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1. Introduction

Statistical databases aim to provide frequencies, averages, and other
statistics about groups of persons (or organizations), while protecting the
confidentiality of the individuals represented in the database. This objective is
difficult te achieve, as users of statistical databases have a host of inference
techniques at their disposal for retrieving information about identifiable
persons (e.g., see

[DedoB3 ,Denn79a, DennB0a, Denn82a, Dobk79a, Reis78a, Schl80a).)

There are two broad categories of inference controls: controls that place
restrictions on the set of allowable queries, suppressing those that are not
allowed; and controls that add noise to the data or to the released statistics.
This paper focuses on restriction (suppression) techniques, though we shall
briefly discuss how these techniques can be strengthened with perturbation

techniques.

A statistical database is modeled as a lattice of statistical tables, where the
statistics computed over groups of records having m attribute values in
common correspond to cells (or cell unions) of m -dimensional tables in the
lattice. Output restriction techniques are classified according to whether they
restrict at the table level or cell level in the lattice, and according to whether
they are a priori, audit based, or memoryless. Whereas table-level controls
suppress complete m -tables of statistics, cell-level controls aim to suppress as

few cells in a table as possible.

A priori controls determine in advance a fixed set of statistics that can be
released without compromising any individual's privacy. These statistics are
typically released as 1- or 2-dimensional tables of counts or sums. The cell
suppression techniques used by census agencies [Cox78a, CoxB0a, Sand77a] are

a priori cell-level controls. Partitioning [Chin79a, ChinB81a, Yu77a, Schl83 ]is an



a priori control with both cell-level and table-level characteristics.

Audit-based controls keep a history of queries to determine whether
release of a statistic, when correlated with previously released statistics, could
lead to compromise. A query-set-overlap control [Dobk79a], Fellegi's auditing
control [Fell72a], and Chin's and Ozsoyoglu's audit expert [ChinB2a] are audit-

based cell-level controls.

Memoryless controls attempt to determine whether releasing a statistic
leads to compromise without keeping a record of previous queries or a list of
permitted statistics. A query-set-size control [Hoff70a] is an example of an
easily subverted memoryless cell-level control. Although both audit-based and
memoryless controls determine whether to release a statistic at query
processing time, memoryless controls are pot..entially more efficient, requiring
neither space nor time to process audit records. The objective of this paper is to
examine the {easibility of providing a memoryless control powerful enough to

control disclosure, while not being unnecessarily restrictive.

Section 2 reviews the lattice model, which is the basic siructure used by
census agencies for analyzing potential disclosures. Because the model is
fundamental to understanding the concepts of cell-level and table-level
controls, it is presented as a tutorial. Section 3 defines disclosure of sensitive

statistics.

Section 4 draws on earlier work to examine the feasibility of a secure
memoryless cell-level control. For a given query over m atiributes, we
investigate how many cells in the m -dimensional table defined by the values of
these attributes must be examined in order to determine whether release of the
statistic is secure. We show that a memoryless cell-level control is practical
only if the syntax of queries is restricted, and introduce a new heuristic

approach to cell suppression based on such a syntax.



Section 5 investigates simple criteria for
suppressing complete tables of statistics without examining the cells of a table.
We evaluate and compare four criteria for deciding which tables to suppress.
Two of the criteria are practical and effective: one is based on the relative size of
a table; the other on explicit risk estimation. Most of the new results of this

paper are contained in this section.

Because the memoryless table suppression criteria do not guarantee
security, they must be supplemented with other simple controls. Section 6
briefly outlines techniques for strengthening table-leve! controls. Section 7
discusses the problem of tuning the restriction criterion for different types of

statistics.

We shall assume a database is static, and not discuss the problems caused
by insertions, deletions, and modifications (see

[Chin79a, ChinB1a, OzsoB1a, Yu77al).

2. Lattice Model

For statistical purposes, a database can be viewed as a collection of N
logical records, each describing an individual or organization. The 1'."‘ record
(1 =1 <= N) contains values z,,...,z, for M attributes 4,....,4,. Each attribute
(or variable) 4, has |4, | possible values in its domain. Some attributes have
nonnumeric values; an example is SEX, whose two possible values are MALE and

FEMALE. Others have numeric values; an example is a student’'s grade-point.

The model describes neither the database schema nor its implementation,
but rather a conceptual view of the data in the database (e.g., see
[Olss75a, Rapa75a, Sund73a, Sund 78a]). Chin and Ozsoyoglu [ChinB1a] have
modeled a related structure or view of the data within the framework of some
existing conceptual data models.

Statistics are computed for subsets of records having common attribute
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values. A set of records is specified by a characteristic formula C, which,

informally, is any logical formula over the values of the attributes using (in
increasing priority) the operators OR (+), AND (&), and NOT (~). An example of a
formula is

C = (SEX=MALE) & [(MAJOR=CS) + (MAJOR=EE)] & (CLASS=1983), (2.1)
which, for a student database, specifies all male students majoring in either CS

or EE and belonging to the class of 1983.

The set of records satisf{ying a characteristic formula C is called the query
sel of C. We shall write "C" to denote both a formula and its query set, and |C}
to denote the number of records in C (i.e., the size of C). We denote by "ALL" a
formula whose query set is the entire database; thus [ALL| = N, and € ¢ ALL for
any formula C, where "C'" denotes query set inclusion. A query set for a formula
over m distinct attributes is called an m-sel (assuming the formula cannot be
simplified to one having fewer than m attributes). The query set C in (2.1), for
example, is a 3-set. Note that our concept of a query set differs from the usual
set concepl. A query set is an object determined by its characteristic formula
and not just by the records comprising the set. If the normal forms (e.g.,
minterms) of two formulas differ, their query sets are distinct objects even if
both contain the same records. This remains true even if norecords satisfy a
formula. The conventional set definition may entail serious security problems

[DennB3, Schl84].

An elementary m-set is an m -set specified by a conjunctive formula of the

form

E=(A,=0¢)& - & (4, =a;), (2.2)

where A 1....,Am are attributes and each a; is some value in the domain of AJ-. A
F}

query set of this form is called an elementary set because it cannot be
decomposed without introducing additional attributes. Note that all m -sets
over A,,...,4,, can be expressed as unions of the elementary sets of the

attributes. The query set C in {2.1), for example, is the union of the elementary



3-sets

{SEX=MALE) & (MAJOR=CS) & (CLASS=1983)
(SEX=MALE) & (MAJOR=EE) & (CLASS=1983) .

Given 4,, ... ,4,,. the total number of elementary m-sets is
m

sn=1 IAjl .
i=1

These s, sets define an m-dimensional table or m-table T, which partitions the
database into s, query sets, where each attribute A, corresponds to one
dimension of the table. Figure 1 illustrates a 2-table over SEX and MAJOR; each
entry in the table gives the number of records falling into its respective

elementary set.

MAJOR
ART BOT__CS EE

MALE 10 9 11 | 12

SEX

FEMALE 5 1 2] 8

Figure 1. 2-Table by SEX and MAJOR.

Note that a table need not correspond to a physical structure of the
database. A database with M attributes has 2" such tables, corresponding to all
possible subsets of the attributes. There is exactly one M-table, where the
records in each elementary M-set are indistinguishable (except possibly for a

statistically irrelevant identifier field).
The set of 2” tables T7,,..., T o form a lattice with partial ordering relation

"<", where T; = T, means each elementary set in table Tj corresponds to a union
of elementary sets in table T;; thus, 7, is a refinement of T,. Figure 2 shows the
lattice of tables defined over M = 4 attributes A, B, C, and D. We have, for

instance, ABCD = ABD = AB< Bs< ALL. An elementary 2-set (A=a) & (B=b) in
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ALL
O-table
A B c D l-tables
AB AC AD BC BD Cb 2-tables
ABC ABD ACD BCD 3-tables
\ /
ABCD 4.table

Figure 2. Lattice of Tables Over Attributes A, B, C, and D.



table AB, for example, is a union of elementary 3-sets over attribute C in table
ABC or over attribute D in table ABD. Using table ABD, we have

(A=a) & (B=b) = | (A=a) & (B=b) & (D=d),
d

where the union is taken over all values d in the domain of D. The elementary
3-sets of Lable ABD in turn are unions of elementary sets in table ABCD. The
single elementary 0-set ALL is the union of all elementary sets in any other

table.

