jj E $ jjj(l - A) = 1 - Xk+’ 
j-0 j-0 

Thus for k >> 1, Ah = 1; that is, most queries have small query sets. For h = 0.5, 
the mean query set size is A/(1 - A) = 1. From Appendix C, 

El = [l - X(1 - p,12, 

Eo = 1 - X(1 -p). 

Figure 2 displays E1 and E. for X = 0.5 as a function of p. The odds are 50 
percent that a response of zero is correct for ah p and that a response of l/N is 
correct for p > 0.41. For p > 0.9, the odds are 90 percent that a response of l/N 
is correct and 95 percent that a response of zero is correct. 

The conclusion is that inference of the true value of RFREQ( C) is straightfor- 
ward for largep; either a minimum query set size restriction or ap that diminishes 
with nc must be used to prevent this. 
ACM Transactions on Database Systems, Vol. 5, No. 3, September 1980. 



Secure Statistical Databases with Random Sample Queries . 303 

Table II. Mean Absolute Relative Error in the 
Estimates for 50 Random Tracker 

Attacks Using p = 0.9375 

Mean relative Mean relative 
error for error for 

N RFREQ( C) AVG(C,j) 

100 2.22 4.42 

500 4.48 5.89 

loo0 7.59 5.69 

7.2 Trackers 

Several random tracker compromises were attempted in the experimental data- 
bases of size N = 100, N = 500, and N = 1000. The target was a random individual 
uniquely identified by some formula C. A random tracker characterizing roughly 
half the database was constructed to estimate RFREQ(C) and AVG(C, j) using 
eq. (2). Table II gives the mean relative error (not percentage) in the estimates 
for 50 random attacks using p = 0.9375 and the three values of N. The averages 
are given for a variable uniformly distributed over the range [l, 641. For frequen- 
cies, the mean relative error in the estimates was over 700 percent for N = 100 
and over 70 percent for N = 1000. Although the query errors decrease in N, the 
tracker errors actually increase in N since the absolute error using eq. (2) is 
magnified for larger N. The mean relative errors in averages were nearly 500 
percent and seemed to be independent of N. 

7.3 Error Removal 

Since the same query always returns the same response, it is necessary to pose 
different but “equivalent” queries to remove the sampling errors. There are two 
methods for removing the error in the response to a query: (1) averaging the 
responses of several queries which specify the same query set, and (2) averaging 
estimates obtained from queries about disjoint subsets of a query set. 

The fit method averages the responses of m queries which specify the same 
query set but employ different random samples. Let q(C) be a query for a 
frequency or average with response q*(C). The questioner poses queries of the 
form q(Ci) (i = 1, . . . , m), where Xc, = Xc but X& #X6. An estimate G(C) for 
q(C) is computed from 

Gtc) = k i:l q*(Ci). 

Each query q( Ci) could use a formula Ci which, though theoretically possible to 
reduce to C, is not reduced to C so thatg( C) # g( CL). For example, if C = “MALE- 
(AGE z 50 yrs)“, Cl might be “FEMALE * (AGE < 50 yrs)“. Alternatively, Ci 
could be obtained by “ORing” into C terms which are known to specify empty 
query sets; that is, Ci = C + D, where 1 XD 1 = 0. For example, if C is as before, CZ 
might be “MALE s (AGE > 50 yrs) + MALE-PREGNANT”. 

The second method averages m estimates for a query q(C) using disjoint 
subsets of the query set Xc. The ith estimate, denoted c$( C), is computed from 
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the responses to queries using formulas Ci, , , . . , Ciz,, where 

xc = G xq, 
k=l 

and 

XC& l-l Xc& # 0 

for k # k’. 
The estimate i(C) for q(C) is then obtained from the average: 

i(C) = i ,fl k(C). 
I 

For frequencies, the ith estimate is obtained by summing the responses: 

RF-L(C) = i RFREQ*(Cik). 
k=l 

For example, if C = “FEMALE”, RFREQ(C) could be estimated from 

ReQl(C) = RFREQ* (FEMALE. PREGNANT) 

+ RFREQ* (FEMALE. PREGNANT) 

RF*Qz(C) = RFREQ*(FEMALE. (AGE < 20 yrs)) 

+ RFREQ* (FEMALE. (AGE L 20 yrs)) 

Estimates for averages are similarly obtained by summing the products of 
responses for averages and frequencies. 

