
How do you keep John Doe anonymous when reviewing data
on the larger picture? Techniques such as adding "noise"

to the data help protect the privacy of the individual.
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The goal of statistical databases is to provide frequen-
cies, averages, and other statistics about groups of per-
sons (or organizations), while protecting the privacy of
the individuals represented in the database. This objec-
tive is difficult to achieve, since seemingly innocuous
statistics contain small vestiges of the data used to com-
pute them. By correlating enough statistics, sensitive
data about an individual can be inferred. As a simple ex-
ample, suppose there is only one female professor in an
electrical engineering department. If statistics are re-
leased for the total salary of all professors in the depart-
ment and the total salary of all male professors, the
female professor's salary is easily obtained by subtrac-
tion. The problem of protecting against such indirect
disclosures of sensitive data is called the inference prob-
lem.
Over the last several decades, census agencies have

developed many techniques for controlling inferences in
population surveys. These techniques are applied before
data are released so that the distributed data are free
from disclosure problems. The data are typically released
either in the form of microstatistics, which are files of
"sanitized" records, or in the form of macrostatistics,
which are tables of counts, sums, and higher order statis-
tics.

Starting with a study by Hoffman and Miller,' com-
puter scientists began to look at the inference problem in
on-line, general-purpose database systems allowing both
statistical and nonstatistical access. A hospital database,
for example, can give doctors direct access to a patient's
medical records, while hospital administrators are per-
mitted access only to statistical summaries of the records.
Up until the late 1970's, most studies of the inference
problem in these systems led to negative results; every

conceivable control seemed to be easy to circumvent, to
severely restrict the free flow of information, or to be in-
tractable to implement. Recently, the results have
become more positive, since we are now discovering con-
trols that can potentially keep security and information
loss at acceptable levels for a reasonable cost.

This article surveys some of the controls that have
been studied, comparing them with respect to their
security, information loss, and cost. The controls are
divided into two categories: those that place restrictions
on the set of allowable queries and those that add
"noise" to the data or to the released statistics. The con-
trols are described and further classified within the con-
text of a lattice model.

Lattice model

The lattice model consists of a lattice structure of
logical tables. The tables are derived from a logical
database of N records, where each record contains at-
tribute values for an individual or organization. An ex-
ample of a database of employee records is given by
Employee (Sex, Department, Level, Degree, Years,
Salary). We have purposely excluded an employee name
or identifier, since the model does not allow retrieval of
records by identifying keys. Note that some attributes,
such as Sex, are nonnumeric, whereas others, such as
Salary, are numeric.

Statistics are computed for subsets of records having
common attribute values. A set of records is specified by
a characteristic formula F, which informally, is any
logical formula over the values of the attributes using the
operators OR ( +), AND (&), and NOT (-). An example
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of a formula for the employee database is F=
(Degree = MS) & [(Level = 5) + (Level = 6)1, which speci-
fies employees at level 5 or 6 with an MS degree.
The set of records whose values match a formula F is

caled the query set of F. A query set that can be
specified using the values of m distinct attributes (but no
fewer) is called an m-set. The query set for Fin the above
equation, for example, is a two-set.

Tables. Given any m attributes, a collection of related
statistics over all possible combinations of values for the
attributes can be represented as an m-dimensional table
(or m-table for short), each dimension corresponding to
one attribute. Figure I shows a two-table TAB of counts
broken down by two attributes A and B, where the do-
main of attributeA has four values and the domain of at-
tribute B has five values. We use array notation to denote
the statistics in a table. TAB [2,4], for example, denotes
the entry in row 2, column 4 of TAB; that is, the number
of records satisfying the formula [(A = a2) & (B =b4)],
which is one. Table SAB in Figure 2 is similar but contains
sums over a sensitive attribute such as Salary.

Because an arbitrary formula F over m attributes
A1,.. ,Am corresponds to a union of m-sets in the m-
table over Al,...,Am, statistics such as counts, sums,
and other rmite moments over F can be computed by
adding the statistics for the m-sets in the m-table. The
number of records satisfying the formula [-(A = a2) &
(B = b4)] is given by TAB[1,41 + TAB[3,4] + TAB[4,4]
= 37. A statistic giving the total salary is similarly com-
puted by adding entries in table SAB of Figure 2. We will
concentrate mainly on such "additive statistics."2 Thus,
an m-table over attributes A 1,... Am forms a basis for
computing the statistics for all possible subsets of records
over the m attributes. If each attribute Al has a domain
of size IAil, then the size of the m-table is

Sm = nl IAil
i=1

and the total number of statistics that can be derived
from the table is 2em - I (excluding the statistic for the
empty set).
A table does not correspond to a physical structure of

the database, but is rather a derived view of the database.
A database with M attributes has 2M such tables cor-
responding to all possible subsets of the attributes. There
is exactly one M-table, where the records in each elemen-

Figure 1. Two-table TAB Of counts.

tary M-set are indistinguishable. Each m-table partitions
theN records of the database into Sm query sets.