In a student database, for example, the elementary 1-set (SEX=FEMALE) in
the 1-table defined by SEX is the union of elementary sets over (SEX=FEMALE)
and some other attribute, such as MAJOR or CLASS. For MAIJOR, we have

(SEX=FEMALE) = |y (SEX=FEMALE) & (MAJOR=deptname).
deptnams

Statistics are calculated over values in the records belonging to a query set
C, and have the form f (C.D), where D is a (possibly empty) set of attributes
and f is a statistical function. An attribute is called a characteristic attribute
if it appears in C and a data attribute if it appears in D; an attribute can appear

in both.

By g(C) we shall mean an additive statistic f (C,D), or query for an

additive statistic, with the following property:If € = C, U - -- U C, for pairwise
disjoint query sets Cy, ..., G, then
g(C)=q(C)+ -+ +9(G). (2.3)

Because any m-set C over attributes 4,,...,4,, is a union of elementary m-
sets over 4,,...,4,,, property (2.3) implies that g(C) can be computed by
adding the statistics for the elementary m -sets comprising C, assuming these

statistics are released.



Many statistics are additive, or easily computed from additive statistics
[DaleB2a]. Counts (absolute frequencies or cardinalities) and sums are
additive, defined by

COUNT(C) = |C], SUM(C.A,)=Ez .
iel

where A; is an attribute having numerical values, and Ty is the value of 4; in
record i. For example, the statistic COUNT{{SEX=MALE) & (MAJOR=CS)) gives
the number of males majoring in CS; the statistic SUM((SEX=MALE) &
(MAJOR=CS), GRADEPOINT) gives their total grade-point. Note that for f(C,D) =

COUNT{C), the set D is empty.

More general types of additive statistics can be expressed as finite

moments over all M attributes [DaleB2a]:

»
g(C)= E::“ 'ziz'--- Ty (2.4)
ieC
where the exponents e, ... ,ey, are nonnegative integers. For COUNTs the

exponents are all zero. For SUMs a single exponent is 1; all others are zero. In
general, for g{C) = f (C,D), the nonzero exponents correspond to the attributes
in 0.

Statistics derived from the values of d attributes ere called d-order
statistics. For additive statistics, the attributes can be specified by terms in
the characteristic formula C, or by nonzero exponents e, in Eq. {2.4).
Specifically, a statistic g(C) is of order d if C is an m-set and d —m additional
attributes have nonzero exponents in Eq. (2.4). For example, SUM{({SEX=MALE)
& (MAJOR=CS), GP)) is a 3-order statistic whose query set is a 2-set.

COUNT(ALL) is a O-order statistic.

It is customary to speak of tables of statistics. These correspond to tables

of the lattice, where the cells of an m-table contain d -order statistics f (C,D)



for the m-sets C of the table. Census agencies, for example, typically release

tables of COUNTs or SUMs for small m.

Property (2.3) implies that the additive statistics for the elementary sets in
a table Tj can be computed from the statistics in a table 7, where T, < T’. An
additive statistic for an elementary set (A=a) & (B=b) of table AB in Figure 2,
for example, can be computed from those for table ABC or table ABD. Using ABD,
we have

g({A=a) & (B=b)) = }; g((A=a) & (B=b) & (D=d)) .
d

This result implies that to protect the values in a table T, it is necessary to
protect statistics in the higher-dimensional tables T, where 7, < T, [Hag74a].
The converse, however, is not generally true; that is, it is not usually possible to
compute statistics in higher-dimensional tables from those in lower-dimensional

ones (exceptlions to this rule are discussed in Section 6).

Figure 3 shows a table of student gradepoint sums. The entries inside the
table belong to the 2-table over SEX and MAJOR. The row sums belong to the 1-
table over SEX, and the column sums to the 1-table over MAJOR. The total 218.0

belongs to the G-table ALL.

MAJOR
ART BOT CS EE X

MALE 32.6| 30.1 | 37.2 | 38.2) 138.0

SEX
FEMALE | 18.5 39| 31.3| 28.3 80.0

¥ 51.0 | 34.0 ] 68.5 | 64.5 || 218.0

Figure 3. Gradepoint Sums by SEX and MAJOR.

Note that a d -order statistic over attributes 4, . . ., 4; can be computed

from the cardinalities (counts) of the elementary sets in the d-table defined by
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A, ..., Ay For example, suppose that the domain of the attribute GP is given
by §0.00, 0.01, ..., 4.00]. Then the statistic SUM{{SEX=FEMALE) & {(MAJOR=CS),
GRADEPOINT) is given by

4.0
¥ COUNT{((SEX=MALE) & (MAJOR=CS) & (GRADEPOINT=gp)) * gp .
gp=000

The lattice model outlined here is essentially that used by census agencies
for disclosure analysis. A more complete description of the model is given in

[Denn83a).
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3. Disclosure of Sensitive Statistics.

A statistic is sensitive if confidential data could be deduced from the
statistic alone. A statistic computed from confidential information in a query
set of size 1 is always sensitive. A statistic computed from a query set of size 2
may also be classified as sensitive because a user with supplementary
knowledge aboul one of the values can deduce the other from the statistic. The
exact criterion for sensitivity is determined by the policies of the system. One
criterion used by the U.S. Census Bureau for economic data is the "'n-
respondent, k%-dominance” criterion, which defines a sensitive statistic to be
one where n or fewer records comprise more than k% of the total [Cox78a]; n
and k are parameters of the database, usually kept secret. In this paper, we
shall assume a sensitive statistic is one with a query set having fewer thann

records.

Let R be a set of statistics released to some user. Statistical disclosure
occurs when release of i allows the user to deduce something about a
restricted statistic ¢g. Personal disclosure (compromise) occurs when the user
can deduce from R a sensitive statistic; that is, confidential information on an
identifiable individual [Haq75a, Schl80a]. Disclosure may be either exact or

approximate, positive or negative [Dele77a, Olss75a, Repa75a].

Clearly, all sensitive statistics must be restricted (i.e., not permitted). In
addition, it is necessary torestrict nonsensitive statistics that could lead to

disclosure of sensitive ones.

Erample . Suppose the formula € = (SEX = FEMALE) & (MAJOR = BOT) is
known to identify Erna Weed. Then the statistic g = SUM{({SEX = FEMALE) &
(MAJOR = BOT), GRADEPOINT) shown in Figure 3 is sensitive and must be
restricted. Moreover, additional statistics in the table must be restricted

to prevent computing g; eg., by
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g = SUM((MAJOR=BOT); GRADEPOINT)
— SUM((SEX=MALE) & (MAJOR=BOT); GRADEPOINT) . (3.1)

We shall now discuss memoryless cell-level controls, which protect sensitive
statistics by suppressing all sensitive and some nonsensitive cells in a table. We

turn totable-level controls, which suppress complete tables, in Section 5.

4. Cell Restriction Techniques

One of the first memoryless cell-level controls to be proposed was the
query-set-size control [Fell72a, Hoff70a, Schl75a). Given a query ¢{(C), the
query-set-size control checks whether € and its "implied query set" ~C contain
at least n records™: ~C is implied by C because g(~C) can be computed from

g{~C) =q(ALL) - g(C).
Note that this control restricts g (ALL). In practice, g{ALL) cannot be hidden
because it is easily computed using any permitted 7 by q(ALL) = g(T) + q(~T).
We shall, therefore, assume g (ALL) is released. Unfortunately, a query-set-size
control is easily subverted, the most powerful methods being “trackers"”

[Denn79a, DennB0a, Schl175a, SchlB80a, Schw77al.

We shall now investigate the feasibility of designing a secure memoryless
cell-level control. This study was motivated by Friedman and Hoffman [Frie80a].
who proposed to thwart tracker attacks by extending the concept of an implied

query set to sets other than just complements.