Since the sampled query setsX&, used to obtain an estimate are independently 
selected from the disjoint query sets Xc,,,, and since the union of the XZ,, is a 
sample of Xc, the expected error in the estimate ii(C) is the same as in a single 
response q*(C;) for fixedp, where Xo, = XC. Therefore, the expected error in each 
estimate @i(C) under the second method is the same as in a single response q*(Cj) 
under the first method, and the same number of estimates m must be averaged 
under the second method as responses under the first method to obtain the same 
level of confidence in the estimate G(C). However, the second method requires 
more queries since several queries are required to compute each estimate ii(C). 
Furthermore, if p is inversely proportional to the query set size, then the second 
method requires still more queries since the expected errors are greater. There- 
fore, we shah analyze the number of queries required to compromise under the 
first method, as it provides a lower bound on m. 

Let F1*, . . . . FZ, be the responses for m independent queries which estimate 
RFREQ(C) for some C. Let nc = 1 Xc I, and let 
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be an approximation to the true value F = RFREQ(C). From Appendix A, the 
mean and variance of F are 

vu& = f 

For large m (m 2 30 should be sufficient when the distribution of possible 
responses for each F$ is symmet_ric), the distribution of @ is approximately 
normal [MI. Letting UE = (Vor(F))1’2, the confidence intervals for the true 
frequency F given the estimate fi are 

Pr[F E [# + 1.6450,^]] = 0.90 

Pr[F E [@ f 1.96Ou,*]] = 0.95 

Pr[F E [@ + 2.5750,^]] = 0.99. 

If we assume that an intruder requires a 95 percent confidence interval, the 
length of this interval is given by 

Now, I P l/N is required to estimate F to within one record (such accuracy is 
required, for example, to estimate relative frequencies for small query sets using 
trackers). The number of queries required to achieve this accuracy is 

m 2 (3.92)’ (k+>15(k+. 

For fixed p, the function grows linearly in the query set size nc. For p = 0.5, over 
450 queries are required to estimate frequencies for query sets of size 30; over 
1500 queries are required to estimate frequencies for query sets of size 100. For p 
= 0.9375, 100 queries are required to estimate frequencies for query sets of size 
100. 

According to the formula, only 10 queries are required to estimate frequencies 
for query sets of size 10. Although the formula is not accurate for query sets this 
small, it suggests that compromise may not be difficult for small query sets, 
especially if p is large. If a smaller value of p is used for small query sets, the risk 
of compromise is reduced, but the relative errors in the statistics are increased 
(see Section 6.1). The best approach may be a minimum query set size restriction. 

Next, let AT, . . . . Ah be the responses for m independent queries which 
estimate AVG(C, j). Let A = AVG(C, j), and let E(x) and VW(X) denote the 
mean and variance of the data values in category j for the records in the query 
set XC (i.e., E(x) = A). Let 
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be an estimate of the true average a. From Appendix B, the mean of a is 

E(A^) = i ,jt E(AT) = ; (m E(x)) = E(x), 

and the variance of A can be approximated with 

VW-(/~) = -$ i, Vur(AT) 2: -$ (m VW(~)) ’ -’ 
Var(d (1 - p) 

L Ph - 1) 
= mp(nc _ 1) . 

For large “z and nc, the distribution of a is approximately normal. Letting 
ag = (Var(A))“‘, the 95 percent confidence interval is defined by 

Pr[A E [A^ t 1.960$]] = 0.95. 