Lattice structures. The set of all tables for a given
statistical function forms a lattice structure. Figure 3
shows a detailed view of the lattice of counts over at-
tributes A and B from Figure 1. Note that the statistics in
the table TA correspond to the row sums of those in TAB;
similarly, those in TB correspond to the column sums of
those in TAB. The table TALL consists of a single statistic
computed over all records in the database; it corresponds
to the vector sum of either TA or TB. Thus, the zero- and
one-tables of Figure 3 do not contain any new informa-
tion that cannot be derived from the two-table TAB.

If we add attributes C and D to the database, we get
the lattice shown in Figure 4. In this case, all statistics in
the lattice can be derived from those in the four-table
TABCD. The table TAB, for example, corresponds to the
marginal sums of either TABC or TABD, which in turn are
marginal sums of TABCD-
For any additive statistic, a table corresponds to the

marginal sums of the tables directly below it in the lat-
tice. The linear relations among the statistics of the tables
are the primary cause of inference problems.

In many statistical applications, some attributes have
hierarchical structures; e.g., cities are grouped by state.
Such attribute hierarchies are readily incorporated into
the lattice model.3

Sensitive statistics

The objective is to control the inference of sensitive
statistics. The exact criterion for defining sensitivity is
determined by the policies of the system. One criterion
used by the US Census Bureau for economic data is the
"n-respondent, k %-dominance" criterion, which
defines a sensitive statistic to be one in which n or fewer
records constitute more than k% of the total;4 n and k
are parameters of the database, and are usually kept
secret. Here, we shall assume that a sensitive statistic is
one with a query set of size one. Thus, the count
.TAB [2,4] in table TAB is sensitive (similarly for the sum

SAB[2,4]). In practice, a statistic computed from a group
of size two can also be classified as sensitive because a
user with supplementary knowledge about one value can
deduce the other from the statistic. The disclosure risk,

Figure 2. Two-table SAB of sums.
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Figure 3. Lattice of tables over attributes A and B.

or identification risk, of a table is given by the number
(or percentage) of sensitive cells in the table.

Personal disclosure (compromise) occurs when the
user can infer a previously unknown sensitive statistic
about an identifiable individual.6 Disclosure can be
either exact or approximate, positive, or negative. '"
Releasing counts for query sets of size zero always leads
to negative disclosure because we can deduce that a par-

ticular indivTidual does not have the associated proper-

ties. Releasing the count TB[1,l1] = 0, for example,
reveals that no individual has both a, and bl.

Clearly, all sensitive statistics must be restricted (not
permitted). In addition, we must restrict nonsensitive
statistics that could lead to disclosure of sensitive ones.

Such disclosures arise mainly from the linear relations in
the lattice structure. For example, the sensitive count

TAB[2,41 can be computed by subtracting the other en-

tries in column 4 of the two-table from the column sum

TB[41 in the one-table TB; likewise for the sensitive sum

S B8[241.
Permitting a count of one in a m-table T over at-

tributes A. A,,, does not usually lead to compromise
when the individual is not also identified in some parent

of T in the lattice. The values of A ,. . .,A,,, must be
known in advance to identify the individual's cell in the
table, and the count itself reveals no new information
about the individual. To compromise, we must either ob-
tain (directly or by inference) a count over A 1,. . .,A,,,

TA TB TC TD

TAB TAC TAD TBC TBD TCD

TACO TBCD

//
TABCD

Figure 4. Lattice of tables over attributes A, B, C, and D.

TABC TABD
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A,,+I, where the value of A,n+l is unknown, or get a
higher order statistic, such as a sum, over A,,, ,. Never-
theless, we aim to protect all statistics over query sets of
size one.
The lattice model has proved a powerful and effective

security model for studying the inference problem and
proposed solutions. It has provided a framework for
estimating identification risks,'2"3 and for evaluating and
comparing different controls. It has suggested new con-
trols. Its table structure is closely tied to the publication
format of many applications, e.g., Census data.
Although the lattice model is inadequate as a stand-alone
data model for a database system, it should be an impor-
tant element of any complete data model when security is
an issue.

Inference controls

To control inferences, information must be removed
from tables with sensitive statistics. There are two general
approaches to doing this: restriction and perturbation.