Given a query g(C) with m-set C over attributes A,, ..., 4., our objective
is to determine a set I, of m-sets over 4,, . . . . 4,,, called the implied query scts
of C, such that for any D € [, ¢(D) can be computed from g(C) plus other

permitted statistics (these will be primarily lower-order statistics, which are

+ In praclice it is unnecessary to formthe set ~C because |~C| = N - |C|; thus, we need
only checkcthatn < |C| < N-n.
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less sensitive). An implied queries control restricts ¢(C) if any set in /. is

sensitive (i.e., too small).

Note that the set I, is limited to m-sets over one table, namely the m-table
defined by 4,, ... ,A4,, and associated with q(C)J g(C) will correspond to either a
single cell of the table or a union of cells . For a given query, we restrict
attention to a single m -table because every sensitive statistic is associated with
some m-table, and a sensitive statistic generally cannot be inferred without
obtaining at least one statistic from its associated table. Statistics from /ower-
dimensional tables may be needed as well, but the objective is always to restrict
al the highest level possible since lower-level statistics are more relevant to
users. Thus, we prefer to protect a statistic in an m -table by suppressing other

statistics for the table rather than lower-leve! statistics.

We first consider the case where C is expressed as an arbitrary formula;
that is, the syntax is free or unrestricted (Section 4.1). Next we consider a
partially restricted syntax, where formulas are constructed from clauses
(Section 4.2). In both cases, the outcome is unsatisfactory. Finally, we restrict

the syntax even further tological AND (Section 4.3).

4.1. Free Syntax

Let C be an arbitrary formula defining an m -get over attributes A4,.....4,,.
The following lemma and corollary show that for every elementary m-set £ in
the m-table A, - - - A_, there exists an m -get C' such that g(£) can be computed
from g(C) and ¢(C'). This means that all s, elementary setsin4,--- 4, must
be in /., because there is no way of predicting from g(C) which query g(C’) will
be asked and, since the control is memoryless, we cannot keep a record of those
that are asked. Note, however, that if all elementary sets are included in [/,
then it is unnecessary to include any nonelementary m -sets, since these are

simply unions of elementary sets (and therefore no more sensitive).
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lemma 1. Let C be an m-set over attributes 4,,...,4,,, and let F be any
elementary set in the m-table A, - - - 4. Then there exists an m-set C' such
that either
E=C-C', or E=C'-C. (4.1)
Proof. Since C is a union of elementary setsin4,--- 4, define C’' by

C'=C-EifFisinC,andby C'=C+ EifEisnotinC.»e

Corollary 1. Any additive statistic g (£) can be computed from

g(E)=9q(C)—q(C), or q(£)=q(C)-q(C). (4.2)

Proof. Immediate from (4.1) and the additive property (2.3).

If indeed we must include all s, elementary m-sets in an m-table in the set
I for a given m-set C, then there are two serious problems with an implied
queries control. First, the number of implied query sets that must be checked
can become enormous even for small m if the domains of the attributes are
large. Form = 2 and [4,| = |A,| = 50, for example, there are s, = 50*50=
2,500 implied query sets for every 2-set €. Second, even though the control
aims Lo restrict at the cell level, it effectively restricts entire m -tables. Given
that we are going to restrict entire tables, we would like a more efficient method

for deciding which tables torestrict (see Section 5).

4.2. Clause Syntax

We now consider the prospects of allowing partial tables using a restricted
syntax. The clause syntax admits only a special class of characteristic formulas
that define m -sets by the conjunction of m clauses. This syntax still allows a
user to express most queries used in statistics production [Olss75a], including

"range queries” such as
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C = (20 < AGE = 30) & (20K < SALARY < 30K) ,

where (20 =< AGE < 30) is shorthand for (AGE = 20) + ... + (AGE = 30). Statistics
Sweden has adopted the clause syntax [Olss75a, Rapa75a). A preliminary report

of the results of this subsection is given in [DennB1a].

A clause X is a formula of the form
X=(A=a )+ (A=ay) + - +(A=a,), (4.3)
where 4 is an attribute and each a; (1 <1 < k) is a distinct value in the domain

of A. Examples of clauses are

(SEX=MALE) ,
(MAJOR=CS) + (MAJOR=EE) + (MAJOR=MATH) .

An m-set C is defined by a conjunction.:

C=C & Cok -+ & Cp, (4.4)

where, forl1<j=m, Cj € !Xj. ~X,l. and .Xj is a clause over attribute A,. The 3-

set
(SEX=MALE) & ((MAJOR=CS)+(MAJOR=EE)) & (CLASS=1983),

for example, is formed from the conjunction of 3 clauses. Note that whereas
formulas of the form (4.4) are syntactically restricted, they provide access to all
additive statistics of the form (2.4) (assuming these statistics are released).
This is because the formulas (2.2) defining the elementary sets are a special
case of (4.4) where each clause names a single attribute value, and by (2.3), all

additive statistics can be computed from those for the elementary sets.

Given a query set C of the form (4.4) over clauses X, . ... X, let C& be the

set of 2" query sets of the conjunctive form (4.4), obtained by taking all

* Note that disjunctions of clauses D = C, + C,+ - - - + C_ might be allowed as well.
The complerment ~0 = ALL- D =~C, & Lcari' e & ""C:‘ conforms to (4.4). ~D is
cerlainly an implied query set of 7, ané vice versa, so disjunctions of clauses have the same
inplied query sets.
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combinations of each clause Xj or its complement ~Xj. The following lemma
shows that given any statistic g(C) where C is of the form (4.4), then all 2™
statistics g(D) for D in c* can be computed from g (C) using at most m lower-
order statistics over subsets of X, ..., X . Because the lower-order statistics

may be released, all sets in C‘ rmust be included in the implied queries set /..

Lemme 2. Giveng,=¢(C)=¢q(C,& --- & C,_). where C is an m-set of the
form (4.4),letg,=q(D)=q(D, & --- & D,)), where D is any m-set in c*. 1 9,
and g, differ by k terms (i.e., Dy = ~C, for k of the D,). then g, can be expressed

as a linear combination of ¢, and k lower-order statistics.

Proof. After replacing C, by 1, ~Cj by 0(1 = j <wm), apply the argument

given in the proof of Theorem 3 (if-part) in Kam and Ullman {Kam77a].

Thus, with the clause syntax, an implied queries control must check at Jeast
the 2™ query sets in c®. unt ortunately, this is still insecure. To see why,
consider Figure 4, which shows counts for a 2-table over attributes 4 and 5. We
write a; for A=a; and b, for B=b,. The count g{a, & b,) = 1is sensitive.
Assuming an implied queries control checks only those sets in C‘. with a
permitted count of n = 3, it is easily verified that the control will permit
g(a, & b,)=4,q(ay& b,) =5, and g{b,) = 10. Thus, a user can compute

g(a, & b,)=q(b)-qla, & b)—qla&d,)

=10—-4-5=1.

This example is easily generalized tom -tables withm > 2.
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Figure 4. Cardinalities for 2-table over attributes A and B.

Experience with a host of tables from real databases [SchlB82a] shows that
such attacks are frequently possible. It is at best questionable whether a
memoryless control can prevent such attacks without inspecting many, if not
all, elementary m-sets in an m -table, and whether such a control can provide
security without suppressing entire tables. With the clause syntax, an implied
queries control faces similar difficulties as with a free syntax, its cost-benefit

ratio is unsatisfactory, and it is probably impractical.

4. 3. AND Syntax

We consider query sets restricted tological AND, disallowing OR and NOT.
Thus, every formula is of the form (2.2) and defines an elementary m-set (0 <

m < M). Writing @y for A =a,;, we gel formulas of the general form

E=a, &, & - &a, . (4.5)
1 4 »
An additive statistic g(£) with query set E of the form (4.5) corresponds toa

cell of the m table defined by A4,.....4,.

Applying previous results [Cox80a, Kam77a, Olss75a, Schi76a, Yac79a ], we
first observe that to protect a sensitive cell g (F), at least 2™ cells g{E’) must be
suppressed, where the elementary sets £’ fall into a hypercube that includes £.