The length of this interval is given by 

I = 3.9202 > 3.92 Vu(x) 4 1-P -. 
mp nc 

Now I I 2H E(x) is sufficient to estimate A with a relative error of at most H for 
0 < H 5 1. Solving the above equation for m, 

m > (1.96)’ 
Vur(x) 1 -p 

E2(2)= 
(5) 

queries must be made to obtain an estimate with relative error at most H. 
To determine a bound on the relative error H that can be tolerated to achie’ve 

compromise, suppose that estimates for averages are used in the simplest form of 
attack: the tracker. Let D be a characteristic uniquely identifying an individual, 
and consider an estimate for AVG(D, j) for some category j using eq. (2). (We 
assume that a minimum query set size restriction is in effect so that the query 
AVG(D, j) is not directly answerable.) Rewriting eq. (2) we have 

AVG(D, j) = AVG(D + T, j)n,+, 

+ AVG(D + i’,j)n~+~ - AVG(T, j)nT - AVG(T, j)n,-. 

Since we are interested in determining the number of estimates required for a 
single AVG query, suppose that all of the terms on the right-hand side of the 
above equation are known exactly except for one AVG. (This will also give a 
worst-case analysis of the threat.) Let AC = AVG(C, j) represent the unknown 
AVG and let AD = AVG(D, j). The relative error in the estimate & is given by 

&--ALJ = (L&J - A&c 
AD AD 

The estimate AD will have a relative error I h, for 0 < h I 1 if 

I&-Aclnc 

IADI 5h 

or 

I& - Acl h(&l 

IACI %qq. 
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Therefore, a relative error of at most 

in the estimate & is necessary to obtain an estimate & with relative error at 
most h. Substituting for H in eq. (5) gives 

m > (1.96)’ E#(!$2) ($) 1z12. 

As an example, consider the special case where the data values are uniformly 
distributed over an interval [l, s]. The coefficient of variation squared is (see 
Section 6.2) 

2-l 2 2 
02(s) = 12 - . 

( 1 s+l 

In Section 6.2 we 
(e.g., s 1 10); thus 

showed that D2(s) is approximately Q for moderately large s 

estimates are needed. For h = 0.1 and AD near the average, this is 

m > 128 

For fixed p, m grows linearly in the query set size nc. For ne = 100, over 853 
estimates are required for p = 0.9375 and over 12,800 for p = 0.5. In a database of 
size 20,000 if a tracker is used which characterizes roughly half of the population, 
over 85,300 estimates of the averages are required for p = 0.9375 and over 
1,280,OOO for p = 0.5. For h = 0.01, the number of estimates needed is increased 
by a factor of 100. If AD is much smaller than the average AC, even more queries 
are required to obtain a good estimate; however, if AD is larger than AC, fewer 
queries are required. Whereas the relative errors in averages (for uniform distri- 
butions) are lower than in frequencies, more queries are required to obtain 
estimates accurate enough to compromise with averages than with frequencies. 

For large query sets, the number of queries required to obtain reliable estimates 
of confidential data under RSQs is sufficiently large to protect against manual 
attack using trackers. A computer might be able to subvert the control by 
systematically generating the necessary queries. To prevent computer-aided 
attacks, the system should recognize queries which specify identical query sets. 
To the extent that characteristic formulas are reduced to normal form before 
processing, the threat is reduced since the same random sample will be selected 
and, therefore, the same response returned. The threat can be eliminated entirely 
with two passes over the query set. The first pass computes the function g(C) 
(see Section 5) from the records in the query set XC (g(C) could be a function of 
the ID fields of the records); the second pass uses g(C) to select records for the 
sample. However, this does not handle the case where a query g(C) is estimated 
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from queries about disjoint subsets of Xc; threat monitoring may be necessary to 
detect this type of systematic attack [22]. 

8. CONCLUSIONS 

The random sample queries control proposed here deals directly with the basic 
principle of compromise by making it impossible for a questioner to control 
precisely the composition of query sets. Queries for relative frequencies and 
averages are computed using random samples drawn from the query sets. To 
ensure accurate and timely statistics, each sample contains a large proportion of 
the records in the query set and is formed at the time a query is made. As the 
query system locates records satisfying a characteristic formula C, a selection 
function which is dependent on C determines whether or not each record is kept 
for the sample. A parameterp specifies the sampling probability that a record is 
selected. The cost of implementing the control is extremely low. 