Restriction techniques aim to control inference of sen-
sitive statistics by withholding additional nonsensitive
ones. Figure 5 shows various strategies, classified ver-
tically according to whether they restrict at the table level
or cell level in the lattice, and horizontally according to
whether they are memoryless, audit based, or a priori.
Although some controls do not fit neatly in our classifi-
cation system, the system is useful for comparative
studies.

Table-level controls restrict complete m-tables of
statistics, including the statistics for all m-sets over the
associated attributes. Cell-level controls aim to restrict
only the sensitive cells of an m-table, and just enough
nonsensitive statistics over the associated attributes to
prevent inference.
Memoryless controls attempt to determine whether

release of a statistic could lead to compromise without
keeping a record of previous queries or a list of permitted
statistics. Audit-based controls, as the name suggests,

TABLE LEVEL CELL LEVEL

Order* Query Set Size

MEMORYLESS Relative Table Size* Implied Queries*
(sm/N-criterion)

Explicit Risk Estimation*

Overlap
AUDIT BASED Audit Expert

Determine Transformability* Cell Suppression*
A PRIORI (Data Swap) Grouping or Rolling Up*

Partitioning*

*Decision whether to answer a query involves analyzing the characteristic formula.

keep an audit trail for determining whether release of a
statistic, when correlated with previously released
statistics, could lead to compromise. To the best of our
knowledge, Fellegi'4 was the first to suggest this ap-
proach, though he did not propose a practical method
for implementing it. A priori controls determine in ad-
vance a fixed set of statistics that can be released without
causing compromise.

Figure 5 also indicates which restriction techniques
analyze the characteristic formula of a query, as opposed
to looking only at the size or composition of the query
set. Controls that analyze the formula are potentially
better equipped to interpret the semantics of a query
and, therefore, to decide whether answering the query
could lead to compromise. At the cell level, however, this
analysis can be quite costly.

Perturbation techniques remove information from the
tables by adding noise to the statistics. These techniques
are generally used with some form of restriction tech-
nique, applied at either the table or cell level.

Inference controls are judged by three factors: securi-
ty, information loss, and cost. Security is measured by
the relative number of sensitive statistics that can be in-
ferred by circumventing the control and by the difficulty
of doing so. Information loss is measured by the number
of nonsensitive statistics or tables of statistics that are un-
necessarily restricted by the control, and by the amount
of noise injected in permitted statistics. This measure is
not entirely adequate, however, because it does not ac-
count for the relative importance of a statistic for a par-
ticular study. In general, the statistics in in-tables for
small m values (i.e., those near the top of the lattice) are
more valuable than those further down. Cost is deter-
mined by the initial implementation requirements, in-
cluding any a priori computation, plus the overhead in
query processing. Because higher levels of security usual-
ly imply higher levels of information loss and cost, the
challenge is to find a control with the right balance for
the given application and associated risks.

Perturbation techniques are judged by two additional
factors, bias and consistency. These are discussed later
when we describe different methods of perturbationi.
First, howeever, we describe methods of table restriction
and cell restriction.

Table restriction techniques

Table-level controls restrict complete tables of
statistics, namely those higher dimensional tables in the
lattice that have, or are likely to have, a positive
disclosure or identification risk (i.e., one or more cells
corresponding to a single individual). If a given in-table
over attributes A 1, . A,, is restricted, then all statistics
for the m-sets over these attributes are also restricted.
Because studies of these controls have focused thus far
on counts, we shall also focus on counts here.

Order control. This memoryless control restricts all in-
tables of counts for m > d where the threshold d is a
parameter of the database. The parameter d is chosen so

COMPUTER
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that most, if not all, statistics in the permitted m-tables
are nonsensitive (or are expected to be nonsensitive). The
control is easily implemented by counting the number of
attributes appearing in the characteristic formula of a

query; if there are more than d attributes, the query is
not answered. Choosing d = 1 for the lattice of Figure 3,
for example, restricts the two-table TAB, permitting the
remaining three tables. For the complete lattice in Figure
4, only five of the 16 tables would be permitted.

Using the dimension of a table as a restriction criterion
has the advantage of simplicity but also has the disadvan-
tage of being poorly matched to the actual disclosure risk
of a table.2 This disadvantage occurs because an m-table
partitions the entire database of N records into Sm

groups, where s,, is the number of cells in the table.
Thus, large tables are more likely to have identifications
than smaller ones. For a database with 500 records, for
example, a two-table with 10x 50 = 500 cells would be
more likely to have identifications than a two-table with
2 x 3 = 6 cells. The next control uses the table size as the
restriction criterion.