Moreover, for counts the suppressed cube may contain zeros only in certain
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positions [Olss75a, Kam77a). A 2™-cube around a sensitive cell g (E) is defined
by
cube(E)={E' | E'=a, & --- &a,}, (4.6)
a;efa.i’, a."’; ,

where ¢; and a'; are distinct values in the domain of attribute A,. Given a
1 f}
sensitive cell g(E), the problem is to choose the partner+ a’, fora; (1sj=m).
f] (]

For an attribute 4; with lAjI values, there are |Aj | - 1 ways to choose a partner.
Once the partners have been selected, they must remain constant for all future

queries.

The general approach of restricting hypercubes is fundamental to the cell
suppression controls used by census agencies
[Cox7Ba, Cox80a, Olss75a, Rapa75a, Sand 77a). These controls analyze the linear
relationships among all cells of a table {including the marginal sums) to
determine whether sensitive cells can be estimated too closely from those that
are released; additional cells are suppressed until this is no longer possible.
Some attempt is made in selecting hypercubes for suppression to minimize
information loss. With current technology, this linear analysis approach to cell
suppression would be very expensive to apply as a memoryless control on a per
query basis. Although the analysis time could be reduced by periodically
computing and storing a complete set of tables for statistical purposes (e.g., by
using the "box structures” employed by Statistics Sweden [Sund78a]), this is

not likely to be practical for multipurpose datebase systems in the near future.

We therefore investigated a heuristic approach to cell suppression
[Wehr83 ,Wehr84.]. Assuming the values in each attribute domain are
cyclically ordered (modulo the size of the domain), we introduce, as a parameter

of the database, an integer vector

+ The partner relation need not be symmetric.
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X=(z,,25...Zy) -

The index of the partner of g, is then given by
s

i = [(5 + =5 - 1) mod [4;| ]+1.
For X = (1, -1), for example, the partners fora, and b, in Figure 4 are @, and b,
respectively; the Ez-cube for the sensitivecell E=gq(a, & b 1) in Figure 4 will
thus be given by

cube (£) = {a &b, a ,&b,, a kb, , a &b,.

In practice, the control works backwards: Using X, for each incoming query

g{(E'), the system determines if there exists a sensitive cell g (E) whose
hypercube contains g (E'), in which case g(E') is suppressed. In the worst case,

this requires testing 2™ cells.

The heuristic does not guarantee security. Figure 5 shows how a
suppressed 2-cube can be deduced when it is embedded in a larger 2-table that
extends below and to the right of the cube. All other entries in the 2-table must
be permitted along with the 1-tables so that the marginal sums for the cube can
be deduced. Because the cells that berder the cube are thus permitted, the
unknowns z ,,, T,,, and T, must have met the sensitivity threshold, whence they
must all be n and z,, must be 1. The interested reader may wish toverify that a

2-cube with values (1, n+1, n, n) is also deducible.

n+l 2n n+l 2n

n+l T, Typ |0 n+l 1 n
-

2n Ty, 1%pa | 2n n n

Figure 5. Deducible Hypercube.

Details of the research are described elsewhere [Wehr83 ,Wehr8Y ]. Here we
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mention only a few results. While not perfectly secure, the control can provide a
high degree of security. It offers the possibility of allowing partial tables, but
does not necessarily minimize information loss in those tables. The procedure
can be extended to handle clauses of the form (4.4) (Section 4.2) in such a way
that the average number of tests per elementary set contained in a query set
decreases. If an entire table of statistics is produced at once, the overhead

decreases further.

Whether the overhead of testingup to 2™ cells per requested cell is
acceptable will depend on the size of the database, the speed of the query
processor, and the load on the system. If 2™-cells can be quickly checked
without degrading system performance, the control may be acceptable.
Otherwise, it may be preferable to apply table-level controls, which are
potentially much more efficient since they aim torestrict entire tables. We now

investigate criteria for restricting complete tables.

5. Table Restriclion Techniques

We now turn to controls that suppress complete tables of statistics. We
assume, however, that queries are still for individual statistics corresponding to
cells or cell unions (e.g., as with range queries), and that the syntax is
unrestricted. Thus, we shall formulate our controls in terms of how they

respond to such queries.

We initially consider queries for counts; that is, g{C) = COUNT(C) = | C].

Thus each m -table T over attributes 4,,.. ., 4, gives the cardinalities for the
m

s, =11 |Aj| m-sets over 4,,...,A . If there are M possible attributes, then
i=t

M
there are ( ) possible m -tables. We shall write T™ to denote any one of these
m

tables.
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Given a table T, let I, be the number of m -sets in T™ of cardinality i; [,
is the number of identifications in T™. The relative identification risk of the
table is defined by p,, = I, /N, where N is the number of records in the

database.

Now, if m attributes are needed to identify some individual, then m +1
atiributes are generally needed toretrieve unknown values of the individual
using counts [Fell72a, Fell74a, Hoff70a]. (There are exceptions to this principle,
but we defer these Lo Section 6.) As an example, suppose Erna Weed is known Lo
be the only female botany major represented in the student database. Although
she is uniquely identified in the 2-table defined by SEX and MAJOR (see Figure
1), the statistic [(SEX=FEMALE) & (MAJOR=BOT)| = 1 does not disclose new
information about her. Statistics released over the 3-table defined by SEX,
MAJOR, and GRADEPQINT, on the other hand, could reveal her grade-point. This

leads to the following rule:

The m+1 - rule: For every m-table T™ such that I, =1, restrict every table
Tk such that Tk < T™; that is, such that £ = m +1 and :r“l= is a descendent

(refinement) of 7™ in the lattice of tables. »

Note that this rule restricts the descendents of tables having nonzero
identifications but not the tables themselves (unless they in turn are

descendents of tables having nonzero identifications).

The m +1-rule is impractical as a query restriction control because it
requires inspecting the size of every m-set in a table T™. Butit provides a

yardstick for evaluating the effectiveness of more eflficient techniques.

We shall now describe four such techniques: order, relative table size
(s,,/ N-criterion), minimum frequency ([Irmin -criterion), and explicit risk

eslimation.
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Order. Givenanm-set C, g(C) is allowed onlyif m = d, whered is a

parameter of the database. Thus, an m-table is restricted if m > d.»

Because the order restriction treats all m -tables uniformly, it can restrict
many tables that do not threaten privacy in order to protect Lthose that do. This
is especially true if d is chosen to satisfy the m +1-rule for all tables. For
example, let T ? and T: be two 3-dimensional tables of counts in a database with
N = 1200records, where the records are uniformly distributed over all
elemenlary sets. Suppose that each attribute defining Tf has 2 values, and that
each attribute defining T: has 10 values. Now, table Tf has a total of 8 cells
(elementary sets), so the average number of records in each cell is 1200/8 =
150. Thus, it is likely that enough records fall into each cell that no cell is
sensitive. Table T: , on the other hand, has 1000 cells, so the average number of
records in each cell is only 1200710 = 1.2. Thus, most cells will be sensitive, and
T: must be suppressed. Choosing d = 2 protects T:. but unnecessarily causes

3
Tl to be restricted as well.

In general, statistics computed over attributes with many values are more
likely to be sensitive than those computed over the same number of attributes
but with only a few values. The relative table size restriction decides which
tables torelease on the basis of the relative number of elementary sets in the

table. The controlis as follows:

Relative table size (s, / N-criterion). Given an m-set C over attributes

A, ....A, g(C)is permitted only if

s/ N=T |A|/Ns1/k, (5.1)
t=t
where k is a parameter of the database. Thus, an m-table is restricted if

its relative size s,/ N exceeds 1/k. »

Rewriting (5.1), this says that q(C) is permitted only if N/s_ = k; that is, each
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of the s, cells in the table contains, on the average, at least k records. If & =
10, for example, each cell must contain, on the average, at least 10 records;
thus, T?. but not T: . would be permitted in the above example. The control is
particularly simple to implement; the system need only know N and the sizes of

the attribute domains.