For both relative frequencies and averages, the relative error in the statistics 
decreases as the square root of the query set size. In contrast, the effort required 
to compromise by removing the sampling errors increases linearly in the query 
set size owing to larger absolute errors. Therefore, statistics based on large groups 
are both more accurate and less susceptible to compromise than statistics based 
on small groups. A minimum query set size restriction can control compromise 
with small query sets. For frequencies and averages taken over uniform distri- 
butions, relative errors between 1 and 10 percent can be obtained for allowable 
queries, while an enormous number of “equivalent” queries must be posed in 
order to compromise by removing the sampling errors. 

APPENDIX A. ERRORS IN ESTIMATING RELATIVE FREQUENCIES 

Let RFREQ(C) be a query for a frequency and let RFREQ*(C) be the sampled 
frequency. Let nc denote the size of the query set Xc, and let nF denote the size 
of the sample X6. Then n8 is binomially distributed with parameter p: 

Pr[nE = k] = 
0 
7 pk(l -Jfc-f 

The mean and variance of the distribution are 

EM) = ncp 

Vur(nZ) = mp(1 - p). 

Letting FE denote the response RFREQ*(C) = nE/pN, the mean and variance 
of FE are 

Var(F$) = 
mu -P) 

N’p . 

Since E(FI) = RFREQ(C), the sampled frequency is an unbiased estimator of 
the true frequency. 
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Let 

f6 = RFREQ*(C) - RFREQ(C) (nE/pN) - (W/N) ’ 
RFREQ( C) ncN 

be the squared relative error in RFREQ*(C). The mean-squared relative error 
(over all choices of the sample) is 

1 1 
E(f :) = (nclNi (Vur(F’)) = tnc/N)2 

1-P =-* 
w 

Thus the root-mean-squared relative error is 

APPENDIX B. ERRORS IN ESTIMATING AVERAGES 

Let AVG (C, j) be a query for the average value in category j, and let AVG*(C, j) 
be the sampled average. Let nc denote the size of the query set XC, let ni!? denote 
the size of the sample XF , and let (3~1, . . . , x,&J denote the values { uii ] i E Xc}. 
Let E(n) and VW(X) be the mean and variance of {XI, . , . ,x,+}: 

E(x) = ; z xi = AVG(C, j), 
I- 

Vur(x) = ; $ (Xi - E(x)y. 
I= 

Let A$,j denote the response AVG*(C, j); the expected value ofA& is 

E(AF,i) = kzo EtAEj(k))Pr[nE = kl, 

where E(AEj(K)) is the expected response when nE = k. For k > 0, 

031) 

Since each xi appears in (;‘I :) of the (1’) distinct possibilities for A, we have 

E(AE,j(k)) = &i 
k 

For k = 0, we assume the response is 0; that is, E(A&,j(O)) = 0. Substituting in 
eq. (Bl) gives us 

E(A&) = $ E(x)Pr[nE = k] = E(x)(l - (1 - p)““). 
k-l 
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The sampled average is thus a biased estimator of the true average. For the 
values of p of interest here (p z 0.5) and moderately large nc (nc > l.O), this 
factor is negligible and can be ignored. To determine the variance of AVG*(C, j), 
we first evaluate the sum of the squares; for k > 1 

Glk, nc) = C 
*CX i,cA Xi 2 

,A,EkC 
i 1 

= ,$F (iZ4 ,Z!* xiq) 
= Lx (i& xT + is* j;* xfg- ,A,$ j#i 

Since each x1 appears in (~1:) of the possibilities for A and each pair xi-r; 
(j # i) appears in (Tr i) of the possibilities for A, we have 

G(k, nd = 
j+i 

The variance in AVG* (C, j) is then 

Var(AF,j) = z Vur(AF,j(k))lWn8 = kl 
k=O 

where Var(A&(k)) is the variance in AVG*(C, j) when& = k. For k > 1, 

= &, 2x E%) -F Ac,x i;A XI + $i . 

,A ,=kc ,A ,:kc 
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Substituting G(k, no) for the last term, this becomes 

1 

= k*(Y) [ 1 CM, nc) - E’(x) 
032) 

= nc-w)(%=12) + hcE(x))2(%=27 _ E*(x) 
k*(“k’) k*(W 

nc - k 
E(r’) - 

nc - k 
E’(x) = 

nc - k 

= k(nc - 1) k(nc - 1) kh - 1) 
Var(x). 