Relatihe table-size control (sm/N-criterion). This
memoryless control restricts an m-table of counts if its
relative size s,,MN exceeds a threshold 1lk, where k is a

parameter of the database chosen to reduce, but not
necessarily eliminate, the possibility of disclosure.2 Thus,
an in-table is permitted if the average number of records
falling into each cell is at least k.
The control is easily applied to a query by taking the

product of the domain sizes for the attributes named in
the characteristic formula to obtain the table size s,,.

Figure 6 illustrates the effect of applying the criterion

Figure 6. Relative table-size control.

with k = 10 to the lattice in Figure 4, where the database
has N = 165 records, and the domain sizes of the at-

tributes are IAI = 4, 1BI = 5, ICI = 8, DI = 2. Here,
eight of the 16 tables are permitted.
The criterion goes back to an observation by Block

and Olsson12 that the identification risk in an m-table will
be approximately e-Nm if all m attributes are indepen-
dent and equidistributed. Although the attributes of real
databases are more or less interdependent and nonuni-
formly distributed, data collected from 27 databases
showed a strong relation between smIN and the risk."3
Taking all databases together, we found an identification
risk of approximately one percent for k = 17 (s,,IN
0.6).
The relative table-size control does not recognize

tables with identifications when the average cell size is k
or more. The next control aims to recognize such tables
by using frequency distributions.

Explicit risk estimation. Here, the decision of whether
to restrict an m-table T is based on the frequency
distributions of the attributes for the table. We have
studied two restriction criteria.2 The first estimates the
number of identifications in all parents of T in the lat-
tice; if any of these tables has z or more estimated iden-
tifications, then T is restricted, where the threshold z is a

parameter of the database. The second estimates the
number of identifications in T directly, restricting T if
the number exceeds z. The first criterion has the advan-
tage of providing a better estimate of the risk, but the
disadvantage of requiring more computation. Both
criteria are more closely related to the disclosure risk
than relative table size but are also more costly.
The level of security provided by each of the preceding

table controls is determined by the control's threshold.
Unfortunately, setting this threshold to provide a high
level of security can cause too many tables to be
restricted. Often, a better strategy is to adjust the
threshold for a somewhat lower level of security and use

perturbation to control the remaining risk.
All the preceding table restriction techniques for

counts are based on the attributes A,,. ,A,, named in
formula F of the query. This basis suggests a possible ap-

proach for handling higher order statistics such as sums;

if the statistical function is over an additional k at-

tributes, A,,1 ... Am+A, then we could apply the
criterion for counts, using all m + k attributes. Unfor-
tunately, this approach would be overly restrictive. Sup-
pose, for example, that the sums in the two-table SAB of
Figure 2 are over an attribute C with a domain size of 10.
Then the two-table SAB which has 20 cells, is likely to
contain fewer sensitive statistics than the three-table of
counts over A, B, and C, which has 200 cells. Yet, apply-
ing the criterion for two-tables of counts to two-tables of
sums can be overly permissive, since sums contain more

information than counts.2

Determine transformability (existence of data swap).
Although the preceding controls can provide a high level
of security, especially when combined with some pertur-
bation technique, none guarantees there are no disclo-
sures in permitted tables. Moreover, none even guaran-
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tees that a sensitive statistic in a restricted table is safe
from compromise. To prove that exact disclosure of a
sensitive statistic in an (m + I)-table T is impossible, we
must prove that the table is m-transformable; that is, at
least one other (m + 1)-table can be derived from the per-
mitted ascendants of T in the lattice by swapping data in
the records.'5"t6 Because such a proof is costly (being an
NP-complete problem), we could not apply such a
criterion as a memoryless control at query processing
time. Instead, we must apply it prior to answering any
query and retain the information in the database. Even
then, such a control is impractical for most applications.
To overcome these limitations, Reiss has proposed an

approximate data swapping technique for off-line
systems releasing microstatistics." Here, a portion of the
original database is replaced with a randomly generated
database having approxirnately the same low-order statis-
tics as the original database. But because the scheme
modifies the original data, it is not suitable for general-
purpose databases.

Cell restriction techniques

Here, the decision of whether to permit a statistic is
determined by the query set for the statistic rather than
by just the table with which the statistic is associated.
With a properly chosen restriction criterion, we can then
permit some (or even most) of the cells in tables that
would otherwise be restricted by table restriction tech-
niques. Thus, cell restriction potentially results in much
less information loss thari table restriction.