The criterion goes back to an observation by Block and Olsson [Bloc76a]

that the identification risk in a table T™ will be approximately

-N/s.
P, =e (5.2)
if all m attributes in the table are independent and equidistributed. In real

databases, the attributes are more or less interdependent and/or nonuniformly
distributed. To deiermine the practical role of 5.,/ N, we inspected pairs of

values (s ) in 27 real databases or subdatabases. For each such pair, we

m* Pm

computed (x,y)-coordinates defined by

z = log,fSpm”/ N)

y = —log,d-In(p,,)) -
Now, if (5.2) holds, then

I

-N/s3
y = ~log,{—In(e "= log,fs,m/ N) =z,
whence the {(z,y ) points will fall in a straight line. Plotting the (z,y) points for

the 27 databases showed that the points for each database fit fairly well a
straight line, called the risk line. Figure 6 shows the points for Database 12.
Figure 7 shows the risk lines for all databases calculated from all observed risk
points with 0.00316 < 5,/ N = 1(-2.5 ¢ log,fS,;,” N) = 0). In this region, the
points fit a straight line closest for most observed databases. The slopes of the
risk lines are lower than that predicted by Eq. (5.2) because the attributes are
not all independent and equidistributed. The slopes increase as the attributes
approach equidistribution and have weaker interdependencies. Although the

risk lines were somewhat different for each database, all intersected the line for
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Eq. (5.2) at a point corresponding to a value of s,/ N somewhere between 0.22
and 0.42. For s,/ N < 0.3, the identification risk p,, is higher than predicted by
(5.2); for s,,/ N 2, 0.3, it is lower. Even more interesting, we found that for

5,,/ N around 0.1, all 27 investigated databases have fairly similar identification
risks. (See [SchlB82a] for a detailed report of these results.) The database

system used in this study evolved from one designed by Selbmann [Selb74a].

Because the s_ / N-criterion is based only on relative table size, it cannot
recognize tables with identifications when the average cell size is & or more.
The third and fourth controls aim to recognize such tables by using frequency
distributions. The third control, first proposed in [Schl78a), uses minimum

relative frequencies:

Minimum frequency (I1 rmin -criterion). Given an m-set C over attributes

Ay ...,A,. g(C) is permitted only if
m
Ormin = TI min(r,)2k/ N, (5.3)
i=1 !

where min(r,) is the smallest relative frequency occurring among the
1

values in the domain of Aj. and k is a parametler of the database. Thus, an

m -table is restricted if [Irmin <k/N. =

Because it uses only the minimum relative frequency of each attribute,
IIrmin is able to predict first but not subsequent identifications in a table. Our
fourth control uses complete frequency distributions to explicitly estimate the

identification risk.

Explicit risk estimation (from parents). Let C be an (m +1)-set on table

m

T “. and let TT. R T:::‘,l be the parents of T, , in the lattice; i.e.,

7™ < T;"(l = j =m+1). Then g(C) is permitted only if for j = 1,....m +1,
?} < z, where ﬁ is an estimate of the number of identifications in table T;n .

and z is a parameter of the database. Thus, all descendents of tables
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~
having z or more estimated identifications are restricted. Each T, is

computed using frequency distributions over the m attributes in ij ..

Note that for z = 1, the control attempts to approximate the m +1-rule. If
the estimators ? are close to the actual identifications, then the approximation
should be very good. We shall also consider a simplified version of the control
which uses the estimator ? associated with the table itself rather than those of

its parents:

Explicit risk estimation (from table). Given an m-set C on table G g(C)
Pl

is permitted only if ; < z, where T is an estimate of the number of

identifications in table T". Thus, all tables with z or more estimated

identifications are restricted. o

For an m-table 7' over attributes A t» + + - + Ay, we shall base our estimator
?on the 1-dimensional relative frequency distributions of A,,...,4,,. For each
attribute 4; (1< i <sm) letr, = | (4, = @) |/ N be the relative frequency of

value a,; (1= j =<]4,|). Define each of the s_, elementary sets in ™ by

Et=(¢41=t.‘l."l)&.'"'&(Am=am‘).
For each elementary set E, (1<t ss_), therelative frequency |E, |/ N is

estimated by

fal
reSTa& o T,
1 L

and the probability E, contains exactly one record by

A 1 N-t
py = prob[|E | =1] = [1:];‘ (1-F,)

The identification risk for T, is then estimated by

fay A
I=Yp,. (5.4)
t=1 a
(The computation of T is optimized as described for Algorithm 1 in [Schl82a].)

To evaluate these controls, we chose 9 of the 27 databases of Figure 7 for
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further study. Table 1 describes these databases, plus an additional one
derived from Database 11 (referred to as Database 11'). The databases are
ordered by increasing s,/ N. Database 11 is a subset of Database 1, containing
only 608 of the 31,075 records in Database 1: since only 2 of the 4 values for
attribute E appear in Database 11, |E] = 2 in Database 11, whereas [E| = 4in
Database 1. Comparisons between Databases 11 and 1 illustrate the effect of
increasing the database size N while holding the number of attributes {and
thereby the number of tables) fixed. Database 11°' was derived from Database
11 by deleting attribute E (attribute F in Database 11 was renamed E in
Database 11'). Comparisons between Databases 11' and 11 illustrate the effect
of increasing the number of attributes or tables (and thereby the ratio s,/ N)
for fixed N. Most of these databases have relatively flat risk lines; that is, their
identification risks are relatively high in the regions_/ N < 0.1, which we are
mainly interested in here. For comparison, Database 13 with a steep risk line is

included.

Datebase 11' is small enough for a detailed presentation of each table in the
lattice. Figure 8 depicts Lthe complete lattice, showing s,/ N and the
identification risk for each table. Thes,/ N ratios range from 0.00 to 0.01 for
the 1-tables, from 0.01 to 0.07 for the 2-tables, from 0.04 to 0.30 for the 3-tables,
and from 0.20 to 0.89 for the 4-tables; the ratio for the 5-table is 1.78. Picking &
= 10 with the s,/ N criterion, for example, would restrict none of the 1- and 2-
tables, 5 (out of 10) 3-tables, all 5 4-tables, and the 5-table. The identification
risks for these tables range from 1.0 percent to 10.6 percent. The risks for the

permitted tables, on the other hand, range from 0 to 1.2 percent.

Table 2 shows the number of permitted and restricted tables, and the
number and percent of accessible (compromisable) data values for each of the

controls applied to the databases of Table 1. For comparison, the number of
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N = number of records
M = number of attributes
NM = number of date elements
#T = number of tables (including the O-table)
|A] = number of values of attribute A
sy = number of elementary sets = |A| *|B| * ...
Detebase | N (A | MN 147 1AL Bl Jcl DI [E] IFl_lG| IHI | Sy sy/ N
1 31075 | 8 [186450| 64 2 ® 5 4 4 3 4320 0.14
B 20521 5 10200 321 5 5 €6 4 b 3000 1.46
2] 3268 | 8 18554 64| 3 2 3 8 7 7T 5202 1.62
11' BO8| 5 30301 32| 2 B b 4 3 1080 1.78
11 808 8 3636 64 2 9 5O 4 2 3 2160 3,66
12 2152t 8 17216 (256 2 2 3 4 3 4 4 5 11520 5,35
13 150111 6 95466 | 8412 8 6 10 6 & 1280600 8.15
16 31465} B 251720256 7 4 & T 8 T 5 8 2222640 70.64
18 T38| 8 5880|2568 3 4 4 5 4 4 6 8 138240 187.8
| 23 7361 8 682415121 2 4 4] 3 4 5 8 8 B 11105020 | 1502.8

Table 1. Descriptions of databases,
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Figure 8. Lattice of tables for Database ii'. For cach table 7™, s = S

fielemenlary m-sets; the number below s is the quolient 5,/ N = &,/ 606.
! = I, = fidenlifications; the number below / is Lhe identification risk in
percenl; i.c., 100p,, = 100//606. Symbols: &: 0.025 < 5,/ N < 0.05;

# 0.05=<s, /N <0.10;8 0.10= 5,/ N.
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tables permitted and restricted by the m +1-rule are also given. For each
control, the number of falsely permitted tables and percent of accessible data
values measures its disclosure risk. Note that a large number of falsely
permitted tables does not always imply a high percent of accessible data values.
The number of falsely restricted tables measures the control’s information loss

relative to the m +1-rule. Table 3 summarizes the data in Table 2.