For k = 1, 

Var(A$;(l)) = & jlx 
(‘41,1C 

(t~xi-E(X))2 

= $ j$ (xi - E(x)j2 = Vdx) 

which is the same as would be obtained by substituting k = 1 in eq. (B2). For 
k = 0, we assume as before the response is 0; therefore, 

Var(At,; (0)) = 0. 

We thus have 

Var(AF,j) = Var(AF,,(O))Pr[n$ = 0] + T Var(AF,j (k))Pr[nT: = k] 
k=l (B3) 

= Var(x) kFl k;“,“c~kl) T 
( 1 

pk(l -p)nc-k. 

Expression (B3) is not easily evaluated; an approximation is useful. Because 
the ,distribution of nF is approximately normal with mean E(d) = ncp, 
Var( A &(ncp) ) is a reasonable approxin -tron of Var(A&). In fact, this approxi- 
mation is a lower bound. We can rewrite eq. (B3) as 

Var(A&) = Var(x) z f(nc, k)Pr[nl = k] 
k=l 

where 

f(w, k) = 
nc - k 

k(nc - 1)’ 

Since f(nc, k) is concave up for 15 k 5 nc, 

::I f(nc, k)Pr[nF = k] > f(nc, gl k PrEnF = kl) . 
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The rightmost summation is the definition of EM) , which is ncp. Thus 

Vur(AF,i) > Var(x)f(nc, ncp) 

= Vur(x) 1-P 
p(nc - 1)’ 

Let 

AVG*(C, j) - AVG(C, j) AVG*(C, j) - E(x) ’ 
&,J = 

AVG(C, j) E(x) 

be the squared relative error in AVG*(C, j). The mean-squared relative error 
(over all choices of the sample) is 

Thus the root-mean-squared relative error is approximated by 

m-k,;) = CVX) 
1-P 

dz 

where CV(x) = ( Vur(x))1’2/E(x) is the coefficient of variation for the distribution 
of x. 

APPENDIX C. COMPROMISE WITH SMALL QUERY SETS 

Let ak (for k = 0, . . . , N) be the probability that C specifies a query set size of k, 
and let 

N 

A(z) = c &zk, 
k=O 

A’(z) = ; akkzk-‘, 
k=l 

be the generating function and its derivative for the distribution a~, . . . , oN. Let 
F denote RFREQ(C) and F* denote RFREQ*(C). If the sampled frequency F* 
is l/N, the probability that the true frequency F is also l/N is given by 

1 Pr[F = l/N and F* = l/N] = 
CE, Pr[F* = l/N) F = k/N]& 

Pal 
= ck’=l kp(l - p)k-lak = A$- p)’ 

If the sampled frequency F* is 0, the probability that the true frequency F is also 
0 is given by 

Pr[F=O)F* =0] = 
Pr[F = 0 and F* = 0] 

Pr[F* = 0] 

= -$dl(lT- p)kak = A(l? p)’ 
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Consider the special case where the ah are geometrically distributed with 
parameter X for 0 < X < 1 (see Section 7.1). Then 

and 

Xk(l - A) 
ak = 1 - AN+’ 

A’(z) = (11;2+J( -(N + l)X(X,)N(l - AZ) + (1 - (Xz)N”)X 

(1 - hz)2 1. 

For large N, 

Thus 

ak = Xk(l - h). 

al = A(1 - A), 

A’(1 - p) = 

t-N + 1NhU -p)lN[l - x(1 -JI)] + (1 - [A(I -p)]N+‘)~ . 
[1 - AU - p)]” 

(1 - h)X 

= [l - A(1 -p,]“’ 

giving 

F=iLlF*=+ = a1 
I A’(1 - 1-4 

= [l - X(1 -p)]2. 

Similarly, for large N, 

and 

UQ” (1-X) 

A(1 -PI = (l!-$+l)(l; “;(;“z;‘) = 1 -‘x(ll,,. 

Therefore, 

Pr[F=O]F*=O]= ao 
AU -P) 

=l-A(l-P). 
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