Query-set-size control. One of the earliest cell-level
controls is a memoryless control that simply restricts
statistics computed over extremely small or large query
sets; that is, for a database of N records, sets smaller
than k or larger than N- k are restricted, where k is a
parameter of the systems.1"4"8 Statistics computed over
small query sets must obviously be restricted, since they
are sensitive. Why we should restrict statistics computed
over large query sets is less obvious, since these statistics
are clearly nonsensitive. A moments reflection, however,
reveals that their release could disclose sensitive statistics.
To see why, let q(F) denote any additive statistic (e.g.,
count or sum) over the query set identified by formula F.
Because the complement of a large query set F of size Fl
is a small query set -F of size N - FI, the sensitive
statistic q(-F) can be computed by subtracting the
nonsensitive statistic q(F) from the nonsensitive statistic
q(ALL). Thus, the query set size control is effectively
checking the sensitivity of both a given query setF and its
"implied query set" -F.
A query-set-size control is trivial to implement. It can

be valuable when combined with other protection techni-
ques,8" 9 but, unfortunately, is easily subverted when
used alone. The most powerful tools to subvert it are
called trackers.68"81920'21 The basic idea is to pad smal
query sets with enough extra records to put them in the
allowable range, and then subtract the effect of the pad-
ding. As an example, consider the sensitive count q(F)
= TAB[2,4] = I for the query set identified by F =

[(A = 2) & (B = 4)1 in Figure 1. Because counts are ad-
ditive, q(F) can be computed by padding Fwith some set
R, e.g., R = [(A = 1) & (B = 4)], and subtracting out R;
that is, q(F) = q(F+R)-q(R) = 8-7 = 1. The for-
mula R is an example of a union tracker. (Because sums
are additive, the same formula can be used to compute
the sum q(F) = SAB[2,4] in Figure 2, where q is now in-
terpreted to mean sum rather than count.)

Implied queries controL Friedman and Hoffman22 pro-
posed to thwart tracker attacks by extending the concept
of an implied query set to sets other than just com-
plements, and by checking the sizes of these sets at query
processing time. A set D is implied by F if q(D) can be
computed from q(F) plus other statistics that may be
permitted (primarily statistics over lower dimensional
query sets). The implied query sets are determined by
analyzing the formula F.

Unfortunately, we can have many implied query sets.
If F is an arbitrary formula over m attributes, then we
must check all cells in the m-table over these attributes,
restricting F and the entire table of statistics if there is a
single sensitive cell.2'8'3 Thus, whereas the control is ap-
plied at the cell level, it effectively restricts at the table
level, but is more costly than most table-level controls. If
the syntax forF is restricted to logical AND, then by bor-
rowing techniques from cell suppression (discussed
later), we can reduce the number of cells that must be
checked to 2" and permit partial tables. This process
usually, but not always, guarantees security. Note that
for additive statistics, restricting the syntax to logical
AND does not mean that statistics for formulas with OR
and NOT cannot be computed. This condition occurs
because the statistics for an AND syntax correspond to
the cells in the m-tables, which form a basis for com-
puting statistics over arbitrary subsets of records.

Overlap control. Here, an audit trail is used to restrict
query sets having more than a small specified number of
records in common. This approach thwarts tracker at-
tacks, which employ overlapping query sets, but in so
doing renders a database useless for statistical studies.
Most studies require statistics for highly overlapping
query sets-e.g., total salary of all individuals plus total
salary of males and total salary of females. Releasing a
statistic over the entire database would thus preclude
releasing most other statistics. Moreover, an overlap con-
trol does not prevent many other types of attack under
so-called "key-specified" queries.2' Because of its ex-
cessive information loss, the control has no practical in-
terest.

The audit expert. Recently, Chin and Ozsoyoglu have
developed an algorithm that uses an audit trail to control
inferences with sum queries.27 Their audit expert records
a complete history of all queries about a confidential at-
tribute in a binary matrix H having N columns and at
most N- I linearly independent rows. Each column
represents one individual in the database, and the rows
represent a basis for the set of queries deducible from the
previously answered queries; thus, each query that has
been answered or could be deduced is expressed as a
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linear combination of the rows of H. When a new query
is asked, the matrix is updated so that if the query
discloses the exact value for the jth individual, updating
the matrix introduces a row with all zeros except for a
"I" in column i; thus the potential compromise is easily
detected. The matrix can be udpated in O(N2) time, so
the method may be practical for small databases.
The audit expert does not control approximate

disclosure or disclosures through query sets larger than
one. To do so would require an analysis comparable to
that used for cell suppression, which would increase the
cost considerably. It also leads to some information loss,
the exact amount depending on the order in which
queries are made. Even if queries are batched, it is dif-
ficult to minimize information loss, however, because
the problem of finding a maximal set of statistics that can
be released is NP-complete.27

CeDl suppression. This a priori control is used by census
agencies to protect data published in tabular form. The
linear relations among all cells of a table (including the
marginal sums in the parent tables) are analyzed to deter-
mine whether sensitive cells can be deduced (exactly or
approximately) from those that are released; additional
cells, called complementary suppressions, are suppressed
for as long as possible.4"0"'1 The suppressed cells fall into

hypercubes of size 2", where m is the size of the table.
Some attempt is made in selecting cells for suppression to
minimize information loss. Figure 7 shows how cell sup-
pression can be used to protect the sensitive cell TAB(2,41.