To determine the percent of accessible data values, we counted the number
of data values accessible {by solving linear equations) in each of the databases
under each of the controls. Table 4 shows how this is done for Database 11'. For
each permitted table T, we count the number I, of identifications (sets with
cardinality 1) in ™. For instance, table CD has 2 identifications, whereas table
AB has none. For each T having I > 0, we determine which values can be
retrieved for the individuals (records) identified in T™ from the permitted
descendents Tmﬂ of T™. For instance, the values for attributes A and E can be
retrieved for the 2 records identified in table CD because both ACD and ACE are
permitted. Nothing can be retrieved for the 5 records identified in table BC
because all descendents of BC are restricted. The procedure does not count
duplicate retrievals. Suppose, for example, that AB, ABC, ABD, and ABCD are
permitted, where /, = 1 for table AB. For the identified record, the values of C
and D may be retrieved using ABC and ABD. Because the record is also
identified in table ABC (and ABD), the values of D (or C) can also be retrieved
using ABCD. The procedure counts the accessible values of C and D only once.
Even then, the procedure only gives an upper bound on the number of
retrievable values because it does not check record identifiers to determine
whether a record identified in one table is the same as that identified in another
table. For instance, if one of the records identified in CD is also identified in DE,

then the value retrieved for A in ACD is the same as that retrieved in ADE.



At

| Restriction criterion Databese | perm_ rest | fp fr { aece %
i 41 23 - - - -
m+1-rule; 8 16 18 - - - -
] 3o 34 - - - -
ell descendents of 11’ 17 15 - - - -
tables with at least 11 28 35 - - - -
one identification 12 68 187 - - - -
restricted 13 38 26 - - - -
16 82 1894 - - - -
16 3| 217 - - - -
23 40 463 - - - -
1 22 42 - ig - -
Order, d = 2: a 18 18 - - - -
o 22 42 - 8 - -
m-tableswithm > 2 i 18 18 - 1 - -
restricted 11 22 42 - 7 - -
12 37 219 - 32 - -
13 22 42 - 18 - -
18 37 219 - 25 - o
18 37 219 - 2 - -
23 48 488 - 3 - -
1 42 22 4 3 4 0.00
Order, d = 3: 8 28 6 10 - 30 0.29
2] 42 22 12 - 32 0.8
m-tableswithm > 3 11’ 26 6 2] - 33 1.09
restricted 1 42 22 14 1 44 1.21
12 23 183 24 - 30 o0.av
13 42 22 4 - 4 0.00
18 83 183 31 - 48 0.02
18 P3 183 | 54 -| 288 4.89
1 58 6 17 - 172 0.08
Relative table size, 8 18 18 - - - -
k=40 e 32 32 4 2 8 0.03
11 13 21 - 8 - -
tables with s/ N > 1740 11 17 47 - 12 - -
restricied 12 g0 168 25 4 88 0.33
13 35 29 3 8 3 0.00
18 g4 182 az2 - B4 0.03
18 22 23 - 17 - -
23 24 488 - 25 - -
1 82 2| 21 -| 45¢ 024
Relative table size, 8 19 13 3 - 3 0.08
k =20 g 44 20 14 - 48 0.24
11 16 18 1 2 2 007
tables with s,/ N > 1/ 20 11 27 37 2 4 4 011
restricted 12 128 128 50 - 265 154
13 42 22 4 - 4 0.00
18 134 122 72 - 1880 0,75
18 37 218 - 2 - -
23 45 487 4 8 11 0.17
1 63 1 22 -] 8i5 0.33
Relative tatle size, 8 26 8 10 - 30 0.29
k=10 2 51 13 21 - 172 0.88
11° 21 11 4 - g 030
tables with 5,/ N > 1/ 10 11 38 26 2 - 20 C.55
restricted 12 165 1 26 - THR 481
13 43 21 B - 22 002
16 163 83 | 101 - | 4925 1.86 .
18 59 167 20 - o8 1.00
23 74 438 25 - 86 1.30

Table 2. Number of permitted and restricted tables, and number and percent of
accessible (compromisable) data values.
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Restrietion eriterion Patabese | perm  rest | Ip  ir | ace %
1 41 23 2 2 2 000
Minimum frequency, a 8 20 - 10 - -
k=10 g a o0 - 22 - -
v 2! 23 - i} - -
tables with [Irmin < 10/ N 11 iz 52 - 17 - -
restricted 12 22 234 - 47 - -
13 18 46 - 20 - -
18 24 232 - 30 - -
18 9 247 - 30 - -
23 10 502 - 3B - -
1 54 10 | 13 - 70 Q.04
Minimum frequency, 8 18 10 - - - -
k=1 9 ig 40 - 12 - -
1 18 14 3 2 5 017
tebles with llrmin < 1/ N 11 20 B 4 4 ¢ 0.17
restricted 12 53 203 - 106 - -
13 20 30 - 10 - -
10 49 207 1 14 I 000
18 26 230 - 13 - -
mga 23, AN7 {125 | ..__“_—'P_—_“—Q"Qa—
i 57 7118 - | 121 0.00
Explicit risk estimation B 20 121 4 -| 10 o0.10
Irom parenis, z = 0.5: g 28 a6 3 5 5 0.03
11’ 18 i4 2 1 3 010
descendents of iables 11 30 34 4 3 6 0.17
with= 0.5 estimated 12 80 107 4] 2] 6 0.03
identifications restricted i3 42 22 4 - 4 0.00
10 T3 183 | 13 2 14 001
10 47 =00 8 - 16 0.31
2 4 £ 403 2 2 4 0.06
1 57 7|18 - 1121 0,08
Explicit risk estimation 8 20 6| 10 -| 30 o020
irom parents, z = 1.0: a9 35 20 5 o 8 0.04
11 19 13 a 1 5 017
descendents of tables 11 az 3z 8 3 14 0.39
with = 1.0 estimntied 12 p5 181§ 28 - 40 0,23
identifications restricted 13 12 22| 4 - 4 0,00
18 [Lirg 169 | 27 2 41 Q.02
18 50 200 | 11 - 20 0.44
23 54 458 [1] 1 i5  0.23
1 51 13|10 - 37 o002
Explicit risk estimation 8 18 10 - - - -
from table, z = 2.0: 1] a2z 42 - B - -
11" 17 15 2 2 3 010
tables with = 2.0 11 28 30 3 4 5 0.14
estimated identifications 12 64 102 5 10 4 0.02
restricted 13 24 40 - 14 - -
10 43 213 - 16 - -
18 3¢ 220 - 8 - -
23 31 181 1 i 2 0.03
perm = {f of permiticd tables
Test = { of resiricled Lables
ip = ¢ of {elscly permitted tobles (by m +1-rule)
Ir = {f of fulsely resiricted tables (by m +1-rule)
o¢e = { of sccessible data values

pA percent of accessible data values (acc/ HN)

Table 2. Number of permitted and resiricted tables, and number and percent of accessible
{compromisable) data values, (Continued )
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Average % of

Criterion fp fr _fp +fr | accessible data values
m + 1 E = c e
Order, d=2 = 113 113 s
Order, d=3 243 4 247 1.71
Sm/ N, k=40 81 TR 183 0.05
Sm/ N, k=20 180 16 198 0.32
S, /N, k=10 313 = 313 1.13
Mrmin, k=10 2 233 235 0.00
Nrmin, k=1 22 96 118 0.04
Exp. risk est., parent, z=0.5 62 19 81 0.09
Exp. risk est,, parent, 2=1.0 | 114 7 121 0.19
Exp. risk est., table, 2=2.0 21 85 108 0.03

Table 3. Surnmary of data in Table 2.
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m_| Table | sp | /o | Access | m | Table | s | Jp, | Access
0 ALL 1 - 2 | BC 45 5 | --

2 | BD 36 1 =
1 A 2 - 2 | BE 27 1 A -1
1 B 9 s 2 | CD 20 2 | AE-2
1 c 5] - 2 | CE 15 -
1 D 4 - 2 | DE 12 2 | AC-2
1 E 6} -

3 | ABE 54 3 | --
2 AB 18 - 3 | ACD 40 2 | -
2 AC 10 - 3 | ACE 30 1 -
2 AD ] s 3 | ADE 24 2 | -
2 AL 8 - 3 | CDhn 60 7o~

Table 4. Data values accessible under the s,,/ N-criterion with & = 10 for Data-
base 11'. Only the permitted tables are listed (see also Figure 3).
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Looking at the results for Databases 1 and 11 in Table 2, we observe that for
all controls except order with & = 3, the number of accessible data values and
false permissions is higher for Database 1 than for its record subset Database
11; accordingly, Database 1 exhibits fewer false restrictions. On the other hand,
the percent of accessible data values is often even lower for Database 1 than for
Database 11. A similar picture emerges from a comparison between Databases
16 (N = 31,465) and 12 (N = 2,152), which both have M = B and very similar risk
lines. For most criteria, Database 18 shows more accessible data values and
more false permissions than its low-N twin Database 12, while the percent of
accessible values is usually lower for Datebase 16. This suggests that the
relative risk, if anything, drops with increasing N, while the absolute number of
data values at risk grows, at least with restriction eriteria like relative table size
or minimum frequency that directly depend on N. This is consistent with our
finding from 27 databases that, other things being equal, increasing N
diminishes the relative identification risk p,,, even though the quotients,_ /N
corresponding to the first identification decreases {Schl82a). The early
identifications that arise with increasing N correspond to a discontinuity
phenomenon known as “outliers” (records with extreme or otherwise unusual

value combinations; e.g., see [U.5.78a])).

We also observe that for all controls, the percent of accessible values and
the number of falsely restricted tables is at least as great for Database 11 as for
Database 11'. This suggests that for fixed N, increasing the number of

attributes (tables) increases the disclosure risk.

The risk for Database 13 is extremely low for all controls. This is explained

in part by the steep riskline of the database.

¥We now make some observations about each of the controls.
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Order. Table 2 shows that for the order restriction, picking d = 2 to satisfy the
m +1-rule is toorestrictive; increasing d to 3 is too permissive. We conclude
that order is probably not useful as a stand-alone contrel, though it might be

useful when combined with other controls.

Relative table size (s,,/ N). Table 2 shows that the s, / N-criterion can control
disclosure without falsely restricting too many tables allowed by the m +1-rule.
The most appropriate value for the parameter k, however, seems toc depend on
the database. Using the percent of accessible data values as a criterion in
selecting k£, k = 10is appropriate for Database 13; & = 20 is appropriate for
Databases 8, 11', 11, 18, and 23; k& = 40is appropriate for Databases 1, 9, and 16;
and k > 40 may be needed for Database 12. Note that even for these values of k,
some tables are falsely permitted. Yet if we try tofind a k that does not permit
any table restricted by the m +1-rule, we are led to much larger values of k.
For Database 1, for example, we would need k& = 345, which would lead toan
excessive number of false restrictions. Moreover, from Table 2 we see that
considerable information will be lost if we stick too closely to the m +1-rule,
restricting the descendents of every table having a nonzero identification risk.
A better strategy (in terms of minimizing information loss} might be to restrict
only those tables with a high risk, and use other techniques to thwart attacks on

the permitted tables. This approach is discussed in the next section.

For k = 10 and 20, we see that the databases having the greatest number of
permitted tables seem to have the greatest percent of accessible values. This
becomes even clearer if we exclude tables with a negligible risk. Table 5 shows
that there is a correlation between the number of permitted tables with 1/10 =
s,/ N <1/k and therisk. (k = 40is omitted from the analysis since the
number of accessible values is low for all databases except Database 12. Since

Database 12 has a much higher risk than the other databases, the correlations
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Database k =20 k=10
T Yy T Y
1 11 0.243 12 0.33C
8 10 0.058 17 0,292
9 24 0.235 31 0.B80
11 18 0.11i0 29 0.550
12 B3 1.539 | 121 4.641
16 55 0.751 84 1.95%
18 28 0 50 1.002
23 36 0.168 85 1.298 |
T 0.919 0.944
7 (without 12) 0.743 0.977

Table 5. Correlation coefficient 7 between £ = number of permitted tables for
1/100<s,,/ N < 1/k and y = percent of accessible data values. Database 11
is omitted because of its strong dependency on Database 11. Database 13 is
omitted because of its steep risk line, implying low risks for s,/ N = 1/ 10.
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are computed both with and without Database 12.) Note that although the
correlations are quite high, the relationship between the number of tables and
accessible data values is unlikely to remain linear for arbitrarily large numbers
of tables or for databases with steep risk lines. Nevertheless, the data suggests
that if we want to use larger values of k with s/ N (augmenting the control
with, say, perturbation techniques), the number of permitted tables could be

used as a criterion for selecting k.

We conclude that s,/ N can control disclosure. If we want to minimize
information loss, we can pick larger values for k&, and augment the control with
some other protection technique. Aside from the order control, it is the

simplest of the controls to implement.

Minimum frequency ([1rmin). The Il rmin -criterion is highly secure but overly
restrictive. If we relax the criterion by decreasing k, its ability to approximate
the m +1-rule is likely to deteriorate since it uses only the smallest relative
frequency of each attribute. Moreover, given that we are going to use frequency
distributions at all, we can do much better with explicit risk estimation, which

uses the complete distributions.

Explicit risk estimation. Table 2 shows that explicit risk estimation can
effectively control disclosure without falsely restricting too many tables. Note
that version 2 of the control, which is based on the risk of a table (rather than
its parents), is similar to Il rmin with & = 1. Although both are overly
resirictive, with explicit risk estimation we could relax the restriction criterion

and apply other security measures.

Explicit risk estimation has the advantage over s,/ N of treating the
databases more uniformly; that is, the same parameter z causes similar risk
and information loss in all databases. By taking into account higher

dimensional frequency distributions, even closer estimates of the risk are
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possible [SchlB2al.

1t has the disadvantage over s,/ N of requiring more information about the
databases, namely their frequency distributions. Moreover, if the decision to
restrict a table is based on the estimated risks of the parents (version 1 of the
control), this requires more computation than when the decision is based on the
estimated risk of the Lable itself (version 2). Although the control is clearly
more costly that s_ ./ N, the cost need not be prohibitive; if only 1-dimensional
frequency distributions are used, for example, these can be computed and

stored periodically as needed to account for the dynamics of the database.

The next two sections describe enhancements and extensions to table
restriction controls. Section 6 discusses possible security leaks, how these
leaks might be plugged, and security techniques that would allow the restriction
criterion to be relaxed. Section 7 considers extensions to the criterion for

handling SUMs and other higher-order statistics (i.e., not just COUNTSs).

6. Plugging the Leaks

The disclosure risks of the preceding section were calculated under the
assumption that the m +1-rule prevents disclosure. In fact, it does not prevent
all types of disclosure. Figure 9 shows how it can be circumvented; the example
is adapted from one by Olsson [Olss75a]. At the Swedish Bureau of Statistics
this has been nicknamed the "problem of the magical zeros” because of the
strategic location of the zeros in the 3-table. Since the 1-tables for this data
have no identifications, the 2-tables are permitted by the m +1-rule. The 3-
table, on the other hand, is restricted since a female veterinarian is identified in
the 2-table over sex and occupation. Nevertheless, all values in the 3-table can
be deduced from the permitted 2-tables. (In the original example, the 2-tables

have no identifications and, therefore, lock innocent. Yet it is still possible to
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Problem. of the magical zeros: Given the three 2-tables below over all pairs of the
attribules sex, occupation, and tax honesty, the 3-table over all atlribules can
be deduced. Abbreviations: phy = physician, den = denlist, vet = velerinarian,

f = female, m = male.

f m
tax dodger 5 | 28
honest taxpayer | 14 | 23

phy_ den _vet
tax dodger 10 19 4
honest taxpayer |24 G

-

phy den vel
I 7 11 1
m 27 14 10

Solulion: Since there are 19 dentlisls that dodge taxes but only 5 female tax
dodger, all 14 male dentists must dodge laxes. From this, the remaining entries
can be deduced, giving:

Lax deodgers honest tax payers

phy den  vet phy den vetb
{ 0 | 5 |_o i 6 1
m| 10 | 14 | 4 17 0

Figure 9. Deducing a 3-table {rom 2-tables (adapted from Oisson [Olss75a]).
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deduce the 3-table owing to the magical zeros.)