Cell suppression can be expensive. For this reason, it is
used as an a priori control rather than on a per query
basis. Even determining a set of suppressions a priori can
be infeasible if statistics are to be released over many at-
tributes. Moreover, the dynamics of multipurpose
database systems can rapidly outdate suppression pat-
terns. Although this problem could be resolved by
periodically computed and storing a complete set of
tables for statistical purpose (e.g., by using the "box
structures" employed by the Swedish Bureau of
StatisticsM), such a solution is not likely to be affordable.

Grouping or roling up. As the name suggests, this
technique merges attributes together.9'10"4 Figure 8
shows how this strategy can be used to protect the sen-
sitive cell TAB[2,4] in table TAB by merging attribute
values b4 and b5 or attribute values a, and a2. Both lat-
tices are permitted.
Grouping is often rejected for off-line systems because

it hinders the comparability of different tables.'4 In on-
line systems, users can choose from alternative groupings
such as those in Figure 8. To be secure, however, the

Figure 7. Cell suppression.
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groupings must be determined in advance and have a
hierarchical strucure; arbitrary groupings are not
allowed.29

Partitioning. This technique is similar to grouping but
is applied to attribute values rather than attributes, and
alternative groupings are now allowed.30i33 Using the p
values of the attributes, the database is partitioned into a
set of mutually exclusive, nonoverlapping atomic popu-
lations (A-populations), where no A-population consists
of a single record. A statistic with query set Fis permitted
only if F is an A -population or union of A -populations.
Either lattice in Figure 8 can be used as a basis for
protecting the sensitive cell TAB[2,4]. Unlike grouping,
however, both lattices are not permitted.
One of the greatest drawbacks to partitioning is the

potential information loss.34 With the partitioning of
Figure 8a, for example, we must restrict the statistics
TB[4] and TB[5] in the one-table TB of column sums,
because the query sets for these statistics would subdivide
an A-population. In general, we may have to restrict
many statistics for the cells in one-tables, even though
these statistics seldom lead to disclosure.
Dummy records, which pad A-populations of size

one, can be inserted in the database to reduce the
number of groups that must be merged (and thereby the
information loss), and to enable record processing in
pairs to thwart compromises due to database updates. As
the techniques are now formulated, however, this inser-
tion would bias statistics such as counts and means.
Because of its high security, partitioning is an interesting
concept, but further study is needed to determine
whether it can be practical.

Comparison of output restriction techniques

Figure 9 compares the various table and cell restriction
techniques. For each control, we give a rough estimate of
the control's relative security, information loss, and cost.
Although some estimates are based on hard data, others
are more speculative, so the diagrams should not be in-
terpreted too strictly.

In general, the most efficient mechanisms have the
least security or greatest information loss, but acceptable
solutions can still be found to the inference problem. For
example, a criterion for a memoryless table restriction
that is based on relative table size (sm/N), combined with
a simple size restriction and perturbation technique,
seems to strike a reasonable balance between security and
information loss at low cost.

Perturbation techniques

By introducing noise into the statistics, perturbation
techniques try to permit more statistics than can be per-
mitted with restriction techniques alone. Like restriction
techniques, they are judged by their security, cost, and
information loss. In this context, information loss refers
to the variance of the error in the perturbed statistics

rather than the number of restricted statistics or tables of
statistics.
Two other factors are important when evaluating per-

turbation techniques: bias and consistency. Bias refers to
the difference between a true statistic and the expecta-
tion of its perturbed estimate. The bias should be zero or
at least as small as possible.

Consistency refers to the lack of contradictions or
paradoxes in the perturbed statistics. Contradictions
arise, for example, when repetitions of the same query
yield different results, or when an additive statistic cor-
responding to a row or column sum differs from that ob-
tained by adding the statistics in the row or column of
the table (i.e., the linear equations do not hold). Con-
tradictions also arise when an average avg(F) for formula
F differs from the computed average sum(F)/count(F).
Paradoxes arise when negative values are returned for
counts or, for example, when a total of 31.72 children is
returned.

Unfortunately, the goals of consistency and statistical
quality of perturbed statistics can conflict, making a
perfect consistency probably unrealizable.9" 1'35'36 Yet
some consistency is needed for user acceptance and
security. Users of statistical databases often react
negatively to perturbation schemes, particularly when
they are inconsistent. Inconsistencies can also lead to
compromise. For example, when repetitions of the same
query give different responses, the true statistic can be
estimated by averaging the responses.

Perturbation techniques can be classified according to
whether they are record based or result based. Given a
query q(F), record-based techniques perturb the input to
the statistical function for q. Perturbation is accom-
plished either by taking a sample of the records satisfying
F and estimating q(F) from the sample or by perturbing
the data used to compute q(F) as they are extracted from
the records satisfying F. The cost and variance of both
approaches are proportional to the query set size.

Result-based techniques perturb the result q(F) after it
has been correctly computed; the perturbation typically
involves some form of rounding. The cost is a small con-
stant, and the variance is usually a constant proportional
to the square of the rounding base. Because errors are
confined to a known interval, rounding is often more ac-
ceptable to users than record-based perturbation, where
errors are confined only by confidence intervals.

Record-based perturbation

Random sample queries. In random sample queries, a
statistic q(F) is computed from a random sample drawn
from the query set for F.8' 9. When the database's system
fetches each record satisfying F, it applies a selection
function that determines whether the record is used to
compute the statistic. The set of selected records forms a
sampled query set, which is then used to compute the
statistic. The sample size is chosen to provide a balance
between security and information loss. The resulting
statistics are unbiased.
To provide consistency and prevent averaging attacks,

the selection function should be generated from the
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characteristic formula F of the query such that
equivalent queries return the same result. For this ap-
proach to work, we must either couple the rounding pro-
cess to some normal form of the characteristic formula,
which cannot be done efficiently for an arbitrary for-
mula, or couple it to the query set, which is less effec-
tive.3 A possible solution is to restrict the syntax of a
characteristic formula, e.g., to logical AND, which
would allow easy reduction to a normal form.2.3,36

Sampling introduces uncertainty into the composition
of query sets so that record identifications become dif-
ficult if not impossible. Random sample queries are
equivalent to a special form of random data perturba-
tion, which hides the highest percentage of records for a
given variance.36

Random data perturbation. Let

sum(F) = Yx,
=F

t

be a true sum over the values xi in a query set satisfying F.
Random data perturbation replaces input xi to the com-
putation with xi = xi + ei.353fi The error ei is randomly
chosen from a distribution with expected value of zero;
thus, the perturbed sum is unbiased. The variance in e* is
chosen to provide a balance between security and infor-
mation loss.
The technique can also be used with counts, where the

xi for records in Fare interpreted as "l's" since count(F)
can be written as

Xl

This application can lead to inconsistencies, however, in
the form of negative counts. Similar problems arise with
other statistics, such as correlation coefficients.

Although random perturbation schemes can be
vulnerable to averaging attacks when e* is generated ran-
domly at query processing time, Beck's scheme35 thwarts
such attacks without introducing large errors.

Figure 9. Comparison of restriction techniques, where s,/N is the relative table size (4+ pert. is with perturbation),
swap Is determine transformability (data swap), and size Is query set size.
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Rounding techniques lustrates for the counts in Figure 4, where the rounding
base b is five. For clarity, we show the counts in Figure 4

Systematic rounding and systematic ranges. In system- as a single table in Figure lOa, where the zero- and one-
atic rounding,9 323&38 we round a statistic to the closest tables are displayed as marginal sums for the two-table, a
integer multiple of a fixed rounding base b. Figure lOb il- common publication format for tables. Note that some

b, b2 b3 b4 b5 7
0 5 14 7 0 26

6 2 8 1 23 40

13 18 2 27 4 64

9 0 17 3 6 35

28 25 41 38 33 165

b, b2 b3 b4 b5 I

0 5 1 5 5 0 25

5 0 10 0 25 40

15 20 0 25 5 65

10 0 15 5 5 35

30 25 40 40 35 165

a. Original counts

b. Systematic rounding

b5 7

[0,4] [5,9] [10,14] [5.9] [0,4] [25,29]

[5.9] [0,4] [5,9] [0,4] [20,24] [40,44]
[10,14] [15,19] [0.4] [25,29] [0,4] [60.64]

[5,9] [0,4] [15.19] [0,4] [5,9] [35,39]

[25,29] [25,29] [40,44] [35,39] [30.34] j [165,169]

b, b2 b3 b4 b5 I

0 5 15 5 0 25 d. Random rounding

10 0 10 0 25 40

15 15 5 30 5 65

10 0 15 5 5 35

30 25 40 35 35 165

b, b2 b3 b4 b5 7

[0,4] [1,9] [11,19] ]19] [0.4] [21,29]

[6,14] [0.4] [6.14] [0,4] [21.29] [36,44]

[11,19] [11,19] [1,9] [26.34] 1.9]1 [61,69]

[6,14] [0,4] [11,19] [1,9] [1,9] [31,39]

[26,34] [21,29] [36,44] [31,39] [31.39] [161,169]

c. Systematic ranges

e. Random ranges

Figure 10. Output perturbation.
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statistics are inconsistent. For example, the sum of the
rounded values in column 4 of the table, namely 35, does
not equal the rounded row sum, namely 40. Systematic
rounding can also be biased, although the average bias
approaches zero if the database is sufficiently large.