To prove that & restricted m +1-table is secure from exact disclosure, we
must prove it is m-transformable; that is, there is at least one cther m +1-table
derivable from the permitted m -tables [Dale79a, Schl81a]. Unfortunately,
proving that a table is m-transformable is an NP-complete problem [Reis77a];
fortunately, the complementary problem of compromising an m +1-table by

magical zeros is also difficult for large tables.

Even if we prove m -transformability, the data may still be vulnerable to
negative and approximate disclosure
[Dale77a, Fell72a, Fell74a, Haq75a, Olss75a, Rapa75a, U.S.78a). Similar deductions
are possible using "pseudo trackers” [Schi75a]. Dynamic databases are also

vulnerable to update attacks [Chin79a, ChinB81a, Chin82a, Ozso81a, Yu77a].

We now mention three methods of strengthening table restriction
techniques to reduce the risk of the above disclosures as well as those caused
by releasing tables that violate the m +1-rule (i.e., the false permissions in Table
3). The first method is to couple the technique with a simple output
perturbation technique. Likely candidates are systematic or random rounding
{Achu79a, Alag83 ,Fell74a, Narg72a, Schi81b], random sample queries
[DennB0b], and random data perturbation [BeckB80a]. (Controlled rounding
[Caus79a, CoxB81a, DaleBla] is presently expensive {or query processing
systems.) The amount of noise introduced could increase with s, ./ N or the
explicit risk estimator 7. This would allow the release of higher-order statistics

than could be permitted under table restriction alone.

Many perturbation techniques are insufficient as stand-alone controls.
Systematic rounding, for example, can be circumvented by individual trackers
[Schl77a, Schi81b]; random perturbation schemes are frequently vulnerable to

error removal by averaging [Denn80b, Schw77a]. A control combining
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perturbation with table restriction should provide an acceptable level of

securily for most applications.

The second method of strengthening table restriction is grouping or rolling
up [Fell72a, Feli74a, Olss75a]. Figure 10 shows how this strategy could be used
to protect the set with cardinality 1 in Figure 4 of Section 4. Here, the 2-sets for
atiribute values b, and b, are merged. If groups are defined by ranges of
values, then the individual table cells correspond to range queries for fixed
ranges. Grouping has the effect of decreasing the estimated disclosure risk
(e.g.. s,/ Nor ? ), thereby permitting tables that otherwise would be restricted.
This technique is often rejected for off-line systems because it hinders
comparability of different tables [Fell72a]. In on-line systems, users can choose

from alternative groupings, though arbitrary groupings cannot be allowed

[Schl76a).

Figure 10. Grouping or rolling up applied to Figure 4.

The third methed of strengthening table restriction is to adjust the
threshold parameter for restriction (i.e., 1/ k& for s_ ./ N: z for explicit risk
estimation) to the attributes of the table. In particular, tables over sensitive
attributes could be given lower thresholds than those with less sensitive

attributes. Similarly, tables over attributes in the "identification subbase”
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[Schl80a} could be given lower thresholds since these attributes are likely to be

used for record identification.

Threat monitoring is a valuable tool with any control for determining
whether a user has attempted to obtain restricted data [Hoff70a). With the
S,/ N-criterion, for example, it might be useful to record for each restricted
query the value s,/ N of the query and the attributes of the characteristic

formula.

7. General Additive Statistics

We now turn to general d-order additive statistics of the form g(C) =
f(C.D), where f is a statistical function (e.g.. SUM), C is an m-set over m
characteristic attributes, and D is a set of data attributes, d —m of which do not
appear in C (see Section 2). Note that whereas such statistics are elements of
an m-table over the characteristic attributes, they can be derived from the d -
table of cardinalities over C and D. This suggests two alternatives for applying

table restriction to f (C,D):
1. Applyittoalld attributesin C \J D, or
2. Apply it only tothe m attributesin C.

Approach (1) can be unacceptably restrictive. Consider, for example, the

query
g(C) = SUM((SEX=MALE) & (MAJOR=EE), GRADEPOINT)) .

We have |SEX| = 2. Suppose that MAJOR has 20 values and that the domain of

grade-points is [0.00, 0.01, ..., 4.00}. Then
s4= |SEX| * [MAJOR| * [GRADEPOINT| = 2 * 20 * 401 = 16,040.

Now, suppose the relative table size control is used with k = 10; that is, the

upper bound for s/ N is 1/10. Then g(C) will be restricted (or perturbed)
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unless N is at least 160,400 (an unlikely possibility in any university!). But as
long as no student is uniquely identified by SEX and MAJOR, the grade-points in
the 2-table defined by SEX and MAJOR will not disclose any particular student's
grade-point. Approach (2) seeks to avoid such unnecessary restrictions by
using only the characteristic attributes in the s_ / N-criterion; in this case, s, =

|SEX| * |[MAJOR] = 40. This would permit the 2-table of grade-points for N = 400.

Approach (2), on the other hand, can be overly permissive. If thereisa
single male student majoring in EE, then the above statistic from the 2-table
over SEX and MAJOR discloses his exact grade-point. This problem does not
arise with statistics for COUNTs because the cardinalities are obtained from the
3-table over SEX, MAJOR, and GRADEPOINT, which would be rejected by the
S,/ N-criterion.

Releasing additive statistics computed over m-sets with cardinalities
greater than 1 can also lead to disclosure. For example, consider a query
SUM(C, A), where |C| = 2. One of the two individuels represented in the
statistic can deduce the value of the other (assuming his identity is known) by
subtracting his own value for A from the statistic. Economic data is
particularly vulnerable to such compromise because the identities of the

respondents is frequently known [Fell72a, Olss75a, U.S.78a ,Cox80a |.

For some statistical functions, an intruder can deduce the values used to
compute g (C) even when he is not represented in C. Suppose, for example, that
| C| is known. Define

q,(C.A) = E::: for e =1....,|C} . (7.1)

ieC
where z; is the value of attribute 4 in record i. From the | C| statistics (7.1),

the values z; for the records i in C can be computed [Dale82a). Assuming

statistical functions with exponents up to 4 are available, this strategy is
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effective for compromising sets with cardinalities of 4 {or less).

A similar situation holds for additive statistics of the form

g(C.AB)= Xz, . (7.2)
ieC
Assume |C| = 2 and that the tworecords are R, = (z,,¥,, z,) and R, =

(£, ¥4 25). Then R, and R, can be deduced from the set of statistics
EE-'C;. Eyi- Ezp 23{91- Ezizi' Eyia | £ €Cl.
Note that such deductions become more difTicult if instead of the sums (7.1) or

(7.2), nonadditive statistics such as variance and covariance are released.

We need a criterion that is less restrictive than approach (1), but more
restrictive than (2). The above shows that such a criterion should depend on
the statistical function as well as the attributes of a query. We believe that the
best strategy is tofollow approach (2), but with tighter thresholds for complex

statistics to avoid 1-cells and possibly 2-cells.

8. Summary

We have studied memoryless restriction techniques operating at the cell
level and table level in the lattice. We began our investigation of cell-level
techniques by noting that a query-set-size control, while valuable, is easily
subverted by trackers. We then investigated the feasibility of an implied
queries control, which restricts a statistic over attributes 4,,...,4,, if it could
be used to compule a sensitjve statisticover A,,...,A,,. We saw that this
requires inspecting the sizes of at least 2" elementary m-sets in the m-table
over A,,...,A, . Moreover, unless we restrict the syntax of characteristic
formulas, we must inspect all elemmentary m -sets in the table, and if any one of

these sels is sensitive, then the entire table of statistics must be restricted.

Inspecting all m-sets in a table with s, values can be costly for large s, .
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This ted us tolook for more efficient table restriction techniques. We considered
four candidates: order, relative table size (s,,/ N), minimum frequency
(TTrmin), and explicit risk estimation. Of these candidates, relative table size
and explicit risk estimation look the most promising. Either technique could be

combined with a simple output perturbation scheme for increased security.
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