Systematically rounded output is often taken literally,
and is thus often misinterpreted. This tendency can be
avoided by giving systematic ranges of the form
[kb,(k + 1)b - 1] instead.39 This technique is illustrated
in Figure 10c. Systematic ranges are also easier to analyze
for security than systematic rounding.

Systematic rounding always returns the same answer to
the same query, thereby thwarting attacks based on
averaging different answers to the same query. Under
certain conditions, however, systematic rounding can be
circumvented directly by derounding or indirectly using
trackers.9'363740 Because many of these attacks require
using logical OR in the characteristic formula, we have
another argument for possibly restricting the syntax of
queries to logical AND.

Random rounding and random ranges. This tech-
nique,9,36&38 illustrated in Figure 10d, randomly rounds a
statistics either to the next higher or the next lower multi-
ple of the rounding base.

Unlike systematic rounding, random rounding is un-
biased. To provide consistency and prevent averaging at-
tacks, the decision whether to round up or down should
be determined by the query in such a way that equivalent
queries always give the same response. This requirement
is similar to that for random sample queries and seems to
need a restricted syntax for characteristic formulas.

For a given rounding base, random rounding has
about the same (small) variance as systematic rounding
but is somewhat less vulnerable to derounding and
tracker attacks.36 By analogy to systematic rounding,
random rounding can be replaced by random ranges to
avoid misinterpretations. Figure 10e illustrates. If users
will accept a restricted syntax for characteristic formulas,
then random ranges is probably the best strategy overall
for perturbing results on a per-query basis.

Controlled rounding. This method of rounding pro-
vides an even smaller variance and greater consistency
than random ranges by requiring the marginal sums of
rounded statistics to equal their rounded sum.4'-43 For
example, the table in Figure 10b could be modified to
meet the requirements for controlled rounding by replac-
ing the column 4 sum of 40 with 35. Unfortunately, con-
trolled rounding is now too expensive to apply on a per-
query basis. It is, however, attractive as an a priori con-
trol for off-line publication of tables.

Perturbing arithmetic means. Providing consistency of
arithmetic means with counts and sums is a difficult pro-
blem for which no solution is entirely satisfactory.36 For
a given query avg(F), one approach is to return the com-
puted values s/c, where s is the perturbed statistic for
sum(F) and c is the perturbed statistic for count(F). This
approach provides acceptable results with random sam-
ple queries.'9'36 It can lead to questionable results, how-

ever, with rounding techniques or with small query sets.
Another approach is to compute averages correctly and
return the computed product c * avg(F) for sum(F). This
approach is usually preferable with rounded counts,
although additivity of sums is lost.9'36

Dynamic databases. The dynamics of a database in-
troduce additional security risks if the users with
statistical access are allowed to update the database.3"33
To control these risks, techniques such as record-based
perturbation and partitioning may be necessary. If,
however, the users are not allowed to update the
database, the dynamics of the database can probably be
ignored. Note that any form of output perturbation, in-
cluding rounding, renders small changes to the database
less visible.

Although no single control alone satisfies the conflict-
ing goals of high security, low information loss, and effi-
ciency, a scheme that combines simple restriction
criteria, such as query-set size and relative table size, with
simple perturbation techniques can provide an accept-
able level of security for many applications without being
overly restrictive or costly. Threat monitoring (audit
trails)' can also be used to determine whether a user has
attempted to obtain restricted data, thereby reducing the
need for large perturbations or tight restriction criteria.
For applications requiring extremely high levels of securi-
ty or low levels of information loss, a priori techniques
such as cell suppression and controlled rounding can be
used-although at the price of increased cost. The best
strategy for a particular application will depend on its
objectives and risks.

There is a paradoxical tradeoff between the power of
the query language and the amount of obtainable infor-
mation. If the syntax of the query language is restricted
to logical AND, the only statistics released are those cor-
responding to table cells in the lattice; statistics for query
sets defined by logical OR and NOT are not released.
With such a restricted syntax, however, the database can
release more table cells, and more accurate statistics for
these cells. Because additive statistics for arbitrary for-
mulas can be computed from the table cells, more infor-
mation is effectively released than with a free syntax,
where controls must be tighter. U
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